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Provably Good Approximation Algorithms for Optimal 
Kinodynamic Planning for Cartesian Robots and 

Open-Chain Manipulators I 
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Abstract. In optimal kinodynamic plannino, given a robot system, we must find a minimal-time 
trajectory that goes from a start state to a goal state while avoiding obstacles by a speed-dependent 
safety margin and respecting dynamics bounds. With Canny and Reif [1], we approached this problem 
from an e-approximation standpoint and introduced a provably good approximation�9 algorithm for 
optimal kinodynamic planning for a robot obeying particle dynamics. If a solution exists, this algorithm 
returns a trajectory e-close to optimal in time polynomial in both (l/e) and the geometric complexity. 

We extend [1] and [2] to d-link three-dimensional robots with full rigid-body dynamics amidst 
obstacles. Specifically, we describe polynomial-time approximation algorithms for Cartesian robots 
obeying L2 dynamic bounds and for open-kinematic-chain manipulators with revolute and prismatic 
joints. The latter class includes many industrial manipulators. The correctness and complexity of these 
algorithms rely on new trajectory tracking lemmas for robots with coupled dynamics bounds. 

Key Words. Robot motion planning, Optimal control, Polynomial-time e-approximation algorithm, 
Time-optimal trajectory, Full dynamics, Shortest path, Kinodynamics, Polyhedral obstacles. 

1. Introduction.  I t  has  been the hope  of  theore t ica l  compu te r  science tha t  by  

mak ing  simplifying assumpt ions  in robot ics  problems,  precise combina to r i a l  

a lgor i thms  could  be obta ined ,  and  tha t  these results  could  la ter  be general ized to 

cover  " r ea l "  robo t s  with con t ro l  uncer ta in ty ,  full dynamics ,  and  imperfect  models.  

F o r  example ,  it  is c o m m o n  to assume po in t  robo t s  (often planar) ,  perfect pos i t ion-  

control ,  and  tr ivial  dynamics .  Op t imiza t i on  i s sues - - such  as f inding the "fas tes t"  

p a t h - - a r e  often ignored.  Genera l iz ing  the ear ly results  and  re laxing these assump-  

t ions are essential  if a lgor i thmic  analysis  is to have an  impac t  in the  theory  and  

pract ice  of  robot ics ,  pa r t i cu la r ly  in m o t i o n  planning.  

As descr ibed in our  c o m p a n i o n  p a p e r  [3],  the kinodynamic planning problem 4 
[1], [2] is to synthesize a r o b o t  m o t i o n  subject  to s imul taneous  k inemat ic  

cons t ra in ts  and  dynamics  constra ints ,  including the dynamics  law tha t  governs  
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the motion. A kinodynamic solution is a trajectory specification, such as a start 
state and a mapping from time to generalized forces or accelerations. Because of 
errors in control, models, and sensing, a trajectory plan can only be considered 
safe if it avoids obstacles by some safety margin. This margin is incorporated into 
the kinodynamic constraints. An important problem is to synthesize time-optimal 
kinodynamic solutions, which require minimal time with respect to the kinodynamic 
constraints. This problem is NP-hard in three dimensions [-3], [4], and thus it is 
reasonable to develop approximation algorithms. 

A provably good polynomial-time approximation algorithm for kinodynamic 
planning is guaranteed to find a solution that is provably close to optimal when 
a solution exists. Suppose an optimal trajectory that avoids obstacles by the 
speed-dependent margin 6v (as in our companion paper [3]; also see (6)) takes 
time Topt. Then, given an encoding of the problem and an approximation 
parameter e, the algorithm will find a trajectory that: 

(a) Takes at most time (1 + e)Top,. 
(b) Approximates the start and goal states to within a factor of e. 
(c) Avoids obstacles by the margin (1 - e)bv. 

Furthermore, the running time of the algorithm is polynomial in both 1/e and the 
geometric complexity of the problem. 

Canny et al. [1] provided a provably good polynomial-time approximation 
algorithm for two- and three-dimensional optimal kinodynamic planning in the 
restricted case of particle dynamics. Donald and Xavier [3], [-5] modify this 
algorithm to improve the accuracy and complexity. 

