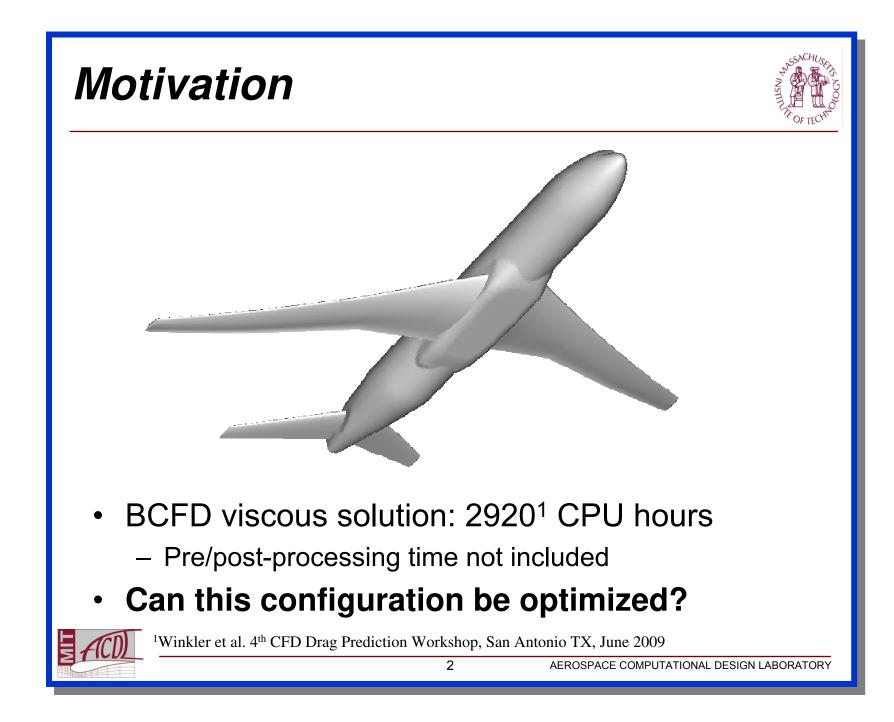


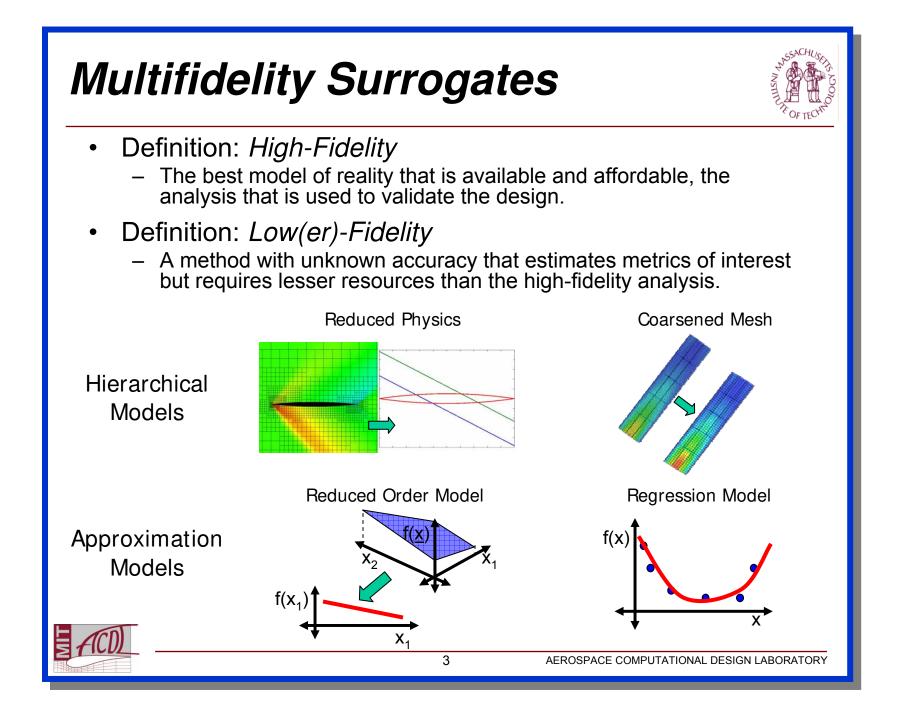
A Provably Convergent Multifidelity Optimization Algorithm not Requiring High-Fidelity Derivatives

