
Autonomous Robotics manuscript No.
(will be inserted by the editor)

Provably correct reactive control from natural language

Constantine Lignos · Vasumathi Raman ·

Cameron Finucane · Mitchell Marcus ·

Hadas Kress-Gazit

Abstract This paper presents an integrated system for

generating, troubleshooting, and executing correct-by-

construction controllers for autonomous robots using natu-

ral language input, allowing non-expert users to command

robots to perform high-level tasks. This system unites the

power of formal methods with the accessibility of natu-

ral language, providing controllers for implementable high-

level task specifications, easy-to-understand feedback on

those that cannot be achieved, and natural language expla-

nation of the reason for the robot’s actions during execution.

The natural language system uses domain-general compo-

nents that can easily be adapted to cover the vocabulary

of new applications. Generation of a linear temporal logic

specification from the user’s natural language input uses a

novel data structure that allows for subsequent mapping of

logical propositions back to natural language, enabling natu-

ral language feedback about problems with the specification

that are only identifiable in the logical form. We demonstrate

We would like to thank Taylor Turpen, Israel Geselowitz, and Ken-

ton Lee for their assistance with software development and data col-

lection. This work was supported in part by: ARO MURI (SUBTLE)

W911NF-07-1-0216, NSF CAREER CNS-0953365, DARPA N66001-

12-1-4250, and TerraSwarm, one of six centers of STARnet, a Semi-

conductor Research Corporation program sponsored by MARCO and

DARPA. This is the accepted manuscript of a paper published in Au-

tonomous Robots. The final publication is available at Springer via

http://dx.doi.org/10.1007/s10514-014-9418-8.

C. Lignos · M. Marcus

Department of Computer and Information Science, University of Penn-

sylvania, 3330 Walnut St., Philadelphia, PA 19104, USA

E-mail: constantine@lignos.org

V. Raman

Department of Computing and Mathematical Sciences, California In-

stitute of Technology, 1200 E California Blvd, Pasadena, CA 91125,

USA

C. Finucane · H. Kress-Gazit

Sibley School of Mechanical and Aerospace Engineering, Cornell Uni-

versity, 105 Upson Hall, Ithaca, NY 14853, USA

the robustness of the natural language understanding system

through a user study where participants interacted with a

simulated robot in a search and rescue scenario. Automated

analysis and user feedback on unimplementable specifica-

tions is demonstrated using an example involving a robot

assistant in a hospital.

Keywords Natural language · Formal methods · High-level

control · Synthesis

1 Introduction

Natural language control of robots can enable the integra-

tion of robots into more diverse settings such as homes and

offices and reduce the cognitive load of controlling robots

in demanding situations such as urban search and rescue.

To achieve such broad utility for these systems, untrained or

minimally-trained users should be able to express task spec-

ifications and receive a response from the system in natural

language, explaining what actions the robot will undertake

and any issues that may be present in the specification.

The challenge of programming robots to perform these

tasks has until recently been the domain of experts, re-

quiring hard-coded high-level implementations and ad-hoc

use of low-level techniques such as path-planning during

execution. Recent advances in the application of formal

methods for robot control have enabled automated synthe-

sis of correct-by-construction hybrid controllers for com-

plex high-level tasks (e.g., Kloetzer and Belta 2008; Kara-

man and Frazzoli 2009; Bhatia et al 2010; Bobadilla et al

2011; Kress-Gazit et al 2009; Wongpiromsarn et al 2010).

However, most current approaches require the user to pro-

vide task specifications in logic or a similarly structured

specification language. This forces users to formally reason

about system requirements rather than state an intuitive de-

scription of the desired outcome. Furthermore, the outcome

2 Constantine Lignos et al.

of verifying such specifications is traditionally simply a re-

sponse of success or failure; detecting which portions of the

specification are at fault is a non-trivial task (e.g., Raman

and Kress-Gazit 2013a), as is explaining the problem to the

user.

The system presented in this paper combines the power

of formal methods with the accessibility of natural language,

providing correct-by-construction controllers for specifica-

tions that can be implemented and easy-to-understand feed-

back for those that cannot. The system is open-source, can

be extended to cover new scenarios, and allows for both

specification and execution of natural language specifica-

tions. The system enables users to specify high-level behav-

iors via natural language, parsing commands using seman-

tic analysis to create a linear temporal logic (LTL) specifica-

tion. This parsing is deterministic and predictable, providing

feedback to the user to help guide them if their input could

not be completely parsed. The LTL specification is used to

synthesize a hybrid controller when possible. If no imple-

mentation exists, the user is provided with an explanation

and the portions of the specification that cause failure. The

explanation is enabled by a data structure called a genera-

tion tree, which records the transformation of natural lan-

guage into formal logic and is able to map backwards from

problematic logical propositions to the explicit or implicit

input from the user that caused the problem.

The system allows for execution of the controller either

in simulation or using a physical robot. Natural language

features are also available during execution; the generation

tree allows the robot to explain what goal it is trying to

achieve through its current action. The same language pro-

cessing and semantic extraction components that enable the

creation of logical propositions from natural language spec-

ifications enable feedback from the robot during execution.

Fig. 1 shows the system’s main components and the con-

nections between them. The Situated Language Understand-

ing Robot Platform (SLURP) consists of parsing, semantic

interpretation, LTL generation, and feedback components.

This module is the natural language connection between the

user and the logical representations used within the Linear

Temporal Logic MissiOn Planning (LTLMoP) toolkit (Fin-

ucane et al, 2010). LTLMoP, which also interfaces with the

SAT solver PicoSAT (Biere, 2008), provides an environment

for creating, analyzing, and executing specifications.

This organization of this paper follows the flow of user

input into the system. Sect. 2 discusses previous work in

this area. Sect. 3 describes the language understanding and

LTL generation mechanisms and presents an evaluation of

the performance of the system when processing commands

from users. Sects. 4–5 describe controller synthesis and

specification feedback mechanisms and present an example

of applying the system in a hospital setting. Discussion of

the system and future work follows in Sect. 6.

2 Related work

There are many previous approaches that use natural lan-

guage for controlling robots, differing in the type of infor-

mation they seek to extract from natural language, the type

of dialog desired, and the role of learning. To produce formal

goal descriptions and action scripts for tasks like navigation

and manipulation, Dzifcak et al (2009) use a combinatorial

categorial grammar (CCG) parser with a pre-specified map-

ping between words or phrases and the matching branch-

ing temporal logic and dynamic logic propositions. Another

area of focus is language grounding scenarios where lan-

guage must be mapped to objects or locations (e.g., Ma-

tuszek et al, 2012; Tellex et al, 2011), learning the relation-

ship between the words used and the referents in the world.

Recent work has focused on the automatic learning of

the relationship between language and semantic structures,

both in general semantic parsing (e.g., Berant and Liang,

2014; Poon and Domingos, 2009) and robotics-specific ap-

plications (e.g., Chen and Mooney, 2011; Matuszek et al,

2010, 2012, 2013). While the learning strategies used may

be generalized to broader applications, these systems are

typically trained and evaluated in a single command do-

main (e.g., navigation, manipulation) and typically verify

understanding at the per-utterance level or a single action

sequence such as sequential navigation commands.

In contrast to learning-focused work, the system pre-

sented here focuses on the construction of a complete,

formally-verified specification from natural language, but

assumes the grounding between language and the robot’s

capabilities can be specified in advance. In doing so, we

explore the broader relationships between natural language

and logical form and the challenges involved in creating rich

specifications from natural language that can include any

number of action types. To be applied to the kinds of high-

demand scenarios where natural language control may be of

greatest benefit, it is essential that the design of the system

be centered around “failing fast” by reporting any errors be-

fore execution.

