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ABSTRACT

A well known phenomenon in social networks is homophily,
the tendency of agents to connect with similar agents. A
derivative of this phenomenon is the emergence of commu-
nities. Another phenomenon observed in numerous networks
is the existence of certain agents that belong simultaneously
to multiple communities. An understanding of these phe-
nomena constitutes a central research topic of network sci-
ence.
In this work we focus on a fundamental theoretical ques-

tion related to the above phenomena with various applica-
tions: given an undirected graph G, can we infer efficiently
the latent vertex features which explain the observed net-
work structure under the assumption of a generative model
that exhibits homophily? We propose a probabilistic gener-
ative model with the property that the probability of an
edge among two vertices is a non-decreasing function of
the common features they possess. This property is true
for many real-world networks and surprisingly is ignored by
many popular overlapping community detection methods as
it was shown recently by the empirical work of Yang and
Leskovec [44]. Our main theoretical contribution is the first
provably rapidly mixing Markov chain for inferring latent
features. On the experimental side, we verify the efficiency
of our method in terms of run times, where we observe that
it significantly outperforms state-of-the-art methods. Our
method is more than 2 400 times faster than a state-of-the-
art machine learning method [37] and typically provides non-
trivial speedups compared to BigClam [43]. Furthermore,
we verify on real-data with ground-truth available that our
method learns efficiently high quality labelings. We use our
method to learn social circles from Twitter ego-networks and
perform multilabel classification.

Categories and Subject Descriptors
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1. INTRODUCTION
The major scientific concept of pattern recognition relies

on finding the appropriate hidden variables in terms of which
the patterns of a dataset are clearly described [34]. In the
case of graph datasets, this major problem appears in var-
ious guises, e.g., [11, 13, 23, 32, 38] and has been attacked
both by the algorithmic graph theory and the machine learn-
ing communities -among others- using different machinery.
The former has focused on the ubiquitous graph clustering
problem whereas the latter on learning latent classes and
features. The difference between latent class models and
latent feature models is that the former assume that each
entity belongs exactly to a single cluster, whereas the latter
allow for each entity to participate in multiple clusters. An
analogous distinction also exists in the algorithmic graph
theory community where the vertex set can be partitioned
to either non-overlapping or overlapping sets [24].

Consider Figure 1. Each agent is represented as a vertex
vi, i = 1, . . . , 5 and has three binary features associated with
it. Each feature indicates whether the agent is interested in
the news categories business, technology and entertainment

respectively. The agents decide how to connect based on
whether they share common interests. Specifically, Figure 1
shows the graph which emerges when each vertex connects to
another vertex if and only if they share at least one common
interest, namely a coordinate that is equal to 1 for both
vertices. For instance, the single common feature between
v1 and v2 is the business news. We refer to such coordinates
as common features between the two vertices. It is clear from
our toy example that given the vertex labelings and a rule on
how vertices decide their connections, finding the resulting
graph is easy. An interesting problem is to understand the
other direction. Specifically, the question we focus on is the
following:

Under the assumption that each agent has k latent binary

features, and two agents form a connection with higher prob-

ability if they share more features, how can we learn effi-

ciently the latent features?

Additionally to its theoretical importance, answers to this
question have numerous applications. Applications of inter-
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Figure 1: A graph G(V,E) on five vertices. Each
vertex vi is labeled with three binary features and
connects with other vertices that possess at least one
common feature. For details, see text of Sections 1
and 3.

est include learning social circles [29, 43], distributed com-
putation [7], detecting multifunctional proteins [12], min-
ing collaboration, word-association and protein interaction
graphs [36], link prediction [32, 37] and studying cancer [22]
among many others.
Our main contributions are summarized as follows.

Modeling. We depart from the deterministic model we
described above by introducing a simple probabilistic gener-
ative model with the following property: the probability of
an edge between two vertices is a non-decreasing function of
their common features. This property is motivated by the
recent empirical work of Yang and Leskovec [44].

Hardness and Guarantees. We show that maximizing
the log-likelihood function is NP-hard by proving that it
subsumes as a special instance the overlapping correlation
clustering problem [14]. We provide combinatorial insights
by connecting the machine learning problem with specific
graph sub-structures. Then, we provide a rapidly mixing
Markov chain for learning latent features. To the best of our
knowledge, this is the first rapidly mixing chain for learning
latent features from network data. Furthermore, our method
sheds light on the performance of the local heuristic due to
Bonchi et al. [14].

Scalability. Our method is more than 2 400 faster than a
state-of-the-art machine learning method due to Palla et al.
[37] on small sized graphs. In larger graphs the speedup be-
comes even more pronounced. Also, our method is trivially
parallelizable.

Accuracy and robustness to noise. Our method is
able to learn high quality latent labelings, typically achiev-
ing more than 90% precision and recall. Furthermore, our
method is able to recover latent labelings from noisy simi-
larity graphs in contrast to BigClam [43].

Applications. Our proposed method is able to learn so-
cial circles from Twitter ego-networks successfully. It per-
forms comparably well or outperforms BigClam [43], the
best among various competitors we compared our method
against. We also use our method to perform multilabel clas-
sification from nearest-neighbor and similarity graphs.

2. THEORETICAL PRELIMINARIES
In this Section we present the necessary theoretical back-

ground for our main theoretical result in Section 3. The
interested reader may read the book of Levin, Peres and
Wilmer [30] for a detailed exposition of the concepts that
follow.

Xuv = 0 Xuv = 1
Auv = 0 1− q 1− p
Auv = 1 q p

Table 1: Conditional probabilities Pr [Auv|Xuv]. In-
dicator variable Xuv takes the value 1 if and only if
vertices u, v share at least 1 out of k features, i.e.,
ωT (u)ω(v) ≥ 1. For details, see text of Section 3.

Definition 1 (Coupling). A coupling of two probabil-

ity distributions µ, ν is a pair of random variables X,Y de-

fined on a single probability space such that the marginal

distribution of X is µ and the marginal distribution of Y is

ν.

The mixing time measures the time required by a Markov
chain to approach the stationary distribution. A precise
definition follows. We remind the reader that the total vari-
ation distance between two probability distributions µ, ν is
|µ− ν|TV = 1

2

∑

x∈Ω |µ(x)− ν(x)|.

