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Abstract

We consider the problem of matrix column subset selection, which selects a subset of

columns from an input matrix such that the input can be well approximated by the span of

the selected columns. Column subset selection has been applied to numerous real-world data

applications such as population genetics summarization, electronic circuits testing and recom-

mendation systems. In many applications the complete data matrix is unavailable and one needs

to select representative columns by inspecting only a small portion of the input matrix. In this

paper we propose the first provably correct column subset selection algorithms for partially ob-

served data matrices. Our proposed algorithms exhibit different merits and drawbacks in terms

of statistical accuracy, computational efficiency, sample complexity and sampling schemes,

which provides a nice exploration of the tradeoff between these desired properties for column

subset selection. The proposed methods employ the idea of feedback driven sampling and are

inspired by several sampling schemes previously introduced for low-rank matrix approximation

tasks [DMM08, FKV04, DV06, KS14]. Our analysis shows that, under the assumption that the

input data matrix has incoherent rows but possibly coherent columns, all algorithms provably

converge to the best low-rank approximation of the original data as number of selected columns

increases. Furthermore, two of the proposed algorithms enjoy a relative error bound, which

is preferred for column subset selection and matrix approximation purposes. We also demon-

strate through both theoretical and empirical analysis the power of feedback driven sampling

compared to uniform random sampling on input matrices with highly correlated columns.

Key words. Column subset selection, active learning, leverage scores.

1 Introduction

Given a matrix M ∈ R
n1×n2 , the column subset selection problem aims to find s exact columns in

M that capture as much of M as possible. More specifically, we want to select s columns of M to

form a “compressed” matrix C ∈ R
n1×s to minimize the norm of the following residue

min
X∈Rs×n2

‖M−CX‖ξ = ‖M−CC
†
M‖ξ, (1)
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where C
† is the Moore-Penrose pseudoinverse of C and ξ = 2 or F denotes the spectral or Frobe-

nious norm. In this paper we mainly focus on the Frobenious norm, as was the case in previous the-

oretical analysis for sampling based column subset selection algorithms [DMM08, FKV04, DV06,

DRVW06]. To evaluate the performance of column subset selection, one compares the residue norm

defined in Eq. (1) with ‖M −Mk‖ξ, where Mk is the best rank-k approximation of M. Usually

the number of selected columns s is larger than or equal to the target rank k. Two forms of error

guarantee are common: additive error guarantee in Eq. (2) and relative error guarantee in Eq. (3),

with 0 < ǫ < 1 and c > 1 (ideally c = 1 + ǫ).

‖M−CC
†
M‖ξ ≤ ‖M−Mk‖ξ + ǫ‖M‖F ; (2)

‖M−CC
†
M‖ξ ≤ c‖M−Mk‖ξ. (3)

In general, relative error bound is much more appreciated because ‖M‖ξ is usually large in practice.

In addition, when M is an exact low-rank matrix Eq. (3) implies perfect reconstruction, while the

error in Eq. (2) remains non-zero. The column subset selection problem can be considered as a

form of unsupervised feature selection, which arises frequently in the analysis of large datasets. For

example, column subset selection has been applied to various tasks such as summarizing population

genetics, testing electronic circuits, recommendation systems, etc. Interested readers should refer

to [BMD09, BNB10] for further motivations.

Many methods have been proposed for the column subset selection problem [Cha87, GE96,

FKV04, DRVW06, DMM08, BDMI14]. An excellent summarization of these methods and their

theoretical guarantee is available in Table 1 in [BMD09]. Most of these methods can be roughly

categorized into two classes. One class of algorithms are based on rank-revealing QR (RRQR)

decomposition [Cha87, GE96] and it has been shown in [BMD09] that RRQR is nearly optimal

in terms of residue norm under the s = k setting, that is, exact k columns are selected to recon-

struct an input matrix. On the other hand, sampling based methods [FKV04, DRVW06, DMM08]

try to select columns by sampling from certain distributions over all columns of an input matrix.

Extension of sampling based methods to general low-rank matrix approximation problems is also

investigated [CLM+15, BJS15]. These algorithms are much faster than RRQR and achieves com-

parable performance if the sampling distribution is carefully selected and slight over-sampling (i.e.,

s > k) is allowed [DRVW06, DMM08]. In [BMD09] sampling based and RRQR based algorithms

are unified to arrive at an efficient column subset selection method that uses exactly s = k columns

and is nearly optimal.

Although the column subset selection problem with access to the full input matrix has been

extensively studied, often in practice it is hard or even impossible to obtain the complete data. For

example, for the genetic variation detection problem it could be expensive and time-consuming to

obtain full DNA sequences of an entire population. Several heuristic algorithms have been pro-

posed recently for column subset selection with missing data, including the Block OMP algorithm

[BNB10] and the group Lasso formulation explored in [BXM10]. Nevertheless, no theoretical

guarantee or error bounds have been derived for these methods. The presence of missing data poses

new challenges for column subset selection, as many well-established algorithms seem incapable

of handling missing data in an elegant way. Below we identify a few key challenges that prevent

application of previous theoretical results on column subset selection under the missing data setting:

• Coherent matrix design: most previous results on the completion or recovery of low rank

matrices with incomplete data assume the underlying data matrix is incoherent [Rec11, CP10,
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KMO10], which intuitively assumes all rows and columns in the data matrix are weakly corre-

lated. 1 On the other hand, previous algorithms on column subset selection and matrix CUR

decomposition spent most efforts on dealing with coherent matrices [DRVW06, DMM08,

BMD09, BW14]. In fact, one can show that under standard incoherence assumptions of ma-

trix completion algorithms a high-quality column subset can be obtained by sampling each

column uniformly at random, which trivializes the problem [XJZ15]. Such gap in problem

assumptions renders column subset selection on incomplete coherent matrices particularly

difficult. In this paper, we explore the possibility of a weaker incoherence assumption that

bridges the gap. We present and discuss detailed assumptions considered in this paper in

Sec. 1.1.

• Limitation of existing sampling schemes: previous matrix completion methods usually as-

sume the observed data are sampled uniformly at random. However, in [KS14] it is proved

that uniform sampling (in fact any sampling scheme with apriori fixed sampling distribution)

is not sufficient to complete a coherent matrix. Though in [CBSW13] a provably correct

sampling scheme was proposed for any matrix based on statistical leverage scores, which is

also the key ingredient of many previous column subset selection and matrix CUR decompo-

sition algorithms [DMM08, BMD09, BW14], it is very difficult to approximate the leverage

scores of an incomplete coherent matrix. Common perturbation results on singular vector

space (e.g., Wedin’s theorem) fail because closeness between two subspaces does not imply

closeness in their leverage scores since the latter are defined in a infinity norm manner (see

Section 2.1 for details).

• Limitation of zero filling: A straightforward algorithm for missing data column subset se-

lection is to first fill all unobserved entries with zero and then properly scale the observed

ones so that the completed matrix is consistent with the underlying data matrix in expecta-

tion [AM07, AKL13]. Column subset selection algorithms designed for fully observed data

could be applied afterwards on the zero-filled matrix. However, the zero filling procedure can

change the underlying subspace of a matrix drastically [BRN10] and usually leads to addi-

tive error bounds as in Eq. (2). To achieve stronger relative error bounds we need algorithm

beyond the zero filling idea.

In this paper, we propose three column subset selection algorithms based on the idea of active

sampling of the input matrix. In our algorithms, observed matrix entries are chosen sequentially

and in a feedback-driven manner. We motivate this sampling setting from both practical and the-

oretical perspectives. In applications where each entry of a data matrix M represents results from

a expensive or time-consuming experiment, it makes sense to carefully select which entry to query

(experiment), possibly in a feedback-driven manner, so as to reduce experimental cost. For exam-

ple, if M has drugs as its rows and targets (proteins) as its columns, it makes sense to cautiously

select drug-target pairs for sequential experimental study in order to find important drugs/targets

with typical drug-target interactions. From a theoretical perspective, we show in Section 7.1 that no

passive sampling scheme is capable of achieving relative-error column subset selection with high

probability, even if the column space of M is incoherent. Such results suggest that active/adaptive

sampling is to some extent unavoidable, unless both row and column spaces of M are incoherent.

1The precise definition of incoherence is given in Section 1.3.
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We also remark that our considered algorithms make very few measurements of the input ma-

trix, which differs from previous feedback-driven re-sampling methods in the theoretical computer

science literature (e.g., [WZ13]) that requires access to the entire input matrix. Active sampling

has been shown to outperform all passive schemes in several settings [HCN11], and furthermore it

works for completion of matrices with incoherent rows/columns under which passive learning prov-

ably fails [CBSW13, KS13, KS14]. To the best of our knowledge, the algorithms proposed in this

paper are the first column subset selection algorithms for coherent matrices that enjoy theoretical

error guarantee with missing data, whether passive or active. Furthermore, two of our proposed

methods achieve relative error bounds.

1.1 Assumptions

Completing/approximating partially observed low-rank matrices using a subset of columns requires

certain assumptions on the input data matrix M [CP10, CBSW13, Rec11, XJZ15]. To see this,

consider the extreme-case example where the input data matrix M consists of exactly one non-zero

element (i.e., Mij = 1{i = i∗, j = j∗} for some i∗ ∈ [n1] and j∗ ∈ [n2]). In this case, the

relative approximation quality c = ‖M − CC
†
M‖ξ/‖M −M1‖ξ in Eq. (3) would be infinity if

column j∗ is not selected in C. In addition, it is clearly impossible to correctly identify j∗ using

o(n1n2) observations even with active sampling strategies. Therefore, additional assumptions on

M are required to provably approximate a partially observed matrix using column subsets.

In this work we consider the assumption that the top-k column space of the input matrix M

is incoherent (detailed mathematical definition given in Sec. 2.1), while placing no incoherence or

spikiness assumptions on the actual columns of M. In addition to the necessity of incoherence

assumptions for incomplete matrix approximation problems discussed above, we further motivate

the “one-sided” incoherence assumption from two perspectives:

- Column subset selection with incomplete observation remains a non-trivial problem even if

the column space is assumed to be incoherent. Due to the possible heterogeneity of the

columns, naive methods such as column subsets sampled uniformly at random are in general

bad approximations of the original data matrix M. Existing column subset selection algo-

rithms for fully-observed matrices also need to be majorly revised to accommodate missing

matrix components.

- Compared to existing work on approximating low-rank incomplete matrices, our assumptions

(one-sided incoherence) are arguably weaker. [XJZ15] analyzed matrix CUR approximation

of partially observed matrices, but assumed that both column and row spaces are incoherent;

[KS14] derived an adaptive sampling procedure to complete a low-rank matrix with only one-

sided incoherence assumptions, but only achieved additive error bounds for noisy low-rank

matrices.

1.2 Our contributions

The main contribution of this paper is three provably correct algorithms for column subset selection

via inspecting only a small portion of the input matrix. The sampling schemes for the proposed

algorithms and their main merits and drawbacks are summarized below:
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1. Norm sampling: The algorithm is simple and works for any input matrix with incoherent

columns. However, it only achieves an additive error bound as in Eq. (2). It is also inferior

than the other two proposed methods in terms of residue error on both synthetic and real-world

datasets.

2. Iterative norm sampling: The iterative norm sampling algorithm enjoys relative error guar-

antees as in Eq. (3) at the expense of being much more complicated and computationally

expensive. In addition, its correctness is only proved for low-rank matrices with incoherent

column space corrupted with i.i.d. Gaussian noise.

3. Approximate leverage score sampling: The algorithm enjoys relative error guarantee for

general input matrices with incoherent column space. However, it requires more over-sampling

and its error bound is worse than the one for iterative norm sampling on noisy low-rank ma-

trices. Moreover, to actually reconstruct the data matrix 2 the approximate leverage score

sampling scheme requires sampling a subset of both entire rows and columns, while both

norm based algorithms only require sampling of some entire columns.

In summary, our proposed algorithms offer a rich, provably correct toolset for column subset

selection with missing data. Furthermore, a comprehensive understanding of the design tradeoffs

among statistical accuracy, computational efficiency, sample complexity, and sampling scheme, etc.

is achieved by analyzing different aspects of the proposed methods. Our analysis could provide

further insights into other matrix completion/approximation tasks on partially observed data.