This work aims to generate controllers for autonomous

robots that achieve desired high-level behaviors, including

reacting to external events and repeated patrol-type behav-

iors. Examples of such high-level tasks include search and

rescue missions and the control of autonomous vehicles fol-

lowing traffic rules in a complex environment, such as in the

DARPA Urban Challenge. With the usual approach of hard-

coding the high-level aspects and using path-planning and

other low-level techniques during execution, it is often not

known a priori whether the proposed implementation actu-

ally captures the high-level requirements. This motivates the

application of formal frameworks to guarantee that the im-

plemented plans will produce the desired behavior.

Provably correct reactive control from natural language 3

SLURP LTLMoP

PicoSAT

Core-finding

Synthesis Execution

Interactive Game

Parsing

Feedback
User

Analysis

Robot

unsatisfiable

unrealizable

unsynthesizable

synthesizable

Semantic
Interpretation

LTL Generation

Fig. 1: System overview

A number of frameworks have recently been proposed,

some of which use model checking (Clarke et al, 1999) to

synthesize control laws (e.g., Kloetzer and Belta 2008; Bha-

tia et al 2010) on a discrete abstraction of the underlying

system. Other approaches, such as those proposed by Kress-

Gazit et al (2009) and Wongpiromsarn et al (2010), ap-

ply efficient synthesis techniques to automatically generate

provably-correct, closed-loop, low-level robot controllers

that satisfy high-level reactive behaviors specified as LTL

formulas. Specifications describe the robot’s goals and as-

sumptions regarding the environment it operates in, using a

discrete abstraction. The hybrid robot controllers generated

represent a rich set of infinite behaviors, and the closed loop

system they form is guaranteed to satisfy the desired speci-

fication in any admissible environment, one that satisfies the

modeled assumptions.

Previous work using LTL synthesis for robot control has

also used highly structured or domain-specific languages to

allow non-technical users to write robot specifications, even

if they are unfamiliar with the underlying logic. For exam-

ple, LTLMoP includes a parser that automatically translates

sentences belonging to a defined grammar into LTL formu-

las (Kress-Gazit et al, 2008; Finucane et al, 2010); the gram-

mar includes conditionals, goals, safety sentences and non-

projective locative prepositions such as between and near.

Structured English circumvents the ambiguity and compu-

tational challenges associated with natural language, while

still providing a more intuitive medium of interaction than

LTL. However, users still need to understand many details

of the logical representation and the synthesis process to

successfully write specifications in structured English. The

work presented in this paper replaces LTLMoP’s structured

English input with a natural language interface to enable

users to describe high-level tasks in more natural language.

Recent work has also tackled the problem of analyzing

high-level specifications that are unsynthesizable. For ex-

ample, Cizelj and Belta (2013) present a system based on

human-supervised specification updates according to pre-

specified rules. The focus in this paper, on the other hand,

is on automated specification analysis. In contrast to that

work, we present methods for reactive LTL specifications

rather than probabilistic computation tree logic.

Feedback about the cause of unsynthesizability can be

provided to the user in the form of a modified specification

(Fainekos, 2011; Kim et al, 2012), a highlighted fragment

of the original specification (Raman and Kress-Gazit, 2011),

or by allowing the user to interact with an adversarial envi-

ronment that prevents the robot from achieving the speci-

fied behavior (Raman and Kress-Gazit, 2013a). This work

follows the approaches introduced by Raman et al (2013);

Raman and Kress-Gazit (2013b) to provide minimal expla-

nations for unsynthesizable specifications, as described in

Section 4. The system presented in this paper provides fine-

grained natural language feedback that is not necessarily a

subset of the original natural language specification. It also

enhances the interactive visualization tool introduced in Ra-

man and Kress-Gazit (2013a) with feedback on why par-

ticular robot actions may be disallowed in a given state, as

described in Section 5.2.

This paper extends work presented by Raman et al

(2013) by analyzing the performance of the natural language

understanding system through a user study and adding ad-

ditional LTL generation features, support for feedback for

all types of unsynthesizable specifications, and further dis-

4 Constantine Lignos et al.

cussion regarding the design of the integrated system. We

provide a more complete approach to generating LTL from

natural language input (Section 3), addressing the issues of

non-compositionality when considering negation over nat-

ural language and providing results from a user study that

demonstrates the system’s robustness when used by inexpe-

rienced users. To allow feedback in all cases where the spec-

ification is unsynthesizable, we extend the natural language

feedback to unrealizable specifications (Section 4) by incor-

porating the core-finding techniques recently introduced by

Raman and Kress-Gazit (2013b, 2014) and mapping the log-

ical causes of failure to natural language to provide feedback

to the user.

3 Transforming natural language into logic with

SLURP

To convert the user’s commands into a formal specification,

the system must identify the underlying linguistic structure

of the commands and convert it into a logical representation,

filling in appropriate implicit assumptions about the desired

behavior. This section describes the process of this con-

version and its implementation as The Situated Language

Understanding Robot Platform (SLURP). SLURP enables

the conversion of natural language specifications into LTL

formulas, communication with the user regarding problems

with specifications, and feedback to the user during execu-

tion. Sects. 3.2–3.3 discuss the process of generating LTL

formulas from natural language input. Sect. 3.4 describes a

user study used to evaluate the performance of the system

described.

3.1 Overview

In using the term natural language, we refer to language

that a user of the system would produce without specific

knowledge of what the system is capable of understanding.

In other words, language that is not restricted to a known

set of vocabulary items or grammatical structures specific

to the system. Users are able to give commands without

any knowledge of how the language understanding system

works, as if they were giving simple, clear instructions to

another person. While the user may be able to give com-

mands to the system that it cannot understand, the system

gives feedback based on what it understood and what it did

not. For example, it may report that it does not understand

how to carry out the verb used in a command, or may re-

port that it does know how to perform that verb but has not

received sufficient information, for example being told to

move but not told where to do so.

The user’s instructions are processed through a pipeline

of natural language components similar to that used by

Brooks et al (2012) which identify the syntactic structure

of the sentences, extract semantic information from them,

and create logical formulas to be used in controller syn-

thesis. While many previous natural language systems for

robot control have relied on per-scenario grammars that

combine semantic and syntactic information (e.g., Dzifcak

et al 2009), this work uses a combination of robust, general-

purpose components for tagging and parsing the input. An

advantage of this approach compared to per-scenario gram-

mars is that the core language models need not be modi-

fied across scenarios; to adapt to new scenarios all that is

required is that the LTL generation be extended to support

additional types of commands. This reduces the role of the

fragile process of grammar engineering and minimizes the

cost of adapting the system to handle commands in new do-

mains.

3.2 Identifying linguistic structure

Before a sentence may be converted into logical formulas,

the linguistic structure of the sentence must be identified.

Following traditional practices in natural language process-

ing, this process is divided into modules: first, the syntactic

structure of the input is extracted; second, the meaning of

the sentence is recovered by identifying verbs and their ar-

guments. These steps are explained in detail in Sects. 3.2.1

and 3.2.2.

3.2.1 Parsing and null element restoration

Parsing is the process of assigning a hierarchical struc-

ture to a sentence. While simple natural language under-

standing can be performed with shallower processing tech-

niques, parsing allows for recovery of the hierarchical struc-

ture of the sentence, allowing for proper handling of nat-

ural language phenomena such as negation (e.g., Never go

to the lounge) and coordination (e.g., Go to the lounge

and kitchen), which are crucial to understanding commands.

SLURP uses a pipeline of domain-general natural language

processing components. The input is tagged using the Stan-

ford Log-linear Part-Of-Speech Tagger (Toutanova et al,

2003) and parsed using the Bikel parser (Bikel, 2004); these

parses are then post-processed using the null element (un-

derstood subject) restoration system of Gabbard et al (2006).

The models used by these systems require no in-domain

training. An example output of these modules is given in

Fig. 2a, b.

The use of null element restoration, a step typically ig-

nored in NLP systems, allows for correct parsing of im-

peratives and questions, critical structures for natural lan-

guage control and dialog systems. For example, in Fig. 2a

the original parse contains no subject at all as there is no

overt subject in the input sentence. Fig. 2b shows that null

Provably correct reactive control from natural language 5

S

.

.

