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Motivation

« BCFD viscous solution: 2920" CPU hours

— Pre/post-processing time not included
« Can this configuration be optimized?

"Winkler et al. 4" CFD Drag Prediction Workshop, San Antonio TX, June 2009
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Multifidelity Surrogates

« Definition: High-Fidelity
— The best model of reality that is available and affordable, the
analysis that is used to validate the design.

« Definition: Low(er)-Fidelity
— A method with unknown accuracy that estimates metrics of interest
but requires lesser resources than the high-fidelity analysis.
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Main Messages

« Bayesian model calibration offers an efficient
framework for multifidelity optimization.

Can reduce the number of high-fidelity function
evaluations compared to other multifidelity
methods.

Does not require high-fidelity gradient
estimates.

Provides a flexible and robust alternative to
nesting when there are multiple low-fidelity
models.
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Motivation-Calibration Methods %
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First-order trust-region methods:

— Efficient for multifidelity optimization when derivatives are available
or can be approximated efficiently

— Calibrated surrogate models are only used for one iteration

Pattern-search methods:

— High-fidelity information can be reused
— Can be slow to converge

Bayesian calibration methods (e.g., Efficient Global Optimization)
— Reuse high-fidelity information from iteration to iteration
— Can be quite efficient in practice

— Heuristic, no guarantee they converge to an optimum

Goal: Develop a multifidelity optimization algorithm that combines
Bayesian calibration and reuse of high-fidelity information in a manner
provably convergent to an optimum of the high-fidelity function

5
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Bayesian Model Calibration

» Define a surrogate model of the
high-fidelity function: 5ayesion Galibratin

m(X) = f,,(X) +e.(X) = fhigh (X) 20 | [— high()l()

\ f|DW(X)

The error mOdel e(x)_ 15 |8 ©  Interpolation points ||

’ . mk(x)

— Is aradial basis function model | :

— Interpolates fi...(X)- fi,,(X) g [
exactly at all selecte

calibration points

St

0_
Convergence can be proven if
surrogate model is fully linear
within a trust region

Define trust region at iteration k:
B, = {XeiR” ; ‘X—XkHSAk}
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Definition: Fully Linear Model

 Definition: For all x within a trust region of size A, €(0,A,.,), @
fully linear model, m,(x), satisfies

V£ () = Vi, (%) < A,
for a Lipschitz constant Kgy and
Frian () =, ()| < 5, A,

with a Lipschitz constant «.

Conn et al. (2009) shows that in a trust region setting, fully
linear models are sufficient to prove convergence to a
stationary point of £, (x).

— Requires: £, . (X) is continuously differentiable, has Lipschitz
continuous frst derivative, and is bounded from below

— Multifidelity method also requires that £, (x) is continuously
differentiable and has Lipschitz continuous first derivative
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Fully Linear RBF Models

« Standard radial basis function model:

n+l

b
ek(x): leﬁ(HX -X, -y, ;§)+ Zv/z(x -X,)

« Radial basis function (RBF) model requirements:
— RBF, ¢, is twice continuously differentiable ;22
— ¢(r) has zero derivative at r=0 p=e°
— Polynomial basis, =, is linear

« Wild et al. (2008) showed that an RBF model can be made
fully linear by construction

— Places conditions on the sample points used to construct the
RBF model
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Function Evaluation Points

.. Radial Basis Function Calibration
RBF model has sufficient Approach

local behavior to x,| X,
guarantee convergence

It also captures some

global behavior « . «
X4 v X4

Ini"[ial Trust-Region 2nd |teration
Interpolation Points Interpolation Points

First-order trust region

approaches only look at
the center of the current _ X
trust region X;

RBF model will likely
require fewer high-fidelity
evaluations ) X

A\ 4 y

Initial Trust-Region Finite 27 Iteration Finite
Difference Points Difference Points
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Unconstrained Algorithm Summary @%
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* Solve the trust-region subproblem to determine a candidate step, s,
min m, (X, +8,)

S eR”
HSkH <A

Evaluate f,,, at the candidate point and compute the ratio of actual

to predicted reduction: [ (X)) = fuien (X +5,)
=

m,(X,)—m, (X, +5S,)

Accept/reject iterate:  _ [Xc*Se  Ac>0
e x,  otherwise

min{2A,,A_.} p. 27

ion size: A, =
Update trust region size k1 { 0.5A, 0. <7

Form new fully linear model m,,(x),on fx:|x—x,.,[<A,.}
Perform convergence check: |[Vm,(x,)|<& andA, <

and reduce size of trust region until convergence proved
rl [called the criticality check in Conn et al. (2009)]
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Supersonic Airfoil Test Problem %
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Shock-Expansion Theory

) z Linear Panel Method

gt @2 03 04 a5 06 07 a8 09 t 9 f f 03 04 05 06
X/c 1l

* Biconvex airfoil in supersonic flow
- a=2°M_=1.5
- (t/c) =5%

Linear Panels| Shock Expansion| Cart3D
(C, 0.1244 0.1278 0.12498

% Difference|  0.46% 2.26% 0.00% | L Cart3D
| A NE

|Cn 0.0164 0.0167 0.01666 x
% Difference 1.56% 0.24% 0.00%

S ACD)
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Airfoil Parameterization

