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Abstract

Many high�level parallel programming languages allow for
�ne�grained parallelism	 As in the popular work�time frame�
work for parallel algorithm design� programs written in such
languages can express the full parallelism in the program
without specifying the mapping of program tasks to proces�
sors	 A common concern in executing such programs is to
schedule tasks to processors dynamically so as to minimize
not only the execution time� but also the amount of space
�memory� needed	 Without careful scheduling� the paral�
lel execution on p processors can use a factor of p or larger
more space than a sequential implementation of the same
program	

This paper �rst identi�es a class of parallel schedules
that are provably e�cient in both time and space	 For any
computation with w units of work and critical path length
d� and for any sequential schedule that takes space s�� we
provide a parallel schedule that takes fewer than w�p � d
steps on p processors and requires less than s�� p � d space	
This matches the lower bound that we show� and signi��
cantly improves upon the best previous bound of s� �p space
for the common case where d� s�	

The paper then describes a scheduler for implementing
high�level languages with nested parallelism� that generates
schedules in this class	 During program execution� as the
structure of the computation is revealed� the scheduler keeps
track of the active tasks� allocates the tasks to the proces�
sors� and performs the necessary task synchronization	 The
scheduler is itself a parallel algorithm� and incurs at most a
constant factor overhead in time and space� even when the
scheduling granularity is individual units of work	 The algo�
rithm is the �rst e�cient solution to the scheduling problem
discussed here� even if space considerations are ignored	

Our results apply to a variety of memory allocation schemes
in programming languages �stack allocation� explicit heap
management� implicit heap management�	 Space allocation
is modeled as various games on weighted and group�weighted
directed acyclic graphs �dags�	 Our space bounds are ob�

�A preliminary version of this work appears in the Proceedings

of the �th Annual ACM Symposium on Parallel Algorithms and

Architectures �Santa Barbara� Calif��� ACM� New York� July �����
pp� �����

tained by proving properties relating parallel schedules and
parallel pebble games on arbitrary dags to their sequential
counterparts	 The scheduler algorithm relies on properties
we prove for planar and series�parallel dags	

� Introduction

Many high�level parallel programming languages encourage
the use of dynamic �ne�grained parallelism	 Such languages
include both data�parallel languages such as HPF �Hig���
and Nesl �BCH��
�� as well as control�parallel languages
such as ID �ANP���� Sisal �FCO��� or Proteus �MNP����	
The goal of these languages is to have the user expose the
full parallelism in an algorithm� which is often much more
than the number of processors that will be used� and have
the language implementation schedule the �ne�grained par�
allelism onto processors	 In these languages costs can be
measured abstractly in terms of the total number of oper�
ations executed by the program �the work� and the length
of the longest sequence of dependences between operations
�the critical path length or depth�	

For example� consider the following pseudo�code for mul�
tiplying two n� n matrices a and b�

In parallel for i from � to n
In parallel for j from � to n

r�i�j� � TreeSum�In parallel for k from � to n

a�i�k��b�k�j��

The program performs ��n�� work and has ��lg n� depth
since the nested loops are all parallel and the critical path
is limited by the summation� which can be organized as a
computation on a tree of lg n depth	
Such �ne�grained parallel languages present a high�level

programming model� and often lead to much shorter and
clearer code than languages which require the user to map
tasks to a �xed set of processors	 On the other hand� users
of these languages rely heavily on the implementation to
deliver good performance to their high�level codes	 Under�
standing the performance and memory use of the languages
often requires a detailed understanding of the implemen�
tation� and performance anomalies are common�heuristics
used in the implementation often fail for certain programs	
For instance� a natural implementation of the above pseudo�
code for matrix multiplication would require ��n�� space�
whereas a sequential computation requires only ��n�� space	
�See Figure �	� In order to obtain the same bounds for
a parallel implementation� heuristic techniques that limit
the amount of parallelism in the implementation have been



Figure �� The task structure of a computation for multiply�
ing two n�n matrices �for n � 
�� represented as a directed
acyclic graph	 Nodes represent unit�work tasks� and edges
�assumed to be directed downward in the �gure� represent
control and�or data �ow between the tasks	 A level�by�level
schedule of this graph requires ��n�� space for program vari�
ables� in order to hold the n� intermediate results required
at the widest level of the graph	 Moreover� such a schedule
may use ��n�� space for task bookkeeping� in order to keep
track of tasks ready to be scheduled	 Note that the standard
depth��rst sequential schedule of this graph uses only ��n��
space� counting the space for the input and output matrices	

used �BS��� Hal��� RS��� CA��� JP���� but these are not
guaranteed to be space e�cient in general	
There have been several recent works �BL��� BL�
� BS�
�

Bur�
� presenting scheduling algorithms with guaranteed
performance bounds� both in terms of time and space	 Blu�
mofe and Leiserson �BL��� BL�
� consider the class of fully�
strict computations� and show that a computation with w
work and d depth that requires s� space when executed using
a �standard� depth��rst sequential schedule can be imple�
mented in O�w�p� d� time and s� � p space on p processors	
Similar space bounds were obtained in �BS�
� Bur�
�� for a
di�erent class of parallel programs	

This paper presents new scheduling techniques that sig�
ni�cantly improve upon these previous results	 As with
much previous work we model computations as directed
acyclic graphs �dags�	 The nodes in the dag represent unit�
time tasks or actions� and the edges represent any ordering
dependences between the actions that must be respected by
the implementation	 As in �BL��� BL�
� BS�
� Bur�
�� we
focus primarily on programs for which the dag is indepen�
dent of the order in which tasks are scheduled�executed	�

The work of a computation corresponds to the number of
nodes in the dag� and the depth corresponds to the longest
path in the dag	

A scheduler is responsible for mapping each action to a
�time step� processor� pair such that each processor has at
most one task per time step and no dependence is violated	
An o�ine scheduler has knowledge of the entire dag prior
to the start of the parallel program	 An online scheduler� in
contrast� learns about the structure of the dag only as the
computation proceeds� and must make scheduling decisions
online based on only partial knowledge of the dag	 Matrix
multiplication is an example of a computation amenable to
o�ine scheduling� since its structure depends only on the
size of the input	 Quicksort� shown in Figure �� is an ex�

�Programs for which the dag does not depend on the scheduling
order are called deterministic programs in the scheduling literature	
the remaining programs are called nondeterministic� Deterministic
programs include programs that make use of randomization� as long
as the randomization does not a
ect the dag�

Figure �� The high�level dag structure of a quicksort com�
putation	 Each block represents a sub�dag that splits the
data into its lesser and greater elements	 The sub�dags on n
inputs can be implemented in size O�n� and depth O�lg n��
using pre�x sums� for example	 This leads to a dag with
expected work �size� O�n lg n� and expected depth O�lg� n�	
Since the split sizes are not know ahead of time� the struc�
ture of the dag unfolds dynamically� which requires an on�
line scheduler	

ample of a computation requiring online scheduling� as the
shape of its dag is revealed only as the computation pro�
ceeds	
We present results for both o�ine and online scheduling

that improve upon previous results �BL��� BL�
� BS�
� in
several ways	 First we prove space bounds of s� � O�p � d�
memory words while maintaining an O�w�p�d� time bound	
This matches a lower bound that we show� and signi�cantly
improves upon the previous results of s� �p space� when d�
s�	 Note that for most parallel computations� d� s�� since
typically the critical path length� d� is much smaller than the
size of the input� n� and� since s� includes the space for the
input� n � s�	 Second our results apply to a more �exible
model for memory allocations	 We allow for arbitrary heap
allocation�deallocation� both in the case that it is explicitly
handled by the programmer and when it is implicitly han�
dled by a garbage collector	 �The model in �BL��� BL�
�
allows for only stack allocation� the model in �BS�
� allows
for only explicit heap allocation�deallocation	� Third� un�
like �BL��� BL�
�� we allow for arbitrary out�degree when
spawning new tasks� rather than restricting to constant out�
degree	
On the other hand� the previous results have several im�

portant advantages over our results	 The scheduling algo�
rithms in �BL�
� BS�
� use distributed �work stealing�� in
contrast to our centralized� parallel approach	 This lowers
the scheduling overheads� since the overheads are incurred
only by the processors attempting to �nd tasks and the pro�
cessors contacted in order to �nd tasks	 As long as each
processor has tasks to execute� no overheads are incurred	
Moreover� Blumofe and Leiserson �BL�
� consider not just
time and space bounds but also communication bounds	
Their scheduler is shown to provide good bounds on the
total amount of interprocessor communication for the task
model they consider	
For o�ine scheduling� our results apply to any dag and

are relative to any sequential schedule �i�e�� given any se�
quential schedule on a dag with w work and d depth� we can
construct a p�processor schedule of fewer than w�p�d steps
whose space bound is within an additive O�p �d� term of the
sequential space�	 For online scheduling� our results can be
applied as long as the scheduler can keep tasks that are ready
to execute in an appropriate priority order	 We show how

�



this order can be maintained for nested�parallel languages�
and describe an implementation of an online scheduler	� The
implementation maintains the space and time bounds within
a constant factor including all costs for scheduling and syn�
chronization� even when the scheduling granularity is indi�
vidual unit�time actions	

The following outlines the paper and its main results	
Each section relies on the previous sections	

Premature Nodes �Section ��� We consider a class of par�
allel list schedules that do not diverge signi�cantly from the
sequential schedules on which they are based	 A p�schedule
of a dag is a scheduling of tasks that executes at most p
actions on each time step	 We de�ne a p�schedule based
on a ��schedule to be a list schedule such that the priority
among the tasks for the p�schedule is given by their order
in the ��schedule	 Next� we introduce the notion of prema�
ture nodes� where a premature node in a parallel schedule is
one that is scheduled prematurely �out�of�order� relative to
a sequential schedule	 The main result of the section is the
following bound�

� For any dag of depth d� and for any p�schedule S based
on any sequential schedule S�� the maximum number
of premature nodes in S with respect to S� is at most
�p� �� � �d� ��	

We also prove a lower bound which matches the upper bound	
In the remaining sections we use the upper bound on

premature nodes to prove our space bounds	 In brief� when
comparing the space� sp� used by a parallel schedule� S�
with the space� s�� used by a sequential schedule� S�� the
premature nodes at any step in S represent �the only� op�
portunities for S to allocate space prematurely relative to
S�	 Thus by bounding the number of premature nodes� and
then bounding �to a constant� the space that each such node
can allocate� we will show that sp � s� � O�pd�	

Space Models �Section ��� We consider a variety of space
models in an attempt to capture the variation of space al�
location schemes used in languages with �ne�grained paral�
lelism	 The �rst space model is the parallel pebble game
of Savage and Vitter �SV�
�� a variant of the standard peb�
ble game �HPV��� Pip��� in which pebbles can be placed
on p nodes of the computation dag at each step instead of
just �	 Each pebble corresponds to a unit of allocated space
needed to hold an intermediate result of the computation�
and pebbles can be removed �and reused� as soon as the
intermediate result is no longer needed	 The goal is to min�
imize the total number of pebbles used to traverse the dag
within a certain number of steps	
In addition� we consider space models based on weighting

dag nodes with the amount of memory they allocate �pos�
itive weight� or deallocate �negative weight� and keeping
track of the accumulated weight as the schedule proceeds	
We study of family of such models� in increasing order of
generality	

We describe how these space models capture various al�
locations schemes supported by programming languages� in�
cluding the use of stack frames� explicit heap management

�The restriction to nested�parallel languages is similar to the re�
striction to fully�strict computations made by Blumofe and Leiserson�
The di
erence is discussed in Section ��

with allocate and free� and implicit heap management with
garbage collection	 The main results of the section are�

� If a dag G with n nodes and depth d can be ��pebbled
with s� pebbles in n steps� then it can be p�pebbled
with fewer than s� � p � d pebbles in n�p� d steps	

� Consider a weighted dag G with n nodes and depth
d	 Given any ��schedule S� of G that requires s�
space �maximum accumulated weight�� the greedy p�
schedule based on S� will require less than s� � p � d
space and will take at most n�p � d steps	

The �rst result is the �rst non�trivial general result relat�
ing sequential and parallel pebble games	 The second result
assumes positive weights are at most one	 For arbitrary pos�
itive weights� the space bound can be obtained by incurring
extra work �extra steps�	 We also prove lower bounds that
match within a constant factor	 The results in this section
apply to any dag and are relative to any sequential schedule
or pebbling	 They can be used for o�ine scheduling� with
provably good time and space bounds	

Online Schedules �Section ��� To implement programming
languages it is necessary to consider online schedules in
which the dag associated with a computation is not known
ahead of time	 Furthermore we are interested in basing
the p�schedule on the particular schedule executed by a
�standard� serial implementation	 This is most typically a
depth��rst schedule ��df�schedule�	� We call the p�schedule
based on a �df�schedule a pdf�schedule	 To execute a pdf�
schedule online we need only maintain the actions that are
ready to be executed� prioritized according to their �df�
schedule	 We de�ne a simple online scheduling algorithm
called the P�stack algorithm� and show the following�

� The online P�stack scheduling algorithm implements a
greedy pdf�schedule for planar dags	

This result implies that the space bounds from the previous
section apply to this online problem	
Planar dags account for a large class of parallel lan�

guages including all nested�parallel languages� as well as
other languages such as Cilk �BJK����	 In the next section
we consider a particular type of planar dag called a series�
parallel dag� which is su�cient for modeling all nested�
parallel languages	

Nested Parallel Implementation �Section ��� This section
describes the full details of implementing a pdf�schedule for
a class of parallel languages� and proves both time and space
bounds for the implementation	 Our time and space bounds
include all the costs for the scheduler as well as the costs for
the computation itself	
The two main tasks of the scheduler are to identify nodes

�i�e�� actions� that are ready to be executed and to main�
tain the P�stack data structure	 We consider three imple�
mentations of nested�parallel languages that allow for fork�
join constructs and�or parallel loops	 The �rst implemen�
tation assumes that the degree of each node is constant	
This can model languages in which each task can fork at
most a constant number of new tasks at a time	 The sec�
ond places no limit on the degree of nodes� and hence can

�An exception to this is in the implementation of lazy languages
in which computations are executed on demand�

�



model parallel loops� this implementation employs a fetch�
and�increment operation	 The main concern is in bounding
the size of the P�stack data structure despite the arbitrary
fanout	 The �nal implementation avoids the use of the fetch�
and�increment by carefully managing the tasks and using a
scan operation �parallel pre�x� instead	 The main concern
in this implementation is e�ciently synchronizing the tasks	
The strongest result is based on the �nal implementation�

� Consider any computation expressed in a nested�parallel
language which does w work� has depth d� uses se�
quential space s�� and allocates at most O�w� space	
This computation can be implemented on a pram with
pre�x�sums �i�e�� on the scan model �Ble���� in O�w�p�
d� time and s��O�p �d� space� accounting for all com�
putation� scheduling and synchronization costs	

Since a pre�x�sum can be implemented work�e�ciently in
O�lg p� time on any of the pram models� this implies bounds
of O�w�p � d � lg p� time and s� � O�p � d � lg p� space on
a pram without pre�x�sums	 The scheduler itself only re�
quires exclusive�read exclusive�write �erew� capabilities� al�
though the computation might require a more powerful pram
depending on the type of concurrent access allowed by the
language	 The restriction that a computation performing w
work allocates at most O�w� space is a natural one� since
the computation can only read or write to w memory words
in w work	 However� computations that use memory as a
bulletin board could allocate more than O�w� space	

Related Work and Discussion �Sections � and 	�� These
sections present a more detailed comparison with related
work and a discussion of several important issues including
extensions to handle nondeterministic programs and practi�
cal implementations of our scheduling algorithm	

� Parallel schedules with a premature nodes bound

In this section� we consider the well�studied parallel dag
scheduling problem� and prove a general property relating
a class of parallel schedules to their associated sequential
schedules	 We �rst de�ne a class of parallel schedules that
are �based on� given sequential schedules� such that the
sequential schedule dictates the scheduling priorities to the
parallel schedule	 The parallel schedule� although based on a
given sequential schedule� will almost always schedule nodes
out�of�order �i�e�� prematurely� with respect to the sequen�
tial schedule� in order to achieve the desired parallelism at
each step	 Then� in our main theorem� we show that the
number of these �premature� nodes at any step of the p�
processor schedule is bounded by p times the depth� d� of
the dag	 This theorem is the key ingredient in our space
bound proofs of the next section	

Graph and DAG scheduling terminology	 We begin
by de�ning the terminology used in this section and through�
out the paper	 We use standard graph terminology �see�
e�g�� �CLR����� which� for completeness� is reviewed below	
A directed graph G � �V�E� consists of a set of vertices V
and a set of edges E � V �V � where each edge �u� v� � E is
outgoing from node u and incoming to node v	 A �directed�
simple� path from v� to vk� k � �� in a directed graph is
a sequence of distinct nodes v�� � � � � vk such that there is a
directed edge �vi� vi��� for all i � k	 A directed graph has a

�directed� cycle if there exists nodes u and v such that there
is a path from u to v and an edge �v� u�	 A directed acyclic
graph �dag� is a directed graph with no cycles	 The roots
of a dag are the nodes with no incoming edges� the leaves
of a dag are the nodes with no outgoing edges	 The depth
or level of a node v in a dag is the number of nodes on the
longest path from a root node to v� inclusive	 The depth of
a dag is the maximum depth of any node in the dag	
Let u and v be nodes in a dag G	 Node u is a parent of

node v� and v is a child of u� if there is an edge �u� v� in G	
Node u is an ancestor of node v� and v is a descendant of u�
if there is a path in G from u to v	 Nodes u and v are ordered
if u is an ancestor or a descendant of v� otherwise they are
unordered 	 For a dag G � �V� E�� an edge �u� v� � E is
transitive �or redundant� if there is another path in G from
u to v	 The transitive reduction of G is the dag induced by
removing all transitive edges	
In the models discussed in this paper each node of the

dag represents a unit�time action	 The edges represent any
ordering dependences between the actions�a path from a
node u to a node v implies that the action for u must com�
plete before the action for v starts	 Tasks of greater than
unit�time duration can be modeled as a sequence of actions
on a path	 The dag may depend on the input� but it does
not depend on the order in which the nodes are scheduled	
�This models deterministic programs� extensions of the mod�
els to handle nondeterministic programs are discussed brie�y
in Section �	� Scheduling on such dags has been called unit
execution time �UET� scheduling �Cof�
�	
A schedule �or UET schedule� of a dag G is a sequence

of � � � steps� where each step i� i � �� � � � � � � de�nes a
set of nodes Vi �that are visited � or scheduled at this step�
such that the following two properties hold	 First� each node
appears exactly once in the schedule� i�e�� the sets Vi� i �
�� � � � � � � partition the set of nodes of G	 Second� a node is
scheduled only after all its ancestors have been scheduled in
previous steps� i�e�� if v � Vi and u is an ancestor of v� then
u � Vj for some j � i	 Thus if multiple nodes are scheduled
in a step� these nodes are unordered	 A p�schedule� for p � ��
is a schedule such that each step consists of at most p nodes�
i�e�� for i � �� � � � � � � jVij � p	 A schedule is parallel if p � ��
otherwise it is sequential 	 Let jSj be the number of steps in
a schedule S	 An example dag and schedule are shown in
Figure �	
Consider a schedule S � V�� � � � � V� of a dag G	 For

i � �� � � � � � � let Ci � V� 	 � � �	Vi be the completed set after
step i� i�e� the set of nodes in the �rst i steps of the schedule	
Figure � depicts the completed sets for an example schedule	
A node v � G is scheduled prior to a step i in S� i � �� � � � � � �
if v appears in Ci��	 A schedule induces a partial order on
the nodes in each of its completed sets Ci� node u � Vj
precedes node v � Vk if and only if j � k � i	 Thus a
��schedule induces a total order on the nodes in each of its
completed sets	 It is natural to view the steps of a schedule
as sequenced in time� thus if u precedes v� then u is earlier
than v and v is later or more recently scheduled than u	 An
unscheduled node v is ready at step i in S if all its ancestors
�equivalently� all its parents� are scheduled prior to step i	
In a breadth��rst or level�order ��schedule� a node is

scheduled only after all nodes at lower levels are scheduled	
A depth��rst ��schedule ��df�schedule� is de�ned as follows	
At each step� if there are no scheduled nodes with a ready
child� schedule a root node� otherwise schedule a ready child
of the most recently scheduled node with a ready child	 The
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V� � fag C� � fag
V� � fb� c� d� eg C� � fa� b� c� d� eg
V� � ff� hg C� � fa� b� c� d� e� f� hg
V� � fg� ig C� � fa� b� c� d� e� f� g� h� ig
V� � fjg C� � fa� b� c� d� e� f� g� h� i� jg

Figure �� An example dag and schedule on that dag	 The
dag edges are assumed to be directed downwards	 For i �
�� � � � � �� Vi is the set of nodes scheduled at step i and Ci is
the completed set after step i	

node scheduled at step i in a �df�schedule is said to have
�df�number i	

We will be particularly interested in �single source and
sink� series�parallel dags� which are de�ned inductively� as
follows� The graph� G�� consisting of a single node �which
is both its source and sink node� and no edges is a series�
parallel dag	 IfG� and G� are series�parallel� then the graph
obtained by adding to G�	G� a directed edge from the sink
node of G� to the source node of G� is series�parallel	 If
G�� � � � �Gk� k � �� are series�parallel� then the graph ob�
tained by adding to G�	� � �	Gk a new source node� u� with
a directed edge from u into the source nodes of G�� � � � �Gk�
and a new sink node� v� with a directed edge from the sink
nodes of G�� � � � �Gk into v is series�parallel	 Thus� a node
may have indegree or outdegree greater than �� but not both	
We say that the source node� u� is the lowest common source
node for any pair of nodes w � Gi and w� � Gj such that
i 
� j	

Greedy parallel schedules	 The following well�known
fact places a lower bound on the number of steps in any
p�schedule�

Fact ��� For all p � �� any p�schedule of a dag G with n
nodes and depth d requires at least max fn�p� dg steps�

This lower bound is matched within a factor of two by
any �greedy� p�schedule	 A greedy p�schedule is a p�schedule
such that at each step i� if at least p nodes are ready� then
jVij � p� and if fewer than p are ready� then Vi consists of
all the ready nodes	 Generalizing previous results �Gra

�
Gra
�� Bre�
�� Blumofe and Leiserson �BL��� showed the
following�

Fact ��� For any dag of n � � nodes and depth d� and
for any p � �� the number of parallel steps in any greedy
p�schedule is less than n�p� d�
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Figure 
� A greedy pdf�schedule of a dag G� for p � �	
On the left� the nodes of G are numbered in order of a �df�
schedule� S�� of G	 On the right� G is labeled according to
the greedy pdf�schedule� S� based on S�� S � V�� � � � � V��
where for i � �� � � � � �� Vi� the set of nodes scheduled in step
i� is the set of nodes labeled i in the �gure	

�
� An important class of parallel schedules

This paper provides parallel schedules for dags with prov�
ably good time and space bounds relative to sequential sched�
ules of the same dag� improving the bounds obtained by
previous works	 A key ingredient to our improved results is
the identi�cation of the following class of parallel schedules	

De�nition �p�schedule based on a ��schedule� We
de�ne a p�schedule� S� to be based on a ��schedule� S�� if�
at each step i of S� the ki earliest nodes in S� that are ready
at step i are scheduled� for some ki � p�

In other words� for all ready nodes u and v� if u precedes v
in S�� then either both are scheduled� neither are scheduled�
or only u is scheduled	
A p�schedule based on a ��schedule is a particular kind of

list schedule	 In a list schedule� all the tasks are listed in a
�xed priority order prior to scheduling� and at each step� the
ready tasks with the highest priorities are scheduled �Gra

�
Cof�
�	 In our case� the list is� in fact� a ��schedule	 Later�
in Section 
� we consider �online� scenarios in which the
list is revealed only as the computation proceeds� and lower
priority tasks must often be scheduled before certain higher
priority tasks are even revealed	
The motivation for considering a p�schedule based on a

��schedule is that it attempts to deviate the least from the
��schedule� by seeking to make progress on the ��schedule
whenever possible	 Intuitively� the closer the p�schedule is
to the ��schedule� the closer its resource bounds may be to
the ��schedule	
Note that given a ��schedule� the greedy p�schedule based

on the ��schedule is uniquely de�ned� and will have less than
n�p� d steps for a dag of n nodes and depth d	
A p�schedule that we consider in Section 
 is the depth�

�rst p�schedule	 A depth��rst p�schedule �pdf�schedule� is a
p�schedule based on a depth��rst ��schedule	 An example is
given in Figure 
	
Consider a dag G with n nodes and depth d	 In general�

any p�schedule that schedules more than one node in most
of its step �i�e�� uses far fewer than n steps� will schedule
nodes out�of�order ��prematurely�� with respect to almost
all ��schedules of G	 An important property of p�schedules
based on ��schedules is that� for such schedules� we can prove
that the number of nodes that are simultaneously premature
is bounded by �p � �� � �d� ��	