VP

PP-CLR

NP-A

NN

hallway

DT

the

TO

to

VB

go

(a) Tagging and parsing

S

.

.

VP

PP-CLR

NP-A

NN

hallway

DT

the

TO

to

VB

go

NP-SBJ-A

-NONE-

*

(b) Null element restoration

Agent: * (understood subject)

Verb: go

Preposition: to

Location: the hallway

(c) VerbNet frame matching

Initially, the hallway has not been visited:

¬s.mem visit hallway

Define a persistent memory of going to the hallway:

�(©s.mem visit hallway ⇔
(s.mem visit hallway∨©s.hallway))

Always eventually have a memory of visiting the hallway:

� �(s.mem visit hallway)

(d) LTL formula generation

Fig. 2: Conversion of the sentence Go to the hallway

into LTL formulas through tagging, parsing, null element

restoration, semantic interpretation, and LTL generation

element restoration has added an understood subject marked

by *. This allows the structure of imperatives to be straight-

forwardly matched by the semantic interpretation module,

which will look for verbs by identifying subtrees that are

rooted by S, and contain a subject (NP-SBJ) and a verb

phrase (VP). After null element restoration, an imperative

has the same underlying structure as a statement with an ex-

plicit subject (e.g., A patient is in r1), allowing a general-

purpose semantic interpretation system to process all input

without using ad hoc techniques to accommodate impera-

tives.

3.2.2 Semantic interpretation

The semantic interpretation module uses the parse tree to ex-

tract verbs and their arguments. For example, in the sentence

Carry meals from the kitchen to all patient rooms, the de-

sired structure is a carry command with an object of meals,

a source of kitchen, and a destination of all patient rooms.

Objects identified may be further processed, for example all

will be identified as a quantifier and handled as described in

Sect. 3.3.2.

To identify verbs and their arguments in parse trees,

SLURP uses VerbNet (Schuler, 2005), a large database of

verbs and the types of arguments they can take. The Verb-

Net database identifies verbs as members of senses: groups

of verbs which in similar contexts have similar meanings.

For example, the verbs carry, lug, and haul belong to the

sense CARRY, because in many contexts they are equiva-

lent in meaning. For each sense, VerbNet provides a set of

frames, which indicates the possible arguments to the sense.

In the preceding example sentence, the verb carry is

mapped to the sense CARRY. An example of a frame for

this sense is (Agent, Verb, Theme, Source, Destination), thus

the expected use of the verb is that there is someone per-

forming it (Agent), someone or something it is being per-

formed on (Theme), and path to perform it on (Source and

Destination). Each role in the frame, subject to its associ-

ated syntactic constraints, is mapped to a part of the parse

tree. VerbNet only provides information about the verb ar-

guments; SLURP matches these argument types by mapping

them to part-of-speech (e.g., VB for base verb) and phrasal

(e.g., NP for noun phrase) tags and identifying each argu-

ment using its tag and syntactic position. For the above ex-

ample, SLURP creates the following mapping:

Agent: the robot (understood subject)

Verb: carry

Theme: meals

Source: the kitchen

Destination: all patient rooms

Among the frames that match the parse tree, SLURP

chooses the frame that expresses the most semantic roles.

6 Constantine Lignos et al.

For example, the CARRY sense also contains a frame (Agent,

Verb, Theme, Destination), which may be used in cases

where the source is already understood, for example if the

user previously stated The meals are in the kitchen. How-

ever, this frame will not be selected in the above example

because the more specific frame that contains a source—

and thus expresses more semantic roles—also matches. The

chosen match is then used to fill in the appropriate fields in

the command.

Matching of frames is not limited to entire sentences.

In a sentence such as If you see an intruder, activate your

camera, frames are matched for both the conditional clause

and the main clause, allowing for the condition (Agent: the

robot, Verb: see, Theme: an intruder) to be applied to the ac-

tion (Agent: the robot, Verb: activate, Theme: your camera)

when generating the logical representation.

3.3 Linear temporal logic generation

The information provided by VerbNet allows the identifica-

tion of verbs and their arguments; these verbs can then be

used to generate logical formulas defining robot tasks.

3.3.1 Linear temporal logic

The underlying logical formalism used in this work is linear

temporal logic (LTL), a modal logic that includes temporal

operators, allowing formulas to specify the truth values of

atomic propositions over time. Let AP = X ∪Y , where X is

the set of “input” propositions, those controlled by the en-

vironment, and Y is the set of “output” propositions, those

controlled by the robot. LTL formulas are constructed from

atomic propositions π ∈ AP according to the following re-

cursive grammar:

ϕ ::= π | ¬ϕ | ϕ ∨ϕ | ©ϕ | ϕ U ϕ,

where ¬ is negation, ∨ is disjunction, © is “next”, and U is

a strong “until.” Conjunction (∧), implication (⇒), equiva-

lence (⇔), “eventually” (�) and “always” (�) are derived

from these operators. Informally, the formula ©ϕ expresses

that ϕ is true in the next time step. Similarly, a sequence

of states satisfies �ϕ if ϕ is true in every position of the

sequence, and �ϕ if ϕ is true at some position of the se-

quence. Therefore, the formula � �ϕ is satisfied if ϕ is

true infinitely often. For a formal definition of the LTL se-

mantics, see Clarke et al (1999).

Task specifications in this work are expressed as LTL

formulas from the fragment known as generalized reactivity

of rank 1 (GR(1)), and have the form ϕ =ϕe ⇒ϕs with ϕp =
ϕ i

p ∧ϕ t
p ∧ϕ

g
p , where ϕ i

p,ϕ
t
p and ϕ

g
p for p ∈ {e,s} represent

the initial conditions, safeties and goals, respectively, for the

environment (e) and the robot (s). The restriction to GR(1) is

for computational reasons, as described in Kress-Gazit et al

(2009).

3.3.2 Types of commands

There are two primary types of properties allowed: safety

properties, which guarantee that “something bad never hap-

pens,” and liveness conditions, which state that “something

good (eventually) happens.” These correspond naturally to

LTL formulas with operators � and �. While the domain

of actions expressible in natural language is effectively infi-

nite, the set of actions that a robot can perform in practice

is limited. Examples of semantic behaviors currently imple-

mented include:

1. Actions that need to be completed once, for example go-

ing to rooms (Go to the hallway.)

2. Actions that need to be continuously performed, for ex-

ample patrolling multiple areas (Patrol the hallway and

office.)

3. Completing a long-running action that can be inter-

rupted, for example searching a room and reacting to any

items found (Search the hallway.)

4. Following (Follow me.)

5. Enabling/disabling actuators (Activate your camera.)

6. Carrying items (Carry meals from the kitchen to all pa-

tient rooms.)

Each command is mapped to a set of senses in VerbNet

so that a varied set of individual verbs may be used to sig-

nify each command. As a result, SLURP is only limited in

its vocabulary coverage by the contents of VerbNet—which

is easily expanded to support additional verbs if needed—

and by what actions can be transformed into LTL. While the

number of syntactic structures identifiable by the system is

unbounded, the set of frames that SLURP can recognize and

transform into logical form is constrained by the mapping of

frames to robot actions.

Each command may be freely combined with condi-

tional structures (If you hear an alarm...), negation (Don’t go

to the lounge), coordination (Go to the hallway and lounge),

and quantification (Go to all patient rooms). The use of

quantification requires that, in constructing the scenario, in-

formation about quantifiable sets is specified; for example,

the command “go to all patient rooms” can be unrolled to

apply to all rooms that have been tagged with the keyword

patient.

3.3.3 Generation

For each supported command, LTL is generated by macros

which create the appropriate assumptions, restrictions, and

goals. In the example given in Fig. 2, the resulting LTL for-

Provably correct reactive control from natural language 7

Go to the lounge.

Command: go; Location: lounge

Visit “lounge.”

� �(s.mem visit lounge)�(©s.mem visit lounge ⇔ (s.mem visit lounge∨©s.lounge))

Initially, “lounge” has not been visited.

