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Astract: The estimation of the projective structure of a
scene from image correspondences can be formulated as the
minimization of the mean-squared distance between pre-
dicted and observed image points with respect to the pro-
jection matrices, the scene point positions, and their depths.
Since these unknowns are not independent, constraints must
be chosen to ensure that the optimization process is well
posed. This paper examines three plausible choices, and
shows that the first one leads to the Sturm-Triggs pro-
jective factorization algorithm, while the other two lead
to new provably-convergent approaches. Experiments with
synthetic and real data are used to compare the proposed
techniques to the Sturm-Triggs algorithm and bundle ad-
justment.

1 Introduction

Let us consider n fixed points Py, .., P, observed by m
perspective cameras. Given some fixed world coordinate
system, we can write

(1)

fori=1,..,m and j = 1,..,n, where p;; = (us;,vij, nT
and z;; denote respectively the (homogeneous) coordi-
nate vector of the projection of P; into image number
i, expressed in the corresponding camera’s coordinate
frame and the depth of P; relative to that frame, M; is
the 3 x 4 projection matrix associated with this camera
in the world coordinate frame, and P; is the homoge-
neous coordinate vector of the point P; in that frame.
We address the problem of reconstructing both the ma-
trices M; (i = 1,..,m) and the vectors P; (j = 1,..,n)
from the image correspondences p;;. Of course, z;; is
also unknown, but its value is not independent of the
values of M; and P;: indeed z;; = m3- P;, where m}%
denotes the third row of the matrix M;. Faugeras [3]
and Hartley et al. [7] have shown that when the inter-
nal parameters of the cameras are unknown, the cam-
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era motion and the scene structure can only be recon-
structed up to an arbitrary projective transformation
Q. The parameters z;; are independent of the choice of
Q, hence the name of projective depths often used for
these parameters.

Several effective techniques for computing a projec-
tive scene representation from multiple images have
been proposed (e.g., [3, 7, 18]), but, with a few ex-
ceptions (e.g., [1, 2, 5, 12, 14]), current approaches to
projective motion analysis do not handle multiple im-
ages in a uniform manner. Instead, they use the now
classical algebraic relations associated with small sets of
pictures (e.g., [6, 18]) to stitch together the correspond-
ing reconstructions into a common framework. Once
initial estimates of the scene structure and camera mo-
tion have been obtained, they can be refined using all
images of all visible points and non-linear least-squares
techniques, an approach known as bundle adjustment in
photogrammetry. This article introduces two iterative
approaches to projective structure and motion estima-
tion that, unlike related approaches [1, 5, 12, 14], are
guaranteed to converge to a local minimum of the error
function. These algorithms are simple but the conver-
gence proofs, based on the Global Convergence Theo-
rem from [10], are a bit involved and they are relegated
to an Appendix. Experiments are used to compare them
to the projective factorization method of Sturm and
Triggs [14] and to the bundle adjustment method of
Morris, Kanatani and Kanade [13].

2 Background

Ideally, we would like to minimize the mean-squared
geometric distance Eo = 3, . |p;; — %_j./\/linP be-
tween the observed image points and the point posi-
tions predicted from the parameters z;;, M; and P;.
Unfortunately, the corresponding optimization prob-
lem is highly non-linear. Instead, we will minimize
E%¥ >oilziipi — M;P;|?. This error measure is not
as geometrically satisfying as the previous one, but the
rest of this article will show that its minimization un-
der various classes of constraints can serve as a unifying



framework for a wide class of projective structure-from-
motion techniques.

Note that the minimization of E is ill-posed unless
some constraints are imposed on the unknowns M;, P;
and z;;. Indeed, E admits trivial zero minima corre-
sponding to some of all of the z;; being zero: examples
include choosing zero values for all parameters z;;, M;
and P; (we will call this the all-zero solution in the se-
quel), or zero values for all z;, with M; = My, and
P; = Py, where My is an arbitrary rank-3 3 x 4 ma-
trix and Py is a unit vector in its null space. These
trivial minima arise because the transition from Ey to
E introduces non-physical solutions of (1) with at least
some of the projective depths equal to zero. They will
always occur, irrespective of the algorithm used for the
minimization. We will revisit this important issue in
Section 6.