�



�
� Tight bounds on premature nodes

Let S� be a ��schedule and S be a p�schedule for the same
dag	 For each completed set� C� of S� let C�

i be the longest
pre�x of S� contained within C� de�ned as follows	

De�nition �largest contained ��pre�x� C�
i is the largest

contained ��pre�x of C if C�
i is a completed set of S�� C

�
i �

C� and either i is the last step of S� or the node scheduled
at step i� � of S� is not in C �thus C�

i�� 
� C��

Next� we de�ne the �premature nodes� for a completed set
C of S	 If we list the nodes in order of S� and then mark the
ones occuring in C� then the premature nodes will be all the
marked nodes following the �rst unmarked node	 Formally�
we have�

De�nition �premature nodes� Let C be a completed set
and C�

i be the largest contained ��pre�x of C� The set of
premature nodes in C� P�C�� is C � C�

i �

Figure � shows the premature nodes in the �rst six com�
pleted sets of the pdf�schedule of Figure 
	

De�nition �maximum number of premature nodes�
The maximum number of premature nodes in S with respect
to S� is max fjP�C�j � C is a completed set of Sg�

The following theorem gives an upper bound on the max�
imum number of premature nodes	 This is the key theorem
for the results in this paper� and may be of independent
interest	

Theorem ��� �upper bound on premature nodes�
For any dag of depth d � �� and for any ��schedule S��
the maximum number of premature nodes with respect to S�
in any p�schedule based on S� is at most �p� �� � �d� ���

Proof� The main ideas of the proof are as follows	

� Premature nodes are scheduled at a step only when
all other �nonpremature� nodes are not ready �since
nonpremature nodes have priority�	

� All unscheduled nonpremature nodes at the smallest
level containing such nodes are ready �since their par�
ents are nonpremature and have been scheduled�	

� Thus any step that schedules a premature node also
completes the smallest level	 This can happen at most
d� � times� with at most p� � premature nodes being
scheduled each time	

Accordingly� let G be a dag of depth d� and let S be a
p�schedule based on the given ��schedule S�	 We will show
that each completed set of S has at most �p � �� � �d � ��
premature nodes with respect to S�	 Speci�cally� consider an
arbitrary completed set� C� of S	 Let C� be the completed
set of S� that is the largest contained ��pre�x of C	 We will
show that

jP�C�j� jCj � jC�j � �p� �� � �d� �� �

Let v be the �rst node in S� that is not in C
�	 �If no such

v exists� then C� is all the nodes of G� and jP�C�j � �	� By
de�nition of C�� node v is the highest priority node not in
C	 Since S� is a schedule� all the parents of v are in C�� at
levels less than d	
The nodes in C� can be partitioned by level� for � �

�� � � � � d� let C���� be the set of nodes in C� at level �	 We
say a step j in S completes a level �� if
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Figure �� Premature nodes for the dag in Figure 
� its �df�
schedule S�� and the pdf�schedule S � V�� � � � � V� based on
S�	 Shown are the premature nodes with respect to S� in the
completed sets C��� � � �C�� respectively	 For each completed
set� the nodes are numbered according to S�� the nodes in
the largest contained ��pre�x of S� are marked in grey� and
the premature nodes are marked in black	 The maximum
number of premature nodes for this schedule is 
� as required
by completed set C�	

�	 C����� 
� Cj��� but

�	 C���� � Cj for � � �� � � � � �
�	

For example� for the schedule depicted in Figure �� con�
sider the completed set C after � steps of S� C � f�� �� �� 
� ��
�� ��� ��g� the set of nodes marked in either grey or black
in diagram � of the �gure	 For this completed set� C� �
f�� �� �� 
g� the set of nodes marked in grey	 We have that
C���� � f�g� C���� � f�� �g� C���� � f
g� and v � �� the �rst
node in S� not in C

�	 The proof will show that the number
of nodes marked in black is at most �p�����d���� which for
this example equals �� and indeed there are only four such
nodes in the �gure	
We �rst show that any step j of S which contains at least

one node in P�C� completes a level �� � d of C�	 Suppose
there is no level � � d such that C���� 
� Cj��	 Then all nodes
at levels less than d are in Cj��� including all the parents
of v	 But then at step j� v would be a higher priority ready
node than any node in P�C�� and hence would be in Cj� a
contradiction	 Therefore� consider the smallest level �� � d
such that C����� 
� Cj��� and let U � C����� � Cj��� the






nonempty set of nodes in C����� that are not in Cj��	 In the
example� for j � �� we have �� � � and U � f�g� for j � ��
�� � � and U � f�� �g� and for j � �� �� � � and U � f
g	

All nodes in C� at levels smaller than �� were scheduled
prior to step j� but the nodes in U were not scheduled prior
to step j	 Since C� is the completed set of a schedule� all
parents of nodes in C����� �if any� are also in C�� at levels
smaller than ��	 Thus all nodes in U were ready at step j	
Any node in C� has higher priority than any node not in C��
thus nodes not in C� would be scheduled at step j only if all
ready nodes in C� were also scheduled at step j	 Thus� since
nodes not in C� were scheduled at step j� then all nodes in
U were also scheduled at step j� and hence step j completes
level �� of C�	 In the example� step j � � completes C�����
step j � � completes C����� and step j � � completes C����	

Since G has d levels� there can be at most d� � steps of
S that complete a level less than d	 Each such step has at
least one node in C�� so it may have at most p� � nodes in
P�C�	 It follows that jP�C�j � �p� �� � �d� ��	
Note that the upper bound applies to any p�schedule

based on a ��schedule� greedy or otherwise	
The following theorem shows that this upper bound is

tight for any greedy p�schedule	 Speci�cally� it shows that
for any p and d� there exists a dag of depth d and a ��
schedule such that the maximum number of premature nodes
in any greedy p�schedule matches the upper bound	

Theorem ��� �lower bound on premature nodes�
For all p � � and d � �� there exists a dag� G� of depth
d� such that for any greedy p�schedule of G� the maximum
number of premature nodes with respect to any �df�schedule
of G is �p � �� � �d� ���

Proof� Let G be a forest comprised of p disjoint paths of
depth d	 That is� G has p root nodes� v���� v���� � � � � v��p� and
at each level � � �� � � � � d� there are p nodes� v���� v���� � � � � v��p�
such that for k � �� � � � � p� v��k is the only child of v����k 	
Any �df�schedule� S�� of G begins by scheduling v��k� � v��k� �
� � � � vd�k� for some k

�	 Any greedy p�schedule� S� of G must
schedule p nodes at each step with at least p ready nodes	
Thus� it must schedule all p root nodes at the �rst step� all
p �newly ready� nodes at level � at the second step� and so
on	 Consider the completed set Cd�� of S� this completed
set consists of all nodes in the �rst d� � levels of G	 Since
vd�j� is not in Cd��� C

�
d�� � fv��k� � � � � � vd���k�g is the largest

contained ��pre�x of Cd��	 Thus

jP�Cd���j � jCd��j � jC�
d��j � �p� �� � �d� �� �

which is the maximum number of premature nodes in S	

Even when the class of dags is restricted to series�parallel
dags� the lower bound is  �p � d� for any greedy p�schedule�

Theorem ��	 For all p � � and d � �� there exists a series�
parallel dag� G� of depth d� such that for any greedy p�
schedule ofG� the maximum number of premature nodes with
respect to any �df�schedule of G is �p� �� � �d� ���

Proof� The argument is nearly identical to the proof of
Theorem �	
� except that we add a common root node and
a common leaf node to the dag to make it series�parallel	
Speci�cally� G has a single root node� v�� with p children�
v���� v���� � � � � v��p� and at each level � � �� � � � � d� �� there
are p nodes� v���� v���� � � � � v��p� such that for k � �� � � � � p�
v��k is the only child of v����k	 Finally there is a single leaf

node� vd� that is the child of vd����� � � � � vd���p	 Clearly� G
is series�parallel	
Any �df�schedule� S�� ofG begins by scheduling v�� v��k� �

v��k� � � � � � vd���k� for some k
�	 Any greedy p�schedule� S� of

G must schedule v� at the �rst step� all p �newly ready�
nodes of level � at the second step� and so on	 Consider the
completed set Cd�� of S	 C

�
d�� � fv�� v��k� � � � � � vd���k�g is

the largest contained ��pre�x of Cd��	 Thus

jP�Cd���j � jCd��j � jC�
d��j � �p� �� � �d� �� �

which is the maximum number of premature nodes in S	

� Space models and bounds

We are interested in modeling the amount of space used
by parallel computations� where we assume that space can
be taken from and returned to a shared pool	 We consider
two types of space models that can be used in conjunction
with dags� a parallel variant of a standard pebble game
and a class of weighted dag models	 We prove bounds on
parallel space for each of these models	 The advantage of the
weighted dag models is that they allow one to consider only
the transitive reduction of a dag� while the pebble game
gives more information about the relationship of where in a
program a particular unit of memory is allocated to where
in the program it can be deallocated	 We also show how the
pebble game can be converted into a weighted dag model	
Ultimately we are interested in using the space models

to account for the use of space in programming languages	
The goal is to account for all space including both space
for data and for control� and to account for a variety of
memory management schemes� including stack allocation�
explicit heap management �e�g� malloc and free in C��
and implicit heap management with garbage collection �as
in Lisp�	 In Section �	� we describe how the space models
can be used to model these management schemes	 Later�
in Section �� we will give details on how space for control
structures �i�e�� the space for the scheduler itself� can be
included within our space bounds	

�
� Relating parallel pebble games to sequential ones

We consider a class of space models which is known in the lit�
erature as pebble games	 Pebble games are common tools in
studying the space requirements and the time�space trade�
o�s in computations �see �Pip��� for a survey�	 A standard
�one player� pebble game �Pip��� is played on a dag which
represents a computation� as discussed in Section �	 At any
point in the pebble game� some nodes of the dag will have
pebbles on them �one pebble per node�� while the remaining
nodes will not	
At each step of the pebble game� a pebble can be placed

on any empty node which is a root of the dag or such that
all its parents are pebbled� and any number of pebbles can
be removed from pebbled nodes	 A pebble game is complete
if each of the dag nodes has been pebbled at least once
during the game �equivalently� after each of the leaves of
the dag has been pebbled at least once�	 In such a game
the pebbles represent space usage and the steps represent
time	 For a given dag the two�fold objective is to �nd a
complete pebble game which �i� has the smallest number of
steps� and �ii� uses the minimal number of pebbles	

�



To study space requirements in parallel computation� we
consider the parallel version of the pebble game� due to Sav�
age and Vitter �SV�
�� which we call the p�pebble game	 At
each step of the p�pebble game� p pebbles or less can be
placed on any subset of the dag nodes �one pebble per node�
which are roots of the dag or such that all their parents are
pebbled� and any number of pebbles can be removed from
pebbled nodes	 As with the pebble game� a p�pebble game
becomes complete after each of the dag nodes has been peb�
bled at least once �equivalently� after each of the leaves of
the dag has been pebbled at least once�	 Thus� a ��pebble
game is the same as the pebble game de�ned above	

In this paper we are interested in pebble games based on
schedules�i�e�� for a schedule S � V�� � � � � V� � the i

th step
of the game will pebble the nodes in Vi	 We will use the
notation Pebbles�G� S� to denote the minimum number of
pebbles that are required by a schedule S �either sequen�
tial or parallel� on the dag G	 To determine Pebbles�G�S��
we can simply remove a pebble when all its children have
been pebbled since each node will be pebbled exactly once	
We now relate p�pebble games to pebble games based on
sequential schedules	

Theorem ��� �upper bounds for pebble games� Let
G be a dag of n nodes and depth d� and suppose that there is
a pebble game for G which uses n steps and s� pebbles� Then
for all p � �� there is a p�pebble game for G which takes at
most n�p � d steps� and which uses fewer than s� � p � d
pebbles�

Proof� Any pebble game for G that uses n steps must be
based on a sequential schedule� S�� since each node will need
to be pebbled exacly once	 Let G� be the optimal sequential
pebble game for G that corresponds to S� �the one yielding
Pebbles�G�S�� pebbles and based on removing a pebble as
soon as all children have been pebbled�	 Let S be a greedy
p�schedule based on S�� and let Gp be the optimal p�pebble
game forG that corresponds to S	 The bound on the number
of steps follows from Fact �	�	

Consider an arbitrary step i of S and let C be the com�
pleted set of S after step i	 Let C�

j be the completed set of
S� �after step j� that is the largest contained ��pre�x of C	
Let P be the set of pebbled nodes after step i of Gp� and let
P �
j be the set of pebbled nodes after step j of G�	 Note that

P � C and P �
j � C�

j 	 Let v be an arbitrary node in P 	 We

consider two cases� depending on whether or not v is in C�
j 	

If v � C�
j � then it has at least one child not in C �other�

wise the pebble would have been removed�� and hence not
in C�

j �a subset of C�	 Since v � C�
j � it has been pebbled

in G� at some step no later than j	 That pebble could not
be removed as yet� since v has a child that has not yet been
pebbled as of step j	 Thus v � P �

j 	 Hence� Pi � C�
j is a

subset of Pj	
If v 
� C�

j � then v � P�C� � C�C�
j 	 By Theorem �	�� the

number of premature nodes� P�C�� is at most �p�����d���	
Thus the number of additional pebbled nodes is at worst
�p� �� � �d� ��	