¬s.mem visit lounge

Fig. 3: Generation tree for Go to the lounge

mulas define a memory of having visited the hallway, and

the goal of setting that memory.1

Formulas are generated by mapping each command to

combinations of macros. These macros include:

1. Goals: goal(x) generates � �(x)

2. Persistent memories: memory(x) generates

�(©s.mem x ⇔ (s.mem x∨©s.x)))
3. Complete at least once (ALO): alo(x) generates

(goal(s.mem x)∧ memory(x))

Among the simplest commands to generate are those that

are directly mapped to goals; i.e., ones that are performed

infinitely often. For example, patrolling a room maps to

goal(room); if multiple rooms are to be patrolled, execution

will satisfy each goal in turn, moving the robot from room

to room indefinitely.

Commands for which there is a distinct notion of

completion—in linguistic terminology, commands which

contain a verb of perfective aspect—typically generate

persistent memories. For example, Go to the hallway is

interpreted as visit—go to at least once—the hallway:

alo(hallway). In this case, the robot’s goal is to have a

“memory” of having been in the hallway; this memory

proposition is set by entering the hallway, after which the

memory persists indefinitely and the goal is trivially satis-

fied from then on.

A challenge in creating a correct mapping is that the

negation of a command does not necessarily imply its logi-

cal negation. For example, Don’t go to the hallway is most

concisely expressed as the safety �¬s.hallway (literally, Al-

ways, do not be in the hallway), as opposed to specifying

that the robot should infinitely often achieve a goal of not

having a memory of being in the hallway. In this case, the

negation of a goal yields a safety. In general, negation of a

sentence in natural language does not always transparently

propagate to a negation of the logical statement that the pos-

itive form of the sentence would have generated.

However, for commands that create safeties, negation is

much simpler. For example, If you see an intruder, activate

1 This arguably unintuitive translation is due to specifications in

LTLMoP being restricted to the GR(1) fragment of LTL.

your camera becomes �(©e.intruder ⇒©s.camera), and

the negated form If you see an intruder, do not activate your

camera becomes �(©e.intruder ⇒ ©¬s.camera). Nega-

tive commands are always expressed as safeties, while the

positive version of the same command may not be, as in

the previous example of Go to the hallway. More complex

examples of generation involving combinations of these

macros are given in Sect. 5.

Support for new commands can be added by first verify-

ing the presence of the verb and the intended argument struc-

ture in VerbNet, adding the verb and information about the

arguments it takes if needed by editing an XML database.

For example, a bomb-defusing robot will need to under-

stand the verb defuse, which is not contained in VerbNet.

Many new commands to be added can easily be expressed

using the macros for goal or alo or mapping directly to an

actuator on the robot. These commands can trivially be sup-

ported by the system by marking that sense as a simple ac-

tion in the LTL generation subsystem and giving the macro

it is mapped to. For example, for the user study reported in

Sect. 3.4, we added a defuse sense to VerbNet and mapped

it to a simulated actuator of the same name.

Complex high-level commands like the carry example

given in Sect. 5 require the user to explicitly specify the LTL

to be generated by the command. For example, to represent

the notion of carrying an object, safeties must be generated

to reflect that the robot should pick up in the source location,

drop off in the destination location, and can only pick up

when it is not holding something and only drop when it is.

3.3.4 Generation tree

A novel aspect of the LTL generation process is that the

transformations undertaken are automatically recorded in a

generation tree to allow for a more interpretable analysis of

the specification generated. As shown in Fig. 3, the gener-

ation tree allows for a hierarchical explanation of how LTL

formulas are generated from natural language. There is a tree

corresponding to each natural language statement, rooted at

the natural language statement and with LTL formulas as

leaves. The intermediate nodes are automatically created by

8 Constantine Lignos et al.

the LTL generation process to explain how the statement

was subdivided and why each LTL formula was generated.

In addition to allowing the user to inspect the generated

LTL, the generation tree enables mapping between LTL for-

mulas and natural language for specification analysis. As is

shown in the following sections, this allows for natural lan-

guage explanations of problems detected in the specifica-

tion. During execution of the generated controller (either in

simulation or with a real robot), it also allows the system

to answer the question What are you doing? by respond-

ing with language from the generation tree. For example, in

Fig. 3, if the current goal being pursued during execution is

� �s.mem visit lounge, the system responds: I’m currently

trying to ‘visit lounge’. In cases where the original instruc-

tion involves quantification, identification of the sub-goal is

particularly useful. If the user enters Go to all patient rooms,

the generation tree will contain a sub-tree for each patient

room, allowing for clear identification of which room is rel-

evant to any problems with the specification.

3.4 Evaluation

3.4.1 Design

To evaluate the performance of this system when used by

inexperienced users, we embedded SLURP as a robot agent

in a first-person-perspective 3D video game, simulating a

search and rescue scenario. The participant played the role

of an operator instructing a robot through natural language

commands. A screenshot of the game during an interaction

with the robot is given in Fig. 4.

To succeed in the scenario, the operator was required

to work with the robot to search fourteen rooms on a floor,

using the robot to defuse any bombs discovered while the

operator rescued hostages. To increase the difficulty of the

task and force greater reliance on the robot for searching, the

operator needed to neutralize hostage takers who are trying

to escape from the floor while it is searched. The scenario

was considered a failure if the operator ever entered a room

with an active (not yet defused) bomb or if too many of the

hostage takers escaped. To succeed, the participant needed

to command the robot to perform two tasks: navigate all

rooms, and defuse all bombs found.

The user study was designed to elicit natural language

commands from users without giving any explicit sugges-

tions regarding what they should say to the robot and what

commands it understood. After providing informed consent,

participants were instructed that the simulated robot (“Ju-

nior”) was capable of understanding natural commands and

advised to communicate with it naturally (“Talk to Junior

like you might talk to someone who needs instructions from

you”), giving direct commands but not doing anything un-

natural such as removing prepositions and articles or using

“Tarzan-speak.” The experimenter was permitted to answer

questions about the instructions, game controls, and inter-

face during the training scenarios, but not during the testing

scenario. The experimenter did not give any suggestions re-

garding what the user should say to the robot or intervene in

the experiment other than restarting the experiment in case

of software failure.

Users participated in four training scenarios of increas-

ing difficulty before attempting the full scenario described

above. The purpose of the training scenarios was to in-

troduce them to the game dynamics as well as give them

simple tasks to perform with natural language before try-

ing to complete more complex ones. The training scenarios

used smaller maps and gradually introduced the actions that

would need to be performed in the main scenario: neutraliz-

ing hostage takers, and commanding the robot to move be-

tween rooms and defuse bombs. The layout used in the final

scenario contained fourteen rooms connected by hallways

in a ring configuration, a layout not used in any of the train-

ing exercises that made neutralizing the escaping hostage

takers significantly more difficult. The locations of bombs,

hostages, and hostage takers were randomly generated for

each user and could be discovered by navigating to the room

they were located in.

3.4.2 Results

All fourteen participants successfully completed the training

and testing scenarios. They were able to successfully com-

mand the robot navigate to and defuse all bombs present in

the map.

We analyzed transcripts of interactions between users

and the simulated robot across the four training scenarios

and the final testing scenario. The transcripts consisted of

628 commands given to the simulated robot. 69 commands

(11.0 %) were excluded from analysis for the following rea-

sons: typographical errors, humorous commands unrelated

to the scenario (e.g., ordering the robot to dance), non-

commands (e.g., telling the robot “good job”), commands

the robot cannot perform in the scenario (e.g., instructing it

to move to locations not on the map), unnecessary repeti-

tion of previously not-understood commands, or if software

limitations of the simulation, not the language understand-

ing system, caused the command to not be processed. The

remaining 559 commands were automatically labeled for

whether they were successfully understood by the system

based on its response.