Multidisciplinary Design Optimization Specialist Conference April 14, 2010

Andrew March & Karen Willcox

AEROSPACE COMPUTATIONAL DESIGN LABORATORY





Main Messages

- Bayesian model calibration offers an efficient framework for multifidelity optimization.
- Can reduce the number of high-fidelity function evaluations compared to other multifidelity methods.
- Does not require high-fidelity gradient estimates.
- Provides a flexible and robust alternative to nesting when there are multiple low-fidelity models.

Motivation-Calibration Methods

- First-order trust-region methods:
 - Efficient for multifidelity optimization when derivatives are available or can be approximated efficiently
 - Calibrated surrogate models are only used for one iteration
- Pattern-search methods:
 - High-fidelity information can be reused
 - Can be slow to converge
- Bayesian calibration methods (e.g., Efficient Global Optimization)
 - Reuse high-fidelity information from iteration to iteration
 - Can be quite efficient in practice
 - Heuristic, no guarantee they converge to an optimum
- **Goal:** Develop a multifidelity optimization algorithm that combines Bayesian calibration and reuse of high-fidelity information in a manner provably convergent to an optimum of the high-fidelity function

Bayesian Model Calibration Define a surrogate model of the high-fidelity function: **Bayesian Calibration** $m_k(\mathbf{x}) \equiv f_{low}(\mathbf{x}) + e_k(\mathbf{x}) \approx f_{high}(\mathbf{x})$ 20 f_{hiah}(x) f_{ina}(x) Interpolation points 15 The error model, e(x): $m_{\nu}(\mathbf{x})$ Is a radial basis function model m_μ(x)±σ - Interpolates $f_{high}(\mathbf{x})$ - $f_{low}(\mathbf{x})$ exactly at all selected Z calibration points Convergence can be proven if surrogate model is fully linear -2 0 -1 1 within a trust region х Define trust region at iteration *k*: $B_{k} = \left\{ \mathbf{x} \in \mathfrak{R}^{n} : \left\| \mathbf{x} - \mathbf{x}_{k} \right\| \le \Delta_{k} \right\}$ 6 AEROSPACE COMPUTATIONAL DESIGN LABORATORY

WINSTITUTE OF TECHNOL

Definition: For all **x** within a trust region of size ∆_k∈(0,∆_{max}), a fully linear model, m_k(**x**), satisfies

$$\left\|\nabla f_{high}(\mathbf{x}) - \nabla m_k(\mathbf{x})\right\| \leq \kappa_g \Delta_k$$

Definition: Fully Linear Model

for a Lipschitz constant κ_{g} , and

$$\left|f_{high}(\mathbf{x}) - m_k(\mathbf{x})\right| \leq \kappa_f \Delta_k^2$$

with a Lipschitz constant κ_{f} .

- Conn et al. (2009) shows that in a trust region setting, fully linear models are sufficient to prove convergence to a stationary point of $f_{high}(\mathbf{x})$.
 - Requires: $f_{high}(\mathbf{x})$ is continuously differentiable, has Lipschitz continuous first derivative, and is bounded from below
 - Multifidelity method also requires that $f_{low}(\mathbf{x})$ is continuously differentiable and has Lipschitz continuous first derivative

Fully Linear RBF Models

• Standard radial basis function model:

$$e_k(\mathbf{x}) = \sum_{i=1}^{|y|} \lambda_i \phi(\|\mathbf{x} - \mathbf{x}_k - \mathbf{y}_i\|; \xi) + \sum_{i=1}^{n+1} v_i \pi(\mathbf{x} - \mathbf{x}_k)$$