We also perform comprehensive experimental study of column subset selection with missing

data using the proposed algorithms as well as modifications of heuristic algorithms proposed re-

cently [BNB10, BXM10] on synthetic matrices and two real-world applications: tagging Single

Nucleotide Polymorphisms (tSNP) selection and column based image compression. Our empiri-

cal study verifies most of our theoretical results and reveals a few interesting observations that are

previously unknown. For instance, though leverage score sampling is widely considered as the

state-of-the-art for matrix CUR approximation and column subset selection, our experimental re-

sults show that under certain low-noise regimes (meaning that the input matrix is very close to low

rank) iterative norm sampling is more preferred and achieves smaller error. These observations open

new questions and suggest for new analysis in related fields, even for the fully observed case.

1.3 Notations

For any matrix M we use M
(i) to denote the i-th column of M. Similarly, M(i) denotes the i-th

row of M. All norms ‖ · ‖ are ℓ2 norms or the matrix spectral norm unless otherwise specified.

We assume the input matrix is of size n1 × n2, n = max(n1, n2). We further assume that

n1 ≤ n2. We use xi = M
(i) ∈ R

n1 to denote the i-th column of M. Furthermore, for any column

vector xi ∈ R
n1 and index subset Ω ⊆ [n1], define the subsampled vector xi,Ω and the scaled

subsampled vectorRΩ(xi) as

xi,Ω = 1Ω ◦ xi, RΩ(xi) =
n1

|Ω|1Ω ◦ xi, (4)

2See Section 1.3 for the distinction between selection and reconstruction.
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where 1Ω ∈ {0, 1}n1 is the indicator vector of Ω and ◦ is the Hadarmard product (entrywise prod-

uct). We also generalize the definition in Eq. (4) to matrices by applying the same operator on each

column.

We use ‖M−CC
†
M‖ξ to denote the selection error and ‖M−CX‖ξ to denote the reconstruc-

tion error. The difference between the two types of error is that for selection error an algorithm is

only required to output indices of the selected columns while for reconstruction error an algorithm

needs to output both the selected columns C and the coefficient matrix X so that CX is close to M.

We remark that the reconstruction error always upper bounds the selection error due to Eq. (1). On

the other hand, there is no simple procedure to compute C
†
M when M is not fully observed.

1.4 Outline of the paper

The paper is organized as follows: in Section 2 we provide background knowledge and review sev-

eral concepts that are important to our analysis. We then present main results of the paper, the three

proposed algorithms and their theoretical guarantees in Section 3. Proofs for main results given

in Section 3 are sketched in Section 4 and some technical lemmas and complete proof details are

deferred to the appendix. In Section 5 we briefly describe previously proposed heuristic based algo-

rithm for column subset selection with missing data and their implementation details. Experimental

results are presented in Section 6 and we discuss several aspects including the limitation of passive

sampling and time complexity of proposed algorithms in Section 7.

2 Preliminaries

This section provides necessary background knowledge for the analysis in this paper. We first review

the concept of coherence, which plays an important row in sampling based matrix algorithms. We

then summarize three matrix sampling schemes proposed in previous literature.

2.1 Subspace and vector incoherence

Incoherence plays a crucial role in various matrix completion and approximation tasks [Rec11,

KS14, CP10, KMO10]. For any matrix M ∈ R
n1×n2 of rank k, singular value decomposition yields

M = UΣV
⊤, where U ∈ R

n1×k and V ∈ R
n2×k have orthonormal columns. Let U = span(U)

and V = span(V) be the column and row space of M. The column space coherence is defined as

µ(U) := n1

k

n1

max
i=1
‖U⊤ei‖22 =

n1

k

n1

max
i=1
‖U(i)‖22. (5)

Note that µ(U) is always between 1 and n1/k. Similarly, the row space coherence is defined as

µ(V) := n2

k

n2

max
i=1
‖V⊤ei‖22 =

n2

k

n2

max
i=1
‖V(i)‖22. (6)

In this paper we also make use of incoherence level of vectors, which previously appeared in

[BRN10, KS13, KS14]. For a column vector x ∈ R
n1 , its incoherence is defined as

µ(x) :=
n1‖x‖2∞
‖x‖22

. (7)
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It is an easy observation that if x lies in the subspace U then µ(x) ≤ kµ(U). In this paper

we adopt incoherence assumptions on the column space U , which subsequently yields incoherent

column vectors xi. No incoherence assumption on the row space V or row vectors M(i) is made.

2.2 Matrix sampling schemes

Norm sampling Norm sampling for column subset selection was proposed in [FKV04] and has

found applications in a number of matrix computation tasks, e.g., approximate matrix multiplication

[DKM06a] and low-rank or compressed matrix approximation [DKM06b, DKM06c]. The idea is to

sample each column with probability proportional to its squared ℓ2 norm, i.e., Pr[i ∈ C] ∝ ‖M(i)‖22
for i ∈ {1, 2, · · · , n2}. These types of algorithms usually come with an additive error bound on their

approximation performance.

Volume sampling For volume sampling [DRVW06], a subset of columns C is picked with prob-

ability proportional to the volume of the simplex spanned by columns in C. That is, Pr[C] ∝
vol(∆(C)) where ∆(C) is the simplex spanned by {M(C(1)), · · · ,M(C(k))}. Computationally

efficient volume sampling algorithms exist [DR10, AGR16]. These methods are based on the com-

putation of characteristic polynomials of the projected data matrix [DR10] or an MCMC sampling

procedure [AGR16]. Under the partially observed setting, both approaches are difficult to apply.

For the characteristic polynomials approach, one has to estimate the characteristic polynomial and

essentially the least singular value of the target matrix M up to relative error bounds. This is not pos-

sible unless the matrix is very well-conditioned, which violates the setting that M is approximately

low-rank. For the MCMC sampling procedure, it was shown in [AGR16] that O(kn2) iterations are

needed for the sampling Markov chain to mix. As each sampling iteration requires observing one

entire column, performing O(kn2) iterations essentially requires observing O(kn2) columns, i.e.,

the entire matrix M. On the other hand, an iterative norm sampling procedure is known to perform

approximate volume sampling and therefore enjoy multiplicative approximation bounds for column

subset selection [DV06]. In this paper we generalize the iterative norm sampling scheme to the

partially observed setting and demonstrate similar multiplicative approximation error guarantees.

Leverage score sampling The leverage score sampling scheme was introduced in [DMM08] to

get relative error bounds for CUR matrix approximation and has later been applied to coherent

matrix completion [CBSW13]. For each row i ∈ {1, · · · , n1} and column j ∈ {1, · · · , n2} define

µi :=
n1

k
‖U⊤ei‖22 and νj := n2

k
‖V⊤ej‖22 to be their (unnormalized) leverage scores, where U ∈

R
n1×k and V ∈ R

n2×k are the top-k left and right singular vectors of an input matrix M. It

was shown in [DMM08] that if rows and columns are sampled with probability proportional to

their leverage scores then a relative error guarantee is possible for matrix CUR approximation and

column subset selection.

3 Column subset selection via active sampling

In this section we propose three column subset selection algorithms that only observe a small portion

of an input matrix. All algorithms employ the idea of active sampling to handle matrices with co-

herent rows. While Algorithm 1 achieves an additive reconstruction error guarantee for any matrix,
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Table 1: Summary of theoretical guarantees of proposed algorithms. s denotes the number of

selected columns and m denotes the expected number of observed matrix entries. Dependency on

failure probability δ and other polylogarithmic dependency is omitted.

Error type Error bound s m Assumptions

NORM ‖M−CC
†
M‖F ‖M−Mk‖F + ǫ‖M‖F Ω(k/ǫ2) Ω̃(µ1n) maxn2

i=1 µ(xi) ≤ µ1

‖M−CX‖F ‖M−Mk‖F + 2ǫ‖M‖F Ω(k/ǫ2) Ω̃(kµ1n/ǫ
4) same as above

ITER. NORM ‖M−CC
†
M‖F

√
2.5k(k + 1)!‖M−Mk‖F k Ω̃(k2µ0n) M = A+R; µ(U) ≤ µ0

‖M−CC
†
M‖F

√
1 + 3ǫ‖M−Mk‖F Θ(k2 log k + k/ǫ) Ω̃

(
kµ0n
ǫ

(
k + 1

ǫ

))
same as above

‖M−CX‖F
√
1 + 3ǫ‖M−Mk‖F Θ(k2 log k + k/ǫ) Ω̃

(
kµ0n
ǫ

(
k + 1

ǫ

))
same as above

LEV. SCORE ‖M−CC
†
M‖F 3(1 + ǫ)‖M−Mk‖F Ω(k2/ǫ2) Ω(k2µ0n/ǫ

2) µ(U) ≤ µ0

Algorithm 1 Active norm sampling for column subset selection with missing data

1: Input: size of column subset s, expected number of samples per column m1 and m2.

2: Norm estimation: For each column i, sample each index in Ω1,i ⊆ [n1] i.i.d. from

Bernoulli(m1/n1). observe xi,Ω1,i
and compute ĉi =

n1

m1
‖xi,Ω1,i

‖22. Define f̂ =
∑

i ĉi.

3: Column subset selection: Set C = 0 ∈ R
n1×s.

• For t ∈ [s]: sample it ∈ [n2] such that Pr[it = j] = ĉj/f̂ . Observe M
(it) in full and set

C
(t) = M

(it).

4: Matrix approximation: Set M̂ = 0 ∈ R
n1×n2 .

• For each column xi, sample each index in Ω2,i ⊆ [n1] i.i.d. from Bernoulli(m2,i/n1),

where m2,i = m2n2ĉi/f̂ ; observe xi,Ω2,i
.

• Update: M̂ = M̂+ (RΩ2,i
(xi))e

⊤
i .

5: Output: selected columns C and coefficient matrix X = C
†
M̂.

Algorithm 2 achieves a relative-error reconstruction guarantee when the input matrix has certain

structure. Finally, Algorithm 3 achieves a relative-error selection error bound for any general input

matrix at the expense of slower error rate and more sampled columns. Table 1 summarizes the main

theoretical guarantees for the proposed algorithms.

3.1 ℓ2 norm sampling

We first present an active norm sampling algorithm (Algorithm 1) for column subset selection under

the missing data setting. The algorithm is inspired by the norm sampling work for column subset

selection by Frieze et al. [FKV04] and the low-rank matrix approximation work by Krishnamurthy

and Singh [KS14].

The first step of Algorithm 1 is to estimate the ℓ2 norm for each column by uniform subsampling.

Afterwards, s columns of M are selected independently with probability proportional to their ℓ2
norms. Finally, the algorithm constructs a sparse approximation of the input matrix by sampling

each matrix entry with probability proportional to the square of the corresponding column’s norm

and then a CX approximation is obtained.

When the input matrix M has incoherent columns, the selection error as well as CX recon-
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struction error can be bounded as in Theorem 1.

Theorem 1. Suppose maxn2

i=1 µ(xi) ≤ µ1 for some positive constant µ1. Let C and X be the output

of Algorithm 1. Denote Mk the best rank-k approximation of M. Fix δ = δ1 + δ2 + δ3 > 0. With

probability at least 1− δ, we have

‖M−CC
†
M‖F ≤ ‖M−Mk‖F + ǫ‖M‖F (8)

provided that s = Ω(kǫ−2/δ2), m1 = Ω(µ1 log(n/δ1)). Furthermore, if m2 = Ω(µ1s log
2(n/δ3)/(δ2ǫ

2))
then with probability ≥ 1− δ we have the following bound on reconstruction error:

‖M−CX‖F ≤ ‖M−Mk‖F + 2ǫ‖M‖F . (9)

As a remark, Theorem 1 shows that one can achieve ǫ additive reconstruction error using Algo-

rithm 1 with expected sample complexity (omitting dependency on δ)

Ω

(
µ1n2 log(n) +

kn1

ǫ2
+

kµ1n2 log
2(n)

ǫ4

)
= Ω(kµ1ǫ

−4n log2 n).

3.2 Iterative norm sampling

In this section we present Algorithm 2, another active sampling algorithm based on the idea of iter-

ative norm sampling and approximate volume sampling introduced in [DV06]. Though Algorithm

2 is more complicated than Algorithm 1, it achieves a relative error bound on inputs that are noisy

perturbation of some underlying low-rank matrix.