Let us introduce the image data matrix Z [14]
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and observe that, given m images of n points, (1) can be
rewritten as Z = MP, where MT = (MT .., ML) and
P = (Py,.., Py). It follows immediately that minimiz-
ing F is equivalent to finding the parameters z;;, M and
P that minimize the Frobenius norm of the difference
between 7 and MP under the appropriate constraints.
2.1 The Sturm-Triggs Algorithm

The Sturm-Triggs factorization algorithm [14] gener-
alizes to the projective case the affine factorization algo-
rithm proposed by Tomasi and Kanade [15] (see [2, 5, §]
for related approaches), using epipolar constraints be-
tween pairs of successive images to compute initial val-
ues for the projective depths z;; [14]. The all-zero so-
lution mentioned in the previous section is avoided by
scaling the rows of 7 so they have unit norms, then scal-
ing the columns of this matrix so they have unit norm.
At this point, the values of the projective depths are
held constant, and the matrices M and P minimizing
E are found using singular value decomposition (SVD):
as show in [4], these matrices can be taken equal to
M =Uy/Wy and P = VW, V], where UWVT denotes
the SVD of the matrix Z, and Uy, W, and V, denote
the 3m x 4, 4 x 4 and 4 X n matrices formed by the
four leftmost columns of &, YW and V. The original al-
gorithm stops here, but Triggs [16] proposed later to
make this scheme iterative by refining the estimate of
the projective depths at each iteration (Table 1).

There is no guarantee that the iterative process will
converge (even to a local minimum) because of the
renormalization step at each iteration. Unfortunately,
this step is necessary to avoid the all-zero solution.

Compute an initial estimate of the projective depths z;;,
withi=1,..,mand j=1,..,n.

Repeat:

(1) normalize each row of the data matrix Z, then normal-
ize each one of its columns;

(2) use singular value decomposition to compute the ma-
trices M and P minimizing |Z — MP|?;

(3) for i = 1,..,m and j = 1,..,n, find the value of z;;
minimizing |zi;p;; — M:P;|* using linear least squares;
until convergence.

Table 1: The Sturm-Triggs factorization algorithm.

2.2 Bundle Adjustment

Bundle-adjustment methods originate from pho-
togrammetry [17]. In these methods, the projective
depths do not appear as independent variables, and
Cartesian image coordinates are used instead of pro-
jective ones to rewrite (1) as
m; - P; mi - P;

Ujj = Vij =

y .
mig'Pj mig'Pj

where the vectors m7T

i (J = 1,2,3) denote the three
rows of the projection matrix M;. In this setting, the
parameters of the matrices M; and P; minimizing the
mean-squared distance between predicted and observed
image points are found using non-linear least-squares

techniques.

3 A Convergent Factorization Method
3.1 Principle of the Approach

The approach proposed in this section solves the con-
vergence problem of the Sturm-Triggs algorithm in a
simple manner. As before, the minimization of E alter-
nates steps where the motion and structure parameters
are estimated from the data matrix with steps where
the projective depths are computed from the motion
and structure estimates. The key difference with the
Sturm-Trigss method is that the values of the projec-
tive depths are estimated by minimizing E under the
constraint that the columns d; (j = 1,..,n) of the ma-
trix Z have unit norm. Concretely, let us assume that
we are at some stage of the minimization process, fix
the value of M to its current estimate and compute,
for j = 1,..,n, the values of z; = (21}, .., 2m;)’ and P;
that minimize E; = Y, |2;p; — M;P;|*. These values
will of course minimize E as well. Writing that the gra-
dient of E; with respect to the vector P; is zero yields
P; = Mtd;, where Mt = (MT M)~ MT is the pseu-
doinverse of M. In turn, substituting this value in the
definition of E; yields E; = |(Id — MM%)d;|?>. Now,
M is a 3m x 4 matrix of rank 4, whose SVD UWVT is



formed by the product of a column-orthogonal 3m x 4
matrix U, a 4 x 4 non-singular diagonal matrix W and a
4 x 4 orthogonal matrix V7. The pseudoinverse of M is
Mt = VYW-1YT; substituting this value in the expres-
sion of E; and taking into account the fact that |d;|? = 1
immediately yields E; = |[Id — 4UT)d;|? = 1 — [Ud;|>.
In turn, this means that minimizing F; with respect to
zj and P; is equivalent to maximizing [/d;|* under the
constraint |d;|? = 1. Observing that