Here, we extend our approach to robots with coupled dynamics bounds, in 
particular to a class of robot systems that includes d-link open-chain manipulators 
with revolute and prismatic joints as well as Cartesian robots obeying Lz-norm 
dynamics bounds. Our algorithms find two types of trajectories: ones that obey 
piecewise-constant extremal controls, and ones that obey piecewise-constant 
near-extremal accelerations, The algorithms have asymptotic complexity bounds 
and branching factors (in the search) lower than those for the approximation 
algorithm of [6]-[8], which also generalizes the results of [-1] to d-link open-chain 
manipulators, 

2. Kinodynamic Motion Planning for Robots with Coupled Dynamics Bounds 

2.1. A More General Kinodynamic Planning Problem. We now reformulate the 
optimal and e-optimal kinodynamic planning problems to accommodate a wider 
class of robots than covered by our companion paper [3]. 

We again denote robot configuration space by C, and its phase space, the robot 
state space, by TC. A robot motion taking time T I can be specified by a 
twice-differentiable map p: [0, Ts] ~ C, called the path of the motion. The tra- 
jectory of a robot motion is the map F: [0, TI] ~ TC given by F(t) = (p(t), p(t)). 
Thus, a motion is determined by an initial state (Po, %) and an acceleration function 
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a = ii. We retain the convention of denoting the position and velocity components 
of a subscripted trajectory F, by p, and [~,, respectively. 

As before, a robot with d degrees of freedom must move from a start state 
S = (s, g) to a goal state G = (g, g) while avoiding a set of obstacles and configura- 
tion (e.g., joint) limits; these are the kinematic constraints. However, we now allow 
the dynamics constraints to be more general than in our previous work. 

The robot motion is governed by a dynamics law, which relates applied 
generalized forces f to states, accelerations, and forces G(p) induced by gravity. 
For open kinematic chains [9], [10], 

(1) f(t) = M(p(t))a(t) + [pT(t)C(p(t))p(t)] + G(p)(t)). 

M(p(t)), the robot intertia tensor, is orthogonal, symmetric, and positive-definite. 
C(p(t)) is a tensor of rank three, and [pT(t)C(p(t))p(t)] denotes the column vector 
in which 

(2) [pr(t)C(p(t))p(t)]i = pr(t)C'(p(t))p(t), where C,(p(t))i, k _ 3Mjk(p ) 1 ~Mjk(p) 
~Pk 2 OPi 

(See [9] for a deviation.) It is important to note that each component of M(p) and 
G(p) is a sum of products of components of p and their sines and cosines (e.g., Pi, 
cos(p j), etc.). 

We call a robot whose inertia tensor is constant and whose dynamics law 
simplifies to 

(3) f(t) = Ma(t) 

a Cartesian robot. 

A robot motion p obeys dynamic bounds (r~, ~) if for all times t the joint velocities 
[~ and the applied generalized forces f obey the following at each joint i: 

(4) IP,(t) l < ~, and I f~(t)[ ~< f,. 

These bounds imply global acceleration bounds h (via (10)), and we define 

Ama x = m a x  ~i. 
i 

In practice, acceleration bounds are sometimes used instead of force bounds for 
Cartesian robots; because of (3), an algorithm that works for one formulation 
suffices for the other. In a further simplification, all the dynamics bounds are 
sometimes given in an Lp-norm, e.g., for p = 2, 

(5) Hv(t)[[2 _< ~ and qla(t)ll2 ~ c~. 
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We consider the Lz-norm in this paper, whereas in [1] and [3] we used the 

Lo~-norm. 
The dynamics laws and dynamics bounds that apply to a robot are its dynamics 

constraints. Note that in this paper we use "Cartesian" only to describe the 
dynamics laws obeyed by the robot, whereas in [3] and [4] the "Cartesian 
Kinodynamic Planning Problem" refers to a point robot obeying L~-norm 
dynamics bounds. 

The problem parameters must include an encoding Jg  of the robot's dynamics 
equation. Since the general form of the equation is given by (1), this involves 
supplying an encoding of the matrices M(p) and C(p) and the vector G(p) in terms 
of configuration p E C. In addition, there must be an encoding (9 of the workspace 
obstacles. An instance of the 9eneral kinodynamic planning problem, then, is a tuple 

= ((9, S, G, f, ~, ~r An exact solution is a trajectory F such that F(0)= S, 
F(Ts) = G at some time TI, and F obeys the kinematic and dynamics constraints. 
Thus, the corresponding map p must avoid all obstacles and respect (1) and (4). 
The time for solution F is simply T I. The time-optimal kinodynamic planning 
problem is to find a minimal-time solution, which is represented as a Suitable 
encoding of the start state and the acceleration function a. 