Algorithm 2 employs the idea of iterative norm sampling. That is, after selecting l columns from

M, the next column (or next several columns depending on the error type) is sampled according

to column norms of a projected matrix PC⊥(M), where C is the subspace spanned by currently

selected columns. It can be shown that iterative norm sampling serves as an approximation of

volume sampling, a sampling scheme that is known to have relative error guarantees [DRVW06,

DV06].

Theorem 2 shows that when the input matrix M is the sum of an exact low rank matrix A and a

stochastic noise matrix R, then by selecting exact k columns from M using iterative norm sampling

one can upper bound the selection error ‖M − CC
†
M‖F by the best rank-k approximation error

‖M−Mk‖F within a multiplicative factor that does not depend on the matrix size n. Such relative

error guarantee is much stronger than the additive error bound provided in Theorem 1 as when M

is exactly low rank the error is eliminated with high probability. In fact, when the input matrix

M is exactly low rank the first phase of the proposed algorithm (Line 1 to Line 9 in Algorithm 2)

resembles the adaptive sampling algorithm proposed in [KS13, KS14] for matrix and tensor com-

pletion in the sense that at each iteration all columns falling exactly onto the span of already selected

columns will have zero norm after projection and hence will never be sampled again. However, we

are unable to generalize our algorithm to general full-rank inputs because it is difficult to bound the

incoherence level of projected columns (and hence the projection accuracy itself later on) without a

stochastic noise model. We present a new algorithm with slightly worse error bounds in Section 3.3

which can handle general high-rank inputs.
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Algorithm 2 Active iterative norm sampling for column subset selection for data corrupted by

Gaussian noise

1: Input: target rank k < min(n1, n2), error tolerance parameter ǫ, δ and expected number of

samples per column m.

2: Entrywise sampling: For each column i, sample each index in an index set Ωi ⊆ [n1] i.i.d.

from Bernoulli(m/n1). Observe xi,Ωi
.

3: Approximate volume sampling: Set C = U = ∅. Let U be an orthonormal basis of U .

4: for t = 1, 2, · · · , k do

5: For i ∈ {1, · · · , n2}, compute ĉ
(t)
i = n1

m
‖xi,Ωi

−UΩi
(U⊤

Ωi
UΩi

)−1
U

⊤
Ωi
xi,Ωi

‖22.

6: Set f̂ (t) =
∑n2

i=1 ĉ
(t)
i .

7: Select a column it at random, with probability Pr[it = j] = p̂
(t)
j = ĉ

(t)
j /f̂ (t).

8: Observe M
(it) in full and update: C ← C ∪ {it}, U ← span(U , {M(it)}).

9: end for

10: Active norm sampling: set T = (k + 1) log(k + 1) and s1 = s2 = · · · = sT−1 = 5k,

sT = 10k/ǫδ; S = ∅, S = ∅. Suppose U is an orthonormal basis of span(U ,S).
11: for t = 1, 2, · · · , T do

12: For i ∈ {1, · · · , n2}, compute ĉ
(t)
i = n1

m
‖xi,Ωi

−UΩi
(U⊤

Ωi
UΩi

)−1
U

⊤
Ωi
xi,Ωi

‖22.

13: Set f̂ (t) =
∑n2

i=1 ĉ
(t)
i .

14: Select st columns St = (i1, · · · , ist) independently at random, with probability Pr[j ∈
St] = q̂

(t)
j = ĉ

(t)
j /f̂ (t).

15: Observe M
(St) in full and update: S ← S ∪ St, S ← span(S, {M(St)}).

16: end for

17: Matrix approximation: M̂ =
∑n2

i=1U(U⊤
Ωi
UΩi

)−1
UΩi

xi,Ωi
e⊤i , where U ∈ R

n1×(s+k) is an

orthonormal basis of span(U0,U1).
18: Output: selected column subsets C = (M(C(1)), · · · ,M(C(k))) ∈ R

n1×k, S =

(M(C),M(S1), · · · ,M(ST )) ∈ R
n1×s where s = k + s1 + · · ·+ sT and X = SS

†
M̂.

Though Eq. (10) is a relative error bound, the multiplicative factor scales exponentially with

the intrinsic rank k, which is not completely satisfactory. As a remedy, we show that by slightly

over-sampling the columns (Θ(k2 log k+ k/ǫδ) instead of k columns) the selection error as well as

the CX reconstruction error could be upper bounded by ‖M−Mk‖F within only a (1+3ǫ) factor,

which implies that the error bounds are nearly optimal when the number of selected columns s is

sufficiently large, for example, s = ω(k2 log k + k/ǫδ).

Theorem 2. Fix δ > 0. Suppose M = A + R, where A is a rank-k deterministic matrix with

incoherent column space (i.e., µ(U(A)) ≤ µ0) and R is a random matrix with i.i.d. zero-mean

Gaussian distributed entries. Suppose k = O(n1/ log(n2/δ)). Let C,S and X be the output of

Algorithm 2. Then the following holds:

1. If m = Ω(k2µ0 log
2(n/δ)) then with probability ≥ 1− δ

‖M−CC
†
M‖2F ≤

2.5k(k + 1)!

δ
‖R‖2F . (10)

The column subset size is k and the corresponding sample complexity is Ω(k2µ0n log2(n/δ)).
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Algorithm 3 Approximate leverage score sampling for column subset selection on general input

matrices

1: Input: target rank k, size of column subset s, expected number of row samples m.

2: Leverage score estimation: Set S = ∅.
• For each row i, with probability m/n1 observe the row M(i) in full and update S ←

span(S, {M(i)}).
• Compute the first k right singular vectors of S (denoted by Sk ∈ Rn2×k) and estimate the

unnormalized row space leverage scores as l̃j = ‖Sk
⊤ej‖22, j ∈ {1, 2, · · · , n1}.

3: Column subset selection: Set C = ∅.
• For t ∈ {1, 2, · · · , s} select a column it ∈ [n2] with probability Pr[it = j] = p̂j = l̃j/k;

update C ← C ∪ {it}.
4: Output: the selected column indices C ⊆ {1, 2, · · · , n2} and actual columns C =

(M(C(1)), · · · ,M(C(s))).

2. If m = Ω(ǫ−1sµ0 log
2(n/δ)) with s = Θ(k2 log k + k/ǫδ), then with probability ≥ 1− δ

‖M− SS
†
M‖2F ≤ ‖M− SX‖2F ≤ (1 + 3ǫ)‖R‖2F . (11)

The column subset size is Θ(k2 log k + k/ǫδ) and the sample complexity is (omitting depen-

dence on δ)

Ω

(
k2µ0n log k log2(n)

ǫ
+

kµ0n log2(n)

ǫ2

)
.

3.3 Approximate leverage score sampling

The third sampling-based column subset selection algorithm for partially observed matrices is pre-

sented in Algorithm 3. The proposed algorithm was based on the leverage score sampling scheme

for matrix CUR approximation introduced in [DMM08]. To compute the sampling distribution

(i.e., leverage scores) from partially observed data, the algorithm subsamples a small number of

rows from the input matrix and use leverage scores of the row space of the subsampled matrix to

form the sampling distribution. Note that we do not attempt to approximate leverage scores of the

original input matrix directly; instead, we compute leverage scores of another matrix that is a good

approximation of the original data. Such technique was also explored in [DMIMW12] to approx-

imate statistical leverages in a fully observed setting. Afterwards, column sampling distribution is

constructed using the estimated leverage scores and a subset of columns are selected according to

the constructed sampling distribution.

We bound the selection error ‖M−CC
†
M‖F of the approximate leverage score sampling algo-

rithm in Theorem 3. Note that unlike Theorem 1 and 2, only selection error bound is provided since

for deterministic full-rank input matrices it is challenging to approximately compute the projection

of M onto span(C) because the projected vector may no longer be incoherent (this is in fact the

reason why Theorem 2 holds only for low-rank matrices perturbed by Gaussian noise). It remains

an open problem to approximately compute C†
M given C with provable guarantee for general ma-

trix M without observing it in full. Eq. (3) shows that Algorithm 3 enjoys a relative error bound on

11



the selection error. In fact, when the input matrix M is exactly low rank then Algorithm 3 reduces

to the two-step matrix completion method proposed in [CBSW13] for column incoherent inputs.

Although Theorem 3 shows that Algorithm 3 generalizes the relative selection error bound in

Theorem 2 to general input matrices, it also reveals several drawbacks of the approximate leverage

score sampling algorithm compared to the iterative norm sampling method. First, Algorithm 3

always needs to over-sample columns (at the level of Θ(k2/ǫ2), which is even more than Algorithm

2 for a (1 + ǫ) reconstruction error bound); in contrast, the iterative norm sampling algorithm only

requires exact k selected columns to guarantee a relative error bound. In addition, Eq. (12) shows

that the selection error bound is suboptimal even if s is sufficiently large because of the (3 + 3ǫ)
multiplicative term.

Theorem 3. Suppose M is an input matrix with incoherent top-k column space (i.e., µ(Uk(M)) ≤
µ0) and C is the column indices output by Algorithm 3. If m = Ω(ǫ−2µ0k

2 log(1/δ)) and s =
Ω(ǫ−2k2 log(1/δ)) then with probability ≥ 1− δ the following holds:

‖M−CC
†
M‖F ≤ 3(1 + ǫ)‖M−Mk‖F , (12)

where C = [M(C(1)), · · · ,M(C(s))] ∈ R
n1×s are the selected columns and Mk is the best rank-k

approximation of M.

4 Proofs

In this section we provide proof sketches of the main results (Theorem 1, 2 and 3). Some technical

lemmas and complete proof details are deferred to Appendix A and B.

4.1 Proof sketch of Theorem 1

The proof of Theorem 1 can be divided into two steps. First, in Lemma 1 we show that (approxi-

mate) column sampling yields an additive error bound for column subset selection. Its proof is very

similar to the one presented in [FKV04] and we defer it to Appendix A. Second, we cite a lemma

from [KS14] to show that with high probability the first pass in Algorithm 1 gives accurate estimates

of column norms of the input matrix M.

Lemma 1. Provided that (1−α)‖xi‖22 ≤ ĉi ≤ (1+α)‖xi‖22 for i = 1, 2, · · · , n2, with probability

≥ 1− δ we have

‖M− PC(M)‖F ≤ ‖M−Mk‖F +

√
(1 + α)k

(1− α)δs
‖M‖F , (13)

where Mk is the best rank-k approximation of M.

Lemma 2 ([KS14], Lemma 10). Fix α, δ ∈ (0, 1). Assume µ(xi) ≤ µ0 holds for i = 1, 2, · · · , n2.

For some fixed i ∈ {1, · · · , n2} with probability ≥ 1− 2δ we have

(1− α)‖xi‖22 ≤ ĉi ≤ (1 + α)‖xi‖22 (14)

with α =
√

2µ0

m1
log(1/δ) + 2µ0

3m1
log(1/δ). Furthermore, if m1 = Ω(µ0 log(n2/δ)) with carefully

chosen constants then Eq. (14) holds uniformly for all columns with α = 0.5.

12



Combining Lemma 1 and Lemma 2 and setting s = Ω(kǫ−2/δ) for some target accuracy thresh-

old ǫ we have that with probability 1− 3δ the selection error bound Eq. (8) holds.

In order to bound the reconstruction error ‖M − CX‖2F , we cite another lemma from [KS14]

that analyzes the performance of the second pass of Algorithm 1. At a higher level, Lemma 3 is a

consequence of matrix Bernstein inequality [Tro12] which asserts that the spectral norm of a matrix

can be preserved by a sum of properly scaled randomly sampled sub-matrices.

Lemma 3 ([KS14], Lemma 9). Provided that (1 − α)‖xi‖22 ≤ ĉi ≤ (1 + α)‖xi‖22 for i =
1, 2, · · · , n2, with probability ≥ 1− δ we have

‖M−M̂‖2 ≤ ‖M‖F
√

1 + α

1− α

(
4

3

√
n1µ0

m2n2
log

(
n1 + n2

δ

)
+

√
4

m2
max

(
n1

n2
, µ0

)
log

(
n1 + n2

δ

))
.

(15)

The complete proof of Theorem 1 is deferred to Appendix A.

4.2 Proof sketch of Theorem 2

In this section we give proof sketch of Eq. (10) and Eq. (11) separately.