P - O
Q= e ,
0 .. P,

d; = Qjz;, where

shows that minimizing E; is equivalent to maximiz-
ing |R;jz;|* with respect to z; under the constraint
|Q;z;|? = 1, where R; = UTQ;. This is a generalized
eigenvalue problem, whose solution is the eigenvector
associated with the largest eigenvalue. The minimiza-
tion step where the projective depths are held constant
and M and P are updated is the same as in the Sturm-
Triggs approach. The initial projective depth values are
set to 1.

Compute an initial estimate of the projective depths z;;,
with ¢ = 1,..,m and j = 1, .., n and normalize each column
of the data matrix Z.

Repeat:

(1) use singular value decomposition to compute the ma-
trices M and P minimizing |Z — MP|?;

(2) for j = 1 to n, compute the matrices R; and Q; and
find the value of z; maximizing |R;2;|* under the con-
straint |Q;2;|? = 1;

(3) update the value of Z accordingly;

until convergence.

Table 2: The iterative factorization algorithm.

3.2 Convergence

Let E© be the current error value at the beginning
of each iteration; the first step of the algorithm does
not change the vectors z; but minimizes E with respect
to the unknowns M and P;. If E() is the value of the
error at the end of step 1, we have therefore E) < E(©0)
Now step 2 does not change the matrices M and P but
minimizes each error term F; with respect to the vectors
zj. Therefore the error E(®) at the end of this step is
smaller than or equal to E(). This shows that the error
decreases monotonically, and since it is bounded below
by zero, it also converges to some value E*. Monotonic
convergence of the error E to E* is not sufficient for
our purpose, however, since it does not guarantee the
convergence of the parameters M; and P; and does
not imply that E* is a local minimum of E. The full

convergence proof is outlined in the appendix (see [11]
for details).

4 A Convergent Bilinear Algorithm

We now present a simple alternative to the
factorization-based algorithms discussed in the previ-
ous sections. Unlike those, the proposed method does
not attempt to estimate the projective depths. Instead,
these are shown to be redundant, and their elimination
leads to a new expression for E as the squared norm
of a vector that is a bilinear function of the matrices
M; and vectors P;. As shown in the appendix, the
corresponding minimization algorithm is guaranteed to
converge to a local minimum of E.

Before introducing the new constraints that will be
used in the minimization of E, let us show that, in
general, the corresponding optimization process does
not, in fact, require the estimation of the projective
depths. Writing that the derivative of E with re-
spect to z;; is zero at an extremum of this function

ields 0 = 0E/0z;; = 2pT
Y [0 pij(zijpz'j — M;Pj), or z; =
(»" MP ) e .

iiMiPj)/|p;;|*. Substituting in the definition of E
and assuming that the homogeneous image coordinate
vectors p;; have been scaled to unit norm during pre-
processing, shows, after some algebraic manipulation
that, at an extremum of this function, we must have
E = Y ;i x (MiP;)]?. Our task is thus reduced
to minimizing this expression under appropriate con-
straints on the matrices M; and the vectors P;. Note
that this minimization process mever involves the ex-
plicit estimation of the projective depths. The next
question is how to choose the right constraints for the
minimization. We have chosen to use the simplest con-
straints, that is, to constraint both the projection ma-
trices and the points to be of unit norm: |M;|? = 1 and
|Pj?=1fori=1,..,mand j=1,.,n.
4.1 Algorithm

We propose to start with initial estimates of the vec-
tors P; and alternate steps where these vectors are kept
constant (resp. estimated) while the matrices M; are
estimated (resp. kept constant). This is an instance of
a class of techniques for structure from motion called
resection-intersection methods in photogrammetry [17].
Variants of this approach include the bilinear methods
of Morris and Kanade [12] and Chen and Medioni [1],
and the photogrammetric method of block successive
over relazation (see [17] for a discussion).