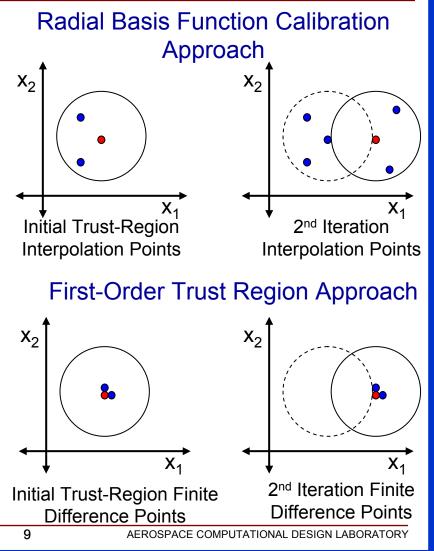
- Radial basis function (RBF) model requirements:
 - RBF, $\phi,$ is twice continuously differentiable
 - $\phi(r)$ has zero derivative at r=0

$$\phi = e^{\frac{-r^2}{\xi^2}}$$

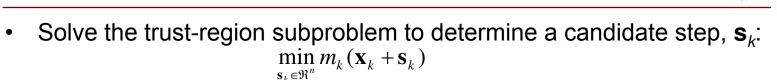
- Polynomial basis, π , is linear
- Wild et al. (2008) showed that an RBF model can be made fully linear by construction
 - Places conditions on the sample points used to construct the RBF model

Function Evaluation Points

- RBF model has sufficient local behavior to guarantee convergence
- It also captures some global behavior
- First-order trust region approaches only look at the center of the current trust region
- RBF model will likely require fewer high-fidelity evaluations



Unconstrained Algorithm Summary



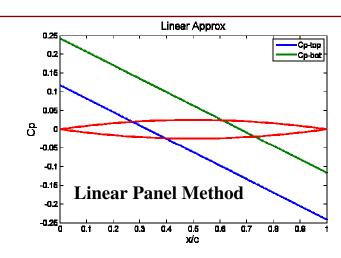
s.t.
$$\|\mathbf{s}_k\| \leq \Delta_k$$

- Evaluate f_{high} at the candidate point and compute the ratio of actual to predicted reduction: $\rho_k = \frac{f_{high}(\mathbf{x}_k) - f_{high}(\mathbf{x}_k + \mathbf{s}_k)}{m_k(\mathbf{x}_k) - m_k(\mathbf{x}_k + \mathbf{s}_k)}$
- Accept/reject iterate: $\mathbf{x}_{k+1} = \begin{cases} \mathbf{x}_k + \mathbf{s}_k & \rho_k > 0 \\ \mathbf{x}_k & \text{otherwise} \end{cases}$
- Update trust region size: $\Delta_{k+1} = \begin{cases} \min\{2\Delta_k, \Delta_{\max}\} & \rho_k \ge \eta \\ 0.5\Delta_k & \rho_k < \eta \end{cases}$
- Form new fully linear model $m_{k+1}(\mathbf{x})$, on $\{\mathbf{x} : \|\mathbf{x} \mathbf{x}_{k+1}\| \le \Delta_{k+1}\}$
- Perform convergence check: $\|\nabla m_k(\mathbf{x}_k)\| \le \varepsilon_1$ and $\Delta_k \le \varepsilon_2$

and reduce size of trust region until convergence proved [called the criticality check in Conn et al. (2009)]