526 commands (94.1 %) were understood and resulted in

the successful synthesis and execution of an automaton (Ta-

ble 1). The 33 commands (5.9 %) that were not understood

were manually annotated and investigated to determine the

cause of the failure (Table 2). The largest single cause of er-

rors was the tagger failing to identify imperatives as verbs

Provably correct reactive control from natural language 9

Fig. 4: Screenshot of simulation environment

Table 1: User study performance

Overall Performance

Result Count % of commands

Understood 526 94.1

Error 33 5.9

Table 2: User study error analysis

Causes of Errors

Error Type Count % of commands Example

Tagging 10 1.8 Rescue tagged as a noun in Rescue the hostages

Syntactic parsing 1 0.2 Null element not restored in Go to north rooms, then go to east rooms

Semantic parsing 2 0.4 Around not recognized as an argument in Turn around

Verb not understood 9 1.6 VerbNet sense for walk not mapped to movement action

Use of shorthand 7 1.3 One-word commands such as defuse and bedroom

Other 4 0.7 It not understood in If you see a bomb, defuse it

because they are rarely present in the training data for stan-

dard natural language processing components. For example,

both Rescue the hostage and Free the hostage were not rec-

ognized as imperatives due to tagging errors.2

The verbs the system failed to recognize were come,

destroy, find, get, and walk. The failure to recognize come

(come here) and get (get up) was caused by VerbNet not

including the specific imperative uses of these verbs. The

system was able to semantically parse sentences containing

2 Even though it was the role of the operator, not the robot, to rescue

hostages, we label these examples as tagging errors because a com-

mand was given to the system and it was not properly understood. The

desired response in this situation is to understand the requested action

but report that the robot cannot perform it.

destroy and walk, but the VerbNet senses for these verbs had

not been mapped to the defuse and go actions that users ex-

pected. This can be addressed by simply adding these map-

pings. In these cases, the user was informed that the system

recognized the verb in their command but did not know what

to do with it (Sorry, but I don’t know how to walk), and the

user discovered an alternate way to make their request (go,

move), that was understood.

All but one instance of the errors due to use of short-

hand consisted of saying only defuse to instruct the system

to defuse bombs. Successful commands for defusing bombs

produced by users included Defuse the bomb, Defuse bomb,

and compound commands such as Defuse the bomb and

go to the lab. Two of the errors classified as “Other” were

10 Constantine Lignos et al.

caused by the inability of the semantic parsing system to re-

solve pronouns within a command: If there is a bomb, defuse

it.

3.4.3 Discussion

The evaluation presented here demonstrates that inexperi-

enced users can successfully give commands understood by

SLURP without any specific knowledge of what the sys-

tem is capable of understanding or the underlying lexical

database or parsing system. While users did produce com-

mands the system did not understand, they were also able to

identify alternative forms that worked and complete the sce-

narios. This was aided by the rich feedback the system pro-

vides. For example, when a user stated If there is a bomb,

defuse it, the system’s response was Sorry, I don’t under-

stand what you mean by ’it’. This response allows the user

to identify the issue with their command and revise it. Sys-

tems that rely on a formal grammar for parsing (e.g., Dzif-

cak et al, 2009) report a parsing failure in this instance, not

giving the user any information regarding what the issue is.

The majority of errors encountered were due to a com-

mon problem in natural language processing: differences in

the type of content in the data that the tagger and parser

were trained to perform well on and the actual data used in

testing. The tagger and parser used are primarily trained on

newswire, which contains a very small number of impera-

tives. This is in contrast to the data set evaluated here, where

every sentence is an imperative. The data collected in this

user study can be used to allow training on more relevant

in-domain data, allowing for a reduction in the number of

tagger and parser errors.

With the usability of the natural language understanding

system validated, in the following sections we return to the

process of generating automata from LTL specifications and

providing feedback based on the generation tree.

4 Identifying minimal unsynthesizable cores in LTL

specifications

This section discusses the construction of provably-correct

controllers from LTL specifications using the Linear Tem-

poral Logic MissiOn Planning (LTLMoP) toolkit, and the

analysis of specifications for which no such controllers ex-

ist.

4.1 Controller synthesis and execution

Given an LTL formula representing a task specification and

a description of the workspace topology, the efficient syn-

thesis algorithm introduced by Piterman et al (2006) is used

to construct an implementing automaton (if one exists). In

combination with lower-level continuous controllers, this

automaton is then used to form a hybrid controller that can

be deployed on physical robots or in simulation. To ob-

tain this hybrid controller, a transition between two discrete

states is achieved by the activation of one or more low-level

continuous controllers (Kress-Gazit et al, 2009; Finucane

et al, 2010).

4.2 Specification analysis

If an implementing automaton exists for a given specifica-

tion, it is called synthesizable. Otherwise, it is unsynthesiz-

able, and the algorithm presented in Raman and Kress-Gazit

(2013a) is used to automatically analyze the LTL formula

and identify causes of failure. The analysis also presents an

interactive game for exploring possible causes of unsynthe-

sizability, in which the user attempts to fulfill the robot’s

task specification against an adversarial environment, pro-

vided by the tool. However, the granularity of the feedback

provided by this algorithm is relatively coarse. For exam-

ple, it will identify a contradiction within the system safety

conditions, but cannot pinpoint the exact safeties that are

contradicting.

Recent work by Raman and Kress-Gazit (2014) im-

proved upon this analysis to provide minimal explanations

of failure. The system presented in this paper applies these

techniques to produce fine-grained natural language feed-

back on the cause of failure, by tracing the problem back

to a minimal explanation. The highlights of the relevant ap-

proaches are reviewed here to provide context for their use

within the presented system; further details and formal algo-

rithms can be found in the aforementioned papers.

4.3 Types of unsynthesizability

Unsynthesizable specifications are either unsatisfiable, in

which case the robot cannot succeed no matter what hap-

pens in the environment (e.g., if the task requires patrolling

a disconnected workspace), or unrealizable, in which case

there exists at least one environment that can prevent the de-

sired behavior (e.g., if in the above task, the environment

can disconnect an otherwise connected workspace, such as

by closing a door). More examples illustrating the differ-

ences between the two cases can be found in Raman and

Kress-Gazit 2013a.

In both cases, failure can occur in one of two ways: ei-

ther the robot ends up in a state from which it has no valid

moves (termed deadlock), or the robot is always able to

make a move but one of its goals is unreachable without vi-

olating the specified safety requirements (termed livelock).

In the context of unsatisfiability, an example of deadlock is

when the system safety conditions contain a contradiction

Provably correct reactive control from natural language 11

within themselves. Similarly, unrealizable deadlock occurs

when the environment has at least one strategy for forcing

the system into a deadlocked state.

Previous work produced explanations of unsynthesiz-

ability in terms of combinations of the specification com-

ponents (i.e., initial, safety and liveness conditions) (Raman

and Kress-Gazit, 2011, 2013a). However the true conflict of-

ten lies in small subformulas of these components. Consider

Specification 1 An example unsatisfiable specification

1. Don’t go to the kitchen (part of ϕ t
s)

2. Visit the kitchen (part of ϕ
g
s)

3. Always activate your camera (part of ϕ t
s)

Specification 1. It is clear that the safety requirement in (1)

conflicts with the goal in (2), since in order to visit the

kitchen one must in fact go there. However, the safety re-

quirement in (3) is irrelevant, and should be excluded from

any explanation of why this specification is unsatisfiable.

Note that this is a case of livelock: the robot can follow its

safety conditions indefinitely by staying out of the kitchen,

but is prevented from ever reaching its goal of visiting the

kitchen.

The above example motivates the identification of small,

minimal, “core” explanations of the unsynthesizability. Ra-

man and Kress-Gazit (2014) draw inspiration from the

Boolean satisfiability (SAT) literature to define an unsynthe-

sizable core of a GR(1) LTL formula as follows. Let ϕ1 � ϕ2

(ϕ1 ≺ ϕ2) denote that ϕ1 is a subformula (strict subformula,

respectively) of ϕ2.