4.2.1 Proof sketch of ‖M−CC
†
M‖F error bound

We take three steps to prove the ‖M −CC
†
M‖F error bound in Theorem 2. At the first step, we

show that when the input matrix has a low rank plus noise structure then with high probability for

all small subsets of columns the spanned subspace has incoherent column space (assuming the low-

rank matrix has incoherent column space) and furthermore, the projection of the other columns onto

the orthogonal complement of the spanned subspace are incoherent, too. Given the incoherence

condition we can easily prove a norm estimation result similar to Lemma 2, which is the second

step. Finally, we note that the approximate iterative norm sampling procedure is an approximation

of volume sampling, a column sampling scheme that is known to yield a relative error bound.

STEP 1 We first prove that when the input matrix M is a noisy low-rank matrix with incoher-

ent column space, with high probability a fixed column subset also has incoherent column space.

This is intuitive because the Gaussian perturbation matrix is highly incoherent with overwhelming

probability. A more rigorous statement is shown in Lemma 4.

Lemma 4. Suppose A has incoherent column space, i.e., µ(U(A)) ≤ µ0. Fix C ⊆ [n2] to be any

subset of column indices that has s elements and δ > 0. Let C = [M(C(1)), · · · ,M(C(s))] ∈ R
n1×s

be the compressed matrix and U(C) = span(C) denote the subspace spanned by the selected

columns. Suppose max(s, k) ≤ n1/4−k and log(4n2/δ) ≤ n1/64. Then with probability≥ 1−δ
over the random drawn of R we have

µ(U(C)) =
n1

s
max

1≤i≤n1

‖PU(C)ei‖22 = O

(
kµ0 + s+

√
s log(n1/δ) + log(n1/δ)

s

)
; (16)
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furthermore, with probability ≥ 1− δ the following holds:

µ(PU(C)⊥(M
(i))) = O(kµ0 + log(n1n2/δ)), ∀i /∈ C. (17)

At a higher level, Lemma 4 is a consequence of the Gaussian white noise being highly incoher-

ent, and the fact that the randomness imposed on each column of the input matrix is independent.

The complete proof can be found in Appendix B.

Given Lemma 4, Corollary 1 holds by taking a uniform bound over all
∑s

j=1

(
n2

j

)
= O(s(n2)

s)
column subsets that contain no more than s elements. The 2s log(4n2/δ) ≤ n1/64 condition is only

used to ensure that the desired failure probability δ is not exponentially small. Typically, in practice

the intrinsic dimension k and/or the target column subset size s is much smaller than the ambient

dimension n1.

Corollary 1. Fix δ > 0 and s ≥ k. Suppose s ≤ n1/8 and 2s log(4n2/δ) ≤ n1/64. With

probability ≥ 1 − δ the following holds: for any subset C ⊆ [n2] with at most s elements, the

spanned subspace U(C) satisfies

µ(U(C)) ≤ O((k + s)|C|−1µ0 log(n/δ)); (18)

furthermore,

µ(PU(C)⊥(M
(i))) = O((k + s)µ0 log(n/δ)), ∀i /∈ C. (19)

STEP 2 In this step, we prove that the norm estimation scheme in Algorithm 2 works when the

incoherence conditions in Eq. (18) and (19) are satisfied. More specifically, we have the following

lemma bounding the norm estimation error:

Lemma 5. Fix i ∈ {1, · · · , n2}, t ∈ {1, · · · , k} and δ, δ′ > 0. Suppose Eq. (18) and (19) hold with

probability ≥ 1 − δ. Let St be the subspace spanned by selected columns at the t-th round and let

ĉ
(t)
i denote the estimated squared norm of the ith column. If m satisfies

m = Ω(kµ0 log(n/δ) log(k/δ
′)), (20)

then with probability ≥ 1− δ − 4δ′ we have

1

2
‖[Et](i)‖22 ≤ ĉ

(t)
i ≤

5

4
‖[Et](i)‖22. (21)

Here Et = PS⊥
t
(M) denotes the projected matrix at the t-th round.

Lemma 5 is similar with previous results on subspace detection [BRN10] and matrix approxi-

mation [KS14]. The intuition behind Lemma 5 is that one can accurately estimate the ℓ2 norm of

a vector by uniform subsampling entries of the vector, provided that the vector itself is incoherent.

The proof of Lemma 5 is deferred to Appendix B.

Similar to the first step, by taking a union bound over all possible subsets of picked columns

and n2 − k unpicked columns we can prove a stronger version of Lemma 5, as shown in Corollary

2.
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Corollary 2. Fix δ, δ′ > 0. Suppose Eq. (18) and (19) hold with probability ≥ 1− δ. If

m ≥ Ω(k2µ0 log(n/δ) log(n/δ
′)) (22)

then with probability ≥ 1− δ − 4δ′ the following property holds for any selected column subset by

Algorithm 2:

2

5

‖[Et](i)‖22
‖Et‖2F

≤ p̂
(t)
i ≤

5

2

‖[Et](i)‖22
‖Et‖2F

, ∀i ∈ [n2], t ∈ [k], (23)

where p̂
(t)
i = ĉ

(t)
i /f̂ (t) is the sampling probability of the ith column at round t.

STEP 3 To begin with, we define volume sampling distributions:

Definition 1 (volume sampling, [DRVW06]). A distribution p over column subsets of size k is a

volume sampling distribution if

p(C) =
vol(∆(C))2∑

T :|T |=k vol(∆(T ))2
, ∀|C| = k. (24)

Volume sampling has been shown to achieve a relative error bound for column subset selection,

which is made precise by Theorem 4 cited from [DV06, DRVW06].

Theorem 4 ([DV06], Theorem 4). Fix a matrix M and let Mk denote the best rank-k approximation

of M. If the sampling distribution p is a volume sampling distribution defined in Eq. (24) then

EC

[
‖M− PV(C)(M)‖2F

]
≤ (k + 1)‖M−Mk‖2F ; (25)

furthermore, applying Markov’s inequality one can show that with probability ≥ 1− δ

‖M− PV(C)(M)‖2F ≤
k + 1

δ
‖M−Mk‖2F . (26)

In general, exact volume sampling is difficult to employ under partial observation settings, as

we explained in Sec. 2.2. However, in [DV06] it was shown that iterative norm sampling serves

as an approximate of volume sampling and achieves a relative error bound as well. In Lemma 6

we present an extension of this result. Namely, approximate iterative column norm sampling is an

approximate of volume sampling, too. Its proof is very similar to the one presented in [DV06] and

we defer it to Appendix B.

Lemma 6. Let p be the volume sampling distribution defined in Eq. (24). Suppose the sampling

distribution of a k-round sampling strategy p̂ satisfies Eq. (23). Then we have

p̂C ≤ 2.5kk!pC , ∀|C| = k. (27)

We can now prove the error bound for selection error ‖M − CC
†
M‖F of Algorithm 2 by

combining Corollary 1, 2, Lemma 6 and Theorem 4, with failure probability δ, δ′ set at O(1/k)
to facilitate a union bound argument across all iterations. In particular, Corollary 1 and 2 guaran-

tees that Algorithm 2 estimates column norms accurately with high probability; then one can apply

Lemma 6 to show that the sampling distribution employed in the algorithm is actually an approx-

imate volume sampling distribution, which is known to achieve relative error bounds (by Theorem

4).
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4.2.2 Proof sketch of ‖M− SX‖F error bound

We first present a theorem, which is a generalization of Theorem 2.1 in [DRVW06].

Theorem 5 ([DRVW06], Theorem 2.1). Suppose M ∈ R
n1×n2 is the input matrix and U ⊆ R

n1

is an arbitrary vector space. Let S ∈ R
n1×s be a random sample of s columns in M from a

distribution q such that

(1− α)‖E(i)‖22
(1 + α)‖E‖2F

≤ qi ≤
(1 + α)‖E(i)‖22
(1− α)‖E‖2F

, ∀i ∈ {1, 2, · · · , n2}, (28)

where E = PU⊥(M) is the projection of M onto the orthogonal complement of U . Then

ES

[
‖M− Pspan(U ,S),k(M)‖2F

]
≤ ‖M−Mk‖2F +

(1 + α)k

(1− α)s
‖E‖2F , (29)

where Mk denotes the best rank-k approximation of M.

Intuitively speaking, Theorem 5 states that relative estimation of residues PU⊥(M) would yield

relative estimation of the data matrix M itself.

In the remainder of the proof we assume s = Ω(k2 log(k)+k/ǫδ) is the number of columns se-

lected in S in Algorithm 2. Corollary 1 asserts that with high probability µ(U(S)) = O(s|C|−1µ0 log(n/δ))
and µ(PU(S)⊥(M

(i))) = O(sµ0 log(n/δ)) for any subset S with |S| ≤ s. Subsequently, we can ap-

ply Lemma 5 and a union bound over n2 columns and T rounds to obtain the following proposition:

Proposition 1. Fix δ, δ′ > 0. If m = Ω(sµ0 log(n/δ) log(nT/δ
′)) then with probability≥ 1−δ−δ′

2‖E(i)
t ‖22

5‖Et‖2F
≤ q̂

(t)
i ≤

5‖E(i)
t ‖22

2‖Et‖2F
, ∀i ∈ {1, 2, · · · , n2}, t ∈ {1, 2, · · · , T}. (30)

Here Et = M − Pspan(U∪S1∪···∪St−1)(M) is the residue at round t of the active norm sampling

procedure.

Note that we do not need to take a union bound over all
(
n2

s

)
column subsets because this time

we do not require the sampling distribution of Algorithm 2 to be close uniformly to the true active

norm sampling procedure.

Consequently, combining Theorem 5 and Proposition 1 we obtain Lemma 7. Its proof is deferred

to Appendix B.

Lemma 7. Fix δ, δ′ > 0. If m = Ω(sµ0 log
2(n/δ)) and s1 = · · · = sT−1 = 5k, sT = 10k/ǫδ′

then with probability ≥ 1− 2δ − δ′′

‖M− PU∪S1∪···∪ST
(M)‖2F ≤ (1 + ǫ/2)‖M−Mk‖2F +

ǫ/2

2T
‖M− PU (M)‖2F . (31)

Applying Theorem 4, Lemma 6 and note that 2(k+1) log(k+1) = (k + 1)(k+1) ≥ (k + 1)!, we

immediately have Corollary 3.
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Corollary 3. Fix δ > 0. Suppose T = (k+ 1) log(k+ 1) and m, s1, · · · , sT be set as in Lemma 7.

Then with probability ≥ 1− 4δ one has

‖M− SS
†
M‖2F = ‖M− PU∪S1∪···∪ST

(M)‖2F ≤ (1 + ǫ)‖M−Mk‖2F ≤ (1 + ǫ)‖R‖2F . (32)

To reconstruct the coefficient matrix X and to further bound the reconstruction error ‖M −
SX‖F , we apply the U(U⊤

ΩUΩ)
−1

UΩ operator on every column to build a low-rank approximation

M̂. It was shown in [KS13, BRN10] that this operator recovers all components in the underlying

subspace U with high probability, and hence achieves a relative error bound for low-rank matrix

approximation. More specifically, we have Lemma 8, which is proved in Appendix B.

Lemma 8. Fix δ, δ′′ > 0 and ǫ > 0. Let S ∈ R
n1×s and X ∈ R

s×n2 be the output of Algorithm 2.

Suppose Corollary 3 holds with probability ≥ 1− δ. If m satisfies

m = Ω(ǫ−1sµ0 log(n/δ) log(n/δ
′′)), (33)

then with probability ≥ 1− δ − δ′′ we have

‖M− M̂‖2F ≤ (1 + ǫ)‖M− SS
†
M‖2F . (34)

Note that all columns of M̂ are in the subspace U(S). Therefore, SX = SS
†
M̂ = M̂. The

proof of Eq. (11) is then completed by noting that (1 + ǫ)2 ≤ 1 + 3ǫ whenever ǫ ≤ 1.

4.3 Proof of Theorem 3

Before presenting the proof, we first present a theorem cited from [DMM08]. In general, Theorem 6

claims that if columns are selected with probability proportional to their row-space leverage scores

then the resulting column subset is a relative-error approximation of the original input matrix.