We assume that the robot and obstacles are polyhedral, and that they have 
been mapped to N configuration-space (C-space) constraints, as in [11]-[14], that 
give rise to the C-space obstacles. Free space is the complement of the C-space 
obstacles in C. For a polyhedral robot of geometric complexity m and a set of 
polyhedral obstacles with geometric complexity n, the number of configuration 
space constraints N = O(m(m + n)), since an arm must avoid self collisions [11]. 
Finally, we assume that all linear (i.e., nonrevolute) degrees of freedom are bounded 
from above by a length 1. 

As before, we define a trajectory to be 6v-safe if and only if, for all times t in 
[0, TI], all real-space obstacles are avoided by a distance of at least 

(6) ~5~(Co, cO(p(t)) -~ Co + el  llp(t))ll, 

where Co > 0 and cl > 0 are problem parameters. In other words, we can 
think of each obstacle as having a shell whose thickness grows with the 
trajectory speed ][p(t)J[; contact with these grown obstacles is avoided under 
a fly-safe trajectory. This is different from requiring that there be a ball about 
p(t) in free space at all times t. Note that any rational p-norms can be used 
for distance and speed in (6), since the expanded obstacles would still be semi- 
algebraic. 

For any scalars c o > 0 and el > 0 we define an optimal (6~-safe) kinodynamic 
solution to be a 6v-safe solution whose time is minimal. An instance of the optimal 
(6v-safe) kinodynamic planning problem is a tuple ((9, S, G, f, ~, l, J / ,  Co, el). f, ~, Co, 
and c a are the kinodynamic bounds. Together, the kinodynamic bounds and J/ '  
are the kinodynamie specifications of the robot. 
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As before [-1], [3], the quality of a solution is measured in terms of an 
approximation parameter z. A solution Fq: [0, T j  --* TC is z-optimal if: 

(a) Fq(0) and Fq(Tq) are within O(z) tolerances of S and G, respectively: 
(b) Tq < (1 + e)Tovt, where Topt is the time of an optimal solution. 
(c) Fq ish'~(e 0, c0-safe, where 

(7) 6"(eo, cO(p(t)) = (1 - z)6.iCo, cO(p(t)). 

2.2. Statement of  Results: Robots with Coupled Dynamics Bounds. A d-degree- 
of-freedom (d-DOF) robot system obeys coupled dynamics bounds if: 

(a) Its dynamics equations cannot be separated into the dynamics equations of d 
independent one-dimensional systems. 

(b) There is no fixed coordinate transformation such that the velocity and 
acceleration bounds in each axial direction are independent of the bounds in 
all other axial directions. 

We describe provably good approximation algorithms for the optimal (safe) 
kinodynamic planning problems for two classes of robots with coupled dynamics 
bounds: Cartesian robots with LE (-norm) dynamics bounds and open-chain 
manipulators with revolute and prismatic joints. Given a problem instance and 
an approximation parameter e, these algorithms will find an e-optimal solution if 
a 3~(Co, Cx)-safe solution exists. 

These algorithms run in time polynomial in the geometric complexity N of the 
configuration space obstacles and in the resolution (l/e). In the following two 
theorems c o and c~ are constants dependent only on the kinodynamic specifica- 
tions of the robot and are polynomial in d, and thus c~ and c~ are constant for 
any particular robot. Our algorithms are e-approximation schemes that are fully 
polynomial in the combinatorial complexity of the geometry and pseudopolynomial 
in the kinodynamic specifications. As in [1], a key intuition is to reduce the 
problem to searching a graph whose edges correspond to "primitive" trajectory 
segments. 

Formally stated, we show the following: 

THEOREM 2.1. Let gt and ~ be velocity and acceleration bounds, respectively. 
Let ((9, S, G, gt, ~, l, Co, cl) be an optimal kinodynamic planning problem for a d-degree 
of freedom Cartesian robot obeying L z dynamics bounds. Let 0 < e < 1. 

Suppose there is a 6v(Co, cO-safe trajectory from S to G taking time Top t. Then the 
algorithms we describe each find a (1 - e)3v(c o, c l)-safe trajectory taking time at most 
Topt(1 + e) and going from some S * =  (s*,~*) to some G * =  (g, g*) such that 
S* and G* are e-close to S and G, respectively. 

The asymptotic running time of the algorithms is O(c~op(N, z, d)(1/z) 6d- 1), where 
N is the geometric complexity of the C-space obstacles, co is a constant dependent 
on the algorithm and the kinodynamic specifications and is polynomial in d, and 
p(N, e, d) is the time-complexity of checking the (1 - z)6~(co, el)-safety of one of the 
"primitive" trajectory segments the algorithms consider. 
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THEOREM 2.2. Let ((9, S, G, f, ~, Jg, I, c o, cl) be an optimal kinodynamic plan- 
ning problem for an open-chain manipulator with revolute and/or prismatic joints. 
Let O < e < 1. 