Definition 1 Given a specification ϕ = ϕe ⇒ ϕs, a mini-

mal unsynthesizable core is a subformula ϕ∗
s � ϕs such that

ϕe ⇒ ϕ∗
s is unsynthesizable, and for all ϕ ′

s ≺ ϕ∗
s , ϕe ⇒ ϕ ′

s is

synthesizable.

4.4 Detecting unsynthesizable cores

4.4.1 Unsatisfiable cores via SAT solving

Raman and Kress-Gazit (2014) analyze unsatisfiable com-

ponents of the robot specification by leveraging tools for

finding minimal unsatisfiable subformulas of propositional

SAT instances. Informally, the method creates a proposi-

tional SAT instance corresponding to truth assignments to

all variables in X ∪Y over the first d time steps of an exe-

cution satisfying ϕ i
s ∧ϕ t

s , incrementing d to encode increas-

ingly longer sequences of truth assignments. This resulting

SAT instance at each step is tested for satisfiability using

an off-the-shelf SAT solver. If an unroll depth d is reached

such that the resulting SAT instance is unsatisfiable, there

is no valid sequence of actions that follows the safety to d

time steps starting from the initial condition, thus signaling

a deadlock situation. In the case of livelock, a fixed depth d

is used, and an additional clause added to represent the goal

being required to hold at the last time step. .

If the resulting SAT instance is unsatisfiable, the SAT

solver yields a minimal unsatisfiable subformula, which is

then mapped back to the originating portions of the safety

and initial formulas. The guilty portions of the LTL speci-

fications are in turn mapped back to the originating natural

language instructions, as described in Section 5.

4.4.2 Unrealizable cores via SAT solving

If the specification is unrealizable rather than unsatisfiable,

the above techniques do not apply directly to identify a core.

Note that in the case of unsatisfiability, the SAT instances

created at each unroll depth correspond to truth assignments

to all atomic propositions in AP, including those controlled

by the robot (i.e. Y) as well as those controlled by the envi-

ronment (i.e. X). Doing so allows the environment variables

to be set arbitrarily when searching for a truth assignment

that fulfills the robot specification. Since an unsatisfiable

specification cannot be fulfilled in any environment, allow-

ing the SAT solver to “set” the environment when searching

for a solution does not affect the outcome of the satisfiability

test, or its implications for the original LTL formula.

On the other hand, if the specification is satisfiable

but unrealizable, there exist some sequences of truth as-

signments to the input variables that allow the system re-

quirements to be met. Therefore, to produce an unsatisfi-

able Boolean formula, all sequences of truth assignments to

the input variables that satisfy the environment assumptions

must be considered for each unroll depth. In the worst case,

the number of depth-d Boolean formulas generated before

an unsatisfiable formula is obtained grows exponentially in

d.

Considering all possible environment input sequences

is not feasible; fortunately, the environment counterstrategy

produced by the specification analysis in Raman and Kress-

Gazit (2013a) in the case of unrealizability provides us with

inputs that will cause the robot to fail to achieve its specified

task. For deadlock, the blocking states in the environment

counterstrategy provide inputs to The reader is referred to

Raman and Kress-Gazit 2013b and Raman and Kress-Gazit

2014 for the details of how the environment counterstrategy

can be used in several cases to constrain the environment

variables and determine an unrealizable core using a SAT-

based approach.

4.4.3 Unsynthesizable cores via iterated realizability tests

There are some cases in which the above SAT-based analy-

sis does not apply, as described in Raman and Kress-Gazit

12 Constantine Lignos et al.

2014. In addition, in the case of livelock, determining the

shortest unroll depth required to produce a meaningful core

is challenging. In these cases alternative, more computation-

ally expensive techniques can be used to find a minimal

core. The iterated realizability testing algorithm presented

by Raman and Kress-Gazit (2014) provably computes an

unrealizable core for specifications of the form considered

in this work.Informally, the algorithm iterates through the

conjuncts in the robot safety formula, removing them one

at a time and checking realizability of the identified goal

(under the original environment assumptions). If removing

a conjunct makes the resulting formula synthesizable, that

conjunct is retained as part of the minimal unsynthesizable

core; otherwise it is left out and the procedure repeats with

the next conjunct. When all conjuncts in the robot safety

have been tested in this manner, the remaining specification

is an unsynthesizable core. The computational tradeoffs be-

tween the approaches in Sections 4.4.1, 4.4.2 and 4.4.3 are

described in more detail by Raman and Kress-Gazit (2014).

The specification analysis reviewed in this section re-

turns, in the case of deadlock, a minimal subset of the sys-

tem safety requirements that causes failure; for livelock, a

single goal is returned in addition to a minimal subset of

safeties. Given this subset of formulas that cause unsynthe-

sizability, it remains to map this set back onto the original

specification. For example, in the case of the structured En-

glish specifications supported by the LTLMoP toolkit (Fin-

ucane et al, 2010), this is done by highlighting the sentences

that produced the corresponding LTL (Raman and Kress-

Gazit, 2011). The generation of natural language feedback

from the identified portions of the LTL formula in SLURP

is discussed in Section 5.

5 Providing users with specification feedback

This section describes two modes of communicating the

cause of unsynthesizability deployed in the presented sys-

tem and gives examples of how these issues are communi-

cated in an example scenario involving a robot acting as an

assistant in a small hospital.

5.1 Explaining unsatisfiable tasks

Giving users detailed feedback regarding why a task is un-

achievable is essential to helping them correct it. While bet-

ter than simply reporting failure, returning the user a set of

LTL formulas responsible for unsatisfiability is not enough

to help them correct the natural language specification that

generated it. To provide actionable feedback to the user,

SLURP uses a combination of the user’s own natural lan-

guage along with structured language created during the

LTL formula generation process to explain problems with

the specified task.

Consider the example given above where the combina-

tion of the statements “Don’t go to the kitchen” and “Visit

the kitchen” results in an unsatisfiable specification. The

minimal unsatisfiable core of the specification is as follows:

�(¬s.kitchen)

�(©s.mem visit kitchen ⇔

(s.mem visit kitchen∨©s.kitchen))

� �(s.mem visit kitchen)

To explain the conflict, the system lists the goal that cannot

be satisfied and natural language corresponding to the safety

formulas in the minimal core. The response is:

The problematic goal comes from the statement ‘Go

to the kitchen.’. The system cannot achieve the sub-

goal “Visit ‘kitchen’.”.

The statements that cause the problem are:

– “Don’t go to the kitchen.” because of item(s):

“Do not go to ‘kitchen’.”.

– ‘Go to the kitchen.’ because of item(s): “Visit

‘kitchen’.”.

Additional examples of feedback are given in Section 5.4.1.

5.2 Interactive exploration of unrealizable tasks

Succinctly summarizing the cause of an unrealizable speci-

fication is challenging, sometimes even for a human, so our

system uses an interactive game to demonstrate environment

behavior that will cause the robot to fail. The game lets the

user attempt to play as a robot against an adversarial envi-

ronment, and in the process gain insight into the nature of

the problem.

At each discrete time step, the user is presented with the

current goal to pursue and the current state of the environ-

ment. The user is then able to change the location of the

robot and the states of its actuators in response. By using

the core-finding analysis presented in this work, a specific

explanation is now given about what part of the original

specification is in conflict with any invalid moves. This is

done by finding the unsatisfiable core of a single-step satis-

fiability problem involving the user’s current state, the de-

sired next state, and all of the robot’s specified safety con-

ditions. An example of this interactive game in use is given

in Sect. 5.4.2, and a screen capture of the game is shown in

Fig. 7.

Provably correct reactive control from natural language 13

lounge
hall_W

ha
ll_
C

h
a
ll
_
Nr4 r3

r2r1

r6 r5

kitchenc

Fig. 5: Map of hospital workspace (“c” is the closet)

5.3 Explanation of current behavior

When executing a complex specification, it may not always

be apparent to the user why the robot is performing a par-

ticular action. The structure of the generation tree allows for

explaining the robot’s current goal the same way that it sup-

ports the identification of a goal that causes a problem in

a specification. During synthesis, each state in the control

automaton is marked with the index of the goal that is cur-

rently being pursued by the strategy (Piterman et al, 2006).