Theorem 6 ([DMM08], Theorem 3). Let M ∈ R
n1×n2 be the input matrix and k be a rank param-

eter. Suppose a subset of columns C = {i1, i2, · · · , is} ⊆ [n2] is selected such that

Pr[it = j] = pj ≥
β‖V⊤

k ej‖22
k

, ∀t ∈ {1, · · · , s}, j ∈ {1, · · · , n2}. (35)

Here Vk ∈ R
n2×k is the top-k right singular vectors of M. If s = Ω(β−1ǫ−2k2 log(1/δ)) then with

probability ≥ 1− δ one has

‖M−CC
†
M‖F ≤ (1 + ǫ)‖M−Mk‖F . (36)

In the sequel we useQS(M) to denote the matrix formed by projecting each row of M to a row

subspace S and PC(M) to denote the matrix formed by projecting each column of M to a column
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Algorithm 4 A block OMP algorithm for column subset selection with missing data

1: Input: size of column subset s, observation mask W ∈ {0, 1}n1×n2 .

2: Initialization: Set C = ∅, C = ∅, Y = W ◦M, Y(1) = Y.

3: for t = 1, 2, · · · , s do

4: Compute D = Y
⊤(W ◦Y(t)). Let {di}n2

i=1 be rows of D.

5: Column selection: it = argmax1≤i≤n2
‖di‖2; update: C ← C ∪ {it}, C ← span(C,Y(it)).

6: Back projection: Y(t+1) = Y
(t) − PC(Y(t)).

7: end for

8: Output: the selected column indices C ⊆ {1, 2, · · · , n2}.

subspace C. Since M has incoherent column space, the uniform sampling distribution pj = 1/n1

satisfies Eq. (35) with β = 1/µ0. Consequently, by Theorem 6 the computed row space S satisfies

‖M−QS(M)‖F ≤ (1 + ǫ)‖M−Mk‖F (37)

with high probability when m = Ω(k2/βǫ2) = Ω(µ0k
2/ǫ2).

Next, note that though we do not know QS(M), we know its row space S . Subsequently, we

can compute the exact leverage scores of QS(M), i.e., ‖S⊤
k ej‖22 for j = 1, 2, · · · , n2. With the

computed leverage scores, performing leverage score sampling on QS(M) as in Algorithm 3 and

applying Theorem 6 we obtain

‖QS(M)− PC(QS(M))‖F ≤ (1 + ǫ)‖QS(M)− [QS(M)]k ‖F , (38)

where [QS(M)]k denotes the best rank-k approximation of QS(M). Note that

‖QS(M)− [QS(M)]k ‖F ≤ ‖QS(M)−QS(Mk)‖F = ‖QS(M−Mk)‖F ≤ ‖M−Mk‖F (39)

because QS(Mk) has rank at most k. Consequently, the selection error ‖M − PC(M)‖F can be

bounded as follows:

‖M− PC(M)‖F ≤ ‖M−QS(M)‖F + ‖QS(M)− PC(QS(M))‖F + ‖PC(QS(M))− PC(M)‖F
≤ ‖M−QS(M)‖F + ‖QS(M)− PC(QS(M))‖F + ‖QS(M)−M‖F
≤ 3(1 + ǫ)‖M−Mk‖F .

5 Related work on column subset selection with missing data

In this section we review two previously proposed algorithms for column subset selection with

missing data. Both algorithms are heuristic based and no theoretical analysis is available. We also

remark that both methods employ the passive sampling scheme as observation models. In fact, they

work for any subset of observed matrix entries.

5.1 Block orthogonal matching pursuit (Block OMP)

A block OMP algorithm was proposed in [BNB10] for column subset selection with missing data.

Let W ∈ {0, 1}n1×n2 denote the “mask” of observed entries; that is,

Wij =

{
1, if Mij is observed;
0, if Mij is not observed.
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We also use ◦ to denote the Hadarmard product (entrywise product) between two matrices of the

same dimension.

The pseudocode is presented in Algorithm 4. Note that Algorithm 4 has very similar framework

compared with the iterative norm sampling algorithm: both methods select columns in an iterative

manner and after each column is selected, the contribution of selected columns is removed from

the input matrix by projecting onto the complement of the subspace spanned by selected columns.

Nevertheless, there are some major differences. First, in iterative norm sampling we select a column

according to their residue norms while in block OMP we base such selection on inner products

between the original input matrix and the residue one. In addition, due to the passive sampling

nature Algorithm 4 uses the zero-filled data matrix to approximate subspace spanned by selected

columns. In contrast, iterative norm sampling computes this subspace exactly by active sampling.

5.2 Group Lasso

The group Lasso formulation was originally proposed in [BXM10] as a convex optimization alter-

native for matrix column subset selection and CUR decomposition for fully-observed matrices. It

was briefly remarked in [BNB10] that group Lasso could be extended to the case when only partial

observations are available. In this paper we made such extension precise by proposing the following

convex optimization problem:

min
X∈Rn1×n2

‖W ◦M− (W ◦M)X‖2F + λ‖X‖1,2, s.t. diag(X) = 0. (40)

Here in Eq. (40) W ∈ {0, 1}n1×n2 denotes the mask for observed matrix entries and ◦ denotes the

Hadamard (entrywise) matrix product. ‖X‖1,2 =
∑n2

i=1 ‖X(i)‖2 denotes the 1,2-norm of matrix

X, which is the sum of ℓ2 norm of all rows in X. The nonzero rows in the optimal solution X

correspond to the selected columns.

Eq. (40) could be solved using standard convex optimization methods, e.g., proximal gradient

descent [MRS+10]. However, to make Eq. (40) a working column subset selection algorithm one

needs to carefully choose the regularization parameter λ so that the resulting optimal solution X

has no more than s nonzero columns. Such selection could be time-consuming and inexact. As a

workaround, we implement the solution path algorithm for group Lasso problems in [YZ14].

5.3 Discussion on theoretical assumptions of block OMP and group Lasso

We discuss theoretical assumptions required for block OMP and group Lasso approaches. It should

be noted that for the particular matrix column subset selection problem, neither [BNB10] or [BXM10]

provides rigorous theoretical guarantee of approximation error of the selected column subsets. How-

ever, it is informative to compare to typical assumptions that are used to analyze block OMP and

group Lasso for regression problems in the existing literature [YL06, LPVDGT11]. In most cases,

certain “restricted eigenvalue” conditions on the design matrix X, which roughly corresponds to a

“weak correlation” condition among columns of a data matrix. This explains the worse performance

of both methods on data sets that have highly correlated columns (e.g., many repeated columns), as

we shown in later sections on experimental results.
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Figure 1: Selection error on Gaussian random matrices. Top row: low-rank plus noise inputs,

s = k = 15; bottom row: full-rank inputs. The black dashed lines denote noise-to-signal ratio σ in

the first row and ‖M−Mk‖F in the second row. α indicates the observation rate (i.e., the number

of observed entries divided by n1n2, the total number of matrix entries). All algorithms are run for

8 times on each dataset and the median error is reported. We report the median instead of the mean

because the performance of norm and leverage score sampling is quite variable.

6 Experiments

In this section we report experimental results on both synthetic and real-world datasets for our

proposed column subset selection algorithms as well as other competitive methods. All algorithms

are implemented in Matlab. To make fair comparisons, all input matrices M are normalized so that

‖M‖2F = 1.

6.1 Synthetic datasets

We first test the proposed algorithms on synthetic datasets. The input matrix has dimension n1 =
n2 = n = 50. To generate the synthetic data, we consider two different settings listed below:

1. Random Gaussian matrices: for random Gaussian matrices each entry Mij are i.i.d. sam-

pled from a normal distribution N (0, 1). For low rank matrices, we first generate a random

Gaussian matrix B ∈ R
n×k where k is the intrinsic rank and then form the data matrix M

as M = BB
⊤. I.i.d. Gaussian noise R with Rij ∼ N (0, σ2) is then appended to the syn-

thesized low-rank matrix. We remark that data matrices generated in this manner have both

incoherent column and row space with high probability.

2. Matrices with coherent columns: we took a simple procedure to generate matrices with

coherent columns in order to highlight the power of proposed algorithms and baseline meth-
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Figure 2: Selection error on matrices with coherent columns. Top row: low-rank plus noise inputs,

s = k = 15; bottom row: full-rank inputs. α indicates the observation rate. The black dashed lines

denote noise-to-signal ratio σ in the first row and ‖M −Mk‖F in the second row. All algorithms

are run for 8 times on each dataset and the median error is reported.

ods. After generating a random Gaussian matrix M = BB
⊤, we pick a column x from M

uniformly at random. We then take x̃ = 10x and repeat the column for 5 times. As a result,

the newly formed data matrix will have 5 identical columns with significantly higher norms

compared to the other columns.

In Figure 1 we report the selection error ‖M−CC
†
M‖F of proposed and baseline algorithms

on random Gaussian matrices and in Figure 2 we report the same results on matrices with coherent

columns. Results on both low-rank plus noise and high-rank inputs are reported. For low-rank ma-

trices, both the intrinsic rank k and the number of selected columns s are set to 15. Each algorithm is

run for 8 times on the same input and the median selection error is reported. For norm sampling and

approximate leverage score sampling, we implement two variants: in the sampling with replacement

scheme the algorithm samples each column from a sampling distribution (based on either norm or

leverage score estimation) with replacement; while in the sampling without replacement scheme a

column is never sampled twice. Note that all theoretical results in Section 3 are proved for sampling

with replacement algorithms.

From Figure 1 we observe that all algorithms perform similarly, with the exception of two

sampling with replacement algorithms and iterative norm sampling when both rank and missing

rate are high. 3 For the latter case, we conjecture that the degradation of performance is due to

inaccurate norm estimation of column residues; in fact, the iterative norm sampling only provably

works when the input matrix has a low-rank plus noise structure (see Theorem 2). On the other

hand, when either the target rank or the missing rate is not too high iterative norm sampling works

3We discuss on the poor performance of with replacement algorithms in Section 7.5.
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Figure 3: Selection error on matrices with varying number of repeated columns. Both s and k are

set to 15 and the noise-to-signal ratio σ is set to 0.1. α indicates the observation rate. All algorithms

are run for 8 times on each dataset and the median error is reported.

just as good; it is particularly competitive when the true rank of the input matrix is low (see the top

row of Figure 1).

When the input matrix has coherent columns, as shown in Figure 2, it becomes easier to observe

performance gaps among different algorithms. The block OMP algorithm completely fails in such

cases and the selection error for group Lasso also increases considerably. This is due to the fact that

both algorithms observe matrix entries by sampling uniformly at random and hence could be poorly

informed when the underlying matrix is highly coherent. On the other hand, both leverage score

sampling and iterative norm sampling are more robust to column coherence. The coherence among

columns also makes the separation between norm sampling and volume sampling clearer in Figure

2. In particular, there is a significant gap between the two sampling with replacement curves and

the norm sampling algorithm degrades to its worst-case additive error bound (see Theorem 1). The

gap between the sampling without replacement curves is smaller since the coherent column is only

repeated for 5 times in the design and so an algorithm can not be “too wrong” if it samples columns

without replacement.

To further investigate how the proposed and baseline algorithms adapt to different levels of

coherence, we report in Figure 3 the selection error on noisy low-rank matrices with varying number

of repeated columns. Matrices with more repeated columns have higher coherence level. We can see

that there is a clear separation of two groups of algorithms: the first group includes norm sampling,

block OMP and group Lasso, whose error increases as the matrix becomes more coherent. Also,

design matrix assumptions (e.g., restricted isometry) are violated for group Lasso. This suggests

that these algorithms only have additive error bounds, or adapt poorly to column coherence of the

underlying data matrix. On the other hand, the selection error of volume sampling and iterative

norm sampling remains stable or slightly decreases. This is consistent with our theoretical results

that both volume sampling and iterative norm sampling enjoy relative error bounds.

6.2 Application to tagging Single Nucleotide Polymorphisms (tSNPs) selection

We apply our proposed methods on real-world genetic datasets. We consider the tagging Single

Nucleotide Polymorphisms (tSNP) selection task as described in [KC03, PMJ+07]. The task aims

at selecting a small set of SNPs in human genes such that the selected SNPs (called tagging SNPs)

capture the genetic information within a specific genome region. More specifically, given an n1×n2
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Figure 4: Selection error or sampling based algorithm on Hapmap phase2 dataset. α indicates the

observation rate. Top row: top-k PCA captures 95% variance within each SNP window; bottom

row: top-k PCA captures 98% variance within each SNP window.