Definition 2 (Mixing time). The mixing time is de-

fined as

tmix(ǫ) = min {t : max
x∈Ω
|P t(x, ·)− π|TV ≤ ǫ}

where π is the stationary distribution and P t(x, ·) is the

probability distribution of the state of the chain starting at

state x after t steps.

We invoke the following result due to Bubley and Dyer in
Theorem 2.

Theorem 1 (Path coupling [15]). Suppose the state

space Ω of a Markov chain is the vertex of a graph with length

function l defined on edges. Let ρ be the corresponding path

metric, namely

ρ(x, y) = min {length of P:P a path from x to y}.

Suppose that for each edge {x, y} there exists a coupling

(X1, Y1) of the distributions P (x, ·) and P (y, ·) such that

E [ρ(X1, Y1)|X0 = x, Y0 = y] ≤ ρ(x, y)e−α.

Then, tmix(ǫ) ≤

⌈
− log ǫ+log

(
diam(Ω)

)

α

⌉

.

3. PROPOSED METHOD

Generative model. Consider again the example in Fig-
ure 1 and suppose for instance that the number of latent
features is not a priori known. A simple argument shows
that the smallest number of latent features k∗ that can per-
fectly explain the observed graph is three. To see why,
assume for the sake of contradiction k∗ = 2. Since there
are no isolated vertices, there exist three possible labelings
{(01), (10), (11)}. Notice that vertex v5 cannot be labeled as
(11) since it is not connected to every other vertex. Hence,
without loss of generality it is labeled (01). Since v1, v2, v3
are not connected with v5, they have to be labeled by (10).
But then since v1, v3 have the same label, they should see
exactly the same (non)-neighborhood which contradicts the



observed graph structure. As it is obvious from Figure 1(a),
three labels suffice to explain perfectly the graph structure.
We depart from this deterministic generative model as

follows. Let ω : V → {0, 1}k be the latent vertex labeling.
Define for each vertex v the set C(v) of non-zero coordi-
nates. This set intuitively corresponds to the interests of
v. Vertex v establishes its connections with other vertices
based on the following simple rule: for each vertex u such
that |C(v) ∩ C(u)| ≥ r it adds an edge (u, v) with probabil-
ity p. If |C(v) ∩ C(u)| ≤ r − 1 it adds an edge (u, v) with
probability q < p. Notice that under this model, a vertex
v with no interests (C(v) = ∅), connects to each u ∈ V \{v}
independently with probability q. In the rest of the paper,
we set r = 1, which results already in a simple yet non-
trivial probabilistic model. We define for each pair of ver-
tices u, v the indicator variable Xuv = 1(ωT (u)ω(v) ≥ 1) =
1 − 1(ωT (u)ω(v) = 0). Table 1 shows for any pair of ver-
tices u, v the probability of the edge (u, v) conditioned on the
value Xuv. Specifically, Pr [Auv = 1|Xuv = 1] = p ∈ (0, 1)
and Pr [Auv = 1|Xuv = 0] = q ∈ (0, 1).

Maximum likelihood function. The likelihood function
of a graph G(V,E) given the latent labeling is

Pr [G|ω] =
∏

(u,v)∈E(G)

pXuvq1−Xuv×

∏

(u,v)/∈E(G)

(1− p)Xuv (1− q)1−Xuv ⇔

log2
(
Pr [G|ω]

)
= C(n,m, p, q) +

∑

(u,v)∈E(G)

Xuv log2
(p

q

)
+

∑

(u,v)/∈E(G)

(
1−Xuv

)
log2

(1− q

1− p

)

where C(n,m, p, q) = m log2 q +
((

n
2

)
−m

)
log2 (1− p) is a

constant that does not depend on the labeling ω. We show
that maximizing Pr [G|ω] over ω ∈ Ω = 2[nk], the set of all
possible binary labelings of n vertices with k binary features,
is in general NP-hard.

Objective Let’s consider the special case p = 1 − q = 2
3
.

Then, maximizing the likelihood function becomes equiva-
lent to

max
ω:V →{0,1}k

∑

(u,v)∈E(G)

1(ωT (u)ω(v) ≥ 1)+ (1)

∑

(u,v)/∈E(G)

1(ωT (u)ω(v) = 0)

We refer to the function we aim to maximize as h : Ω→ R.
This objective was introduced by Bonchi et al. [14] and is
known as the overlapping correlation clustering (OCC) prob-
lem. Our analysis provides a probabilistic interpretation of
OCC [14]. Furthermore, we directly obtain that maximizing
the likelihood function for a given graph under our genera-
tive model is NP-hard. This is stated as the next lemma.

Lemma 1 ([14]). Optimizing 1 in general is NP-hard.

In the following we study certain basic combinatorial as-
pects of Objective 1. First, notice that trivially the optimum

of Objective 1 is at most
(
n
2

)
. We refer to this value as per-

fect score. Our first observation is that when the number of
features k is at least the number of edges, we can achieve
a perfect score. Specifically when k ≥ m, for each edge
e = (u, v) ∈ E we create a binary feature fe. We set the
coordinate fe to 1 only for the endpoints u, v. For the rest
of the vertices, fe is set to 0.

Consider the star graph K1,n−1 on n vertices, an instruc-
tive special case. How many features are there needed to
obtain a perfect score? Clearly, if we use k = n− 1 features,
then there is a labeling achieving perfect score. The center
vertex is labeled as 1 . . . 1

︸ ︷︷ ︸

n−1 ones

and for all i = 1, . . . , n−1 the i-

th leaf is labeled as ei, where ei is a vector whose coordinates
are zero except for the i-th coordinate which is equal to 1.
Can we use k < n−1 features and still have a perfect score?
The answer is negative. To see why, assume that there exists
k < n−1 such that we can label the vertices with k features
and obtain a perfect score. We can assume without any loss
of generality (otherwise the score is not perfect) that all the
edges of the star tree are satisfied, namely each leaf shares at
least one feature with the center vertex. Consider the labels
of the n−1 leaves and specifically their non-zero coordinates
that agree with the center vertex. By the pigeonhole prin-
ciple, since k < n− 1 at least one pair of leaves will have to
share a common feature. But since these two leaves are not
connected by an edge, at least one non-edge is not satisfied
and hence the score cannot be perfect.