The generation tree allows for reverse-mapping of each of

these goals to the natural language input that generated it.

Specification 2 Example for behavior explanation

1. Go to the kitchen.

2. Start in the hallway.

3. Do not go to the dining room.

For example, consider Specification 2. Assume that the

dining room is the most direct path to the kitchen, but there

is another path from the hallway to the kitchen by pass-

ing through the study, a more circuitous route. While the

cause of taking a longer route is clear in this small specifi-

cation, in a more complex specification being able to ask the

robot why it is doing the current action can help maintain

the user’s trust and understanding of the robot’s plan. When

asked what it is doing, in this example the system responds:

“I’m currently trying to ‘visit kitchen’.” The language the

robot reflects represents an intermediate stage of the gener-

ation tree generated from the user’s input; it is not simply

echoing the user’s input but rather making its own under-

standing of the commands apparent.

5.4 Hospital Example

The remainder of this section presents three examples that

demonstrate various features of this framework. All of the

scenarios concern a robot acting as an assistant in a small

hospital (a map of the workspace is shown in Fig. 5). The

robot is able to detect the location of the user, record video

with its camera, and pick up and deliver objects.

5.4.1 Unsatisfiability

Specification 3 Example of unsatisfiability (deadlock)

1. Don’t activate your camera in any restricted area.

2. Avoid the lounge.

3. Start in hall c.

4. Always activate your camera.

Unsatisfiable deadlock can arise when the robot safety

constraints are in direct conflict with one another. In Spec-

ification 3, the robot is given constraints to respect pri-

vacy in Lines 1 and 2 (“restricted areas” are defined as all

rooms other than the lounge, closet, and kitchen), but is also

asked to do something in direct contradiction with these con-

straints in Lines 3 and 4.

Even though the quantifier in Line 1 generates a large

number of safety restrictions (one for each “restricted area”),

the core-finding component correctly narrows down the

problem and produces the following output:

The statements that cause the problem are:

– “Always activate your camera.” because of

item(s): “Always activate ‘camera’.”.

– “Avoid the lounge.” because of item(s): “Do not

go to ‘lounge’.”, “The robot does not begin in

‘lounge’.”.

– “Don’t activate your camera in any restricted

area.” because of item(s): “Never activate ‘cam-

era’ in ‘hall c’.”, “Never activate ‘camera’ in

‘hall n’.”, “Never activate ‘camera’ in ‘hall w’.”.

– “Start in hall c.” because of item(s): “The robot

begins in ‘hall c’.”.

The obvious conflict identified by the system is that

the robot must activate its camera when starting execution

but it cannot immediately reach a non-restricted area from

hall c. Avoid the lounge is included in the core because oth-

erwise the robot could simultaneously activate the camera

and move from hall c into the lounge, which is not a re-

stricted area. Similarly, the inclusion of the starting position

of hall c is necessary because if the robot were to start in the

closet, this specification would in fact be achievable by just

staying in the closet and turning on the camera.

14 Constantine Lignos et al.

Fig. 6: Screenshot of feedback for Specification 4.

Specification 4 Example of unsatisfiability (livelock)

1. Start in the closet.

2. Carry meals from the kitchen to all patient rooms.

3. Don’t go into any public rooms.

Unsatisfiable livelock is exhibited by the meal deliv-

ery mission shown in Specification 4, in which the robot is

tasked with delivering meals to patients (in r1 to r6) while

avoiding the “public rooms” (defined as hall c and lounge).

Because hall c is considered a public room, a semantic sub-

set of the safety requirement in Line 3 prevents the robot

from being able to deliver meals to all of the patients as re-

quested.

In addition to sentential feedback such as that shown for

the previous example, the offending specification fragments

are highlighted for the user in the context of the semantic

LTL generation tree (see Fig. 6). Note that analysis always

addresses only a single goal at a time, in this case choosing

to highlight the reason that delivery to r1 is impossible.

5.4.2 Unrealizability

As introduced in Sect. 5.2, unrealizable specifications can be

analyzed using an interactive visualization tool (see Fig. 7).

For example, in the case of Specification 5, we discover

that the robot cannot achieve its goal of following the user

(Line 1) if the user enters the kitchen (which the robot has

been banned from entering in Line 2).

This conflict is presented to the user as follows: the en-

vironment sets its state to represent the target’s being in

the kitchen, and then, when the user attempts to enter the

kitchen, the tool explains that this move is in conflict with

Line 2.

Specification 5 Example of unrealizability

1. Follow me.

2. Avoid the kitchen.

By simply removing the restriction in Line 2 (or, alterna-

tively, adding an assumption that the target will never enter

Provably correct reactive control from natural language 15

}Game history

kitchen

Explanation of invalid move

Current goal

Environment state

Fig. 7: Screenshot of interactive visualization tool for Specification 5. The user is prevented from following the target into

the kitchen in the next step (denoted by the blacked out region) due to the portion of the specification displayed.

the kitchen) the specification can be made realizable. Future

work will automate the suggestion of such assumptions that

would make the specification realizable.

5.5 Reporting current behavior

Fig. 8 shows examples of the robot responding to queries re-

garding its current action. The specification being executed

is only the command Follow me, a modified version of Spec-

ification 5 where the robot may follow the user without re-

striction. The robot is asked what it is doing each time the

user moves. As the command is expanded into a separate fol-

lowing goal for each room, the robot is able to report what

it is doing in more specific language than the original speci-

fication.

Note that this work identifies logical causes of unsatisfi-

ability and unrealizability in the specification, and does not

explain unsynthesizability resulting from the dynamics of

the vehicle. Extending the described techniques to identify

causes of unsynthesizability that relate to the availability of

continuous controllers has been identified as a potential di-

rection of future research.

6 Conclusion

This paper presents an integrated system that allows non-

expert users to control robots performing high-level, reactive

tasks using a natural language interface. The depth of inte-

gration between the natural language components and the

synthesis, unsynthesizable core-finding, and execution mod-

ules allows for natural language specifications, feedback on

specification errors, and explanation of current goals during

execution.

The described user study demonstrates that the approach

taken for natural language understanding, combining stan-

dard parsing and tagging modules with a deterministic se-

mantic parsing system, is capable of understanding non-

expert user commands with high accuracy. As shown in the

error analysis, the greatest improvements to the performance

of the system would come from training the tagger on more

data containing imperatives and expanding the vocabulary

coverage of the system to cover more of the verbs used by

users. The design of the system makes adding support for

additional verbs straightforward as there is no grammar to

update, only a vocabulary list to amend.

While the use of domain-general language processing

tools allows for an extensible system, some constructs com-

mon in the robotics domain may not be understood cor-

rectly. For example, a user might want to use the phrase turn

on your camera instead of activate your camera as in the

examples in this paper. Unfortunately, particles such as on

are often assigned incorrect part-of-speech tags, resulting in

failure to understand commands such as turn on and turn

off. The collection of a corpus of robot control interactions

for use in training broad-domain language models for robot

16 Constantine Lignos et al.

Fig. 8: Screenshot of robot response to query: What are you doing?

control would result in higher performance from the natural

language processing and semantic extraction components.

The example of a robot in a hospital setting shows that

even in simple specifications, users can accidentally create

complex synthesizability issues. However, these issues can

be debugged efficiently using a minimal core described in

natural language. The unsynthesizability feedback and ex-

planation of current goals depend on the novel generation

tree data structure introduced in this work, which takes a

normally opaque LTL generation process and makes it visi-

ble to the user.