Table 2: Averaging SNP window sizes for different ε values and number of selected columns per

window.

5 COLUMNS 10 COLUMNS 15 COLUMNS 20 COLUMNS 25 COLUMNS

ε = 95% 63.4 248.9 516.3 891.0 1405.7

ε = 98% 18.8 62.1 123.4 203.8 309.7

matrix with each row corresponding to the genome expression for an individual, we want to select

k columns (typically k ≪ n2) corresponding to k tagging SNPs that best capture the entire SNP

matrix across different individuals. Matrix column subset selection methods have been successfully

applied to the tSNP selection problem [PMJ+07].

In this section we demonstrate that our proposed algorithms could achieve the same objective

while allowing many missing entries in the raw data matrix. We also compare the selection error of

the proposed methods under different missing rate and number of tSNP settings. We did not apply

Block OMP and group Lasso because the former cannot handle coherent data matrices and the latter

does not scale well. The dataset we used is the HapMap Phase 2 dataset [iHc03]. For demonstration

purposes, we use gene data for the first chromosome of a joint east Asian population consisting of

Han Chinese in Beijing (CHB) and Japanese in Tokyo (JPT). The data matrix consists of 89 rows

(individuals) and 311,854 columns (SNPs). Each matrix entry has two letters b1b2 describing a

specific gene expression for an individual.

We follow the same step as described in [JDMP11] to preprocess the data. We first convert the

raw data matrix into a numerical matrix M with +1/0/-1 entries as follows: let B1 and B2 be the

bases that appear for the jth SNP. Fix an individual i with its gene expression b1b2. If b1b2 = B1B1
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Figure 5: Sorted column space leverage scores for different ε and k settings. For each setting 50

windows are picked at random and their leverage scores are plotted. Each plotted line is properly

scaled along the X axis so that they have the same length even though actual window sizes vary.

then Mij is set to -1; else if b1b2 = B2B2 then Mij is set 1; otherwise Mij is set to 0. We

further split the SNPs into multiple consecutive “windows” so that within each window w the SVD

reconstruction error ‖M(w) −M
(w)
k ‖2F /‖M(w)‖2F is no larger than ε with ε set to 5% and 2%. We

refer the readers to Figure 1 in [JDMP11] for details of the preprocessing steps. Averaging window

length (i.e., number of SNPs within each window) are shown in Table 2 for different k and ε settings.

After preprocessing, column subset selection algorithms are performed for each SNP window and

the selection error is averaged across all windows, as reported in Figure 4. The number of selected

columns per window (k) ranges from 5 to 25 and the sampling budget α ranges from 10% to 60%.

In Figure 4 we observe that iterative norm sampling and approximate leverage score sampling

outperforms norm sampling by a large margin. This is because the truncated data matrix within

each window is very close to an exact low-rank matrix and hence relative error algorithms achieve

much better performance than additive error ones. In addition, approximate leverage score sampling

significantly outperforms norm sampling under both the with replacement and without replacement

schemes. This shows that the heterogeneity of human SNPs cannot be captured merely by their

norms because the norm is simply the ratio of heterozygous within a population and provides little

information for its importance across the entire chromosome. The spikiness of leverage score distri-

bution is empirically verified in Figure 5. Finally, we remark that sampling without replacement is

much better than sampling with replacement and should always be preferred in practice. We discuss

on this aspect in Section 7.5.

6.3 Application to column-based image compression

In this section we show how active sampling can be applied to column-based image compression

without observing entire images. Given an image, we first actively subsample a small amount of

pixels from the original image. We then select a subset of columns based on the observed pixels and

reconstruct the entire image by projecting each column to the space spanned by the selected column

subsets.

In Figure 6 we depicted the final compressed image as well as intermediate steps (e.g., subsam-

pled pixels and selected columns) on the 512 × 512 8-bit gray scale Lena standard test image. We

also report the mean and standard deviation of selection error across 10 runs under different settings
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(a) The 512× 512 8-bit gray scale Lena test image before compression.

(b) Norm sampling (without replacement). Selection error ‖M−CC
†
M‖F /‖M‖F = 0.106.

(c) Iterative norm sampling. Selection error ‖M−CC
†
M‖F /‖M‖F = 0.088.

(d) Approx. leverage score sampling (without replacement). ‖M−CC
†
M‖F /‖M‖F = 0.103.

Figure 6: Column-based image compression results on the Lena standard test image. Left: actively

sampled image pixels; middle: the selected columns; right: the reconstructed images. Number of

selected columns is set to 50 and the pixel subsampling rate α is set to 0.3.
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Figure 7: Selection error ‖M −CC
†
M‖F for the iterative norm sampling algorithm as a function

of α (left), α/k (middle) and α/k2 (right). Error curves plotted under 4 different rank (k) settings.

of target column subset sizes in Table 3.

Table 3 shows that the iterative norm sampling algorithm consistently outperforms norm sam-

pling and so is the leverage score sampling method when the target column subset size is large,

which implies small oracle error ‖M −Mk‖2F . To get an intuitive sense of why this is the case,

we refer the readers to the selected columns for each of the sampling algorithm as shown in Figure

6 (the middle column). It can be seen that the norm sampling algorithm (Figure 6b) oversamples

columns in relatively easy regions (e.g., the white bar on the left side and the smooth part of the

face) because these regions have large pixel values (i.e., they are whiter than the other pixels) and

hence have larger column norms. In contrast, the iterative norm sampling algorithm (Figure 6c) fo-

cuses most sampled columns on the tassel and hair parts which are complicated and cannot be well

approximated by other columns. This shows that the iterative norm sampling method has the power

to adapt to highly heterogeneous columns and produce better approximations. Finally, we remark

that though both leverage score sampling and iterative norm sampling have relative error guaran-

tees, in practice the iterative norm sampling performs much better than leverage score sampling for

matrices whose rank is not very high.

7 Discussion

We discuss on several aspects of the proposed algorithms and their analysis.

7.1 Limitation of passive sampling

In most cases the observed entries of a partially observable matrix are sampled according to some

sampling schemes. We say a sampling scheme is passive when the sampling distribution (i.e.,

probability of observing a particular matrix entry) is fixed a priori and does not depend on the data

matrix. On the other hand, an active sampling scheme adapts its sampling distribution according

to previous observations and request unknown data points in a feedback driven way. We mainly

focus on active sampling methods in this paper (both Algorithm 1 and 2 perform active sampling).

However, Algorithm 3 only requires passive sampling because the sampling distribution of rows is

the uniform distribution and is fixed a priori.

Passive sampling is known to work poorly for coherent matrices [KS14, CBSW13]. In this

section, we make the following three remarks on the power of passive sampling for column subset

selection:
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Table 3: Relative selection error ‖M−CC
†
M‖F /‖M‖F on the standard Lena test image (512×

512) for norm sampling (NORM), iterative norm sampling (Iter. norm) and approximate leverage

score sampling (LEV. SCORE). Results also compared to a uniform sampling baseline (UNIFORM)

and the truncated SVD lower bound (SVD). The percentage of observed entries α is set to α = 30%.

Number of columns used for reconstruction varies from 25 to 100.

UNIFORM NORM ITER. NORM LEV. SCORE SVD

25 COLUMNS .151± .009 .147± .004 .136± .004 .148± .007 .092
50 COLUMNS .104± .004 .103± .003 .092± .001 .105± .003 .059

100 COLUMNS .064± .002 .065± .001 .053± .001 .061± .002 .032

Remark 1 The ‖M − CX‖ξ reconstruction error bound for column subset selection is hard for

passive sampling. In particular, it can be shown that no passive sampling algorithm achieves relative

reconstruction error bound with high probability unless it observes Ω(n1n2) entries of an n1 × n2

matrix M. This holds true even if M is assumed to be exact low rank and has incoherent column

space.

This remark can be formalized by noting that when M is exact low rank then relative recon-

struction error implies exact recovery of M, or in other words, matrix completion. Here we cite

the hardness result in [KS14] for completing coherent matrix by passive sampling. Similar results

could also be obtained by applying Theorem 6 in [CBSW13].

Theorem 7 (Theorem 2, [KS14]). Let X denote all n1 × n2 matrices whose rank is no more than

k and column space has incoherence µ0 as defined in Eq. (5). Fix m < n1n2 and let Q denote all

passive sampling distributions over m samples of n1n2 matrix entries. Let F = {f : Rm → X} be

the collection of (possibly random) matrix completion algorithms. We then have

R∗
mc := inf

f∈F
inf
q∈Q

sup
X∈X

Pr
Ω∼q;f

[f(Ω,XΩ) 6= X] ≥ 1

2
−
⌈

m

(1− k−1
kµ0

)n1

⌉
1

2(n− k)
, (41)

where n = max(n1, n2). As a remark, when µ0 is a constant then R∗
mc = Ω(1) whenever m =

o(n1(n2 − k)).

Remark 2 For the ‖M − CC
†
M‖ξ selection error (with only column indices C output by an

CSS algorithm), it is possible for a passive sampling algorithm to achieve a relative error bound

with high probability. In fact, Algorithm 3 and Theorem 3 precisely accomplish this. In addition,

when the input matrix is exact low rank, Theorem 3 implies that there exists a passive sampling

algorithm that outputs a small subset of columns which span the entire column subspace of a row-

coherent matrix with high probability. This result shows column subset selection is easier than

matrix completion when only indices of the selected column subset are required. It does not violate

Theorem 7, however, because knowing which columns span the column space of an input matrix

does not imply we can complete the matrix without further samples.

Remark 3 Although Remark 2 and Theorem 3 shows that it is possible to achieve relative ‖M−
CC

†
M‖F error bound for row coherent matrices via passive sampling, we show in this section that
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passive sampling is insufficient under a slightly weaker notion of column incoherence. In particular,

instead of assuming µ(U) ≤ µ0 on the column space as in Eq. (5), we assume µ(xi) ≤ µ1 for

every column xi as in Eq. (7). Note that if rank(U) = k and xi ∈ U then µ(xi) ≤ kµ(U). So

for exact low rank matrices the vector-based incoherence assumption in Eq. (7) is weaker than the

subspace-based incoherence assumption in Eq. (5). We then have the following theorem, which is

proved in Appendix C.

Theorem 8. Let X ′ denote all n1 × n2 matrices whose rank is no more than k and incoherence

µ1 ≥ 1 + 1
n1−1 as defined in Eq. (7) for each column. Fix m < n1n2 and let Q denote all passive

sampling distributions over m samples of n1n2 matrix entries. Let F ′ = {f : Rm → [n2]
k} be the

collection of (possibly random) column subset selection algorithms. We then have

R∗
css := inf

f∈F ′
inf
q∈Q

sup
X∈X ′

Pr
Ω∼q;f

[X 6= XCX
†
CX] ≥ 1

2
− m

2n1(n2 − k)
, (42)

where C = f(X,XΩ) is the output column subset of f . As a remark, the failure probability R∗
css

satisfies R∗
css = Ω(1) whenever m = o(n1(n2 − k)).

Theorem 8 combined with Theorem 7 shows a separation of hardness between column subset

selection and matrix completion. It also formalizes the intuitive limited power of passive sampling

over coherent matrices.

7.2 Time complexity

In this section we report the theoretical time complexity of our proposed algorithms as well as the

optimization based methods for comparison in Table 4. We assume the input matrix M is square

n×n and we are using s columns to approximate the top-k component of M. Let α = m/n2 be the

percentage of observed data. svd(a, b, c) denotes the time for computing the top-c truncated SVD

of an a× b matrix.

Suppose the observation ratio α is a constant and the svd operation takes quadratic time. Then

the time complexity for all algorithms can be sorted as

NORM;O(n2) < LEV. SCORE;O(kn2) < ITER. NORM, BLOCK OMP;O(sn3) < GLASSO, O(T (n3+s2n2)).
(43)

Perhaps not surprisingly, in Section 6.2 and 6.3 on real-world data sets we show the reverse holds

for selection error for the first three algorithms in Eq. (43).

Table 4: Time complexity of proposed and baseline algorithms. k denotes the intrinsic rank and s
denotes the number of selected columns. Dependency on failure probability δ and other polyloga-

rithmic dependency is omitted.