We wish to outline two facts. We observe that the latent
labeling sheds light on the overlapping community structure
of the graph. In the case of the star, we have n − 1 com-
munities overlapping on the center vertex, which is perfectly
reflected by the labeling achieving a perfect score. Secondly,
the argument above can be generalized to provide a lower
bound on the number of features needed to obtain a perfect
score. This is stated as the next lemma.

Lemma 2. Let Kα,β be an induced bipartite clique in G(V,E).
Then, at least αβ features are required to achieve a perfect

score.

The proof is omitted as it is similar to the argument for
the star graph K1,n−1. The above lemma implies that if
Kα,β is an induced bipartite clique that maximizes the prod-
uct αβ over all possible induced bipartite cliques, αβ is a
lower bound on the bound of features we need to explain
the graph. On the other hand, as we noticed above m is
an upper bound. Hence the bounds are tight, as we can see
from the star graph K1,n−1. Additionally, a simple corol-
lary of Lemma 2 is that the number of features needed is at
least the diameter of the graph, a computationally tractable
graph parameter.

Corollary 1. At least D features are required to achieve

a perfect score, where D is the diameter of the graph.

Finally, we observe that there exists a trivial constant factor
approximation algorithm.

Lemma 3. For any k ≥ 1 there exists a trivial constant

approximation factor.

Proof. If m = Θ(n2), then let f(v) = 1 . . . 1
︸ ︷︷ ︸

k ones

for all v ∈

V (G), otherwise let f(v) = 0 . . . 0
︸ ︷︷ ︸

k zeros

.



Obtaining a polynomial time approximation scheme (PTAS)
is an interesting direction. Here we design a rapidly mixing
chain.

Algorithm 1 Metropolis Chain

Input: Graph G, mixing parameter c, number of steps T
1: Let ω0 : V → {0, 1}k be an arbitrary initial labeling.
2: for t← 1 to T do
3: Choose a vertex u uniformly at random from V (G)

and a k-labeling x uniformly at random from 2[k]

4: Perform the transition from ωt−1 to ωt such that
ωt(u) = x and ωt(v) = ωt−1(v) ∀v 6= u with prob-

ability min
(

1, ec
(
h(ωt)−h(ωt−1)

))

.

5: end for
6: Output the best seen state.

Proposed method. Our proposed algorithm is shown
in Algorithm 1. Our algorithm maximizes the function h :
Ω → R, see Equation (1), using a Metropolis chain, which
takes as input the graph G, the number of steps T , and a
parameter c ≥ 0 which controls the trade-off between the
search space efficiency and the quality of the optimization.
In the following we interchangeably refer to a binary labeling
as a state. For a state ω we denote with ω(v) the labeling
of vertex v. The metric we choose is the Hamming met-
ric. Specifically, the distance between two states ω1 6= ω2

is the number of vertices in which the two states differ, i.e.,
dist(ω1, ω2) = |{u ∈ V : ω1(u) 6= ω2(u)}|. Notice that the
diameter of the state space is exactly n, i.e., diam(Ω) = n.
Even if Metropolis chains are treated in standard text-

books [30], it is worth explaining parameter c in further de-
tail as it highlights the significance of our theoretical result.
In the limit c→ +∞ the chain resembles a deterministic hill
climb algorithm and hence is limited by local optima which
can result in a poor latent labeling. This is essentially the
method of Bonchi et al. [14], even if it is not explicitly stated
in their paper. This also explains the main drawback of their
method, namely being prone to local optima. At the other
extreme, as c → 0 the search over the state space becomes
efficient but in vain: the latent labelings we aim to find are
not favored by the stationary distribution since the latter
becomes uniform. Our main theoretical result is that there
exists a non-trivial choice of c for which the Metropolis chain
both mixes rapidly even if the state space is exponentially
large and favors the states that optimize our objective. This
is stated as Theorem 2. In the following, we assume that
k = Θ(1) which results in a practical Õ(n) algorithm.

Theorem 2. There exists a non-trivial range for the pa-

rameter c = c(n) for which the Metropolis chain mixes rapidly,

i.e., tmix(ǫ) = O

(

n log2
(
n
ǫ

)
)

for any ǫ > 0.

Proof. Let Xt, X
′
t be two copies of the chain starting

from states ω1, ω2 ∈ Ω, such that dist(ω1, ω2) = 1. Let
u ∈ V be the single vertex for which ω1(u) 6= ω2(u). We
consider the following coupling:

• Chain Xt chooses a vertex v and a string x ∈ {0, 1}k,
both uniformly at random.

• Chain X ′
t chooses exactly the same vertex-string pair

(v, x).

Let ω, ω′ be the two new candidate states for the first (Xt)
and the second chain (X ′

t) respectively. Now we set the joint
transition probability distribution in such a way that Xt, X

′
t

stay as close as possible while respecting the marginals.
Case I: Pr [ω1, ω] ≥ Pr [ω2, ω

′]: If the first chain (Xt) per-

forms the switch, then the second chain (X ′
t) performs also

a switch with probability
Pr[ω2,ω

′]
Pr[ω1,ω]

. If the first chain does

not perform a switch, so does not the second chain too. No-
tice that the marginal for the second chain is correct. To
see why, the probability that the second chain X ′

t performs
a switch is

Pr [ω1, ω]
Pr [ω2, ω

′]

Pr [ω1, ω]
+ (1−Pr [ω1, ω])0 = Pr

[
ω2, ω

′] .

Case II: Pr [ω1, ω] < Pr [ω2, ω
′]: If the first chain (Xt) per-

forms the switch, so does the second chain (X ′
t). If the first

chain does not perform a switch, the second chain performs

a switch with probability
Pr[ω2,ω

′]−Pr[ω1,ω]

1−Pr[ω1,ω]
. Again, notice

that the marginal for the second chain is correct. The prob-
ability that the second chain X ′

t performs a switch is indeed
what it should be:

Pr [ω1, ω]× 1 + (1−Pr [ω1, ω])
Pr [ω2, ω

′]−Pr [ω1, ω]

1−Pr [ω1, ω]

= Pr
[
ω2, ω

′] .