Suppose there is a 6v(c o, cO-safe trajectory from S to G taking time Top t. Then 
the algorithms we describe each find a (1 - e)tSv(Co, cO-safe trajectory taking time at 
most Topt(1 + e) and going from some S* = (s*, g*) to some G* = (g*, g*) such that 
S* and G* are e-close to S and G, respectively. 

The asymptotic running time of the algorithms is O(c~p(N, e, d)(1/e) 6d- 1) where N 
is the geometric complexity of the C-space obstacles, c E is a constant dependent on 
the algorithm and the kinodynamic specifications and is polynomial in d, and p(N, e, d) 
is the time-complexity of checkin9 the (1 - e)6v(Co, cl)-safety of one of the "primitive" 
trajectory segments the algorithms consider. 

We have omitted the complexity factors containing kinodynamic specifications 
because they are constant for a given robot and because the terms can be very 
complicated. We express their overall contribution to the complexity bounds as 
a factor of c~ (or cne). Our claim that the complexities are pseudopolynomial in 
the kinodynamic specifications and 0((1/~) 6d- 1) is substantiated in the sections that 
follow. In Section 3 we sketch our approach, and in Section 4 we prove two lemmas 
key to our results. Detail is provided in Section 5, with further detail given in 
Appendix A. 

In Section 5.4 we give an approach for safety checking and argue that p(N, e, d) 
is roughly O(N(d + log N)). As we discuss there, for non-Cartesian open-chain 
manipulators amidst polyhedral real-space obstacles, exact collision detection for 
quadratic paths requires the solution of mixed trigonometric equations that cannot 
be transformed into algebraic equations using the usual substitution methods, such 
as [12]. Furthermore, for these manipulators, trajectory segments corresponding 
to constant extremal controls are solutions to systems of ordinary trigonometric 
differential equations, and the trajectories found by the corresponding algorithm 
are extremal to the accuracy of the solution method; see Section 3.1.2. In both of 
these cases, certain parameters would be adjusted, and numerical techniques would 
be used to do safety checking approximately. 

For a choice of C-space coordinates in which the path is algebraic in time and 
in which the obstacles are represented as semialgebraic sets in configuration space, 
p(N, e, d) would be O(N log N) for the True-Extremal Algorithm (applied to 
Cartesian robots) and for the Near-Extremal Algorithm (in general). Finally, we 
note that the True-Extremal Algorithm is more theoretical than the Near-Extremal 
Algorithm, and that for a given robot it yields a larger co or cE. 

2.3. Previous and Related Work. Canny et al. [1] and Donald et al. [2] address 
the problem of kinodynamic planning for a point robot with L~-normal velocity 
bound g and acceleration bound ~ in an environment with polyhedral obstacles. 
Canny et al. [-1] provide the first formulation of kinodynamic planning as an 
approximation problem and obtain the first provable polynomial-time approxima- 
tion algorithm for kinodynamic planning in more than one dimension. A review 
of the body of previous and related work on planning robotic motions subject to 
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dynamics constraints and obstacle avoidance can be found in [3] and in [1] 
itself. The key innovation that differentiates [1] from previous graph-search- 
based algorithms for motion planning is that  the parameters of the reach- 
ability graph guarantee that if the kinodynamic planning problem instance 
is solvable, then the shortest path in the graph from the root vertex to some 
vertex approximating the problem goal will yield an e-optimal kinodynamic 
trajectory. 

By improving the algorithm and its complexity anlaysis, we obtained the 
better accuracy and complexity results in our companion paper [31 which 
were initially reported in [5] and [15]. Through a coordinate trans- 
formation, all these algorithms can be applied to kinodynamic planning for 
a Cartesian robot with Lo~-norm dynamics bounds and polyhedral C-space 
obstacles. 

Jacobs et al. [6]-[8] 5 built on the methods in [1] to obtain the first polynomial 
time approximation algorithm for optimal kinodynamic planning for open-chain 
manipulators--the first for robot systems with state-dependent dynamics. Their 
work introduces several techniques to the kinodynamic planning literature, 
including: 

(a) Discretizing acceleration-space according to the problem parameters. 
(b) Reducing state-dependent dynamics to being locally constant. 