There are significant challenges in designing a robust

mapping from natural language semantics to LTL formu-

las. While simple motion commands and actuations can be

straightforwardly mapped into logical form, more complex

actions like the delivery of objects can be more difficult to

translate. However, the benefit of the proposed system is that

the effort is invested just once in the design of the mapping,

not repeatedly for each specification as it would be for users

writing specifications in LTL or structured language. The

system presented is easily applied to scenarios where the

specification is largely centered around motion and simple

actuations, but can be extended by users proficient in LTL

to more complex scenarios by adding support for additional

behaviors. Future work might explore the automatic learn-

ing of mappings between semantic structures and LTL rep-

resentations. Learning a mapping that allows for complex

specifications to be reliably synthesized would require the

system to learn many of the subtleties of LTL specification

authoring, such as maintaining consistent tense across the

mapping for each type of action.

A number of issues in the LTL generation process merit

further consideration. While this paper discusses some of

the challenges regarding the application of negation, fur-

ther work should address more formal paradigms for map-

ping actions to LTL formulas. The production of an on-

tology of common actions and the type of formulas that

they produce—for example, safety conditions, adding goals,

constraining the initial state—in their negated and positive

forms would be a step toward a more general solution to

the problem of mapping natural language to LTL. Previous

work has relied heavily on grammar formalisms to ease se-

mantic extraction. While those formalisms provide a struc-

ture for easy extraction of semantic roles, they are not robust

to natural input and do not address the more urgent problem

of robust logical representations over large sets of possible

actions which remain appropriately synthesizable in compli-

cated specifications.

The examples presented here have focused on the execu-

tion of a single specification. However it is possible that over

the course of a mission requirements may change and new

commands may be given. While the underlying execution

Provably correct reactive control from natural language 17

environment supports resynthesis and transitioning execu-

tion to a new automaton during execution, this introduces a

number of challenges in the communication between system

and user. Future work should explore means for maintaining

the level of natural language integration presented in this

paper across more complex execution paradigms, handling

events such as changes in the workspace topology, as would

occur when operating in environments that are only partially

known.

References

Berant J, Liang P (2014) Semantic parsing via paraphrasing.

In: Proceedings of the 52nd Annual Meeting of the Asso-

ciation for Computational Linguistics (Volume 1: Long

Papers), pp 1415–1425

Bhatia A, Kavraki LE, Vardi MY (2010) Sampling-based

motion planning with temporal goals. In: IEEE Interna-

tional Conference on Robotics and Automation (ICRA),

IEEE, pp 2689–2696

Biere A (2008) PicoSAT essentials. Journal on Satisfiability,

Boolean Modeling and Computation (JSAT) 4:75–97

Bikel DM (2004) Intricacies of Collins’ parsing model.

Computational Linguistics 30(4):479–511

Bobadilla L, Sanchez O, Czarnowski J, Gossman K, LaValle

S (2011) Controlling wild bodies using linear temporal

logic. In: Robotics: Science and Systems (RSS)

Brooks D, Lignos C, Finucane C, Medvedev M, Perera I,

Raman V, Kress-Gazit H, Marcus M, Yanco H (2012)

Make it so: Continuous, flexible natural language inter-

action with an autonomous robot. In: Proceedings of the

Grounding Language for Physical Systems Workshop at

the Twenty-Sixth AAAI Conference on Artificial Intelli-

gence

Chen DL, Mooney RJ (2011) Learning to interpret natural

language navigation instructions from observations. In:

Proceedings of the Twenty-Fifth AAAI Conference on

Artifical Intelligence, pp 859–865

Cizelj I, Belta C (2013) Negotiating the probabilistic sat-

isfaction of temporal logic motion specifications. In:

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp 4320–4325

Clarke EM, Grumberg O, Peled DA (1999) Model Check-

ing. MIT Press

Dzifcak J, Scheutz M, Baral C, Schermerhorn P (2009)

What to do and how to do it: Translating natural lan-

guage directives into temporal and dynamic logic repre-

sentation for goal management and action execution. In:

IEEE International Conference on Robotics and Automa-

tion (ICRA), pp 4163–4168

Fainekos GE (2011) Revising temporal logic specifications

for motion planning. In: IEEE International Conference

on Robotics and Automation (ICRA), pp 40–45

Finucane C, Jing G, Kress-Gazit H (2010) LTLMoP: Ex-

perimenting with language, temporal logic and robot con-

trol. In: IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp 1988–1993

Gabbard R, Marcus M, Kulick S (2006) Fully parsing the

Penn Treebank. In: Human Language Technology Con-

ference of the North American Chapter of the Association

of Computational Linguistics (NAACL HLT), pp 184–

191

Karaman, Frazzoli (2009) Sampling-based motion planning

with deterministic µ-calculus specifications. In: IEEE

Conference on Decision and Control (CDC), pp 2222–

2229

Kim K, Fainekos GE, Sankaranarayanan S (2012) On the

revision problem of specification automata. In: IEEE

International Conference on Robotics and Automation

(ICRA), pp 5171–5176

Kloetzer M, Belta C (2008) A fully automated frame-

work for control of linear systems from temporal logic

specifications. IEEE Transactions on Automatic Control

53(1):287–297

Kress-Gazit H, Fainekos GE, Pappas GJ (2008) Trans-

lating structured english to robot controllers. Advanced

Robotics 22(12):1343–1359

Kress-Gazit H, Fainekos GE, Pappas GJ (2009) Temporal-

logic-based reactive mission and motion planning. IEEE

Transactions on Robotics 25(6):1370–1381

Matuszek C, Fox D, Koscher K (2010) Following directions

using statistical machine translation. In: Human-Robot

Interaction (HRI), pp 251–258

Matuszek C, FitzGerald N, Zettlemoyer L, Bo L, Fox D

(2012) A joint model of language and perception for

grounded attribute learning. In: Proceedings of the 29th

International Conference on Machine Learning (ICML),

pp 1671–1678

Matuszek C, Herbst E, Zettlemoyer L, Fox D (2013) Learn-

ing to parse natural language commands to a robot control

system. Experimental Robotics 88:403–415

Piterman N, Pnueli A, Sa’ar Y (2006) Synthesis of reac-

tive(1) designs. In: Verification, Model Checking, and

Abstract Interpretation (VMCAI), pp 364–380

Poon H, Domingos P (2009) Unsupervised semantic pars-

ing. In: Proceedings of the 2009 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pp

1–10

Raman V, Kress-Gazit H (2011) Analyzing unsynthesizable

specifications for high-level robot behavior using LTL-

MoP. In: Computer Aided Verification (CAV), pp 663–

668

Raman V, Kress-Gazit H (2013a) Explaining impossi-

ble high-level robot behaviors. IEEE Transactions on

Robotics 29:94–104

18 Constantine Lignos et al.

Raman V, Kress-Gazit H (2013b) Towards minimal expla-

nations of unsynthesizability for high-level robot behav-

iors. In: IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp 757–762

Raman V, Kress-Gazit H (2014) Unsynthesizable cores—

Minimal explanations for unsynthesizable high-level

robot behaviors. arXiv:1409.1455

Raman V, Lignos C, Finucane C, Lee KCT, Marcus M,

Kress-Gazit H (2013) Sorry Dave, I’m afraid I can’t do

that: Explaining unachievable robot tasks using natural

language. In: Robotics: Science and Systems (RSS)

Schuler K (2005) Verbnet: A broad-coverage, comprehen-

sive verb lexicon. PhD thesis, University of Pennsylvania

Tellex S, Kollar T, Dickerson S, Walter MR, Banerjee AG,

Teller SJ, Roy N (2011) Understanding natural language

commands for robotic navigation and mobile manipula-

tion. In: Proceedings of the Twenty-Fifth AAAI Confer-

ence on Artifical Intelligence, pp 1507–1514

Toutanova K, Klein D, Manning CD, Singer Y (2003)

Feature-rich part-of-speech tagging with a cyclic depen-

dency network. In: Proceedings of the 2003 Conference

of the North American Chapter of the Association for

Computational Linguistics on Human Language Technol-

ogy (NAACL HLT) - Volume 1, pp 173–180

Wongpiromsarn T, Topcu U, Murray RM (2010) Receding

horizon control for temporal logic specifications. In: Hy-

brid Systems: Computation and Control (HSCC), pp 101–

110

