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Motivation

� BCFD viscous solution: 29201 CPU hours

– Pre/post-processing time not included

� Can this configuration be optimized?
1Winkler et al. 4th CFD Drag Prediction Workshop, San Antonio TX, June 2009
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Multifidelity Surrogates

� Definition: High-Fidelity
– The best model of reality that is available and affordable, the 

analysis that is used to validate the design.

� Definition: Low(er)-Fidelity
– A method with unknown accuracy that estimates metrics of interest 

but requires lesser resources than the high-fidelity analysis. 
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Main Messages

� Bayesian model calibration offers an efficient 
framework for multifidelity optimization.

� Can reduce the number of high-fidelity function 
evaluations compared to other multifidelity 
methods.

� Does not require high-fidelity gradient 
estimates.

� Provides a flexible and robust alternative to 
nesting when there are multiple low-fidelity 
models.
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Motivation-Calibration Methods

� First-order trust-region methods:

– Efficient for multifidelity optimization when derivatives are available 
or can be approximated efficiently

– Calibrated surrogate models are only used for one iteration

� Pattern-search methods:

– High-fidelity information can be reused

– Can be slow to converge

� Bayesian calibration methods (e.g., Efficient Global Optimization)

– Reuse high-fidelity information from iteration to iteration

– Can be quite efficient in practice

– Heuristic, no guarantee they converge to an optimum

� Goal: Develop a multifidelity optimization algorithm that combines 
Bayesian calibration and reuse of high-fidelity information in a manner 
provably convergent to an optimum of the high-fidelity function

5
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Bayesian Model Calibration

� Define a surrogate model of the 
high-fidelity function:

� The error model, e(x):
– Is a radial basis function model

– Interpolates fhigh(x)- flow(x)
exactly at all selected 
calibration points

� Convergence can be proven if 
surrogate model is fully linear 
within a trust region 

� Define trust region at iteration k:
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Definition: Fully Linear Model

� Definition: For all x within a trust region of size ∆k∈(0,∆max), a 
fully linear model, mk(x), satisfies

for a Lipschitz constant κg, and

with a Lipschitz constant κf.

� Conn et al. (2009) shows that in a trust region setting, fully 
linear models are sufficient to prove convergence to a 
stationary point of fhigh(x).

– Requires: fhigh(x) is continuously differentiable, has Lipschitz
continuous first derivative, and is bounded from below

– Multifidelity method also requires that flow(x) is continuously 
differentiable and has Lipschitz continuous first derivative

kgkhigh mf ∆≤∇−∇ κ)()( xx
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Fully Linear RBF Models

� Standard radial basis function model:

� Radial basis function (RBF) model requirements:
– RBF, φ, is twice continuously differentiable

– φ(r) has zero derivative at r=0

– Polynomial basis, π, is linear

� Wild et al. (2008) showed that an RBF model can be made 
fully linear by construction
– Places conditions on the sample points used to construct the 

RBF model
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First-Order Trust Region Approach

Function Evaluation Points

� RBF model has sufficient 

local behavior to 

guarantee convergence

� It also captures some 

global behavior

� First-order trust region 

approaches only look at 

the center of the current 

trust region

� RBF model will likely 

require fewer high-fidelity 

evaluations
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Unconstrained Algorithm Summary

� Solve the trust-region subproblem to determine a candidate step, sk:

� Evaluate fhigh at the candidate point and compute the ratio of actual 

to predicted reduction:

� Accept/reject iterate: 

� Update trust region size:

� Form new fully linear model

� Perform convergence check:

and reduce size of trust region until convergence proved
[called the criticality check in Conn et al. (2009)]
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Supersonic Airfoil Test Problem

Cart3D

Linear Panel Method Shock-Expansion Theory

Linear Panels Shock Expansion Cart3D
C

L
0.1244 0.1278 0.12498

% Difference 0.46% 2.26% 0.00%

C
D

0.0164 0.0167 0.01666

% Difference 1.56% 0.24% 0.00%

• Biconvex airfoil in supersonic flow

- α= 2o,M∞=1.5

- (t/c) = 5%



AEROSPACE COMPUTATIONAL DESIGN LABORATORY1212

Airfoil Parameterization

� Panel method and shock-expansion theory require 
sharp leading and trailing edges

� Parameterization has equal number of spline points on 
upper and lower surface and angle of attack

� Figure shows minimum drag solutions for 11 design 
variables
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Airfoil Optimization Results

� Models:

– Low-Fidelity: Panel 
Method

– High-Fidelity: S-E Theory

� Airfoil parameterization:

– Angle of Attack

– Equal # of upper/lower 
surface spline points

� Optimization tolerance:

– ||step||≤5x10-6 or

– ||dm/dx|| ≤ 5x10-4

� Criteria: Fewest high-
fidelity function evaluations

– Average of 5 runs with 
random ICs

# of Variables: 7 11 15 21

Quasi-Newton 667 1048 1408 1731

β-Correlation 183 246 503 546

Add-Correction 168 211 223 249

RBF α=2 61 76 127 182

RBF α* 38 61 122 146

High-Fidelity Function Calls
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Combining Multiple Fidelity Levels

� Nested Approach
– “Classic approach”

– Possible exponential scaling in function evaluations, 
� e.g. 50 high-fidelity evaluations, 2500 medium-fidelity 

evaluations, 125,000 low-fidelity evaluations

� Maximum Likelihood Approach
– Flexibility in selecting low/medium-fidelity function calls

– Robust to poor models

Nesting Maximum Likelihood
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Combining Multiple Lower-Fidelities

� The RBF error interpolation can be treated as a Kriging model that 
predicts the high-fidelity function with a normally distributed error:

� Using Kriging models for each of the lower-fidelity functions, a 
maximum likelihood estimate for the high-fidelity function is:

� To fit in the original multifidelity algorithm, only one of the two lower-
fidelity functions needs to be sampled at the required calibration 
points.
– This allows substantial flexibility in selecting when each lower-fidelity 

function is used.
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3-Fidelity Supersonic Airfoil Results

� Maximum likelihood approach reduced high-fidelity function 
calls for all cases.
– Results use the same calibration points for all lower-fidelity functions

– Fancier sampling methods can be used

� Nested approach failed to converge with a non-smooth high-fidelity 
function (Cart3D):

� The maximum likelihood approach is robust to the poor information. 
– A camberline model estimates drag poorly (thickness is ignored)
– The best result of the nested approach is shown, average result otherwise

Cart3D Shock-Expansion Theory Panel Method

Two-Fidelities 88 0 47679

Max. Likelihood 66 23297 23297

Nested 66* 7920* 167644

Shock-Expansion Theory Panel Method Camberline

Two-Fidelities 126 43665 0

Max. Likelihood 84 30057 30057

Nested 212** 59217** 342916**

Function Calls

Function Calls
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Conclusion

� Explained the need for convergent high-fidelity derivative-
free methods

� Demonstrated convergence of an unconstrained 
multifidelity optimization algorithm using Bayesian model 
calibration
– Through numerical experiments, showed that the method 

works for nonsmooth functions

– Has performance comparable to other state-of-the-art design 
methods

� Developed a maximum likelihood method to combine 
multiple lower fidelities into a single estimate of the high-
fidelity function.
– Showed that this technique converges faster than nesting, is 

robust to poor information, and allows flexible sampling.
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Questions?