Let us rewrite our error function as

M M
E= Z?:l E]( )with E]('P )= Ezmzl |pij X (Min)|2,
=ym EP B = Y Ipi; x (MiPj).

K3
The algorithm presented in this section alternates (1)
steps where the point positions P; are held constant



while, for ¢ = 1, .., n, the error Ei(P) is minimized under
the constraint | M;|? = 1 with (2) steps where the matri-
ces M; are held constant while, for j = 1, .., n, the error
E](.M) is minimized under the constraint |P;|? = 1. It is
clear that the constraints |M;|*> = 1 and |P;|? = 1 for
i=1,..,mand j =1,..,n will remain satisfied through-
out the process.

Let us first fix the vectors P;. The error term as-

sociated with the projection matrix |[M;]? = 1 (i =
1,...,m) can be expressed as Eg)) = |Cym;|?, where,
m; denotes the vector of R' defined by m] =

T T mT T T T
(mj, mj,, m;3), where m;;, m;, and m;; are the rows

of M;, and C; is the the 3n x 12 matrix
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In particular, finding the matrix M; with unit Frobe-
nius norm that minimizes EZ-U)) is equivalent to finding
the unit vector m,; minimizing |C;m;|*. This is an eigen-
value problem, whose solution is the unit eigenvector of
the matrix C] C; associated with the smallest eigenvalue
of this matrix.

Let us now fix the matrices M; and rewrite the error

term associated with the vector P; (j = 1,...,n) as
E](-M) = |D; P;|?, where Dj is the 3m x 4 matrix
[P1jX]M1
[pmjx]Mm

and [ax] denotes the 3 x 3 skew-symmetric matrix such
that [@ax]b = a x b. Thus the unit vector P; minimiz-
ing EJ(.M) can be found as the unit eigenvector of the
matrix DJ-TDJ- associated with its smallest eigenvalue.
Thus both steps of the alternating algorithm can be re-
duced to eigenvalue problems. The initial P; values are
obtained using the Tomasi-Kanade [15] affine factoriza-
tion method, which is equivalent to setting the initial
projective depths to 1.

As mentioned earlier, the proposed algorithm does
not require all points to be visible in all images: at each
iteration, each point can be estimated independently,
using all the frames it is observed in. Likewise, each
projection matrix can be estimated independently, using
all the points visible in the corresponding frame.

4.2 Convergence

As before, let E(© be the current error value at the

beginning of each iteration. During the first step of the

Compute an initial estimate of the vectors P, ..., P, and
normalize these vectors.

Repeat:

(1) for ¢ = 1 to m, compute the unit vector m; that mini-
mizes |C;m;|?;

(2) for 7 =1 to n, compute the unit vector P; that mini-
mizes |D; P;|%;

until convergence.

Table 3: An iterative bilinear algorithm for projective
shape from motion.

iteration, we minimize, for i = 1,...,n the error Ez@)
with respect to the matrix M; and thus also minimize
the total error E = Y"1 EZ.(P). It follows that the new
value E( of the error must be smaller than E(®) . Dur-
ing the second step, the error EJ(.M) is minimized with
respect to P; for j =1,...,n. It follows that the total
error B = 30, E](-M) is also minimized, and the cor-
responding error E?) must be smaller than the current
error E1). This process will eventually converge since
the error is bounded below by zero. As in Section 3,
monotonic convergence of the error £ to E* does not
immediately imply convergence of the arguments M;
and P; and it does not imply that E* is a local min-
imum of the error function. The proof of these two
properties is given in the appendix.

5 Implementation and Results

This section compares the two proposed methods
with our implementation of the Sturm-Triggs iterative
factorization technique and the bundle-adjustment im-
plementation described in [13]. The initial guesses for
all methods are the same: they correspond to choosing
unit projective depths for the two iterative factorization
techniques, or equivalently, using a rank-4 version of the
Tomasi-Kanade affine factorization algorithm [15] to es-
timate the positions of the scene points for the bilinear
and bundle-adjustment methods. Accordingly, the ini-
tial errors are of course also the same for all approaches.
These errors are measured, for all algorithms, by the
root mean-squared distance between the predicted and
observed image points. Figure 1 plots, for each of the
data sets used in our experiments, the mean and maxi-
mum reprojection errors (in pixels) for the various meth-
ods as a function of the number of iterations.