Considering both cases� we have that jP j � jP �
j j� p � d	

Since the number of pebbles used in a pebble game is the
maximum of the number of pebbled nodes after each of its
steps� we have Pebbles�G�S�� � Pebbles�G�S�� p � d	 Since
s� � Pebbles�G�S�� by de�nition� the theorem follows	
By Fact �	�� the number of steps is within a factor of two

of optimal	

�
� The weighted DAG space models

We consider a second class of space models which we call
weighted dag models	 In these models nodes are labeled
with weights which represent the amount of space that is
allocated �positive weight� or deallocated �negative weight�
by the action associated with the node	 The weighted dag
models di�er from the pebble game in that the release of
space is modeled directly within the dag as negative weights
rather than as part of the game with the removal of pebbles	
This allows us to consider only the transitive reduction of a
dag� which will prove useful for the model of online schedul�
ing discussed in Section 
	 We will consider three variants
of the model� the �rst allows for at most unit weights at
each node� the second allows for unrestricted weights and
the third allows for weights to be associated with groups of
nodes� so as to model more �exible allocation and dealloca�
tion schemes	 In all cases we prove bounds on space �weight�
and time �number of steps�	

One�weighted DAGs	 In our �rst weighted dag model�
one�weighted dags� we assume that in addition to a dag

G � �V� E� we have a cost function w that maps the nodes
v � V to integer weights w�v� � �	 We de�ne the weight
�space� of a schedule S � V�� � � � � V� of G as follows	 The
weight of a completed set Cj � 	ji	�Vi is the sum of the
weights of its nodes�

W �Cj � w� �
X

u�Cj

w�u� �

and the weight of the schedule is the maximum weight
over its completed sets�

W �S� w� � max
j	�������

fW �Cj � w�g �

Intuitively� each step of the schedule will add the weights
of the newly scheduled nodes to the current accumulated
weight� which re�ects the current space usage	 Since the
weights on the nodes can be negative� the accumulated weight
can go either up or down from step to step� and it is therefore
important to measure the maximum weight �space usage�
over all steps	
Given Theorem �	�� the following space bound is imme�

diate�

Theorem ��� �upper bounds for one�weighted DAGs�
Let G be a one�weighted dag with weight function w and
depth d � �� and let S� be any ��schedule of G� For all
p�schedules S based on S�� W �S� w� � W �S�� w�� p �d� and
if the schedule is greedy then jSj � jS�j�p � d�

Proof� The number of steps jSj follows from Fact �	�	 By
Theorem �	�� for each step of the p�schedule there are at
most �p� �� � �d� �� premature nodes relative to some step
of the ��schedule	 Since each node has weight at most ��
there can be at most �p� �� � �d� �� more weight allocated
in the p�schedule	

General weighted DAGs	 We now consider removing
the restriction on the node weights by allowing for integer
weights of arbitrary size	 Removing this restriction is im�
portant in practice since non�constant weights are needed to
model the allocation of blocks of space� such as arrays	 The

�



di�culty is that each of the premature nodes at a step may
add a large weight� thereby exceeding the desired weight
bound	 For example� if in the dag used to prove Theo�
rem �	
� the �rst half of the nodes in each chain each have
weight k � �� the second half of the nodes in each chain each
have weight �k� and S is a greedy p�schedule based on a �df�
schedule S�� then W �S�� w� � k � d�� whereas W �S� w� �
k � p � d��� and hence W �S� w� �W �S� � w� �  �k � p � d�� for
any k	
Our approach for general weighted dags is a straightfor�

ward generalization of the one�weighted dag case	 We add
to each node v with weight w�v� � m� dw�v��me�� dummy
nodes with weight �� where m � � is a tunable parameter	
These dummy nodes delay the scheduling of v and there�
fore decrease the average penalty for each premature node
to be at most m� at the cost of an increase in the number of
steps	 For a given m � � and a weighted dag G � �V�E��
we call the set of nodes Hm � fv � V�w�v� � mg the
heavy nodes of G� and de�ne the excess weight of G as
We � We�m�w� �

P
u�Hm

w�u�	 We obtain the following

result�

Theorem ��� �upper bounds for weighted DAGs�
Let G be a weighted dag with weight function w and depth
d � �� and let S� be any ��schedule of G� Then for all
p � � and all m � �� there is a p�schedule S based on
S� such that W �S� w� � W �S�� w� � m � p � d and jSj �
jS�j�p � d�We��m � p��

Proof� The proof uses two steps	 We will �rst convert
the dag G into a new dag G� and the ��schedule S� into a
schedule S �� on G

�	 G� will have at most We�m more nodes
than G	 We will then show that a greedy p�schedule of G�

based on S �� will have the stated bounds	
The graph G� and associated schedule are de�ned as fol�

lows	 For each heavy node v of G do the following	 In G
add dw�v��me� � zero�weight nodes such that each has the
same predecessors and successors as v	 We call these nodes
dummy nodes� and they contribute nothing to the computa�
tion other than delaying the scheduling of v	 In S� �nd the
step that contained v and insert dw�v��me�� steps immedi�
ately preceding it� each of which schedules one of the dummy
nodes	 Note that this leads to a valid ��schedule of the mod�
i�ed dag since the dummy nodes for v become ready at the
same step as v� so they can be scheduled consecutively	 Also
note that W �S�� w� � W �S ��� w� since the nodes in S� get
executed in the same order in S ��� and the additional nodes
have zero weight	 The total number of dummy nodes in G�

will be
P

u�Hm
dw�u��me � �� which is at most We�m	

Consider the greedy p�schedule of G� based on the ��
schedule S ��	 Note that if a heavy node v is premature at a
step of the greedy p�schedule� then all of its dummy nodes
must also be premature during that step	 This is because
they all must be already scheduled �they became ready the
same step as v and have a higher priority�� and they are all
consecutive in S �� �if one was not premature� then they would
all be not premature�	 When accounting for the weight of
premature nodes� we can therefore amortize the weight of v
across all its dummy nodes� since they will always be pre�
mature as a group	 Since there are dw�v��me � � dummy
nodes� the amortized cost is at most m	 Since there are at
most �p� �� � �d� �� premature nodes� the total weight con�
tributed by premature nodes on any given step is less than
m �p �d	 This gives the desired weight bound	 The bound on

S follows from Fact �	� since G� has at most jS�j �We�m
nodes� and the schedule is greedy	
Note that if the computation reads and�or writes at least

��m of all the space it allocates� for � � � � m� then
jS�j � �We�m� and hence jSj � �� � �

�
�jS�j�p� d	

Group�weighted DAGs	 Our �nal weighted dag model
associates weights with groups of nodes instead of single
nodes� and accounts for the weight of a group when the last
of the group is scheduled	 This extension is important in
practice since memory deallocation can depend on the order
of scheduling when using garbage collection	 Note that in
the pebble game such deallocation can be naturally modeled
by the fact that the last child of a node will allow the parent
to be unpebbled	
A group�weighted dag is a dag G � �V�E� and a set

R of groups each of which contains a subset of the nodes
of G and an associated integer weight �i�e�� for each group
�g� w� � R� g � V and w � I�	 For a schedule S� the weight
of the jth completed set is

W �Cj �R� �
X


g�w��R�g�Cj

w �

and the weight of the schedule is the maximum weight of
its completed sets �as before�	 In this de�nition the weight
of a group is not accounted for until all of its members have
been scheduled	
We can prove similar bounds for group�weighted dags

as for weighted dags	 Theorem �	
 below presents upper
bounds for group�weighted dags with the restriction that
all weights are at most � and no node belongs to more
than one group with a positive weight	 We call these group
one�weighted dags	 �Extending this result to general group�
weighted dags is relatively straightforward� and left to the
interested reader	�

Theorem ��� �upper bounds for group one�weighted DAGs�
Let G be a group one�weighted dag with groups R and depth
d � �� and let S� be any ��schedule of G� Then for all p�
schedules S based on S�� W �S� R� � W �S��R� � p � d� and
if the schedule is greedy then jSj � jS�j�p � d�

Proof� The number of steps jSj follows from Fact �	�	
Consider an arbitrary completed set� C� of S� and let C�

j be
the completed set of S� that is the largest contained ��pre�x
of C	 Consider any group g with weight w	 If g � C�

j then

w will be accounted for in the weight of both C�
j and C�

and if g 
� C� then w will not be accounted for in either	
In both cases there will be no di�erence in the weight of
the two completed sets due to that group	 If g � C and
g 
� C�

j � then W �C�R� will include w but W �C�
j �R� will

not	 Since there are at most �p��� � �d��� nodes in C�C�
j

�Theorem �	��� and each one can account for a weight of at
most one� W �C�R� � W �C�

j �R��p �d	 Since this is true for
any completed set of S� the weight bound follows	

Matching lower bounds	 The following result presents
a matching lower bound for all the weighted dag models
we have considered	 Since it is a lower bound we need only
consider the most restrictive of the models� which are the
one�weighted dags	 We also show that the lower bound is
still valid even if we restrict ourselves to series�parallel dags	
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Theorem ��	 �lower bounds for weighted DAGs�
For all p � � and d � �� there exists a series�parallel
one�weighted dag G with weight function w and depth d
such that for any greedy p�schedule S of G� W �S� w� �
W �S�� w� �  �p � d�� where S� is a �df�schedule� For any
p�schedule� the number of steps is at least max fjS�j�p� dg�

Proof� Consider the dag de�ned in the proof of The�
orem �	�� and let k � d � �	 Let w assign weight � to
the source and sink nodes� weight � to all nodes at levels
�� �� � � � � d � �� and weight �k to the nodes at level d � �	
Then W �S�� w� � k	 Any greedy p�schedule� S� of G must
schedule the source node at the �rst step� all p �newly ready�
nodes of level � at the second step� and so on	 For the com�
pleted set Cd�� � 	d��

i	� Vi of S� W �Cd��� w� � p � k	 It
follows that W �S� w� � W �S�� w� � �p� �� � �d� ��	

Fact �	� gives the lower bound on the number of steps	

Relationship of pebble game and weighted DAGs	
We next consider the relationship between the pebble game
and weighted dags	 We show that a pebble game can be
transformed into a group�weighted dag with the same dag
structure so they have identical space requirements	 For
every node v in a dag the transformation simply adds a
group of weight � containing just v� and a group of weight
�� containing the children of v	

Theorem ��
 �reduction among space models�
For any dag G � �V� E�� and for any schedule S on G�
Pebbles�G�S� � W �S� R�� where the weighted groups R are
de�ned as

R � f�fvg� �� � v � V g 	 f�fu � �v� u� � Eg���� � v � V g �

Proof� We show that at every step Vi of the schedule the
net number of pebbles added in the pebble game equals the
weight added in the weighted dag	 In the pebble game at
step i we will add jVij pebbles and remove pebbles from the
nodes for which all children become scheduled at the step	
In the group�weighted dag every node belongs to � singleton
group of weight �� so these will add jVij at the step	 Also� any
node for which all of its children become scheduled at the
step will have a �� weighted group that becomes contained
in this step� therefore contributing a weight of ��	
This shows that the group�weighted dags can be used

to express any space problem that the p�pebble game can�
and are thus equally as expressive	 The conversion in the
other direction is clearly not possible since a group�weighted
dag can create schedules with negative weights	 It is also
not possible to create a weighted dag without groups from
a pebble game	 We note that it is easy to extend the pebble
game to include weighted nodes �with positive weights�� and
show similar bounds as in Theorem �	�	

An advantage of a group�weighted dag is that we need
only consider the transitive reduction of the dag� since the
space does not depend on the edges� and the schedule is not
e�ected by transitive edges	 This is not possible in the peb�
ble game since transitive edges can change the space require�
ments	 The ability to only consider the transitive reduction
of a dag and not worry about other edges proves helpful in
the discussion of online schedules in Section 
	