Our approach (see the early description in [15]-[171) toward state-dependent 
dynamics is similar, but we obtain better complexity results. 6 In concurrent work, 
Reif and Tate [18] used a parameter-dependent acceleration-space discretization 
implicitly to obtain a polynomial-time approximation algorithm for robots with 
decoupled dynamics, L2 dynamics bounds, and polyhedral C-space obstacles. 
For this L 2 problem we also obtain an algorithm with a lower complexity 
bound. 

3. Robots with Coupled Dynamics Bounds. In this section we provide an over- 
view of the algorithms and describe the key concepts used in obtaining our 
results. 

3.1. Aloorithms Overview. We describe the basic ideas behind two general 
algorithms for finding near-optimal kinodynamic trajectories for Cartesian robots 
with Lz-norm dynamics bounds and for open-chain manipulators. The first 
algorithm searches a reachability graph corresponding to piecewise-constant, 
extremal forces and torques, and we refer to it as "the True-Extremal Algorithm." 
The second uses piecewise-constant, near-extremal accelerations, "and we call it 
"the Near-Extremal Algorithm." 

5 We refer to this body of work as [6]-[8].  

6 The result in [6]-[8]  preceded the result in [15]-[17].  
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3.1.1. The Basic Idea. Our algorithms transform the problem of finding an 

approximately optimal trajectory to that of finding the shortest path in a directed 
graph, in a general sense, we follow the technique from [1]: 

(a) The vertices of the graph are states in TC. 
(b) The graph is a reachability 9raph, whose root vertex approximates the start 

state and whose edges are (1 - e)rv(co, c0-safe trajectory segments. 
(c) These (1 - e)bv(c o, c0-safe trajectory segments are generated by a finite set of 

control primitives and each takes duration z, the timestep chosen by the 
algorithm. 

(d) The graph is explored from the root vertex, and the search terminates when 
either a vertex approximating the goal state is found or when no new vertices 
are generated (found). 

Since we use the notion of a "slowed-down" trajectory often, we now formalize 
two definitions, as in [1]. 

DEFINITION 3.1. Let Fr: [0, TI] ~ TC, and suppose that e > 0. Then we define 
the e-time resealed trajectory F'/ [0, (1 + e)Ty] ~ TC as follows: 

(8) 
t 1 t 

Thus, if Fop t is an optimal kinodynamic trajectory, then F~,pt will be e-optimal 
when e < 1. 

DEFINITION 3.2. Let X = (x,/~) e TC, and suppose that e _> 0. Then the e-time- 
rescaled state X' = (x',/() is defined by 

(9) 

X t -~- X ,  

1 /t 

These two definitions are important because our proofs extensively utilize dynami- 
cal properties associated with states in rescaled trajectories. 

As in the algorithm of [1], in our new algorithms the root vertex of the 
reachability graph will approximate the e-time-rescaled start state in the kinodyna- 
mic planning problem instance. The basic idea is that if a solution F r to the 
problem instance exists, then some graph trajectory will track F'r closely enough 
to be e-optimal. 

The algorithms presented here differ from the algorithms in [1]-[3] in three 
important ways. 

First, the control primitives our new algorithms use to generate the reachability 
graph correspond to extremal or near-extremal accelerations that differ from their 
"neighbors" by O(e). This is necessary to guarantee, as required by our proof 
technique, that a trajectory constrained to the control primitives can out-accelerate 



488 B.R. Donald and P. G. Xavier 

an e-time-rescaled optimal trajectory. Let us consider a point robot obeying 
Lz-norm acceleration bound d. For any fixed finite set d of acceleration vectors 
obeying this bound, an e > 0 exists such that, in some direction n, there will be 
no convex combination a of vectors in d such that a- n > fi/(1 + e) 2. Thus, a point 

obeying acceleration bound ~/(1 + ~)2 would be able to out-accelerate a point 
limited to accelerations from d .  

Second, the control primitives used by the True-Extremal Algorithm generally 
do not yield a finite reachability graph. While our previous algorithms would 
potentially explore the entire reachability graph, the True-Extremal Algorithm 
instead bounds its search by only exploring nodes that are not too close to 
previously found nodes. Hence, a state density condition limits its search size. 

Third, the True-Extremal Algorithm uses constant applied force/torques, which 
can yield nonconstant accelerations, as its control primitives. Although the main 
purpose of our algorithms is only to guarantee e-approximately optimal trajector- 
ies, it would be desirable for an algorithm possibly to find a truly optimal trajectory 
with respect to 6'v-safety, even for a "nearby" problem (as in numerical analysis). 
In robotics and control theory [19] there is a family of results (e.g., [20]--[22]) 
on the feasibility of planning and approximating optimal trajectories using only 
piecewise-extremal controls; these results are often called "bang-bang" theorems. 
Among other things, they imply that such an algorithm would have to include 
piecewise-extremal trajectories in its search. Under the less restrictive dynamics 
model we use here, this generally excludes piecewise-constant accelerations. 