5.1 Synthetic Images

Our first experiment compares the performance of
the various methods on synthetic data. In each trial,
thirty points are selected at random within a sphere of
radius 100 units; 10 training views of these points are
taken by a camera looking directly at the sphere center,
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Figure 1: Experimental results: (a) synthetic data; (b) full Castle data; (c) alternate Castle data; (d) inner Castle data;
(e) Wilshire data. The following symbols are used in all plots: F and B stand for the proposed Factorization and Bilinear
algorithms, and ST and BA respectively stand for the Sturm-Triggs and Bundle Adjustment techniques.

with an optical center located at a random point on a
surface patch located at a distance of 150 units from the
origin and sustending an angle of 30° from the origin.
An additional 10 views are taken from random point
on a sphere of radius 150 units to serve as test images.
These test views are not confined to the small patch
from which the training views have been taken. The
image size is 512 x 512 pixels, with a focal length of
256. Gaussian noise of one pixel has been added to
all input data. Figure 1(a) shows the results of our
experiments with these synthetic data, averaged over
20 trials. As shown by this figure, all methods converge
in less than 20 iterations and yield comparable errors.
The main difference between the four algorithms is their
convergence rate: bundle adjustment is the technique
that requires the fewest iterations to converge, closely
followed by the bilinear method of Section 4, then by
the iterative factorization of Section 3 and finally the
Sturm-Triggs iterative factorization method. As shown
in the rest of this section, the same pattern emerges
from the rest of our experiments.

5.2 Real Images

Figure 1(b) shows the average and maximum repro-
jection errors obtained on the castle data kindly pro-
vided by Marc Pollefeys. This data set consists of 20
images of 30 points. Again, all algorithms yield com-
parable errors at convergence, the final average error
being below one pixel in all cases. We have conducted

two experiments to evaluate the extrapolation power of
the four methods: in the first one, alternate frames are
used for training and testing (Figure 1(c)), while the
middle 10 frames are used for training and the outside
10 images for testing in the second experiment (Figure
1(d)). In these two examples, the position of the scene
points estimated from the training data is used to es-
timate the camera positions for each test image from
which the image errors can immediately be computed.
Qualitatively, the results are similar to those obtained
using all of the data for training and testing, confirming
that the four methods are capable of predicting with a

good accuracy views that are not part of the training
data.

5.3 Real Images with Missing Data

As mentioned earlier, the bilinear method proposed
in Section 4 can handle missing data. Factorization al-
gorithms, on the other hand, normally require all points
to be visible in all images (see [15] for modifications of
factorization to handle missing data.) We have com-
pared the bilinear and bundle-adjustment algorithms on
the Wilshire data kindly provided by Andrew Fitzgib-
bon and Andrew Zisserman (Figure 1(e)). This data
set consists of 411 points and 190 frames. As shown by
Figure 1(e,top-left), not all points are visible in all im-
ages. We have split the data into consecutive blocks of
30 frames with a 5-frame overlap, and used the Tomasi-
Kanade method in the maximal full rectangle of each



block (Figure 1(e,bottom-left)) to compute an affine
reconstruction of the corresponding points. The suc-
cessive reconstructions have then been registered. As
shown by Figure 1(e,right), the initial errors are much
larger in this case, and it takes the algorithm about
20 iterations to reach sub-pixel mean error, as opposed
to only about 4 iterations for bundle adjustment. Al-
though it is not meaningful to compare directly the run-
ning times of the MATLAB implementation of the al-
gorithms (the bundle adjustement implementation uses
compiled C code as well), it is worth noting that the bi-
linear algorithm takes 4 minutes on the Wilshire data,
while bundle adjustment takes three hours. This large
difference suggests that the low cost of the bilinear it-
erations greatly outweighs the fast convergence of the
bundle adjustment.
5.4 Cost Comparison