Algorithm NORM ITER. NORM
* LEV. SCORE BLOCK OMP*

GLASSO
†

Time Complexity O(αn2) O(α2sn3) O(svd(αn, n, k)) O(α2sn3) O(T (n3 + s2n2))
*Assume αn > s and α

2
n > 1.

†Using solution path implementation; T is the desired number of λ values.
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7.3 Sample complexity, column subset size and selection error

We remark on the connection of sample complexity (i.e., number of observed matrix entries), size of

column subsets and reconstruction error for column subset selection. For column subset selection

when the target column subset size is fixed the sample complexity acts more like a threshold: if

not enough number of matrix entries are observed then the algorithm fails since the column norms

are not accurately estimated, but when a sufficient number of observations are available the re-

construction error does not differ much. Such phase transition was also observed in other matrix

completion/approximation tasks as well, for example, in [KS14]. In fact, the guarantee in Eq. (8),

for example, is exactly the same as in [FKV04] under the fully observed setting, i.e., m1 = n1.

The bottom three plots in Figure 2 are an excellent illustration of this phenomenon. When

α = 0.3 the selection error of Algorithm 2 is very high, which means the algorithm does not have

enough samples. However, for α = 0.6 and α = 0.9 the performance of Algorithm 2 is very similar.

7.4 Sample complexity of the iterative norm sampling algorithm

We try to verify the sample complexity dependence on the intrinsic matrix rank k for the iterative

norm sampling algorithm (Algorithm 2). To do this, we run Algorithm 2 under various settings of

intrinsic dimension k and the sampling probability α (which is basically proportional to the expected

number of per-column samples m). We then plot the selection error ‖M − CC
†
M‖F against α,

α/k and α/k2 in Figure 7.

Theorem 2 states that the dependence of m on k should be m = Õ(k2) ignoring logarithmic

factors. However, in Figure 7 one can observe that when the selection error is plotted against α/k
the different curves coincide. This suggests that the actual dependence of m on k should be close to

linear instead of quadratic. It is an interesting question whether we can get rid of the use of union

bounds over all n2-choose-k column subsets in the proof of Theorem 2 in order to get a near linear

dependence over k. Note that the curves converge to different values for different k settings because

selection error decreases when more columns are used to reconstruct the input matrix.

7.5 Sampling with and without replacement

In the experiments we observe that for norm sampling (Algorithm 1) and approximate leverage

score sampling (Algorithm 3) the two column sampling schemes, i.e., sampling with and without

replacement, makes a big difference in practice (e.g., see Figure 1, 2, and 4). In fact, sampling with-

out replacement always outperforms sampling with replacement because under the latter scheme

there is a positive probability of sampling the same column more than once. Though we analyzed

both algorithm under the sampling with replacement scheme, in practice sampling without replace-

ment should always be used since it makes no sense to select a column more than once. Finally,

we remark that for iterative norm sampling (Algorithm 2) a column will never be picked more than

once since the (estimated) projected norm of an already selected column is zero with probability 1.
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Appendix A Analysis of the active norm sampling algorithm

Proof of Lemma 1. This lemma is a direct corollary of Theorem 2 from [FKV04]. First, let Pi =
ĉi/f̂ be the probability of selecting the i-th column of M. By assumption, we have Pi ≥ 1−α

1+α
‖xi‖22/‖M‖2F .

Applying Theorem 2 4 from [FKV04] we have that with probability at least 1 − δ, there exists an

orthonormal set of vectors y(1), · · · ,y(k) ∈ R
n1 in span(C) such that

∥∥∥∥∥∥
M−




k∑

j=1

y(j)y(j)⊤


M

∥∥∥∥∥∥

2

F

≤ ‖M−Mk‖2F +
(1 + α)k

(1− α)δs
‖M‖2F . (44)

Finally, to complete the proof, note that every column of
(∑k

j=1 y
(j)y(j)⊤

)
M can be represented

as a linear combination of columns in C; furthermore,

‖M− PC(M)‖F = min
X∈Rk×n2

‖M−CX‖F ≤

∥∥∥∥∥∥
M−




k∑

j=1

y(j)y(j)⊤


M

∥∥∥∥∥∥
F

. (45)

Proof of Theorem 1. First, set m1 = Ω(µ0 log(n2/δ1)) we have that with probability ≥ 1− δ1 the

inequality

(1− α)‖xi‖22 ≤ ĉi ≤ (1 + α)‖xi‖22
holds with α = 0.5 for every column i, using Lemma 2. Next, putting s ≥ 6k/δ2ǫ

2 and applying

Lemma 1 we get

‖M− PC(M)‖F ≤ ‖M−Mk‖F + ǫ‖M‖F (46)

with probability at least 1− δ2. Finally, note that when α ≤ 1/2 and n1 ≤ n2 the bound in Lemma

3 is dominated by

‖M− M̂‖2 ≤ ‖M‖F ·O
(√

µ0

m2
log

(
n1 + n2

δ

))
. (47)

Consequently, for any ǫ′ > 0 if m2 = Ω((ǫ′)−2µ0 log
2((n1 + n2)/δ3) we have with probability

≥ 1− δ3
‖M− M̂‖2 ≤ ǫ′‖M‖F . (48)

The proof is then completed by taking ǫ′ = ǫ/
√
s:

‖M−CX‖F = ‖M− PC(M̂)‖F
≤ ‖M− PC(M)‖F + ‖PC(M− M̂)‖F
≤ ‖M−Mk‖F + ǫ‖M‖F +

√
s‖PC(M− M̂)‖2

≤ ‖M−Mk‖F + ǫ‖M‖F +
√
s · ǫ′‖M‖F

≤ ‖M−Mk‖F + 2ǫ‖M‖F .

4The original theorem concerns random samples of rows; it is essentially the same for random samples of columns.
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Appendix B Analysis of the iterative norm sampling algorithm

Proof of Lemma 4. We first prove Eq. (16). Observe that dim(U(C)) ≤ s. Let RC = (R(C(1)), · · · ,R(C(s))) ∈
R
n1×s denote the selected s columns in the noise matrix R and let R(C) = span(RC) denote the

span of selected columns in R. By definition, U(C) ⊆ U ∪R(C), where U = span(A) denotes the

subspace spanned by columns in the deterministic matrix A. Consequently, we have the following

bound on ‖PU(C)ei‖ (assuming each entry in R follows a zero-mean Gaussian distribution with σ2

variance):

‖PU(C)ei‖22 ≤ ‖PUei‖22 + ‖PU⊥∩R(C)ei‖22
≤ ‖PUei‖22 + ‖PR(C)ei‖22
≤ kµ0

n1
+ ‖RC‖22‖(R⊤

CRC)
−1‖22‖R⊤

Cei‖22

≤ kµ0

n1
+

(
√
n1 +

√
s+ ǫ)2σ2

(
√
n1 −

√
s− ǫ)4σ4

· σ2(s+ 2
√

s log(2/δ) + 2 log(2/δ)).

For the last inequality we apply Lemma 14 to bound the largest and smallest singular values of

RC and Lemma 12 to bound ‖R⊤
Cei‖22, because R

⊤
Cei follow i.i.d. Gaussian distributions with

covariance σ2
Is×s. If ǫ is set as ǫ =

√
2 log(4/δ) then the last inequality holds with probability at

least 1 − δ. Furthermore, when s ≤ n1/2 and δ is not exponentially small (e.g.,
√

2 log(4/δ) ≤√
n1

4 ), the fraction
(
√
n1+

√
s+ǫ)2

(
√
n1−

√
s−ǫ)4

is approximately O(1/n1). As a result, with probability 1 − n1δ

the following holds:

µ(U(C)) =
n1

s
max

1≤i≤n1

‖PU(C)ei‖22

≤ n1

s

(
kµ0

n1
+O

(
s+

√
s log(1/δ) + log(1/δ)

n1

))
= O

(
kµ0 + s+

√
s log(1/δ) + log(1/δ)

s

)
.

(49)

Finally, putting δ′ = n1/δ we prove Eq. (16).

Next we try to prove Eq. (17). Let x be the i-th column of M and write x = a + r, where

a = PU (x) and r = PU⊥(x). Since the deterministic component of x lives in U and the random

component of x is a vector with each entry sampled from i.i.d. zero-mean Gaussian distributions,

we know that r is also a zero-mean random Gaussian vector with i.i.d. sampled entries. Note that

U(C) does not depend on the randomness over {M(i) : i /∈ C}. Therefore, in the following analysis

we will assume U(C) to be a fixed subspace Ũ with dimension at most s.

The projected vector x′ = PŨ⊥x can be written as x̃ = ã+r̃, where ã = PŨ⊥a and r̃ = PŨ⊥r.

By definition, ã lives in the subspace U ∩ Ũ⊥. So it satisfies the incoherence assumption

µ(ã) =
n1‖ã‖2∞
‖ã‖22

≤ kµ(U) ≤ kµ0. (50)

On the other hand, because r̃ is an orthogonal projection of some random Gaussian variable, r̃ is

still a Gaussian random vector, which lives in U⊥∩ Ũ⊥ with rank at least n1−k− s. Subsequently,
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we have

µ(x̃) = n1
‖x̃‖2∞
‖x̃‖22

≤ 3n1
‖ã‖2∞ + ‖r̃‖2∞
‖ã‖22 + ‖r̃‖22

≤ 3n1
‖ã‖2∞
‖ã‖22

+ 3n1
‖r̃‖2∞
‖r̃‖22

≤ 3kµ0 +
6σ2n1 log(2n1n2/δ)

σ2(n1 − k − s)− 2σ2
√

(n1 − k − s) log(n2/δ)
.

For the second inequality we use the fact that
∑

i ai∑
i bi
≤ ∑i

ai
bi

whenever ai, bi ≥ 0. For the last

inequality we use Lemma 13 on the enumerator and Lemma 12 on the denominator. Finally, note

that when max(s, k) ≤ n1/4 and log(n2/δ) ≤ n1/64 the denominator can be lower bounded by

σ2n1/4; subsequently, we can bound µ(x̃) as

µ(x̃) ≤ 3kµ0 +
24σ2n1 log(2n1n2/δ)

σ2n1
≤ 3kµ0 + 24 log(2n1n2/δ). (51)

Taking a union bound over all n2 − s columns yields the result.

To prove the norm estimation consistency result in Lemma 5 we first cite a seminal theorem

from [KS14] which provides a tight error bound on a subsampled projected vector in terms of the

norm of the true projected vector.

Theorem 9. Let U be a k-dimensional subspace of Rn and y = x+ v, where x ∈ U and v ∈ U⊥.

Fix δ′ > 0, m ≥ max{83kµ(U) log
(
2k
δ′

)
, 4µ(v) log(1/δ′)} and let Ω be an index set with entries

sampled uniformly with replacement with probability m/n. Then with probability at least 1− 4δ′:

m(1− α)− kµ(U) β
1−γ

n
‖v‖22 ≤ ‖yΩ − PUΩ

yΩ‖22 ≤ (1 + α)
m

n
‖v‖22, (52)

where α =

√
2µ(v)

m
log(1/δ′)+2µ(v)

3m log(1/δ′), β = (1+2
√

log(1/δ′))2 and γ =

√
8kµ(U)
3m log(2k/δ′).

We are now ready to prove Lemma 5.

Proof of Lemma 5. By Algorithm 2, we know that dim(St) = t with probability 1. Let y = M
(i)

denote the i-th column of M and let v = PSt
y be the projected vector. We can apply Theorem 9 to

bound the estimation error between ‖v‖ and ‖yΩ − PSt(Ω)yΩ‖.
First, when m is set as in Eq. (20) it is clear that the conditions m ≥ 8

3 tµ(U) log
(
2t
δ′

)
=

Ω(kµ0 log(n/δ) log(k/δ
′)) and m ≥ 4µ(v) log(1/δ′) = Ω(kµ0 log(n/δ) log(1/δ

′)) are satisfied.

We next turn to the analysis of α, β and γ. More specifically, we want α = O(1), γ = O(1) and
tµ(U)
m

β = O(1).
For α, α = O(1) implies m = Ω(µ(v) log(1/δ′)) = Ω(kµ0 log(n/δ) log(1/δ

′)). Therefore, by

carefully selecting constants in Ω(·) we can make α ≤ 1/4.