Supersonic Airfoil Test Problem

8

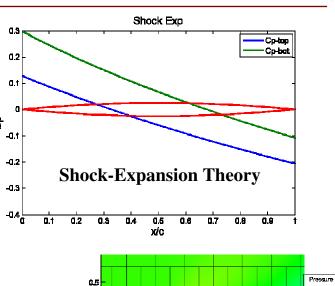


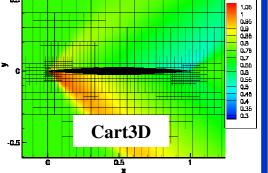
• Biconvex airfoil in supersonic flow

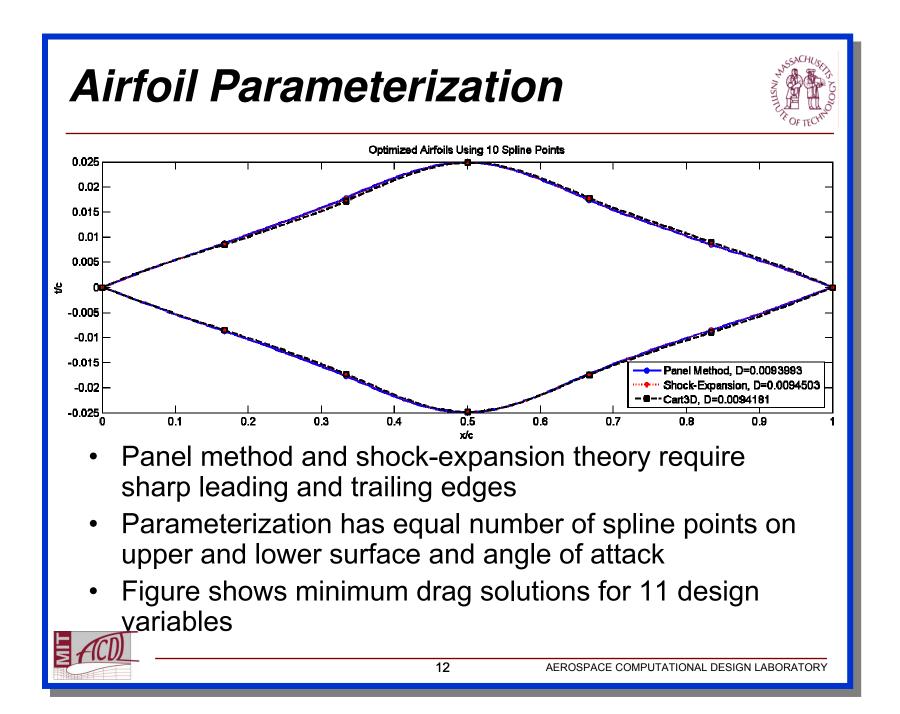
$$\alpha = 2^{\circ}, M_{\infty} = 1.5$$

$$(t/c) = 5\%$$

	Linear Panels	Shock Expansion	Cart3D
C	0.1244	0.1278	0.12498
% Difference	0.46%	2.26%	0.00%
	0.01666		
	0.0164	0.0167	
% Difference	1.56%	0.24%	0.00%