Now we study the expected distance between the two
chains after one step. Notice that the distance may remain
the same, but it also may increase by 1, or decrease by 1.
Let I,D be the events for the two latter cases. Then, the
expected distance after a single step of the chain is

E [dt+1|dt = 1] = 1 + 2Pr [I]−Pr [D] .

Since we wish to upper bound E [dt+1|dt = 1], we appro-
priately bound Pr [D] and Pr [I]. Before that, we make a
simple observation that we use for both bounds. Consider
any labeling ω : V → {0, 1}k and suppose we change the la-
beling of a single vertex u, resulting in the new labeling ω′.
Then, clearly |h(ω) − h(ω′)| ≤ n − 1 and the upper bound
is tight.

Lower-bound Pr [D] : If the chosen vertex v is vertex u,

then the distance cannot increase since ω = ω′. Specifically,
the distance either remains 1 or decreases to 0. The latter
happens when both chains perform the switch. Let this
event be S Given our coupling the probability that both
perform the switch is Pr [D] = min

(
Pr [ω1, ω] ,Pr [ω2, ω]

)
.

To see why, notice that if Pr [ω1, ω] ≥ Pr [ω2, ω] then the
probability that both chains switch is due to our coupling

Pr [ω1, ω]
Pr[ω2,ω]
Pr[ω1,ω]

= Pr [ω2, ω]. Similarly, if Pr [ω1, ω] <

Pr [ω2, ω] then the probability is Pr [ω1, ω] × 1. To lower
bound Pr [D] we use the inequality e−x ≥ 1 − x which is
true for x ≥ 0. Since the probability of choosing the vertex
u on which the two states ω1, ω2 disagree is 1

n
, we obtain

that Pr [S] ≥ 1
n
e−cn ≥ 1

n
− c.

Upper bound Pr [I]: Suppose that the chosen vertex v is
not u, i.e., i.e., the two chains agree on the labeling of v,
ω1(v) = ω2(v). Then, if both chains perform the switch
the distance remains 1, otherwise if exactly only one of
the two chains performs the switch the distance increases



to 2. First we notice that if Pr [ω1, ω] ≥ Pr [ω2, ω
′] the

probability that only the first chain performs the switch

is Pr [ω1, ω]
(

1 −
Pr[ω2,ω

′]
Pr[ω1,ω]

)

= Pr [ω1, ω] − Pr [ω2, ω
′]. If

Pr [ω1, ω] < Pr [ω2, ω
′] then the probability that only the

second chain performs the switch is
Pr[ω2,ω

′]−Pr[ω1,ω]

1−Pr[ω1,ω]

(

1 −

Pr [ω1, ω]
)

= Pr [ω2, ω
′] − Pr [ω1, ω]. We can write this in

a compact way by saying that the probability that exactly
one of the two chains performs the switch is

F = |Pr [ω1, ω]−Pr
[
ω2, ω

′] |.

We upper-bound F by considering one of the two prob-
abilities as large as possible, namely 1, and the second as
small as possible, namely e−cn. Therefore,

F ≤ 1− e−cn ≤ cn.

Notice that the probability that we choose v 6= u is n−1
n

and

the probability we choose a labeling x ∈ {0, 1}k such that

x 6= ω1(v) = ω2(v) is
2k−1
2k

. Therefore, we obtain

Pr [I] =
n− 1

n

2k − 1

2k
F < F ≤ cn.

Therefore, by choosing c = 1
3n2 , for any n ≥ 4 we obtain

the following valid inequality

E [dt+1|dt = 1] = 1 + 2Pr [I]−Pr [D]

≤ 1 + 2cn−
( 1

n
− c

)
≤ 1−

1

4n
= β.

Therefore, by Theorem 1 we obtain that the mixing time

tmix(ǫ) ≤
log2

(
n
ǫ

)

1− β
= O

(

n log2
(n

ǫ

)
)

.

Finally, the states that maximize Objective 1 are favored
by this choice of c. By Lemma 3, the optimal states achieve
an objective ofDn2 for some constantD. Hence, the Metropo-
lis chain for c = 1

3n2 assigns to them value eD/3.

We remark that our method runs in polynomial time for
k ≤ b log2 n where b > 0 is any constant. Specifically, for k =

b log2 n we obtain a Õ(nb+1) algorithm due to the implicit
O(2k) term in the search of labelings for any vertex.

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup

Implementation and competitors. Our algorithm is im-
plemented in Matlab. We remove the random bits needed
to select a vertex in each round uniformly at random by
selecting an arbitrary ordering of vertices and considering
changes in their labelings according to that order. Empir-
ically this appears to have little effect -if any- on the re-
sults. Furthermore it avoids the coupon collector problem
according to which O(n log n) draws of vertices are needed
to consider all vertices at least once with high probability.
A detailed understanding of this systematic scan is left as
an interesting problem [33]. Finally, we set the maximum

number of steps equal to ⌈n log n⌉. We terminate the chain
either if it reaches the maximum number of steps or if for
n steps it stays on the same state. We refer to our method
as FINLAnd (Fast INference of LAtent features). We com-
pare our method against methods that are publicly available:
ILA [37] (Matlab), BigClam [43] (C++) and CFinder [3]
which is provided as a (.exe) file. We received an improved
Matlab implementation of ILA than the one that is on the
Web (as of 08/2014) upon contacting the authors of [37]. All
methods were executed on a single machine with Intel Xeon
cpu at 2.83GHz and 50GB ram. As we describe below we
used datasets with available ground-truth. In all executions
the true number of latent features was passed as an argu-
ment to all methods. While there exist several heuristics
to approximate the number of features k, we consider this
problem worth a separate project.

Datasets. We used publicly available datasets in our ex-
periments. Specifically, we use ego-networks from Twit-
ter1 [29], Emotions and Flags, two Mulan2 Multi-Label
Learning datasets, and the MNIST digit database [1]. Specif-
ically, Emotions and Flags have (593, 6) and (194, 7) (points,
features) respectively. We create a similarity graph out of
each dataset by adding an edge between two points that
share at least one common feature. From MNIST we ex-
tract a perfectly balanced dataset of 10 000 digits (1 000
digits for each digit 0,1,. . . ,9). Each digit is a 28×28 matrix
which is converted in a 1-dimensional vector with 784 co-
ordinates. We create k′-nearest-neighbor graphs from this
cloud of points for radically different k′ values which result in
graphs with O(n2) and O(n) edges. Finally, all graphs were
made undirected by replacing each directed edge within an
undirected one and simple by removing multiple edges.