For γ, γ = O(1) implies m = Ω(tµ(U) log(t/δ′)) = Ω(kµ0 log(n/δ) log(k/δ
′)). By carefully

selecting constants in Ω(·) we can make γ ≤ 0.2.
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For β,
tµ(U)
m

β = O(1) implies m = O(tµ(U)β) = O(kµ0 log(n/δ) log(1/δ
′)). By carefully

selecting constants we can have β ≤ 0.2. Finally, combining bounds on α, β and γ we prove the

desired result.

Before proving Lemma 6, we first cite a lemma from [DRVW06] that connects the volume of a

simplex to the permutation sum of singular values.

Lemma 9 ([DRVW06]). Fix A ∈ R
m×n with m ≤ n. Suppose σ1, · · · , σm are singular values of

A. Then ∑

S⊆[n],|S|=k

vol(∆(S))2 =
1

(k!)2

∑

1≤i1<i2<···<ik≤m

σ2
i1
σ2
i2
· · ·σ2

ik
. (53)

Now we are ready to prove Lemma 6.

Proof of Lemma 6. Let Mk denote the best rank-k approximation of M and assume the singular

values of M are {σi}n1

i=1. Let C = {i1, · · · , ik} be the selected columns. Let τ ∈ Πk, where

Πk denotes all permutations with k elements. By Hτ,t we denote the linear subspace spanned

by {M(τ(i1)), · · · ,M(τ(it))} and let d(M(i),Hτ,t) denote the distance between column M
(i) and

subspaceHτ,t. We then have

p̂C ≤
∑

τ∈Πk

(
5

2

)k ‖M(τ(i1))‖22
‖M‖2F

d(M(τ(i2)),Hτ,1)
2

∑n2

i=1 d(M
(i),Hτ,1)2

· · · d(M(τ(ik)),Hτ,k−1)
2

∑n2

i=1 d(M
(i),Hτ,k−1)2

≤ 2.5k ·
∑

τ∈Πk
‖M(τ(i1))‖2d(M(τ(i2)),Hτ,1)

2 · · · d(M(τ(ik)),Hτ,k−1)
2

‖M‖2F ‖M−M1‖2F · · · ‖M−Mk−1‖2F

= 2.5k ·
∑

τ∈Πk
(k!)2vol(∆(C))2

‖M‖2F ‖M−M1‖2F · · · ‖M−Mk−1‖2F
= 2.5k · (k!)3vol(∆(C))2∑n1

i=1 σ
2
i

∑n1

i=2 σ
2
i · · ·

∑n1

i=k σ
2
i

≤ 2.5k · (k!)3vol(∆(C))2∑
1≤i1<i2<···<ik≤n1

σ2
i1
σ2
i2
· · ·σ2

ik

= 2.5k · k!vol(∆(C))2∑
T :|T |=k vol(∆(T ))2

= 2.5kk!pC .

For the first inequality we apply Eq. (23) and for the second to last inequality we apply Lemma

9.

Lemma 7 can be proved by applying Theorem 5 for T rounds, given the norm estimation accu-

racy bound in Proposition 1.

Proof of Lemma 7. First note that

‖M− PU∪S1∪···∪ST
(M)‖2F ≤ ‖M− PU∪S1∪···∪ST ,k(M)‖2F .
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Applying Theorem 5 with 1+α
1−α

= 5
2 , we have

E
[
‖M− PU∪S1∪···∪ST

(M)‖2F
]

≤ ‖M−Mk‖2F +
5k

2sT
E
[
‖M− PU∪S1∪···ST−1

(M)‖F
]2

≤ ‖M−Mk‖2F +
5k

2sT

(
‖M−Mk‖2F +

5k

2sT−1
E
[
‖M− PU∪S1∪···ST−2

(M)‖2F
])

≤ · · ·

≤
(
1 +

5

2

k

sT
+

(
5

2

)2 k2

sT sT−1
+ · · ·+

(
5

2

)T−1 kT−1

sT−1 · · · s1

)
‖M−Mk‖2F

+

(
5

2

)T kT

sT sT−1 · · · s1
‖M− PU (M)‖2F

≤
(
1 +

ǫ

4δ
+

ǫ

20δ
+ · · ·

)
‖M−Mk‖2F +

ǫ/2

2T δ
‖E‖2F

≤
(
1 +

ǫ

2δ

)
‖M−Mk‖2F +

ǫ/2

2T δ
‖E‖2F .

Finally applying Markov’s inequality we complete the proof.

To prove the reconstruction error bound in Lemma 8 we need the following two technical lem-

mas, cited from [KS13, BRN10].

Lemma 10 ([KS13]). Suppose U ⊆ R
n has dimension k and U ∈ R

n×k is the orthogonal ma-

trix associated with U . Let Ω ⊆ [n] be a subset of indices each sampled from i.i.d. Bernoulli

distributions with probability m/n1. Then for some vector y ∈ R
n, with probability at least 1− δ:

‖U⊤
ΩyΩ‖22 ≤ β

m

n1

kµ(U)
n1
‖y‖22, (54)

where β is defined in Theorem 9.

Lemma 11 ([BRN10]). With the same notation in Lemma 10 and Theorem 9. With probability

≥ 1− δ one has

‖(U⊤
ΩUΩ)

−1‖ ≤ n1

(1− γ)m
, (55)

provided that γ < 1.

Now we can prove Lemma 8.

Proof of Lemma 8. Let U = U(S) and U ∈ R
n1×s be the orthogonal matrix associated with U . Fix

a column i and let x = M
(i) = a + r, where a ∈ U and r ∈ U⊥. What we want is to bound

‖x−U(U⊤
ΩUΩ)

−1
U

⊤
ΩxΩ‖22 in terms of ‖r‖22.

Write a = Uã. By Lemma 11, if m satisfies the condition given in the Lemma then with

probability over 1 − δ − δ′′ we know (U⊤
ΩUΩ) is invertible and furthermore, ‖(U⊤

ΩUΩ)
−1‖2 ≤

2n1/m. Consequently,

U(U⊤
ΩUΩ)

−1
U

⊤
ΩaΩ = U(U⊤

ΩUΩ)
−1

U
⊤
ΩUΩã = Uã = a. (56)
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That is, the subsampled projector preserves components of x in subspace U .

Now let’s consider the noise term r. By Corollary 1 with probability ≥ 1 − δ we can bound

the incoherence level of y as µ(y) = O(sµ0 log(n/δ)). The incoherence of subspace U can also be

bounded as µ(U) = O(µ0 log(n/δ)). Subsequently, given m = Ω(ǫ−1sµ0 log(n/δ) log(n/δ
′′)) we

have (with probability ≥ 1− δ − 2δ′′)

‖x−U(U⊤
ΩUΩ)

−1
U

⊤
Ω(a+ r)|22

= ‖a+ r −U(U⊤
ΩUΩ)

−1
U

⊤
Ω(a+ r)‖22

= ‖r −U(U⊤
ΩUΩ)

−1
U

⊤
Ωr‖22

≤ ‖r‖22 + ‖(U⊤
ΩUΩ)

−1‖22‖U⊤
Ωr‖22

≤ (1 +O(ǫ))‖r‖22.

For the second to last inequality we use the fact that r ∈ U⊥. By carefully selecting constants in

Eq. (22) we can make

‖x−U(U⊤
ΩUΩ)

−1
U

⊤
Ωx‖22 ≤ (1 + ǫ)‖PU⊥x‖22. (57)

Summing over all n2 columns yields the desired result.

Appendix C Proof of lower bound for passive sampling

Proof of Theorem 8. Let X̃ = {X1, · · · ,XT } ⊆ X ′ be a finite subset of X ′ which we specify later.

Let π be any prior distribution over X̃ . We then have the following chain of inequalities:

R∗
css = inf

f∈F ′
inf
q∈Q

sup
X∈X ′

Pr
Ω∼q;f

[X 6= XCX
†
CX]

≥ inf
f∈F ′

inf
q∈Q

Pr
Ω∼q;X∼π;f

[X 6= XCX
†
CX] (58)

≥ inf
f∈F ′

min
|Ω|=m

Pr
X∼π;f

[X 6= XCX
†
CX]. (59)

Here Eq. (58) uses the fact that the maximum dominates any expectation over the same set and for

Eq. (59) we apply Yao’s principle, which asserts that the worst-case performance of a randomized

algorithm is better (i.e., lower bounded) by the averaging performance of a deterministic algorithm.

Hence, when the input matrix X is randomized by a prior π it suffices to consider only deterministic

sampling schemes, which corresponds to a subset of matrix entries Ω fixed a priori, with size |Ω| =
m.

We next construct the subset X̃ and let π be the uniform distribution over X̃ . Let x1, · · · ,xk−2 ∈
R
n1 be an arbitrary set of linear independent column vectors with [xi]1 = 0 for all i = 1, 2, · · · , k =

2 and µ(x1), · · · , µ(xk−2) = 1 + 1
n1−1 . This can be done by setting all nonzero entries in

x1, · · · ,xk−2 to ±1. In addition, we define y := (1, 1, · · · , 1) and ej = (0, · · · , 0, 1, 0, · · · , 0)
with the only nonzero entry at the jth position. Next, define X̃ = {Xi,j}n2,n1

i=k−1,j=1 with

X
i,j

(ℓ) =





xℓ if ℓ ≤ k − 2,
y − 2ej if ℓ = i,
y otherwise.

(60)
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It follows by definition that rank(Xi,j) = k and µ(Xi,j

(ℓ)) ≤ µ1 = 1 + 1
n1−1 for all i, j and ℓ.

Furthermore, for fixed i and j one necessary condition for X = XCX
†
CX is {1, 2, · · · , k − 2, i} ⊆

C. Therefore, if for distinct i1, i2, i3, i4 and some j1, j2, j3, j4 one has X
i1,j1
Ω = · · · = X

i4,j4
Ω then

the best a column subset selection algorithm f could do is random guessing and hence Pr[X 6=
XCX

†
CX] ≥ 1/2. Consequently, for fixed Ω one has

inf
f∈F ′

Pr
X∼π;f

[X 6= XCX
†
CX] ≥ 1

2
− 1

2

∣∣∣∣
{
X

i,j : Xi′,j′

Ω 6= X
i,j , ∀i′ 6= i, j′ ∈ [n1]

} ∣∣∣∣. (61)

The final step is to bound the size of the set E = {Xi,j : Xi′,j′

Ω 6= X
i,j , ∀i′ 6= i, j′ ∈ [n1]}.

Note that if XΩ is +1 on all entries (i, j) with i > k − 2 then X /∈ E because for every X
′ ∈ X̃ ,

X
′
Ω = XΩ. Consequently,

∣∣E
∣∣ ≤ |Ω|

n1(n2 − k + 2)
≤ m

n1(n2 − k)
. (62)

Plugging Eq. (62) into Eq. (61) we complete the proof of Theorem 8.

Appendix D Some concentration inequalities

Lemma 12 ([LM00]). Let X ∼ χ2
d. Then with probability ≥ 1− 2δ the following holds:

−2
√

d log(1/δ) ≤ X − d ≤ 2
√

d log(1/δ) + 2 log(1/δ). (63)

Lemma 13. Let X1, · · · , Xn ∼ N (0, σ2). Then with probability ≥ 1− δ the following holds:

max
i
|Xi| ≤ σ

√
2 log(2n/δ). (64)

Lemma 14 ([Ver10]). Let X be an n × t random matrix with i.i.d. standard Gaussian random

entries. If t < n then for every ǫ ≥ 0 with probability ≥ 1− 2 exp(−ǫ2/2) the following holds:

√
n−
√
t− ǫ ≤ σmin(X) ≤ σmax(X) ≤ √n+

√
t+ ǫ. (65)

Lemma 15 (Noncommutative Bernstein Inequality, [GLF+10, Rec11]). Let X1, · · · ,Xm be inde-

pendent zero-mean square n×n random matrices. Suppose ρ2k = max(‖E[XkX
⊤
k ]‖2, ‖E[X⊤

k Xk]‖2)
and ‖Xk‖2 ≤M with probability 1 for all k. Then for any t > 0,

Pr

[∥∥∥∥∥
m∑

k=1

Xk

∥∥∥∥∥
2

> t

]
≤ 2n exp

(
− t2/2∑m

k=1 ρ
2
k +Mt/3

)
. (66)
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