�
� Languages and space

In this subsection� we consider how the space models can be
used to model a variety of allocation schemes in program�
ming languages� stack allocation� explicit heap management
�e�g�� malloc and free in C�� and implicit heap management
with garbage collection	 In all cases� space for the input can
be accounted for by placing a set of nodes allocating this
space in the �rst few levels of the dag �e�g�� as roots or as
children of a root node�	 This allows one to model reuse of
the input space once it is no longer needed	 For both the
pebble game and the one�weighted dag models� we assume
each node can allocate any constant amount of memory�
this will e�ect the space bounds by only that constant factor	
The simplest type of allocation is in the form of stack

frames	 In such allocation� the space for a stack frame is cre�
ated when entering a function and is used to store local vari�
ables� partial results� and control information �e�g�� where in
the program to return to once the function has completed�	
The memory for a stack frame is then freed when exiting
the function	 This is the only type of memory allocation
considered by some previous space models �BL��� BL�
�	
The space required by a stack frame can be modeled in the
pebble game by a node representing the entering point for a
function� where the stack frame is created� with an edge to
a node representing the exiting point of the function� where
it is released	 In the weighted dag models� a stack frame
can be modeled by a positive weight at the entering node
and a corresponding negative weight at the exiting node	 In
some languages� such as ANSI C �with no extensions�� all
stack frames are of constant size and can therefore be mod�
eled with constant weight nodes	 In other languages� such as
Fortran� stack frames can be of dynamic size	 In the pebble
game� k entering and exiting nodes can be used to model
stack frames of size k	
Another standard type of memory allocation is through

an explicitly allocated heap� such as with the use of malloc
and free in C	 Such allocations�deallocations can be mod�
eled in the pebble game by one or more nodes representing
the point where the allocation is executed� the same number
of nodes representing where the free is executed� and an edge
between each such allocation node and each such dealloca�
tion node	 Note that if there is no corresponding free� one
needs to add dummy nodes at the end of the computation
and an edge from each allocation node to each dummy node	
In the weighted dag model� an allocation is modeled with
a positive weight and a free by a negative weight	 Dummy
nodes are not needed� and groups are not required	
We now consider a more interesting use of space� the

space required for a language with implicit memory man�
agement� such as Lisp� ML� or Java	 These languages typ�
ically engage a garbage collector to collect freed memory	
In the description that follows� we consider how to model
the point at which memory becomes available to be reused
�i�e�� when there is no longer any pointer to the data�	 This
can be thought of as modeling an ideal garbage collector�
and allows a model that is independent of the particular
garbage collector	 The use of implicit heap management
di�ers from explicit heap management in that the node at
which a variable becomes free to be collected can depend
on the schedule	 For example� if there are a set of nodes
that reference a variable� then the memory for the variable
becomes available for reuse when the last of these nodes is
scheduled	 �The allocation of memory� however� typically
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remains independent of the schedule�	 In the pebble game�
we can model such freeing by placing an edge from the al�
location node to each of the nodes at which the memory
could possibly become available	 In the weighted dag mod�
els we need to use group�weighted dags�we place a group
with the appropriate negative weight around all the nodes
at which the memory could become available	
We note that out of the three memory management schemes�

groups are only required in the weighted dags for the third
scheme	 Non�constant weights are required whenever a block
of memory is allocated of non�constant size� such as in allo�
cating an array proportional to the input size or to an input
parameter	

� Online schedules

The previous sections have shown that any greedy p�schedule
based on a ��schedule is e�cient in both space and number
of steps	 If a dag and sequential schedule are given as input�
this greedy p�schedule is easy to generate	 This is called the
o�ine scheduling problem	 In this section and the next we
are concerned instead with the online scheduling problem in
which neither the dag nor the sequential schedule is given
as input� but rather they are revealed as a computation pro�
ceeds	 Thus the �list� of tasks in priority order is not given
a priori� as in standard list scheduling� but is revealed only
as the computation proceeds� and is typically not revealed
in order	 Our interest in online scheduling is for the imple�
mentation of programming languages� where� in general� the
structure of a computation is not known a priori	

To execute an online p�schedule based on a ��schedule
there are two capabilities we require	 The �rst is the ability
to identify the set of ready nodes� and the second is the
ability to keep the current set of ready nodes prioritized
according to their ��schedule	 Details on identifying the
ready nodes are discussed in the next section� along with a
detailed accounting of the cost of scheduling	 In this section
we give an online algorithm for maintaining the priority of
ready nodes relative to their �df�numbering� given that the
dag unfolds into a planar graph	 The key observation is that
it is not necessary to know the full �df�schedule to maintain
the proper priorities on the ready nodes	 These results are
of interest in practice since the �df�schedule is the most
common schedule taken by sequential implementations of
languages� and because planar graphs are adequate to model
a large class of parallel constructs� including nested parallel
loops� parallel divide�and�conquer� and fork�join constructs	

�
� Online scheduling algorithms

We model computations generated by executing programs
as dynamically unfolding dags	 A dynamically unfolding
dag G is one in which the nodes and edges are revealed as
the computation proceeds	 Each edge �u� v� in G can be due
to either a data or control dependence between the actions
associated with nodes u and v �e�g�� u spawns v� u writes a
value that v reads� v executes conditionally depending on an
outcome at u� or v waits for u at a synchronization point�	
For our space bounds we also assume that a dynamically
unfolding dag is weighted to account for memory that is
allocated or deallocated by the actions	 As in the o�ine
scheduling problems considered in previous sections� we as�
sume that programs are deterministic� in the sense that a
computation �i	e	� a particular program run on a particular

input data� always unfolds into the same dag� independent
of the schedule	 �Extensions to handle nondeterministic pro�
grams are discussed in Section �	�

Computation as
a dynamically
unfolding dag

Online
Scheduling
Algorithm

�

Ready nodes

�
Scheduled nodes

An online scheduling algorithm is the speci�cation of a
process that interacts with a dynamically unfolding dag G	
The process maintains a collection of ready nodes R� which
is initialized to the roots of G	 At each step i the process
will specify a new set of nodes �actions� Vi � R to schedule
and will receive a new set of ready nodes	 The scheduled
nodes are removed from R and the newly ready nodes are
added to R	 The important property of an online scheduler
is that it has no knowledge about the dag G beyond its
previously scheduled nodes� its currently ready nodes� and
the fact that it comes from a certain family of dags �e�g��
series�parallel dags� planar dags�	

�
� A stack�based scheduling algorithm

We now present a simple online scheduling algorithm for im�
plementing greedy pdf�schedules for dags that unfold into
planar graphs	 The main result used by the algorithm is a
theorem showing that� for planar dags� the children of any
node v have the same ��df�schedule� priority as v relative to
other ready nodes� thus they can be substituted in for v in
any sequence of ready nodes ordered by their �df�numbers
and the sequence remains ordered by �df�numbers	 This
greatly simpli�es the task of maintaining the ready nodes in
priority order at each scheduling iteration	
We begin by reviewing planar graph terminology	 A

graph G is planar if it can be drawn in the plane so that its
edges intersect only at their ends	 Such a drawing is called
a planar embedding of G	 A graph G � �V� E� with distin�
guished nodes s and t is �s� t��planar if G� � �V� E	f�t� s�g�
has a planar embedding	 In what follows� we will identify
various paths in planar embeddings� where we extend our
de�nition of paths to include both the nodes and the di�
rected edges between the nodes	
Recall from Section � that a pdf�schedule is based on

a given �df�schedule	 To make a �df�schedule unique it
is necessary to specify priorities on the outgoing edges of
the nodes	 Given a planar embedding of a dag G� we will
assume that the outgoing edges of each node are prioritized
according to a counterclockwise order� as follows�

Lemma ��� Let G be a dag with a single root node� s�
and a single leaf node� t� such that G is �s� t��planar� and
consider a planar embedding of G� � �V� E 	 f�t� s�g�� For
each node v in G�� v 
� t� let e�� e�� � � � � ek� k � �� be the
edges counterclockwise around v such that e� is an incoming
edge and ek is an outgoing edge� Then for some � � j � k�
e�� � � � � ej are incoming edges and ej��� � � � � ek are outgoing
edges�

Proof� Suppose there exists an outgoing edge ex and an
incoming edge ey such that x � y	 Consider any �directed�
path P� from the root node s to node v whose last edge is
e�� and any �directed� path Py from s to v whose last edge
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is ey	 Let u be the highest level node that is on both P�

and Py but is not v	 Let C be the union of the nodes and
edges in P� from u to v� inclusive� and in Py from u to v�
inclusive	 Then C partitions G into three sets� the nodes
and edges inside C in the planar embedding� the nodes and
edges outside C in the planar embedding� and the nodes and
edges of C	
Note that one of ex or ek is inside C and the other is

outside C	 Since v 
� t� t must be either inside or outside
C	 Suppose t is outside C� and consider any path P from v
to t that begins with whichever edge ex or ek is inside C	 P
cannot contain a node in C other than v �since G is acyclic�
and cannot cross C �since we have a planar embedding�� so
other than v� P contains only nodes and edges inside C�
and hence cannot contain t� a contradiction	 Likewise� if t
is inside C� then a contradiction is obtained by considering
any path from v to t that begins with whichever edge ex or
ek is outside C	

Thus no such pair� ex and ey� exist and the lemma is
proved	
Let G be an �s� t��planar dag with a single root node s

and a single leaf node t	 We say that G has counterclockwise
edge priorities if there is a planar embedding of G� � �V� E	
f�t� s�g� such that for each node v � V � the priority on
the outgoing edges of v �used for the �df�schedule of G�
is according to a counterclockwise order from any of the
incoming edges of v in the embedding �i�e�� the priority order
for node v in the statement of Lemma 
	� is ej��� � � � � ek�	
Thus the dag is not only planar� but the edge priorities at
each node �which can be determined online� correspond to
a planar embedding	 Such dags account for a large class of
parallel languages including all nested�parallel languages� as
well as other languages such as Cilk	

Maintaining priority order for planar graphs	 We
now present a simple algorithm that� for any valid �parallel�
schedule of a planar dag G� maintains the set of ready nodes
at each step sorted by their �df�numbers	

ALGORITHM Maintain�Order�
R is an ordered set of ready nodes initialized to the root of
G	 Repeat until R is empty�

�	 Schedule any subset of the nodes from R	

�	 Replace each newly scheduled node with its zero or
more ready children� in priority order� in place in the
ordered set R	 If a ready child has more than one
newly scheduled parent� consider it to be a child of its
lowest priority parent in R	

Theorem 
	� below shows that for planar dags� the chil�
dren of any node v have the same ��df�schedule� priority as
v relative to other ready nodes� hence the Maintain�Order
algorithm maintains the set of ready nodes R in priority
order	

Theorem ��� For any single root s� single leaf t� �s� t��
planar dag G with counterclockwise edge priorities� the on�
line Maintain�Order algorithm maintains the set R of ready
nodes sorted by their �df�numbers�

Proof� We �rst prove properties about the �df�numbering
ofG� and then use these properties to argue that the Maintain�
Order algorithm maintains the ready nodes in relative order
of their �df�numbers	

Let G � �V� E�� and consider the planar embedding of
G� � �V�E 	 f�t� s�g� used to de�ne the counterclockwise
edge priorities	 We de�ne the last parent tree for the �df�
schedule of G to be the set of all nodes in G and� for every
node v 
� s� we have an edge �u� v� where u is the parent
of v with highest �df�number	 Note that a �df�schedule on
the last parent tree would schedule nodes in the same order
as the �df�schedule on G	
Consider any node u that is neither s nor t	 De�ne the

�rightmost� path Pr�u� from s to u to be the path from s to
u in the last parent tree	 De�ne the �leftmost� path Pl�u�
from u to t to be the path taken by always following the
highest�priority child in G	 De�ne the splitting path Ps�u�
to be the path obtained by appending Pr�u� with Pl�u�	
In the embedding� the nodes and edges of the cycle Ps�u�	

f�t� s�g partition the nodes not in Ps�u� into two regions
� inside the cycle and outside the cycle � with no edges
between nodes in di�erent regions	 Consider the counter�
clockwise sweep that determines edge priorities� starting at
any node in the cycle	 If the cycle is itself directed coun�
terclockwise �clockwise�� this sweep will give priority �rst to
any edges in the outside �inside� respectively� region� then
to edges in the cycle� and then to any edges in the inside
�outside� respectively� region	 A node w not in Ps�u� is left
of Ps�u� if it is in the region given �rst priority� otherwise
it is right of Ps�u�	
We claim that all nodes left �right� of Ps�u� have �df�

numbers less than �greater than� respectively� u	 The proof
is by induction on the level in G of the node	 The base case�
� � �� is trivial since s is the only node at level �	 Assume
the claim is true for all nodes at levels less than �� for � � �	
We will show the claim holds for all nodes at level �	