Evaluation. We use the well-known measures of precision
(P ) and recall (R) to evaluate the performance of the algo-
rithms. Specifically, for any labeling ω : V → {0, 1}k we
define the set F(ω) = {(u, v) : ωT (u)ω(v) ≥ 1}. Also, let g
be the ground-truth labeling. Then,

Pω =
|F(ω) ∩ F(g)|

|F(ω)|
and Rω =

|F(ω) ∩ F(g)|

|F(g)|
.

We omit the indices when it is clear to which labeling ω we
refer to.

4.2 Experimental findings
Before we present our findings in detail, we summarize

them.

Mixing parameter c. By experimentation, we found that
for the given number of steps that we run the chain, constant
values of c, e.g., c = 1/2, achieve better performance than
the value predicted by Theorem 2. This suggests that inject-
ing a small amount of randomness in the deterministic hill
climbing algorithm works well. This discrepancy between
theory and practice indicates that either one has to increase
the number of steps for which the chain runs or adopt a
simulated annealing approach [25]. We experimented with
the former approach and indeed we found that the output
quality increases when c = 1

3n2 as we let the chain run for
b⌈n log n⌉ steps where b > 0 is a constant.

1http://snap.stanford.edu/data/egonets-Twitter.html
2mulan.sourceforge.net/datasets.html

http://snap.stanford.edu/data/egonets-Twitter.html
mulan.sourceforge.net/datasets.html
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Figure 2: Average precision and recall (left y-axis) and average running time (right y-axis) versus (a) the
intersection size n11, (b) the number of edges and (c) the edge probability. Each point in the plots is the
average over 25 experiments (5 randomly generated graphs × 5 random initial labelings). For details on each
experiment, see text of Section 4.3
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Efficiency. Our proposed method is able to learn latent
features efficiently. For graphs with few hundreds of edges,
our method is more than 2 400 times faster than the state-of-
the-art ILA method [37]. The speedup becomes even more
pronounced in large networks since ILA does not scale at
all.

Robustness. Our proposed method is both robust to the
initial labeling and to noise. Specifically, it is able to op-
timize the objective independently on how the vertices are
initially labeled and furthermore even when a constant frac-
tion of the edge set changes (∼ 15%) our algorithm is able
to recover the latent features with high accuracy. This is
not always true for other competitors.

Best competitor. Our algorithm either outperforms or
performs comparably well with BigClam [43], the best among
the various methods we tried for the task of overlapping com-
munity detection. Surprisingly, even if our method is coded
in MATLAB and BigClam in C++, it runs typically faster
than BigClam.

Sparse graphs and a rule-of-thumb. Optimizing Ob-
jective 1 works well for dense graphs. To see why, consider
the case of sparse graphs, namely m = Õ(n). This is the
typical case for most real-world networks. Since m = o(n2),
the first term of Objective 1 is asymptotically vanishing, es-

sentially contributing nothing to the optimal value. This
means that even if we could optimize Objective 1 exactly,
the optimal solution would not provide any insights. For this
purpose, we propose for the case of sparse graphs a varia-
tion of Objective 1. Specifically, we introduce a positive real
parameter W .

max
ω:V →{0,1}k

∑

(u,v)∈E(G)

W1(ωT (u)ω(v) ≥ 1)+ (2)

∑

(u,v)/∈E(G)

1(ωT (u)ω(v) = 0)

We provide a surprisingly good rule-of-thumb on how to
choose W . This value is equal to

(
n
2

)
/m. This value for W

results in a normalized version of Objective 1.

Social circles. Using our rule-of-thumb we apply our
Metropolis chain adapted for Objective 2 on the problem
of clustering ego-networks. Notice that the only thing that
changes in the pseudocode is function h(), which now be-
comes the function in Objective 2. We obtain high quality
results for this graph mining problem, typically outperform-
ing BigClam [43].

Detailed remarks about competitors. Among the nu-
merous works for learning latent features that appear within
the machine learning community, e.g., [16, 17, 20, 37], we
choose the ILA method [37] as our competitor, since it was
published fairly recently. We were able to run ILA only
on graphs with few hundreds of edges. To be precise, the
largest graph on which ILA produced results within a rea-
sonable amount of time was a graph with 40 vertices and
few hundreds of edges. Our algorithm required 0.02 seconds
whereas ILA 49.1 seconds. It is worth outlining that not
only our method is 2 455 times faster than ILA but also the
output quality of our algorithm is better. For the record,
ILA produced a good labeling achieving precision and recall
equal to 0.99 and 0.93 respectively. For larger graphs, ILA
fails completely to produce a labeling within a reasonable
amount of time. For instance, ILA has not completed its
execution on the EMOTION graph which has ∼ 600 nodes
after several days. The intermediate results are of poor qual-
ity, achieving less than 60% precision and recall.

For the task of finding overlapping communities, we ex-
perimented with CFinder [3], BigClam [43], a method based
on nonnegative matrix factorization. The BigClam method
is the best performing method. CFinder is unable to de-
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Figure 4: Average precision and recall (left y-axis) and average running time (right y-axis) versus sparsification
parameter p on the Flags and Emotions similarity graphs. (a)(b) FINLAnd, (c)(d) BigClam. For details, see
text of Section 4.4.

tect overlapping communities when the overlaps are dense,
verifying the claim of Yang and Leskovec [44]. More impor-
tantly, CFinder does not scale to large graphs. Specifically,
CFinder runs for hours on graphs with several thousands of
edges, when other competitors are able to output within sec-
onds. This is expected to happen when there exist strongly
overlapping dense subgraphs, which as Yang and Leskovec
point out is the typical case [44].
In the following sections which contain the results on real-

world data, we include full results for [43], as it was the only
competitor that could successfully complete for all experi-
ments within a reasonable amount of time.

4.3 Tiles
Yang and Leskovec liken tiles and communities: charac-

terizing precisely for each vertex to which communities it
belongs to resembles the setting where some number of tiles
are placed on the top of each other in an overlapping manner
and the goal is to move them without breaking any of them
[44].