The singular value decomposition of a k£ x I matrix
can be computed in time O(klmin(k,1)) [4]. It follows
that the cost of each iteration of either one of the factor-
ization techniques discussed in this paper is dominated
by the SVD step and costs O(mn min(3m,n)). Each it-
eration of the proposed bilinear algorithm, on the other
hand, is O(mn), since the computation of the matri-
ces A;j and C; takes O(m) time, the computation of the
matrices B; and D; takes O(n) time, and the computa-
tion of the corresponding generalized eigenvectors and
eigenvalues takes constant time. In contrast, each itera-
tion of a Gauss-Newton or Levenberg-Marquart solution
to bundle adjustment costs O((m + n)?). The perfor-
mance of the four algorithms can be improved: fixed-
rank approximations of the singular value decomposi-
tion UWVT can be used to compute only the portions
of U and V associated with a fixed number of singular
values [16]. Likewise, sparse bundle-adjustment algo-
rithms can be used when the number of points visible
in each frame and the number of frames where each
point appears are both bounded by k, with a complex-
ity reduced to O((m + n)2k). The bilinear algorithm
also benefits from sparsity, with a cost of O((m + n)k)
under the same assumptions.

6 Discussion

The bilinear algorithm proposed in this paper can
be thought of as an alternation technique [17], that in-
terleaves structure and motion estimation steps until
convergence. Alternation approaches to structure from
motion are sometimes maligned for their reputed ineffi-
ciency and slow convergence near local minima (see the
discussion in [17] for example). However, the experi-
ments presented in Section 5 seem to indicate an excel-
lent rate of convergence for the bilinear algorithm on
both synthetic and real images, except in the Wilshire

experiment where bundle adjustment clearly converges
faster. Even in that case, however, the gain in run-
ning time outweighs the loss in convergence rate. The
iterative factorization algorithms of Sturm and Triggs
[14], Heyden et al. [8], and the factorization method of
Section 3, are also alternation techniques since they in-
terleave steps where M and P are estimated with steps
where the projective depths are estimated.

Let us conclude by examining once again the issue
of trivial solutions to the structure-from-motion prob-
lem, focussing on the bilinear algorithm. This algorihm
minimizes the error E under the constraints |[M;|? = 1
and |P;|?> = 1. This choice obviously avoids the all-
zero solution, but other trivial solutions may in principle
be found (e.g., the solution mentioned in the introduc-
tion where all parameters z;; are zero with M; = My,
P; = Py, and Py in the kernel of the non-zero ma-
trix Mp). Other constraints on the matrices M; and
the vectors P; could be used instead: for example en-
forcing 3-,; [M;P;|> = 1 avoids the all-zero solution.
On the other hand, this version of the algorithm is still
susceptible to (different) trivial solutions. For example,
we could take My = ... = M,, = 0 (and thus z;; = 0
for 4 > 1), pick an arbitrary non-zero matrix for My,
and choose the vectors P; as solutions of p;; = M1 P;.
Note that this is also a potential zero minimum for the
proposed factorization algorithm.

In fact, it appears that trivial solutions will in princi-
ple be possible for any algorithm based on Equation (1)
whose convergence can be proven using the methodol-
ogy used in the appendix: the overall convergence proof
scheme relies critically on the compactness of the con-
straint space (see [10, Chapter 6] for examples of non-
convergence of seemingly trivial examples if the space
is not compact). But it is only possible to guarantee
that trivial solutions will not occur by imposing con-
straints of the form z;; # 0 for all values of ¢ and j,
which amounts to defining non-compact regions asso-
ciated with the corresponding open sets in parameter
space. Thus, it appears that the transformation from
the original perpsective equation (1) to its linearized
form z;;p;; = M,;P; will either always introduce the
possibility of non-physical solutions, or yield algorithms
whose convergence cannot (at this point at least) be
guaranteed.