Consider a node w at level �� and let x be its parent in
the last parent tree� x is at a level less than �	 Suppose w is
left of Ps�u�	 Since there are no edges between left and right
nodes� x is either in Ps�u� or left of Ps�u�	 If x is in Ps�u�
then �x�w� has higher priority than the edge in Ps�u� out
of x	 Thus by the de�nition of Pl�u�� x cannot be in Pl�u�	
If x is in Pr�u�� then a �df�schedule on the last parent tree
would schedule x and w before scheduling any more nodes
in Ps�u� �including u�	 If x is left of Ps�u�� then u is not
a descendant x in the last parent tree �since otherwise x
would be in Pr�u��	 By the inductive assumption� a �df�
schedule on the last parent tree would schedule x before u�
and hence schedule any descendant of x in the last parent
tree �including w� before u	 Thus w has a �df�number less
than u	
Now suppose w is right of Ps�u�	 Its parent x is either

right of Ps�u� or in Ps�u�	 If x is right of Ps�u�� then by
the inductive assumption� x and hence w has a �df�number
greater than u	 If w is a descendant of u� then w has a
�df�number greater than u	 So consider x 
� u in Pr�u�	 A
�df�schedule on the last parent tree will schedule the child�
y� of x in Pr�u� and its descendants in the tree �including
u� before scheduling w� since �x� y� has higher priority than
�x�w�	 Thus w has a �df�number greater than u	

The claim follows by induction	
Now consider a step of the Maintain�Order algorithm

and assume that its ready nodes R are ordered by their
�df�numbering �lowest �rst�	 We want to show that a step
of the algorithm will maintain the ordering	 Consider two
nodes u and v from R such that u has a higher priority �i�e� a
lower �df�number� than v	 Assume we are scheduling u �and
possibly v�	 Since both u and v are ready� u cannot be in the
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splitting path Ps�v�	 Since u has a lower �df�number than v�
it follows from the claim above that u is left of Ps�v�	 Since
there are no edges between nodes left and right of a splitting
path� the children of u are either in Ps�v� or left of Ps�v�	 If
a child is in Ps�v� then it is a descendant of v and the child
would not become ready without v also being scheduled	
But if v were scheduled� u would not be the lowest priority
parent of the child� and hence the algorithm would not assign
the child to u	 If a child is to the left of Ps�v�� then by the
claim above� it will have a lower �df�number than v	 When
placed in the position of u� the child will maintain the �df�
number ordering relative to v �and any children of v� in R	
Likewise� for any node w in R with higher priority than u� w
and the children of w �if w is scheduled� will have lower �df�
numbers than u and its children	 Since the Maintain�Order
algorithm schedules a subset of R and puts ready children
back in place� it maintains the nodes in R sorted by their
�df�numbers	

Implementing a greedy PDF�schedule	 We now present
our algorithm for implementing a greedy pdf�schedule of a
planar dag	 The algorithm is simply a restriction on the
Maintain�Order algorithm to greedily schedule the highest
priority nodes from R at each step	

ALGORITHM P�stack�
R is an ordered set of ready nodes initialized to the root of
G	 Repeat until R is empty�

�	 Schedule the �rst min fp� jRjg nodes from R	

�	 Replace each newly scheduled node with its zero or
more ready children� in priority order� in place in the
ordered set R	 If a ready child has more than one
newly scheduled parent� consider it to be a child of its
lowest priority parent in R	

Figure 
 shows an example of the P�stack algorithm	

Corollary ��� For any single root� s� single leaf� t� �s� t��
planar dag G with counterclockwise edge priorities� the
online P�stack algorithm produces the greedy pdf�schedule
based on the �df�schedule of G�

Proof� Since the algorithm schedules a subset of R and puts
ready children back in place� it maintains R ordered relative
to the �df�numbering �Theorem 
	��	 Since it executes a
greedy p�schedule based on selecting the nodes with lowest
�df�numbers� it executes the greedy pdf�schedule based on
the �df�schedule	

� Machine implementations

In this section� we consider a concrete implementation of the
online greedy pdf�schedule approach outlined in the previ�
ous section� and analyze its performance on a variety of par�
allel machine models	 The primary tasks not addressed in
the previous section are how to identify ready nodes� which
requires coordination among the parents of a node� and how
to manage the P�stack data structure within the desired
bounds	 Our time and space bounds include all schedul�
ing� synchronization and computation costs for implement�
ing a nested�parallel language	 The bounds� however� do not
consider the time costs for memory allocation�deallocation�
since these costs depend on the type of memory manage�
ment� which is highly language�dependent	 We brie�y ad�
dress memory management costs in Section �� where we
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Figure 
� An example of the P�stack algorithm on a planar
dag with p � �	 The numbers on the nodes represent the
�df�numbering	 For i � �� � � � � �� Ri is the ordered set of
ready nodes at step i and Vi is the set of scheduled nodes at
step i	

show that certain types of memory management schemes
can also be implemented within our time bounds	
We limit ourselves to the implementation of languages

that support nested�parallel constructs	 A nested�parallel
construct is one in which a process can spawn �fork� a set
of parallel child processes	 The spawning process �i�e�� the
parent� is then suspended until all the child processes �nish	
The child processes can themselves spawn their own child
processes� allowing for a nesting of the parallelism	 The
descendants of a process cannot have dependences among
each other	 We assume there is an ordering among the child
processes� and that a sequential implementation will exe�
cute a �df�schedule of the dag based on this ordering	 It is
not hard to show that the transitive reduction of the dag
resulting from executing a program in any nested�parallel
language will always be a �single source and sink� series�
parallel dag �as de�ned in Section ��	 This has been shown
for the Nesl language �BG�
�	 Any series�parallel dag G
is �s� t��planar with counterclockwise edge priorities� where
s is the single root source node and t is the single leaf sink
node	 Thus the P�stack algorithm of Section 
	� can be used
to implement a pdf�schedule on the dag	
Nested�parallel constructs include parallel loops� parallel

maps� and fork�join constructs� and any nesting of these con�
structs	 All nested data�parallel languages� such as Paralation�
Lisp �Sab���� Proteus �MNP����� or NESL �BCH��
� are
nested�parallel	 Other nested�parallel languages include PREF�
ACE �Ber��� and PTRAN �ABC����	 Languages such as
PCF �Lea��� and HPC�� �BGJ�
� are nested as long as
locks� or other synchronization mechanisms� are not used
among processes	 The language Cilk �BJK���� is not strictly
nested� but can be converted into a nested form by only in�
creasing the work and depth by a small constant factor	
We consider three implementations of nested�parallel lan�
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guages	 The �rst implementation assumes that each node
of the dag has at most binary fanout	 Such dags are suf�
�cient for languages that allow each process to spawn only
a constant number of child processes per step	 The sec�
ond allows for unbounded fanout but assumes the under�
lying machine has a fetch�and�increment operation �de�ned
below�	 Allowing for unbounded fanout makes it possible
to represent many computations with asymptotically less
depth than when restricted to binary fanout	 The third im�
plementation we consider shows how unbounded fanout can
be implemented on an erew pram model using a plus�scan
�all�pre�x�sums� operation instead of a fetch�and�increment
operation	

De�nitions and terminology	 We begin by de�ning the
terms we use in this section	 A process has started if its �rst
node �action� has been scheduled� and has �nished if its last
node has been scheduled	 A process is live if it has started
but not �nished	 A live process is active if one of its nodes
�actions� is ready and suspended otherwise �i�e�� when wait�
ing for one of its children to complete�	 A process is ready if
its �rst node is ready but has not been scheduled	 A spawn
node is the node �action� at which a process spawns a set of
children� and a synchronization node is the node at which
the process restarts after the children have �nished	 All the
processes that are spawned by the same spawn instruction
are called siblings	

We say a nested�parallel computation uses concurrent
access primitives if two or more nodes that are unordered
by its dag read or write the same memory location� if there
are no such nodes� the computation uses exclusive access
primitives	

To model space in nested�parallel languages we will use
the weighted dag models� and we therefore need only con�
sider the transitive reduction of the computation dags� which
are series�parallel	 In the implementation of any language�
each process needs storage space �a �frame�� for local data�
a program code pointer� and a pointer to the frame of its
parent process �analogous to a return pointer in serial lan�
guages�	 We will call these process frames and assume the
space for them is accounted for on the appropriate nodes of
the weighted dag �e�g�� a positive weight at the beginning of
the process and a negative weight at the end�	 In addition
to the process frames� our space model allows memory to be
allocated anywhere in a process and deallocated anywhere
in a �perhaps di�erent� process as long as there is a path in
the dag from the allocating node to the deallocating node	
The implementations we present employ data structures

for scheduling whose space is proportional to the number
of live processes	 We will therefore use the following bound
on live processes to bound the additional space used by the
scheduler�

Lemma 	�� �bound on live processes� If a pdf�
schedule is used to schedule a nested�parallel computation
of depth d � � on p � � processors� there can be at most p �d
live processes at any step�

Proof� Note that a �df�schedule can have at most d� � d
live processes at any step� where d� is the depth of the node
scheduled that step	 This is because only one sibling will
be live at a time �a previous sibling will always �nish before
the next starts�	 For a pdf�schedule we can have at most
�p�����d��� premature nodes �Theorem �	��� each of which

can start at most one additional process	 Thus the number
of live processes is at most p � d	

We will use three operations in our implementations�
a fetch�and�increment� a plus�scan and a copy�scan	 In a
fetch�and�increment operation� a processor can fetch a value
stored at an address� and then increment the value at that
address by �	 The fetch and the increment occur together as
a single atomic operation� such that if a set of k processors
fetch�and�increment to the same location concurrently then
it will appear as if the k fetch�and�increments occurred in
some sequential order	 A set of n fetch�and�increment oper�
ations �possibly to di�erent locations� can be implemented
work�e�ciently �i�e�� in O�n� work� in O�lg n� time on a
concurrent�read� concurrent�write �crcw� pram� and can
be implemented as e�ciently as concurrent reads or writes
on certain networks �Ran��� LMRR�
�	 However� there is
no known polylogarithmic time work�e�cient implementa�
tion on an erew pram� and fetch�and�increment is generally
considered an expensive operation in practice	 For the plus�
scan and copy�scan operations� it is assumed that there is a
total order on the processors	 In a plus�scan operation �also
called all�pre�x sums� each processor has an integer input
value and receives as output the sum of the values of preced�
ing processors	 In a copy�scan operation each processor has
an integer input value and an input �ag and receives as out�
put the value of the nearest preceding processor whose �ag
is set	 The plus�scan and copy�scan operations for n vir�
tual processors can be implemented work�e�ciently on an
erew pram with a very simple algorithm in O�lg n� time�
and can be implemented directly in hardware with a simple
tree	

�
� Binary fanout

The implementation of an online scheduler needs to be able
to identify the ready nodes and maintain the ordering of the
ready nodes in the P�stack algorithm	 Here we discuss how
this can be achieved when each process can spawn at most
two new processes on a given step	
In the series�parallel dags resulting from nested�parallel

computations� ready nodes can either be the children after
a spawn instruction� the node following a normal instruc�
tion in a process� or a synchronization node	 The �rst two
cases are easy to identify so we consider how to identify
when a synchronization node becomes ready� i�e�� when the
last child �nishes so that we can restart the computation of
the parent	 Since the computation is unfolding dynamically�
the scheduler does not know ahead of time which child will
�nish last or how long any of the child computations will
take	 Furthermore the scheduler cannot a�ord to keep the
parent active �busy�waiting� since this could lead to work�
ine�ciency �recall that such spawning can be nested�	 We
will call this problem of identifying when a synchronization
node is ready the task�synchronization problem	

In the case of binary spawning the task�synchronization
problem is relatively easy to handle	 When a process is
started we allocate two �ags� a synch��ag and a left�right
�ag	 Whenever a process does a spawn� it sets its synch��ag
to � and sets the left�right �ags of its two children to � and �
respectively	 The idea of the synch��ag is that it will be set
to � by the �rst of the two children to �nish	 In particular�
when a process �nishes it checks its parent synch��ag	 If the
synch��ag is � the process sets it to �	 If the synch��ag is �
the other branch has �nished and the process identi�es the
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parent process as ready	 To avoid having the two children
check the �ag simultaneously we can have the children check
on alternate instruction cycles� e�g�� left children �those with
left�right �ag set to �� check on odd cycles and right children
�those with left�right �ag set to �� check on even cycles	�

The test only requires constant time and can be executed
with exclusive access �erew�	
We now consider how the online scheduler maintains the

P�stack data structure	 The scheduler stores the stack as
an array in which each element is a pointer to a process
frame �or code to initialize a process frame� and the two �ags
mentioned above	 The elements of the array are therefore
of constant size	 At each step we take the �rst p actions o�
of the stack and execute them each on their own processor
�the ith processor picks the ith action o� the stack�	 By
de�nition each action takes constant time	 The actions can
result in either �� � or � new ready actions �� if a process
�nishes and the parent is not ready� � if continuing to the
next step in a process or if a process �nishes and the parent
is ready� and � if executing a spawn�	 A plus�scan operation
on these counts is used to determine for each processor how
many lower priority new actions exist before its new actions	
These results are then used to write the new ready actions
back into the P�stack� ahead of any actions that were not
taken o� the stack this step	 As long as the plus�scan is
executed across the processors in the same order as they
were taken from the stack� then the scheduler will maintain
the P�stack in the proper order for the P�stack algorithm�
and will therefore execute a pdf�schedule of the computation
dag	 All the above steps can be executed in constant time
on a p�processor erew pram augmented with a plus�scan
primitive� and hence in O�lg p� time on a �p� lg p��processor
standard erew pram	