The use of a grid of O(e)-spaced accelerations as control primitives is shared by 
[18], and [6]-[8]. Our use of near-extremal and extremal accelerations as control 

primitives distinguishes our algorithm from the latter work and, with our proof 
techniques, contributes to our lower complexity bound. Our use of state density 
(or spatial hashing) to prune the reachability graph is a first in provably good 
kinodynamic planning. 

3.1.2. Control Primitives Used by the True-Extremal Algorithm. Although the 
correctness of the True-Extremal Algorithm is harder to prove than the correctness 
of the Near-Extremal Algorithm, the former is conceptually simpler. 

We now describe the control primitives the True-Extremal Algorithm uses to 
generate the edges in its teachability graph. Let ~//be the set of generalized (control) 
forces that are extremal with respect to given bounds f. (We can define similar 
sets for Lp bounds f and &) Given a scalar diseretization parameter/~ > 0, we 
say that ~//~ : ~ is a ~-diseretization of the control extremals if for every u~ E q/ 
there is some ub e ~//~ such that �89 [I u, - ub II o~ </?. As long as/~ is small enough, our 
algorithm may choose any such ~ ,  so we henceforth refer to ~//~ as the ~- 
discretization of control extremals. 

The application of a member of ://~ for duration v is called a true (~, ~)-bang. 
(The "true" distinguishes it from uses of "bang" which refer to controls that are 
constant, but only nearly extremal.) Recall that the dynamics equation maps states 
and generalized forces to accelerations. From (1), the acceleration is given by 

(i0) a(p, [~, f) = M -  :(p)(f - [[~TC(p)p] -- G(p)). 
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Thus, a true (/~, z)-bang and a state X together determine a trajectory segment 

of duration z starting at X, i.e., the solution to (10) with initial state X and f 
constant over the duration of the (/i, z)-bang. If this trajectory ends at state Y, 
then we say that there is a true (#, ~)-bang from X to Y. Thus, we sometimes use 
"true (~, z)-bang" to refer to the trajectory segment generated by a bang when 
the meaning is clear. 

Furthermore, the acceleration functions associated with true (), ":)-bangs begin- 
ning at a given state X are important to our discussion. We call these functions 
the true (fl, z)-bangs at X, and the set of them is denoted by ~(X,  ~). A true 
(fL, z)-bang trajectory is a concatenation of true (/Z z)-bangs. If F, is a true 
(9, z)-bang trajectory, then a,(t - nz) e o@(F,(nz),z) during each open time interval 
(nz, (n + 1)z). 

For an open-chain manipulator or a n  L 2 Cartesian robot, the number of states 
reachable from a root vertex S* via a sequence of m (1 - s)6v-safe (/Z z)-bangs 
can, in general, be exponential in the path length m. Worse yet, the total number 
states reachable via an infinite number of such bangs can be unbounded, even in 
a bounded state space. Therefore, we apply (bx, b,)-bucket pruning, a spatial hashing 
technique, in the search. (See Figure 1.) In (b~, b,)-bucket pruning TC is divided 
into voxels of diameter bx in spatial dimensions and b in velocity dimensions. 
When the graph search finds a vertex in a voxel in which another vertex has 
previously been found, the edges from the new vertex are simply not explored, 
and we say they are pruned from the search. (Compare this with the search in 
[13], Figure 31 on p. 315.) Since the state space is bounded and the reachability 
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Fig. 1. (bx, bv)-bucket prur ing search pruning. During the search, an edge (trajectory segment) to vertex 
(state) Xp, is found, but a previously found vertex Xki u is in the same bucket. Consequently, edges from 
Xp, are pruned from the search. (Compare with Figure 31 on p. 315 of [13]. In Section 4.3 we show 
that  the True-Extremal Algorithm still has the desired completeness with this search pruning. 
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graph has an 0((/2) -(~-~)) branching factor, the size of the subgraph searched is 
O((fi)-~d- ~(b~b~)-~). 

We note that for non-Cartesian open-chain manipulators, (10) generally has no 
closed-form solution. Thus, we consider the True-Extremal Algorithm is purely 
theoretical: we either choose a model of computation in which (10) is solved by 
an oracle, or we settle for approximate, numerically computed (#, ~)-bangs. 
Under the latter choice, the planned trajectory segments cannot really be extremal 
without risking their being unexecutable. (See Section 5.1.) 