Even if, for a given algorithm, the solutions computed
at each iteration are all non-trivial, it is not possible to
prevent the limit from being a trivial solution. More
precisely, it is possible to have z;; # 0 at every iteration
but still have z;; = 0 some 4, § in the limit. Fundamen-
tally, this is a consequence of the non-compactness of
the space formed by excluding the trivial solutions. This



is also the reason why, in the Sturm-Triggs approach,
the constraints cannot avoid all the trivial solutions and
achieve provable convergence.

Experimentally, the algorithms proposed in this pa-
per have never converged to a trivial solution in our
experiments. A likely explanation is that we start the
iterations at a solution that minimizes an error function
that is closely related to E, namely the affine reconstruc-
tion error E' = 3=, . |p;; — M, P;|*. More investigation
would be needed to verify that it is indeed the reason for
the avoidance of trivial solutions observed in practice.

Appendix

‘We now show that, for the bilinear and factorization al-
gorithms, the projection matrices and the points converge,
that the error converges to a local minimum, and that con-
vergence to a solution is guaranteed irrespective of the start-
ing points. The proof relies on a general result from opti-
mization theory, the global convergence theorem, or GCT [10,
Chapter 6]. See, for example, [9] for its application to the
study of the convergence of pose-estimation algorithms in
computer vision.

The GCT represents algorithms as point-to-set mappings,
that map each input value to a set of compatible outputs.
Although it is often necessary to view an algorithm as a
point-to-set mapping for convergence analysis, in actual im-
plementation of the algorithm, a single output is chosen out
of the set of outputs generated by the algorithm. This is rel-
evant to the two algorithms proposed in this paper because
they both rely on solving eigenvalue problems, and the ma-
trices involved may have eigenvalues of multiplicity greater
than one, forcing arbitrary choices among the eigenvectors.

In this setting, a convergent algorithm is a closed mapping
A: X =Y from a topological space X of input parameters
to a topological space Y of output values.

Definition 1 A mapping A : X — Y is said to be closed
at a point x in X when the convergence of a sequence Ty
i X to x and the convergence of a sequence yir such that
yr € A(zy) to some point y in'Y imply that y € A(z). A is
satd to be closed when it is closed at every point in X.

Theorem 1 (GCT) Consider a topological space X, a so-
lution set T' C X, a mapping A : X — 2%, and a sequence
of points xx in X such that for k > 0, zr+1 € A(xr). When
1. the points x, (k > 0) belong to a compact set S;
II. there exists a continuous function Z : X — IR such that
(a) if z ¢ T, then Z(y) < Z(x) for ally € A(x),
(b) if c € T, then Z(y) < Z(x) for all y € A(x);
III. A is closed at every point outside T';
the limit of any convergent subsequence of xy belongs to T'.

Strictly speaking, the GCT guarantees only convergence
to the solution set of subsequences. This allows for possible
alternation of x; between multiple solutions. In practice, an
arbitrary choice among such solutions is used as final output
of the algorithm since they all have the same error. The ex-
istence of subsequences is a consequence of the compactness

assumption since a convergent subsequence can always be
extracted from a sequence in a compact space.

Because of space limitations we only give the outline of
the proof for the bilinear algorithm. The convergence proof
for the factorization algorithm is similar, except that it in-
volves a lemma showing that the mapping that associates to
a matrix its rank-4 SVD-based factorization is closed [11].

Let us denote by M the collection of all the matrices M;
and by P the collection of all the vectors P;. We now show
that the iterative bilinear algorithm proposed in Section 4
converges globally to some solution (M*, P*), i.e., that it
finds a local minimum E™ of the objective function E starting
from any initial value (M°, P°). We will need the following
lemma, which states that the mapping that associates the
generalized eigenvectors to a pair of matrices is closed. Note
that it is necessary to use point-to-set mappings because,
in general, the multiplicity of the eigenvalue may be greater
than one.

Lemma 1 The mapping that associates with the matrices U
and V and the scalar vy > 0 the vectors x* minimizing |Uzx|”
under the constraint |V|*> = ~? is closed.