Theorem 	�� �implementation with binary spawning�
Consider a computation expressed in a nested�parallel lan�
guage with binary spawning� which does w work� has depth
d� requires sequential space s� for the group one�weighted
space model� and uses �only� exclusive access primitives�
This computation can be implemented by the online sched�
uler described above in O�w�p � d� time and s� � O�p � d�
space on a p�processor erew pram augmented with a unit�
time� linear�work plus�scan primitive� including all costs for
computation� synchronization and scheduling�

Proof� We have discussed how task�synchronization and
each step of the scheduler can be implemented in constant
time	 We have also shown that the scheduler will execute a
pdf�schedule� and therefore by Theorem �	
 that the space
of the computation is bound by s��O�p � d�	 This however
does not include the space for the P�stack nor the additional
�ags we added� since these are part of the scheduler rather
than the computation itself	 We can account for every el�
ement in the P�stack by charging it to its parent� which
must be live� and we note that due to the binary spawn�
ing restriction� any process can have at most two children
in the P�stack at a time	 Since there can be at most p � d
live processes at any given time �Lemma �	��� and each al�
locates just two �ags and accounts for at most two elements
in the P�stack� the total space for the scheduler is bounded
by O�p � d�	

�A test�and�set instruction could also be used�

The construction used in Theorem �	� to allow for ar�
bitrary weights does not directly apply to binary spawning
since it assumes that all the dummy nodes have the same
parent and child	 It is not hard to extend it to allow for bi�
nary spawning� however� by creating a tree of dummy nodes�
but this might increase the depth of the computation	 Since
in the following sections we will allow for unbounded spawn�
ing� we will defer to these sections any further considerations
of non�constant allocations	

�
� Unbounded fanout with fetch�and�increment

We now extend the previous results to allow for spawn�
ing of an arbitrary number of processes on each step	 Al�
lowing for unbounded spawning makes it more complicated
to deal with both scheduling the processes and synchro�
nizing them when they �nish	 In this section we allow
for a fetch�and�increment instruction which makes the task�
synchronization problem relatively straightforward� so that
the main concern becomes how to maintain the schedule
within the stated space bounds	 In the next section we con�
sider the more complicated case of synchronizing without a
fetch�and�increment	
To implement task�synchronization we use a counter	

When a process is started� instead of allocating two �ags we
allocate two counters and an integer �eld	 The start�counter
will be used by the scheduler and is described below	 The
end�counter is used after the process does a spawn� and it
counts how many of its child processes have �nished	 The
num�spawned integer �eld is used to hold the number of child
processes spawned by a process	 Whenever a process does
a spawn� it sets both counters to � and sets num�spawned
to be the number of spawned child processes	 Whenever a
process �nishes� it increments its parent!s end�counter using
a fetch�and�increment	 If the increment brings the counter
up to num�spawned� then the �nishing child process iden�
ti�es its parent as ready	 Since the fetch�and�increment is
atomic� only one of the siblings will identify the parent as
ready� and only after all others have �nished	
We now consider how to maintain the P�stack data struc�

ture	 The problem with the scheduler as described in Sec�
tion �	� is that when allowing for unbounded spawning we
can no longer bound the number of ready nodes in the P�
stack by O�p�d�	 Instead what we do is store the ready nodes
in a compressed form	 When a process does a spawn� instead
of adding all the spawned children to the P�stack it adds a
stub entry that can be used to create the children lazily	 This
stub entry includes the num�spawned and the start�counter	
Whenever child processes are taken from the stub �started�
the counter is incremented� and when the counter reaches
num�spawned� the stub is removed	 Each stub entry there�
fore represents the ready� but not started� child processes
of a spawn instruction	 This is similar to the idea of con�
trol blocks used by Hummel and Schonberg to implement
parallel loops �HS���	 To allocate actions to processors at
a step� we expand out the �rst p actions from this com�
pressed representation of the P�stack	 Using standard pro�
cessor allocation techniques� this can be accomplished with a
plus�scan and copy�scan while maintaining the order among
the actions �Ble���	 As before� each processor executes an
action	 If it has an action from a stub� it executes the �rst
step of the corresponding child process thereby starting that
process	 Each action will result in either no new action �a
�nishing node�� a single new action� or a new stub entry �a
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spawning node�	 These can be placed back into the P�stack
in the correct order using a plus�scan operation	

We omit any formal proof that this approach maintains
the bounds stated in Theorem �	�� since we prove a stronger
theorem in the next section� but it is not hard to see that
only O�p � d� space is required by the scheduler since each
premature node can add at most constant space to the com�
pressed representation of the P�stack	 Furthermore� since
we allow for unbounded spawning� we can allow for the al�
location of arbitrary�sized blocks at each node and use The�
orem �	� to bound the time and space	

�
� Unbounded fanout without fetch�and�increment

We now consider how to solve the task�synchronization prob�
lem with unbounded spawning without using a fetch�and�
increment instruction	 The problem is that without a fetch�
and�increment we have no easy way to increment the end�
counter in parallel in order to detect when the last child com�
pletes	 One possible solution is to build a binary tree when
the processes are spawned which will be used to synchronize
as they �nish	 If n threads are spawned� this involves a lg n
slowdown to go up the tree when synchronizing� and unless
dynamic load balancing is used� will also require extra work	
Such an implementation therefore loses the advantage of al�
lowing for arbitrary fanout�the simulation costs equal the
extra depth in the dag required by binary fanout	

Description of the algorithm and data structures	
We avoid using a fetch�and�increment or a binary tree for
task�synchronization using the following approach�

�	 We generate a coordination list among siblings when
they are spawned	

�	 As each child �nishes� it removes itself from the list
by short�cutting between its two neighbors	 If nei�
ther neighbor is �nishing on the same step� the short�
cutting takes constant time	

�	 If multiple adjacent neighbors �nish� we use a copy�
scan computation to shortcut over all completing neigh�
bors	 To make this possible� we use properties of the
�df�schedule to show that all neighbors that are com�
pleting will be adjacent in the P�stack	 Note that
neighbors that are not completing might not be in the
P�stack at all since they might be suspended �i�e�� they
might have live children�	


	 When the last child �nishes� it reactivates the parent	
If multiple �nish simultaneously� then the leftmost re�
activates the parent	

This approach allows us to simulate each step of the
pdf�schedule in constant time on a p�processor erew pram

augmented with copy�scan and plus�scan primitives	 The
remainder of this subsection presents the details	

A coordination linked list	 Whenever we start a process
we allocate a link�node for it with previous and next pointers
which are used to maintain a bidirectional coordination list 	
We will maintain the invariant that the previous pointer
points to the link�node of the previous live process among
its siblings and the next pointer points to the next live or
ready process among its siblings	 If there is no such process
the pointer is set to a special value null	 A node is the

only un�nished sibling if both of its pointers are null	 This
makes it easy to recognize when to reactivate the parent	
We deallocate each link�node when its process �nishes	

Maintaining the coordination list	 The coordination
list must be maintained under the addition of more live sib�
lings as they are started and under the deletion of �nishing
siblings	 We �rst consider how to create the coordination
list	 As in Section �	�� we will use stub entries in the P�
stack to represent a set of ready child processes	 In each
stub entry we will maintain a last�child pointer to the link�
node of the last child process that was started �the one with
the lowest priority�	 The last�child pointer is initialized to
null	 On any step we can start a sequence of processes
�siblings� from a stub entry� and create a link node for each	
For the �rst of these processes we set its previous�pointer
to the last�child pointer	 For the last of these processes� we
set its next�pointer to null if the stub has been emptied�
and otherwise we set its next�pointer to point to the stub
entry and set the last�child pointer of the stub to point to its
link�node	 The remaining sibling processes are cross�linked
among each other	 This is easy to do since they will be in
adjacent processors	
We now consider maintaining the coordination list under

deletions	 If a single sibling �nishes� it can simply splice it�
self out of the list	 The possible di�culty is that a sequence
of up to p consecutive nodes in the list can be deleted at
the same time	 Standard parallel pointer jumping �i�e�� list�
ranking or chaining� can be used to update the links among
the remaining nodes� but this may be rather slow �e�g�� the
best known algorithm on an erew pram augmented with
copy�scan and plus�scan primitives takes ��lg p� time�� and
work�e�cient algorithms may be quite involved �Rei���	 In�
stead� we use the special features of our data structure to
derive a fast and simple solution for updating the links	 The
key observation� presented in Lemma �	�� is that if a se�
quence of two or more adjacent sibling nodes is deleted�
then their representatives reside in consecutive entries of
the P�stack �despite any further spawning that may have
occurred�	 Hence� updating the coordination list for this
deleted sublist can be implemented by executing a copy�
scan to copy the appropriate pointers across the consecutive
entries	

Lemma 	�� If a sequence of two or more adjacent sibling
nodes is deleted from the coordination list at a step� then the
�nishing nodes of these sibling processes are represented in
consecutive entries of the P�stack�

Proof� First� we note the following four facts	 �i� Sibling
nodes are put in their coordination list in the order of their
�df�numbers	 �ii� Nodes in the P�stack are ordered by their
�df�numbers	 �iii� A node may only be deleted from the
coordination list if its associated �nishing node is in the P�
stack	 �iv� When a �nishing node is placed in the P�stack�
it is ready� and hence its ancestors can neither be in the
P�stack or subsequently placed in the P�stack	
Next� the reader may verify the following property of df�

schedules in series�parallel dags� Given k � � consecutive
sibling processes� with starting nodes x�� � � � � xk and �nish�
ing nodes y�� � � � � yk� then the only nodes with �df�numbers
greater than y�!s �df�number but no more than yk!s �df�
number are the nodes that are� for some i � �� � � � � k� either
�a� xi� �b� yi for i � k� or �c� both a descendant of xi and
an ancestor of yi	
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Finally� let u and v be adjacent nodes in the current
coordination list� u before v� such that both are to be deleted
at this step	 By fact �iii�� their �nishing nodes are both in
the P�stack	 For every sibling node w between u and v
among the siblings� since w is no longer in the coordination
list� w has already been deleted� and hence by facts �iii�
and �iv�� no ancestor of w!s �nishing node can be in the P�
stack	 Similarly� since v is in the P�stack� no ancestor of its
�nishing node can be in the P�stack	 The lemma follows by
facts �i� and �ii�� and the above property	

Finally� we note that when all remaining siblings �nish
on a step� the leftmost of these is responsible for identifying
the parent as ready	

Large allocations	 As discussed in Section �	�� large al�
locations can be implemented within the space bounds by
placing dummy nodes into the computation	 In a nested�
parallel computation these can easily be added by having
an allocation of a non�constant size n spawn a set of n�m
�for any constant m� dummy processes which �nish immedi�
ately	 The actual allocation is made at the synchronization
node	

Complexity	 Each step of the pdf�schedule involves at
most p unit�time actions	 The operations on the data struc�
tures in the scheduling algorithm described above for one
step of a pdf�schedule can be implemented in a constant
number of steps on a p�processor erew pram plus a con�
stant number of applications of the plus�scan and copy�
scan operations	 We state the following theorem for an
erew pram augmented with copy�scan and plus�scan prim�
itives	 Since the scan operations can be implemented work�
e�ciently on a standard erew pram in O�lg p� time� this
implies bounds of O�w�p�d lg p� time and s��O�p �d � lg p�
space for a standard erew pram	 The same bounds also
apply with high probability on a hypercube using standard
simulations of the pram and standard implementations of
scans on a hypercube �Val���	 The following theorem is valid
for any of the weighted dag models	

Theorem 	�� �nested�parallel implementation�
Consider a nested�parallel computation with work w� depth
d� sequential space s�� which allocates at most O�w� space�
and uses �only� exclusive access primitives� This computa�
tion can be implemented by the online scheduler described
above in O�w�p � d� time and s� � O�p � d� space on a
p�processor erew pram augmented with unit�time� linear�
work copy�scan and plus�scan primitives� including all costs
for computation� synchronization and scheduling�

Proof� We �rst note that the transformation to deal with
large allocations will e�ect the work and depth of the com�
putation by at most a constant factor	 The work is only
e�ected by a constant factor since we are assuming the com�
putation allocates at most O�w� space	 By Corollary 
	�� the
P�stack algorithm described will execute a pdf�schedule	 By
Theorem �	� using a constant for m� there are O�w�p� d�
steps in the pdf�schedule and the space for the computation
will be within the speci�ed bounds	 As discussed above� all
steps can be executed in constant time	 We now consider
the space for the scheduler� which is limited to the space for
the P�stack and for the link�nodes	 We note that only live
processes can contribute an entry to the P�stack and each
live process can contribute at most one entry� either one of
its actions or a stub entry for a set of its ready children	