3.1.3. Control Primitives Used by the Near-Extremal Algorithm: Cartesian 
Robots. As an alternative to (bx, b,)-bucket pruning and the problem of compu- 
ting true (~, ~)-bangs, the Near-Extremal Algorithm builds a teachability graph 
using trajectory segments corresponding to constant near-extremal accelerations 
that each last one timestep. These accelerations and a root vertex are chosen so that 
the size of the reachability graph is automatically bounded. Under our current 
proof techniques, the algorithm has a much lower constant term in its complexity 
than the True-Extremal Algorithm, We now describe the accelerations and outline 
the algorithm. 

A positive vector p e Nd determines a grid that discretizes the acceleration space 
R e. Precisely, let #~ be the grid-spacing in dimension i, and let the grid be aligned 
with the coordinate axes so that the origin 0 is a gridpoint; i.e., it lies at one of 
the interstices of the grid. We, call the set of gridpoints the p-grid. For now, 
suppose that timestep r has been chosen and that the set of accelerations has 
been discretized. Given a state X e TC, let dx  denote the set of instantaneous 
accelerations possible at X under the dynamics constraints. (Recall that we assume 
that the set of control forces q/ is  state-invariant, but that these forces map to 
accelerations via (10).) 

Let ~x c dx  denote the set of constant accelerations (i,e., vectors) possible 
for trajectories of duration r beginning at state X: 

Sex = { a r  0 dr(x,a.o}, 
te[O,fl 

where F(X, a, t) is the trajectory that results in applying constant acceleration a 
at state X. Then a "constant acceleration" analogue of the set of true (fi, z)-bang 
accelerations would be the set of p-gridpoints that lie within a p-grid-spacing 
of the boundary ~3~ x of ~r 

For now, we call these accelerations and the corresponding trajectory segments 
(It, r)-bangs. Suppose that, for a state S* and in each dimension i, the acceleration 
discretization #i divides the state velocity J*. Then all states reachable from S* 
via a sequence of (p, z)-bangs lie at the interstices of an underlying grid covering 
TC, with a grid spacing I1 iz2/2 in position dimension i and #~z in velocity dimension 
i. Thus, a p-grid, a timestep r, and a choice of origiri in C induce an underlying 
regular TC-grid. If S* is the root vertex of a teachability graph, then the number 
of its vertices is bounded above by the number of TC-gridpoints. (See [1], [2] 
and ensuing work such as [3], [6], [17], and [18].) 
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For Cartesian robots, the sets ~x  are easily computed, and hence the Near- 
Extremal Algorithm for Cartesian robots uses ~ ,  z)-bangs as described above 
to generate a reachability graphs. ~ ,  z)-bangs are defined formally in the section 
below, which also covers the non-Cartesian case. 

3.1.4. Control Primitives Used by the Near-Extremal Algorithm: More General 
Dynamics. Unfortunately, it appears that ~ x  is very difficult to compute for the 
general dynamical case (10). For non-Cartesian robots, we therefore define sets o f  
near-extremal constant accelerations using conservative subset approximations of 

the sets dx .  
Let ~x  c TC denote the set of states that can be reached from X within time 

without violating the dynamics constraints. Then one conservative approxima- 
tion to ~x  is 

(11) ~x = ~ d v < ~ x .  
Y~-~x 

This set still might be difficult to compute when the robot dynamics are nonlinear, 
since the intersection is taken over a set of states. 

The dynamics and dynamics bounds determine global bounds on the magni- 
tudes Ax and Av of the possible position and velocity changes during a duration 
of length ~. Using these bounds, we can compute an analogous "acceleration 
space" bound EA, which has the following property: if a v ~ d v  for some Y 
within (Ax, Av) of X, then there is some aX ~ ~r such that lqa v - aXl] ___ E a. (See 
Section 5.3.1 and Appendix A.) 

We now define: 

(12) ~ *  = (-] {a~Cxl3a'~dx, a = a ' +  Aa}, 
Aa~B~:A(O) 

where B~(y) denotes the f-ball about y. Since d x  is a parallelepiped or a dosed 
Lp-norm d-ball, this set has a simple geometry. Thus, 

with equality among the first three terms in the case of a Cartesian robot, except 
at the velocity bounds. (See Figure 2.) 

We call ~ *  the set of conservatively z-feasible constant accelerations at X. Our 
algorithms treat ~ * ,  the boundary of ~* ,  as the set of"most-extremal" constant 
accelerations feasible for a trajectory of duration z starting at state X. 