To apply the GCT, we need to define the appropriate
parameter space X, the solution set I', the compact set S,
the descent function Z : X —+ R and the mapping A asso-
ciated with our algorithm. Let us represent the set of all
pairs (M,P) by R!?™+" = R'>™ x R*", endowed with
the Euclidean norm, and define X = S to be the variety of
R'*™*" formed by the matrices M; and vectors P; such
that [M;|*> = 1 and |P;|* = 1, endowed with the induced
topology. The mapping A associated with each iteration of
the algorithm maps the current estimate of M and P onto
the next one computed by steps 3(a) and 3(b) of the iter-
ation. S is compact, and since the points z; = (MF, PF)
generated by the iterations of the algorithm belong to S,
assumption I of the GCT holds.

We define Z as the restriction of the error function E :
R!?"*" 5 R to S, and take I' to be the set of critical
points of Z, or equivalently

'={zeX|VueT(z), VE(z)-u=0},

where T'(z) denotes the tangent space to S at x, and VE(z)
denotes the gradient of E with respect to the 12m + 4n
coordinates of . Note that I' includes the local minima as
well as local maxima and saddle points. The former will
never be found by our algorithm since the error decreases
at each step, and the latter can be ignored since it can be
shown that they correspond to critical minimization paths
that will never be followed in practice.

Let us now show that the hypotheses II(a) and II(b) of
the GCT are satisfied, i.e., that Z is indeed a descent func-
tion. For clarity, the proof is outlined considering A as a
point-to-point mapping, i.e., choosing one solution at each
step. The proof for the general point-to-set case is a direct
extension requiring more cumbersome notations. We showed
in Section 4 that the error E decreases at each step of the
algorithm, ie., E(A(z)) < E(z) for any  in X = S, and in
particular for any z in I', thus II(b) is satisfied.



To prove that II(a) holds as well, let us assume that
E(A(z)) = E(z), and show that « must lie in I. Let us first
consider step 3(a) of the algorithm. This step minimizes,
for i =1, .., m, the error Effp) with respect to M; under the
constraint |M;|?> = 1. Since all other matrices M} and all
the points P; are held constant, this means that E is also
minimized with respect to M; under the same constraint. In
other words, if £ = (M, P) and M? is the solution computed
after step 3(a), we must have E(M°, P) < E(M', P) for any
M’ satisfying the constraints. Since E(A(z)) = E(z), E(z)
and E(M°,P) must also be equal because, otherwise, E
would decrease after step 3(a). Therefore, E(z) < E(M’,P)
for all M', that is, = is a local minimum with respect
to M under the constraint. In particular, we obtain, for
i = 1,..,m, that VE(z) - u = 0 for the portion of T(z)
spanned by the M; coordinates of x. Using the result of
step 3(a), a similar line of reasoning applied to step 3(b)
shows that, for j = 1,..,n, we have VE(z) - u = 0 for the
portion of T'(z) spanned by the P; coordinates of z. Com-
bining the two results, we obtain that VE(x) - v = 0 for all
z in T(z), thus z is an element of I" and II(a) is satisfied.

To show that III. holds as well, we first decompose A into
four elementary mappings:

e A; associates with P the matrices C; (1 = 1,..,m).

e A, associates with C;, the matrix M; constructed from
the eigenvector m; associated with the minimum eigen-
value of CTC;;

e Aj associates with M the matrices D; and (j = 1, .., n);

e A, associates with D;, the eigenvector P; associated
with the minimum eigenvalue of D;?FDJ-.

A; and A3 are continuous functions of their inputs and
hence closed [10]. The fact that A; and A4 are closed map-
pings follows directly from Lemma 1.

Finally, we show that A is closed by using two lemmas
from [10]. The first lemma states that the composition Bo A
of a point-to-point mapping A continuous at x and a point-
to-set mapping B closed on A(x) is closed at x. This lemma
implies that both As0A; and A40 A3 are closed. The second
lemma states that the combination of two closed mappings
is itself closed if the range of the first mapping is compact.
This lemma implies that A = (A4 0 As) o (A2 0 A;) is closed
because the range of As o A; is a compact set, the set of
matrices M;, i =1,..,m; |IM;|* = 1.

The bilinear algorithm, formalized as above to a point-
to-set mapping, satisfies the conditions of the GCT and is
therefore globally convergent.
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