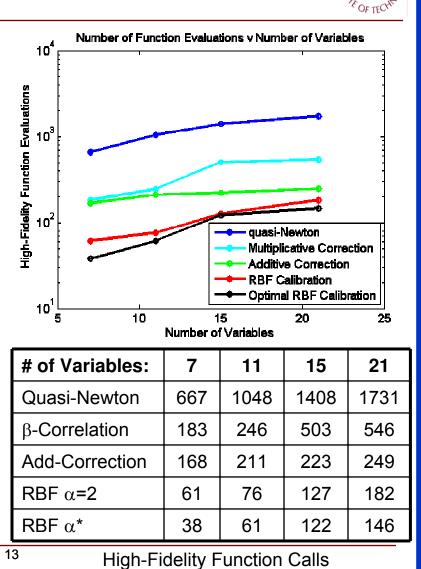


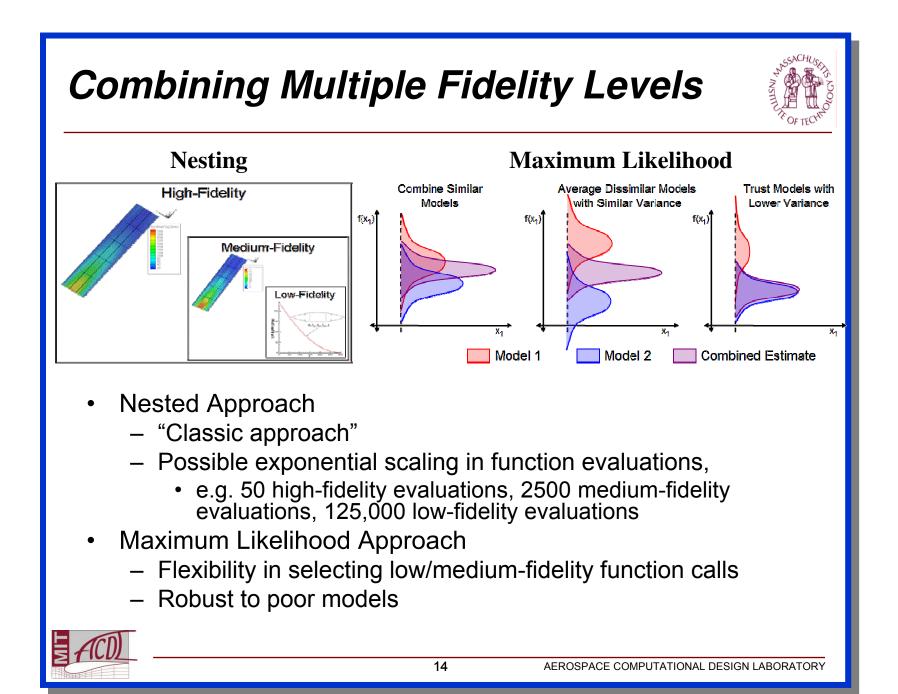


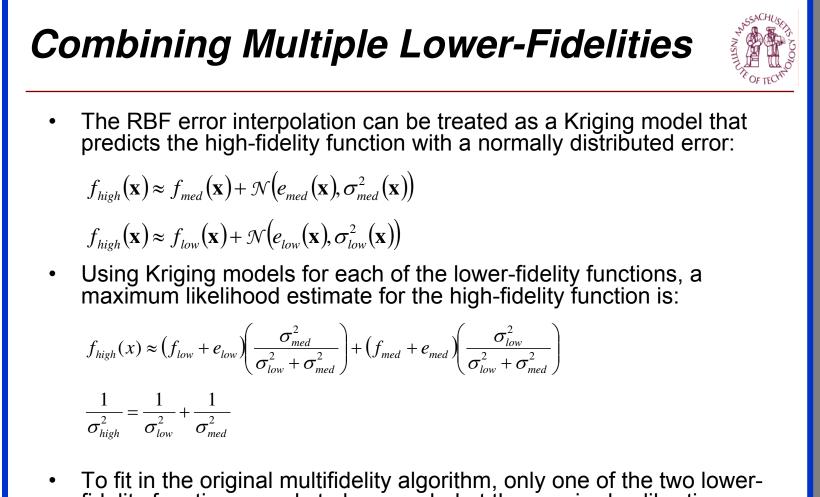


Airfoil Optimization Results

- Models:
 - Low-Fidelity: Panel Method
 - High-Fidelity: S-E Theory
- Airfoil parameterization:
 - Angle of Attack
 - Equal # of upper/lower surface spline points
- Optimization tolerance:
 - ||step||≤5x10⁻⁶ or
 - $||dm/dx|| \le 5x10^{-4}$
- Criteria: Fewest highfidelity function evaluations
 - Average of 5 runs with random ICs







- To fit in the original multifidelity algorithm, only one of the two lowerfidelity functions needs to be sampled at the required calibration points.
 - This allows substantial flexibility in selecting when each lower-fidelity function is used.

3-Fidelity Supersonic Airfoil Results

- Maximum likelihood approach reduced high-fidelity function calls for all cases.
 - Results use the same calibration points for all lower-fidelity functions
 - Fancier sampling methods can be used
- Nested approach failed to converge with a non-smooth high-fidelity function (Cart3D):

	Cart3D	Shock-Expansion Theory	Panel Method
Two-Fidelities	88	0	47679
Max. Likelihood	66	23297	23297
Nested	66*	7920*	167644

Function Calls

- The maximum likelihood approach is robust to the poor information.
 - A camberline model estimates drag poorly (thickness is ignored)
 - The best result of the nested approach is shown, average result otherwise

	Shock-Expansion Theory	Panel Method	Camberline
Two-Fidelities	126	43665	0
Max. Likelihood	84	30057	30057
Nested	212**	59217**	342916**

Function Calls

16

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Conclusion

- Explained the need for convergent high-fidelity derivativefree methods
- Demonstrated convergence of an unconstrained multifidelity optimization algorithm using Bayesian model calibration
 - Through numerical experiments, showed that the method works for nonsmooth functions
 - Has performance comparable to other state-of-the-art design methods
- Developed a maximum likelihood method to combine multiple lower fidelities into a single estimate of the highfidelity function.
 - Showed that this technique converges faster than nesting, is robust to poor information, and allows flexible sampling.