Furthermore the link�node is only needed while a process is
live	 Since there are at most p � d live processes at any time
�Lemma �	��� and the stub entries and link�nodes are of con�
stant size� the space required by the scheduler is bound by
O�p � d�	
For the crcw pram �without any extra primitives�� the

time bounds may be improved over those obtained for the
standard erew pram by replacing the copy�scan and plus�
scan operations with randomized crcw algorithms for chain�
ing and approximate pre�x�sums	 The details are left to the
interested reader	

� Related work

In this section� we discuss previous related works on parallel
scheduling� including early work on time bounds for parallel
schedules� work on heuristics to limit memory usage� work
on scheduling algorithms with provable space bounds� work
on scheduling for languages with nested parallelism� work on
automatic processor allocation� and work on pebble games	
In early parallel scheduling work� Graham �Gra

� Gra
��

modeled a parallel computation as a dag of tasks� where
each task takes an arbitrary� but known number of time
units and must be scheduled on a single processor without
preemption	 He introduced the notion of list�schedules in
which there is a total order among the tasks that dictates
the scheduling priorities� and proved that a particular greedy
list schedule is within a factor of two of optimal There was
a large body of research that extended this work in various
ways� much of which is summarized by Co�man �Cof�
�	
Brent �Bre�
� showed that a dag with n unit cost nodes�
and depth d can be scheduled on p processors in less than
n�p � d steps using a breadth��rst schedule	 Some more
recent work has considered issues of communication costs
�e�g� �PU��� PY����	 Burton et al	 �BMRS��� considered
modeling the execution of parallel languages as dynamically
unfolding DAGs and showed how some of the previous work
on static DAGs could be applied	 None of the above work
considered memory usage	
Several papers have developed scheduling heuristics for

limiting the space required by functional�data�ow programs
�e�g� �BS��� Hal��� RS��� CA����	 An early work that pro�
vided provable space bounds for tree�structured programs
was due to Burton �Bur���	
Blumofe and Leiserson �BL��� BL�
� considered space

and time bounds for a multithreaded model in which each
thread contains any number of tasks	 Their results also re�
lated the parallel space and time to the work w of a program�
the critical path length or depth d of a program� and the
space s� required to execute it sequentially	 They showed
that using their model and scheduling scheme the parallel
space is bounded by O�s��p� and the parallel time is bounded
by O�w�p� d�� where p is the number of processors	 Their
model di�ers from ours in several respects	 First� they as�
sume that all data needs to be stored within the threads	
When a new thread is spawned� memory is allocated for the
entire thread and deallocated only when the thread termi�
nates	 In our model data can be viewed as residing in a
global pool� and we allow individual tasks to allocate and
deallocate data on�the��y	 Another di�erence is that each
task in our model can spawn an arbitrary number of new
tasks at a time� whereas each thread in their model can
spawn only one new thread at a time	 Because of this� their
work�stealing algorithm �BL�
� is likely not appropriate in
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(A) (B)

Figure �� Two dags corresponding to fully�strict computa�
tions	 The nodes down the center of both dags correspond
to a single parent thread	

our model� and they do not solve the general processor al�
location and task�synchronization problems we address	 An
advantage of their model is that since the memory is asso�
ciated with the threads it is easier to account for commu�
nication costs� and in fact they prove good bounds on the
total amount of communication needed by the computation
under their scheduling algorithm	

Blumofe and Leiserson prove their bounds for fully�strict
computations� which are similar but not identical to nested�
parallel computations	 In a fully�strict computation� a thread
need not suspend when it forks a child	 It can synchro�
nize at any point with its parent� but with no other thread	
Figure ��a� illustrates a strict computation that is neither
purely nested nor planar	 It is not hard� however� to mod�
ify our online algorithm to work with fully�strict compu�
tations	 Furthermore� the actual synchronizations used in
Cilk �BJK���� �the language in which their bounds are ap�
plied� only allow for synchronization points that join all chil�
dren� as shown in Figure ��b�	 Such synchronizations lead to
planar graphs that can be scheduled by our Maintain�Order
algorithm	

In more recent work� Blumofe et al	 �BFJ��
� have shown
improved bounds for their work�stealing scheduler when ap�
plied to regular divide�and�conquer algorithms �i�e�� algo�
rithms that divide the data into a equal�sized subproblems
each of size n�b�	 For example for a divide�and�conquer
matrix multiply� where a � �� b � � and the sequential
space� s�� is n

�� their new space bounds for p processors are
sp � ��p�n�p�� lgb a��� � ��n�p����	 These bounds are not
as good as the sp � n��O�p lg� n� bounds obtained by our
techniques	
Burton and Simpson �BS�
� �see also �Bur�
�� developed

a scheduling algorithm for dynamically unfolding dags	 In
their most general model� associated with each node is the
time to perform the task and the amount of memory allo�
cated or deallocated by the task	 Nodes in the dag may
have arbitrary fanin and fanout	 This roughly corresponds
to our weighted dag model except that their tasks are not
necessarily unit�time tasks	 Their model does not permit
schedule�dependent deallocation� and hence cannot model
languages using garbage collection	 They present a schedul�
ing algorithm for p processors that guarantees at most s� � p
space and at most w�p � d steps �ignoring all scheduling
overheads�� where the sequential space s� is the worst case
space bound considering all possible depth��rst schedules	

In contrast� we de�ne the sequential space to be the space
used by the standard �df�schedule� i�e� the �df�schedule
in which the leftmost ready child is explored	 Scheduling
overheads are considered for dags with unit�time tasks and
constant fanout	 For such dags� they present a decentral�
ized� randomized work�stealing algorithm that guarantees
O�s� � p� space and whose expected time is within a con�
stant factor of optimal for programs with su�cient paral�
lelism	 This time bound ignores any overheads associated
with identifying ready nodes �in particular� detecting when
a task with multiple parents becomes ready� e�g�� the task�
synchronization problem we solve�	
Various techniques have been considered for implement�

ing nested parallel languages �FTYZ��� HS���	 A scheduling
technique with provable time bounds was presented in �Ble���	
The time bounds are the same as presented in this paper
on the same model and include all scheduling and synchro�
nization costs� but the results are limited to a subclass of
nested�parallel programs called contained programs	 The
technique was the basis for the original implementation of
the Nesl programming language �BCH��
�	 Similar results
where shown by Suciu and Tannen for a parallel language
based on while loops and map recursion �ST�
�	 Blelloch and
Greiner �BG��� proved that the nested�parallelism available
in call�by�value functional languages can be mapped onto
the crew pram with scan primitives with the same time
bounds as given in this paper	 This parallelism is limited
to binary fanout	 None of the above work considered space
bounds	
Several recent works have studied automatic processor

allocation in certain computation paradigms� such as task
decaying algorithms� geometric decaying algorithms� spawn�
ing algorithms� and loosely�speci�ed algorithms� the pro�
posed scheduling techniques were typically based on very
fast crcw pram algorithms for relaxed versions of the pre�x�
sums problem such as linear compaction� load balancing� in�
terval allocation� and approximate pre�x�sums �GM��� GMV���
Goo��� Hag��� MV��� Mat��� Hag��� Gil�
� GM�
� GMV�
�
GZ���	 The techniques that were used are insu�cient� how�
ever� to cope with the model considered in this paper� even
when space considerations are ignored	 In particular� pre�
vious techniques assumed that whenever a thread goes to
sleep� it is known precisely which step it will awake	 Thus
the task�synchronization problem we solve does not arise in
these previous models	
There have been many papers on sequential pebble games�

most of which have studied various space�time tradeo�s	
Pippenger gives a good summary of most of the early work �Pip���	
The parallel pebble game we use was described by Sav�
age and Vitter �SV�
�	 They showed that an n�input FFT
graph can be p�pebbled in O�n���sp� � �n lg s��p� time us�
ing lg n � s � O�n� lg n� pebbles	 This result allows for
repebbling	 They� however� did not show any general results
bounding pebbles and time for arbitrary graphs	 Two player
parallel pebble games have been considered �VT��� VT���
and used to characterize various parallel complexity classes�
such as LOGCFL and AC�	 These games seem unrelated to
the parallel pebble game we consider	

	 Discussion

This paper has presented important new results for o�ine
and online scheduling� including the �rst bounds on the
space of greedy parallel schedules that are within a factor of
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Figure �� A non�planar embedding of a dag for which
the P�stack algorithm will fail to execute a pdf�schedule
for p � �	 The nodes are labeled with their �df�
numbers	 The P�stack algorithm will generate the schedule
f�g� f�� �g� f�� �� �g� f
� 
� ��g� f�g� f��g and therefore sched�
ule nodes � and �� out of order	

� � o��� of the sequential space �assuming su�cient paral�
lelism�	 We conclude the paper by discussing various recent
extensions of this work and some areas for future research	

Nondeterminism	 This paper has been concerned with
deterministic programs� in which the computation dag is in�
dependent of the order in which nodes are scheduled	 Some
of the results can be extended to nondeterministic programs�
e�g�� programs with race conditions� although then the bounds
are based on the worst�case dags over all schedules� as fol�
lows	 Nondeterministic programs can be viewed as pro�
grams whose computation is a nondeterministic selection
from a set� G� of deterministic dags	 Consider a determin�
istic procedure for generating a ��pebbling of an arbitrary
dag	 Then a p�pebbling based on the ��pebbling procedure
uses at most maxG�G�P��G��d�G��p� pebbles� where P��G�
is the number of pebbles in a ��pebbling of the dag G and
d�G� is the depth of G	

Futures	 Although the P�stack algorithm works for all
�s� t��planar dags with counterclockwise edge priorities� it
is not guaranteed to work for more general classes of dags	
Figure � gives an example dag on which the given edge
priorities �as revealed by the �df�numbers� result in a non�
planar embedding� and the P�stack algorithm will not gener�
ate a pdf�schedule	 This sort of dag can appear when using
futures �BH��� Hal���� and the P�stack algorithm therefore
will not in general execute a pdf�schedule in languages that
support futures	 The work in this paper has been extended
to generate the pdf�schedule for such languages by using a
��� tree data structure that maintains the ready set in the
appropriate priority order �BGMN���	

Reducing scheduling overheads	 Our schedules assume
that each node represents a unit�time action	 If these ac�
tions are just a single operation such as an addition� then
the constant�time cost for scheduling the node could signif�
icantly outweigh the cost of executing the action	 To avoid
this it is important to schedule larger blocks of work as a sin�
gle node	 If we assume memory is allocated at the beginning
or end of a block then grouping computations into �xed�
size blocks does not alter our space bounds	 This� however�
would require that a compiler break up threads into �xed�
sized blocks so they can be preempted at the end of each

block	 Following up the results in this paper� Narlikar and
Blelloch �NB��� presented a scheduling algorithm that runs
jobs mostly nonpreemptively� while maintaining the same
space bounds as presented in this paper	 The basic idea is
to allocate a �xed pool of memory to a thread when it starts
and then allow it to run nonpreemptively until it either ter�
minates� forks new threads� or runs out of memory from its
pool	 They also presented experimental results demonstrat�
ing that the technique is both time and space e�cient in
practice	

Reducing communication costs	 Our scheduling algo�
rithm does not consider machine locality	 The technique
discussed in the previous paragraph can help keep locality
and reduce communication costs since it will keep threads
on the same processor as long as possible	 However� prov�
able bounds on communication� such as those presented by
Blumofe and Leiserson �BL�
�� have not been shown� and
since the technique tends to schedule the child threads on
di�erent processors than the parent� it is unlikely to be
as communication�e�cient as the approach in �BL�
�	 An
open question is whether any communication bounds can be
shown for scheduling algorithms related to the one discussed
in this paper� or possibly for hybrid algorithms that combine
ideas from this paper and from �BL�
�	

Memory allocation procedures	 The space bounds
given earlier account for the absolute number of memory
cells used� without addressing the issue of explicit mem�
ory allocation for our data structures and for the program
variables declared during the execution	 Memory alloca�
tion for maintaining the P�stack as an array is straightfor�
ward	 Memory allocation for maintaining the link�nodes
for each process can be done using a dynamic dictionary
data structure	 For the program variables themselves al�
location will depend on the management scheme	 If we
assume all memory is allocated as stack frames or using
allocate and free �i�e� no garbage collection� then the pro�
gram memory can also be maintained using a dynamic dic�
tionary data structure	 Hence� an adaptive allocation and
deallocation of space� so as to maintain at each step space
which is linear in the number of live processes� or in the
number of program variables� can be implemented in log�
arithmic time on a p�processor erew pram �PVW���� and
in O�lg� p� time and linear work with high probability� on a
crcw pram �GMV���	
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