Setting. We use two overlapping tiles or equivalently the
2-dimensional hypercube as our latent space. Specifically,
we assume there exist two sets of vertices S1, S2 such that
|S1| = n01+n11, |S1| = n10+n11 and |S∩| = |S1∩S2| = n11.
For each pair of distinct vertices u, v such that u, v ∈ S∩

we add an edge with probability p11. For every other pair
of vertices in S1 (S2) we add an edge with probability p01
(p10). The latent labeling for vertices in R1 = S1\S∩, S∩,
R2 = S2\S∩ is (01), (11), (10) respectively. Notice that this
labeling is not unique, the labels of R1, R2 can be exchanged.
We explore various aspects of this setting.

Parameter n11 and scalability. We generate dense graphs
with O(n2) edges by fixing p01 = p10 = 0.75 < p11 = 0.95

in order to simulate the “denser-overlaps” phenomenon [44].
The results are shown in Figures 2 (a),(b). Later, we show
how to deal with sparse graphs successfully.

Specifically, Figure 2(a) ranges the intersection size n11 ∈
{1, 100 : 50 : 500} where a : b : c is the standard Matlab
notation for indicating the starting value a, the step b and
the final value c. The total number of vertices is fixed to
5 000. For each value n11 we run our method five times on
five randomly generated graphs. We compute for each of the
25 experiments the precision and recall and we plot the aver-
age precision and recall (left y-axis) versus n11. Results are
perfectly concentrated: average precision and recall (left y-
axis) are always 1 for all n11 values. Furthermore, there does
not appear to be any correlation between n11 and the aver-
age running time (right y-axis): running time fluctuations at
the order of one second are most likely due to randomness.

Figure 2(b) shows the results we obtain as we increase
the number of vertices in the graph, for a fixed intersection
size n11 = 50. We range n ∈ {100, 250 : 250 : 1000, 2000 :
2000 : 10000}. On the left y-axis we plot again the average
precision and recall versus the averaged number of edges
over the five random graphs we generate for each value n.
On the right y-axis the average running time. To emphasize
the scalability we plot versus the number of edges (x-axis).
Our method is able to recover the groundtruth labeling in
all 25 experiments for all n values. Furthermore we observe
that it scales well as the size of the graph grows.

Running time depends not only on size but structure
as well. The following experiment outlines an interesting
aspect of our method: its running time depends not only on
the graph size but also on the graph structure. Equivalently,
it is strongly indicated by our experimental results that if
the graph cut structure exhibits good clustering properties,



then our chain can find it easily and decide to stop within
a linear number of steps. We use again the setting of two
tiles. We set p01 = p10 = p11 = p and the total number of
vertices to n = 10 000. We observe an interesting transition
at p = 1/2.
Figure 2(c) plots the average precision and recall (left y-

axis) and the average running time (right y axis) versus the
edge probability p. We range p in the set {0.5 : 0.05 : 1}.
The intersection size is fixed for all values of p to n11 = 100.
Again, we perform for each value p, twenty-five experiments
in total. When p = 1/2 the average running time is 820
seconds. Additionally to the slow performance for p = 1/2,
the running time exhibits significant variance. Specifically,
the standard deviation is 112 seconds. It is worth emphasiz-
ing that the datapoint corresponding to the average running
time for p = 1/2 in Figure 2(c) is one of the two datapoints
in all plots that does not exhibit strong concentration. The
other one is the average recall, again for p = 1/2, which is
equal to 0.27 with standard deviation equal to 0.06. No-
tice that that for all values of p greater than 1/2 the run-
ning time is significantly smaller even if the number of edges
grows. For instance, when p = 1 the average running time
is 49.4 seconds with a standard deviation of 0.29 seconds.
This is happening because for p = 1/2 the existing density
within the communities is not large enough, hence the op-
timal value of the objective does not correspond a latent
labeling capturing the community structure. We deal with
this immediately in the following.

Pair FINLand BigClam [43]
P R t P R t

(0,1) 0.98 0.87 4.65 0.99 0.88 21.25
(0,7) 0.97 0.84 4.23 0.96 0.81 25.49
(0,8) 0.97 0.83 4.62 0.93 0.78 22.31
(0,9) 0.96 0.83 4.18 0.95 0.80 24.76
(1,4) 0.96 0.88 4.47 0.99 0.80 25.54
(1,6) 0.94 0.87 3.56 0.98 0.75 22.67
(1,7) 0.92 0.86 4.18 0.94 0.77 24.57
(1,9) 0.95 0.86 3.19 0.96 0.74 25.63
(3,4) 0.95 0.85 4.66 0.97 0.83 25.64
(3,6) 0.95 0.83 4.07 0.96 0.85 20.39
(3,7) 0.95 0.82 3.57 0.97 0.80 25.01
(6,7) 0.98 0.88 4.11 0.99 0.87 23.41
(6,9) 0.96 0.81 5.38 0.99 0.73 25.02

Table 2: Table shows the performance of FINLand
and Bigclam in terms of precision (P), recall (R)
and running time (t) for several pairs of digits. For
details, see text of Section 4.4.

Sparse graphs and a rule-of-thumb. Lemma 3 shows
that when the graph is sparse Objective 1 does not necessar-
ily yield insightful solutions. As we have mentioned again,
this happens since the first term corresponding to the sum-
mation over the edges is asymptotically negligible with re-
spect to the second term in the regime when m = o(n2). For
this purpose, we introduce Objective 2 which gives more im-
portance satisfying an edge rather than a non-edge. This is
achieved by the weight parameter W ≥ 1. However, given a
graph G it is not a priori clear how to choose W in order to
learn a good latent vertex labeling. Here, we provide a sim-
ple yet well-performing rule-of-thumb on how to choose W .
For this purpose we perform the following experiment. We

generate two tiles on 1 000 vertices. We range p01 = p10 in
the set of values {0.01:0.01:0.1,.2:0.1:.9}. Notice we choose
an increased level of granularity when p01 = p10 is small.
The intersection probability is p11 = p01+0.1 and the inter-
section size between the two equal-sized tiles is 20. For each
value p01 we search for the value W ∗

true that results in both
precision and recall greater than 90%. Since every time that
either the precision or the recall are less than 90%, we in-
crease the weight W by one |W ∗−W ∗

true| ≤ 1. Figure 3 plots
in semilog W ∗ versus the inverse density ratio

(
n
2

)
/m where

m ranges as the edge probabilities change. We observe a
striking phenomenon that we verified for various other set-
tings of the parameters as well and that we exploit later on
real data. Specifically, we plot the function W ∗ =