Optimized Airfoils Using 10 Spline Points

N
| T e |

—o— Panel Method, D=0.0093993
w#n Shoclk-Expansion, D=0.0094503
=8--Cant3D, D=0.0094181

I I

| | | |
0.2 0.3 04 05 0.6 07 08 0.9
e

Panel method and shock-expansion theory require
sharp leading and trailing edges

Parameterization has equal number of spline points on
upper and lower surface and angle of attack

Figure shows minimum drag solutions for 11 design
variables

AEROSPACE COMPUTATIONAL DESIGN LABORATORY




CH,
sA U_%

Airfoil Optimization Results @%’%

K OF ILC‘\

Number of Function Evaluations v Number of Variables
Models: ‘ . .

10

— Low-Fidelity: Panel
Method
— High-Fidelity: S-E Theory
Airfoil parameterization:
— Angle of Attack

—

—e— quasi-Newton ]
Multiplicative Correction

— Equal # of upper/lower
Surface Sp“ne pOIntS Additive Correction
—&— RBF Calibration

Optimization tolerance: | —e— Optimal RBF Calibrtion |
- ||Step||S5X1 0_6 Or 0 Number o1f5VariabIes 20 %
_ -4

|[dm/dx|| = 5x10 #of Variables: | 7 | 11 | 15 | 21

Criteria: Fewest high- Quasi-Newton | 667 | 1048 | 1408
fidelity function evaluations

— Average of 5 runs with
random ICs

High-Fidelity Function Evaluations

B-Correlation 183 | 246 | 503
Add-Correction | 168 | 211 223
RBF =2 61 76 127
RBF o* 38 61 122

13 High-Fidelity Function Calls
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Combining Multiple Fidelity Levels @%
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Nesting Maximum Likelihood

High-Fidelity Combine Similar Average Dissimilar Models ~ Trust Models with
Models \with Similar Variance Lower Variance
! f(xy)

rT
! 3

~

Medium-Fidelity

W;//

\
\

Low-Fidelity

_w.
\

X4 R X4

[] Model 1 [ ]Model2 [ ] Combined Estimate

* Nested Approach
— “Classic approach”
— Possible exponential scaling in function evaluations,

* e.g. 50 high-fidelity evaluations, 2500 medium-fidelity
evaluations, 125,000 low-fidelity evaluations

 Maximum Likelihood Approach
— Flexibility in selecting low/medium-fidelity function calls
— Robust to poor models
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Combining Multiple Lower-Fidelities %%’%

K OF ILC‘\

The RBF error interpolation can be treated as a Kriging model that
predicts the high-fidelity function with a normally distributed error:

fhigh(x)z fmed( )"'W( med( ) O'jzed(x))
S ®) % £, )+ (e, (X)o7, (%))

Using Kriging models for each of the lower-fidelity functions, a
maximum likelihood estimate for the high-fidelity function is:

2 2
O ied 0,
fhigh (x) ~ (ﬁ()w + elaw)( 2 - ) (fmed + emed{ 2 = j
+ Gmed O-low + O-med

low

11 N 1
2 2 2
Ohigh Oy o,

ow med

To fit in the original multifidelity algorithm, only one of the two lower-
fidelity functions needs to be sampled at the required calibration
points.

— This allows substantial flexibility in selecting when each lower-fidelity
function is used.
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3-Fidelity Supersonic Airfoil Results @%‘
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Maximum likelihood approach reduced high-fidelity function
calls for all cases.
— Results use the same calibration points for all lower-fidelity functions
— Fancier sampling methods can be used

Nested approach failed to converge with a non-smooth high-fidelity
function (Cart3D):

Cart3D Shock-Expansion Theory | Panel Method
Two-Fidelities 88 0 47679
Max. Likelihood 66 23297 23297

Nested 66* 7920* 167644
Function Calls

The maximum likelihood approach is robust to the poor information.

— A camberline model estimates drag poorly (thickness is ignored)
— The best result of the nested approach is shown, average result otherwise

Shock-Expansion Theory | Panel Method | Camberline
Two-Fidelities 126 43665 0
Max. Likelihood 84 30057 30057
Nested 212** 59217** 342916**

Function Calls
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Conclusion

Explained the need for convergent high-fidelity derivative-
free methods

Demonstrated convergence of an unconstrained
multifidelity optimization algorithm using Bayesian model
calibration

— Through numerical experiments, showed that the method
works for nonsmooth functions

— Has performance comparable to other state-of-the-art design
methods

Developed a maximum likelihood method to combine
multiple lower fidelities into a single estimate of the high-
fidelity function.

— Showed that this technique converges faster than nesting, is
robust to poor information, and allows flexible sampling.
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Questions?
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