(
n
2

)
/m

which is very close to the observed measurements. Notice
that this specific value of W ∗ results equivalently in a nor-
malized version of our objective:

max
ω:V →{0,1}k

1

m

∑

(u,v)∈E(G)

1(ωT (u)ω(v) ≥ 1)+

1
(
n
2

)

∑

(u,v)/∈E(G)

1(ωT (u)ω(v) = 0)

4.4 Classification

Digit classification. We choose several pairs of distinct
digits. We obtain all datapoints corresponding to the two
digits of each pair from the MNIST dataset. Then, we create
a k′-nearest-neighbor graph. We choose two very different
values of k′, namely k′ = 300 and k′ = 10. The former value
creates a dense nearest neighbor, resembling the regime of
O(n2) edges, on which we optimize Objective 1. The lat-
ter values results in a sparse graph, resembling the regime
with O(n) edges, on which we optimize Objective 2 using
our rule-of-thumb. The groundtruth here is defined by the
MNIST labeling: there exist two latent features, each corre-
sponding to whether a given image is the first or the second
digit. Hence, each datapoint is labeled either as (01) or
(10). Table 2 shows the results for k′ = 300. The results for
k′ = 10 using our rule-of-thumb are qualitative the same.
Indicatively, we report that for the pair of digits (0, 7) preci-
sion and recall are P = 0.9959 and R = 0.9821 respectively.
Similarly, for (0, 8) we obtain P = 0.9498, R = 0.8973 re-
spectively. A full evaluation of Objective 2 is shown in the
next Section. As we see in Table 2 our method performs
at least as well as BigClam. Furthermore, our method is
typically at least 5 times faster than BigClam. It is worth
outlining again that only BigClam among the competitors
produced good quality results: CFinder produces poor qual-
ity results, verifying the claim of [44]. Finally, ILA does not
complete after more than two days of running.

Multilabel classification and robustness to noise. For
each of the Emotions and Flags datasets we construct a
similarity graph by placing an edge between two entities
if and only if they share some common feature. Our ex-
periments address the following two questions: (a) Can we
recover the true labeling using this similarity graph? (b)
Is our method robust to noise? We model noise as random
deletions of edges. Specifically, for each value of the sparsifi-
cation parameter p, we delete each edge independently from
the rest with probability p. We searched for the first value of
p for which either the precision or recall of our method is less
than 90%. While p is less than 0.1 we use a search step equal



to 0.01 whereas for larger p values we use a cruder search
step of 0.025. Among the two resulting ranges we obtain,
one for Emotions and one for Flags, we use the superset
for plotting purposes. Figure 4 presents the experimental
results. We discuss them in detail in the following.

Emotions: When p = 0, we perform 5 random experi-
ments for our method, where the randomization is over the
initial labelings ω0. For BigClam, we perform a single ex-
periment. For each value p > 0 we perform 25 experiments
for our method (5 random initial labelings × 5 sparsified
graphs) and 5 for BigClam, one for each sparsified graph. All
obtained averages are well concentrated around the mean.
We observe that for p = 0.175 our method achieves av-

erage precision P = 0.91 and recall R = 0.93 with an av-
erage running time equal to 32.83 seconds. For p = 0.2
we obtain P = 0.61 and R = 0.67 with an average run-
ning time 47.19 seconds. Hence the resulting range for p is
{0 : 0.01 : 0.1, 0.125 : 0.125 : 0.2}. Despite the fact that
the total number of edges decreases as p increases, the av-
erage running time -even if not strictly increasing- exhibits
an increasing trend. BigClam even for p = 0 is unable to
recover the ground-truth. Specifically, it achieves P = 0.998
and R = 0.857 with running time equal to 33.85 seconds.
For values of p up to 0.125 (included) the average precision
is high P ≥ 0.867 but the recall is extremely poor reaching
the value R = 0.026. Above p = 0.15, precision drops as
well. When p = 0.20, P = 0.50 and R = 0.006. The average
speedup obtained by our method is 1.09. Notice that our
method is not always faster than BigClam, specifically it is
faster for 8 values of p.

Flags: We use the same number of experiments for each
p value as for Emotions. Our method for p = 0 achieves
P = 0.986 and R = 0.996 with an average running time
3.48 seconds. BigClam achieves P = 0.999 and R = 0.995
with average running time 8.66 seconds. Even if BigClam
outperforms slightly our method in this case, as soon as
p = 0.01, its average recall drops below 90%. Specifically,
P = 0.999 and R = 0.879 with an average running time 9.1
seconds. Our proposed method up to p = 0.15 achieves con-
currently precision and recall greater than 90%. Specifically
for p = 0.15 our method achieves average precision P = 0.95
and average recall R = 0.90. The average running time is
8.75 seconds. For the next value p = 0.175, the average re-
call drops below 90%. Specifically, P = 0.95 and R = 0.81.
The running time is 11.74 seconds. The average speedup
achieved is 1.38 and our method is faster than BigClam for
10 values of p.

4.5 Learning social circles from ego-networks
In this Section we focus on a special type of induced graph.

Specifically, we consider ego-networks, namely graphs in-
duced by a vertex and its neighbors. Ego-networks play an
increasingly important role in many applications. includ-
ing user identification [21], anomaly detection [5] and viral
marketing [26].
The application of interest to us was introduced by Leskovec

et al. [29, 43, 44]. Consider a given social media user who
connects to other users. We expect most of the connections
-unless the user is a spammer- to be due to the fact that
the two users share some common feature. For instance,
it could be their common interest in sports, their common
ethnic background or because they work in the same space.
This intuition is reflected on the structure of these networks.

As Yang and Leskovec point out, the probability of an edge
is a non-decreasing function of their common features [44].

The question that Leskovec et al. consider is the following:
can we recover the social circles of a user in social media

based on the structure of the network?

Their answer is positive. We use our method to perform
the same task. We compare our method to BigClam [43]
on ego-networks from Twitter with ground-truth available.
The number of latent features is set equal to the number
of social circles. BigClam is a successful method for finding
overlapping communities and detecting social circles [44].
The results are shown in Table 3. The first two columns
provide a description of the dataset in terms of the number
of vertices and edges respectively. As we see our method
typically outperforms BigClam, both in terms of the quality
and the time efficiency.

Dataset FINLand BigClam [43]
n m P R t P R t
227 3860 0.85 1.00 0.009 1.00 0.38 0.26
14 70 1.00 1.00 0.001 1.00 1.00 0.06
222 5871 0.90 0.96 0.074 0.97 0.61 0.26
150 2503 0.91 1.00 0.018 1.00 0.61 0.17
213 3508 1.00 1.00 0.001 1.00 1.00 0.14
85 547 0.91 0.93 0.025 1.00 0.49 0.03
33 235 1.00 0.89 0.002 0.92 0.96 0.11
34 284 1.00 1.00 0.002 1.00 0.30 0.08
192 4190 0.89 1.00 0.054 1.00 0.55 0.05
120 577 1.00 0.92 0.002 1.00 0.55 0.37
99 1519 0.85 0.91 0.006 1.00 0.39 0.06
225 2602 1.00 0.96 0.018 0.96 0.75 0.19
56 665 0.87 0.96 0.038 0.96 0.39 0.30
113 1689 0.86 0.92 0.018 0.93 0.50 0.22
58 479 1.00 1.00 0.002 1.00 1.00 0.16

Table 3: Learning social circles from ego-networks
from Twitter results. For details, see text of Sec-
tion 4.5.

5. RELATED WORK

Learning Latent Features. The infinite relational model
(IRM) is a prominent method among latent class models
[23]. It assumes that each entity belongs to a single clus-
ter or -equivalently in our terminology- it possesses a single
feature. Edge probabilities depend solely on cluster assign-
ments. Notice that this is reminiscent of McSherry’s planted
partition model [31]. However contrary to the planted par-
tition model, IRM makes additional probabilistic assump-
tions. Specifically, it assumes that cluster assignments are
drawn from the Chinese Restaurant Process [6]. In general,
latent class models can model multiple participation to fea-
tures, at the cost of combinatorial explosion: for each pos-
sible combination of features, create a new feature. Latent
feature models allow multiple participation to features with-
out the aforementioned cost [32]. Recently, Palla et al. [37]
introduced the infinite latent attribute (ILA) model which
yielded improvements over both [23] and [32]. Despite the
accurate performance of ILA on small datasets, the method
does not scale even to graphs with few hundreds of edges.

Overlapping clustering. Leskovec et al. showed that
major non-overlapping clustering methods typically produce



meaningful communities when their size is restricted to few
tenths of vertices [28]. Recently, Yang and Leskovec show
that overlapping communities can explain the core-periphery
structure in networks [44]. Khandekar, Kortsarz and Mir-
rokni mathematically formalize this phenomenon and prove
that overlapping clustering may yield significant benefits
compared to the non-overlapping case [24]. A solid modeling
approach to providing a theoretical model of communities
that is also able to reproduce certain salient characteristics
of real world networks is the affiliation networks model [27].
This model lies conceptually close to many research works
including ours: the latent labelings our method produces
can be seen as a bipartite graph where each vertex is afilli-
ated to each feature it posseses. Anandkumar et al. provide
guaranteed community recovery for the mixed membership
Dirichlet model [4]. Gopalan and Blei use the same model
[19] and probabilistic inference algorithms to detect overlap-
ping communities. Arora et al. [9] can detect overlapping
communities under other modeling assumptions. CFinder
is a popular method for detecting overlapping communities
using clique percolation [3]. CFinder does not scale well to
large networks and more importantly it fails to find overlap-
ping communities even in the context of two communities
with a dense overlap. As Yang and Leskovec frequently this
is the case on social networks [44]. It is worth mention-
ing that in the extreme case when the overlaps are com-
plete, then it is known how to find these clique-separators
in polynomial time [39]. However, the overlaps tend to be
large near-cliques [40] rather than perfect cliques. Mcauley
and Leskovec use overlapping community detection meth-
ods to discover social circles from ego-networks [29]. A
subsequent method developed by Yang and Leskovec [43] is
based on non-negative matrix factorization and scales better
than [29]. As we saw in Section 4 our method outperforms
[43], is significantly simpler and comes with solid theoreti-
cal guarantees. An interesting research direction is to un-
derstand the effects of recent developments in nonnegative
matrix factorization [8] for detecting overlapping communi-
ties, since the underlying assumptions of Arora, Ge, Kan-
nan and Moitra are -in many cases- realistic. Closely re-
lated to non-negative matrix factorization approaches is the
geometric approach proposed in [41]. The concept of (α, β)-
clusters is interesting within the context of overlapping com-
munities but recent developments have shown that under a
well-accepted conjecture finding even one (α, β)-cluster is in-
tractable [10]. Finally, many other heuristics exist that are
not well understood exist, e.g., [2, 14, 18, 35, 45]. As we dis-
cussed earlier our work sheds light on the heuristic method
developed by Bonchi et al. [14] .

6. CONCLUSION

Summary. In this work we consider a fundamental prob-
lem with many important applications: can we learn effi-
ciently and accurately latent features that explain a given
graph? We propose a simple probabilistic model and a
rapidly mixing Metropolis chain for optimizing the result-
ing maximum likelihood function. We use our method to
perform successfully multilabel classification from similarity
graphs and to learn social circles from Twitter ego-networks.

Open Problems. Our work opens numerous questions.
What are the graph sub-structures that affect the perfor-
mance of latent feature learning methods? Under our model,

we showed that complete bipartite subgraphs play a key role.
What about other models such as the ILA [37]? Combining
such answers with the work of Ugander et al. [42] may shed
light on the merits and limitations of such methods on real-
world networks. Why does the simple probabilistic model we
introduce perform so well on real world datasets? How do we
include non-assortative features? Can we have a richer fam-
ily of probabilistic models for undirected graphs for which
we can have efficient (approximation) algorithms? Devel-
oping new probabilistic models and latent feature learning
algorithms for directed graphs is also an interesting research
direction. Finally, in future work we plan to use our method
on other graph mining problems such as link prediction.
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