We now define the (p, z)-extremal shell of accelerations at X to be 

(13) ~f~(X, z) = {a s/~-gridl3a' ~ 8~* ,  Vi, ]ai - a[] </zi}. 

This notation and this term also refer to the corresponding set of constant 
acceleration functions. 
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/ ~, //~A/ 

�9 X 

Fig. 2. Sets of accelerations. ~x is the set of possible instantaneous accelerations at state X. ~x is the 
set of accelerations that can be maintained for duration z by trajectories starting at X. ~7 x = (~ S4y, 
where the intersection is taken over all Y �9 !~x, is a conservative estimate of this set. ~*, used by 
the Near-Extremal Algorithm to obtain the (/u, z)-extremal shell of accelerations out~ z), is "geometric- 
ally computable." a is a member of ~4"(X, z). This figure is only a Venn diagram. 

The application of a 0u, v)-extremal acceleration for durat ion v is called a 

Ou, v)-bang. Terminology concerning (8, z)-bangs and true (/;, ~)-bangs will be 

analogously extended to (~, v)-bangs. For  example, if a ~ ,  z)-bang results in the 

transition from state X to state Y, we say there is a ~ ,  z)-bang from X to Y. 

3.2. Key Concepts. To show the correctness of  our  algorithms, we follow the 

general technique from [1]. We formalize the not ion of  an acceleration advantage 

and generalize it to sets of  acceleration functions, and we use and prove two 

tracking lemmas that  are more  general than the ones in [1], [3], [6 ] - [8 ] ,  and 

[18] and yield tighter complexity bounds  for our  algorithms than those obtained 

in [6 ] - [8 ] ,  [18]. 

3.2.1. Overview. As in [1], tracking is a key concept; 

DEFINITION 3.3. Let  F~ and Fb be trajectories, and suppose that, for all t e [0, T],  

(14) )]pa(t) -- pb(t)llo~ < t/~ and I]pa(t) -- [%(t)]p~ G ~/~. 

Then we say that F a tracks F b to tolerance (qx, qv). Furthermore,  for all t e [0, T], 

Fo(t) approximates Fb(t ) to tolerance (Vlx, vlv ). 

The Safe Tracking Lemma [1] relates Co, Cl, and ~ to a family of tracking 

tolerances. Specifically, given Co, c 1 and e, the lemma provides a set of tracking 
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tolerances (t/x, ~/v) such that if a trajectory F,  is 6v(c o, q)-safe and F b tracks F,  to 
tolerance (t/x, t/v), then Fb will be ( 1 -  ~)6v(Co, q)-safe. This lemma is stated in 
Section 3.2.2, and it ensures that the algorithms can choose sufficiently small e-safe 
tracking tolerances t/x and ~/v that are | 

Recall that, for a trajectory F, F' denotes F e-time-rescaled (8). To prove the 
correctness of each algorithm we show that if a given problem has an optimal 
solution Fopt taking time Top t, then the algorithm's choice of root vertex state S*, 
timestep z, and discretization ~ (or /~) guarantee that it will, at worst, find a 
graph trajectory Fq that tracks Fop t to tolerance 0/x, t/v)- Fq will therefore be 
(1 -e)6v(Co, cl)-safe and approximate G' to within O(e) at time (1 + e)Top,. Since 
e < 1, S' and G' are within O(~) of S and G. It follows that Fq(0) and Fq((1 + e)Topt) 
will also be within O(e) of S and G. 

Following an analysis similar to that found in [1], we observe that if a Cartesian 
robot trajectory F r respects L z dynamics bounds 8 and g, then the e-time- 
rescaled trajectory F', will respect bounds 8' and tS' that are smaller than 8 and 
by a | factor. This is also true for open-chain manipulators as long as the force 
bound f is great enough to overcome gravity in all configurations when the robot 
is stationary. 

At this point, we introduce techniques that significantly extend those in [1]. In 
Sections 3.2.3 and 3.2.4 we generalize from feasible instantaneous accelerations to 
state-dependent sets of acceleration functions and formalize an appropriate notion 
of acceleration advantage over a time interval. 

The Coupled Tracking Lemma (Lemma 3.2) presented in Section 3.2.5 relates 
such an acceleration advantage th, a maximum acceleration, and a desired 
tracking tolerance to a timestep z. Using the lemma we can choose | param- 
eters #i, /~, and z that guarantee the existence of graph trajectories that will 
track Fop t to the | tolerances obtained via the Safe Tracking Lemma. For 
the Near-Extremal Algorithm, this enables us to find conditions that guarantee 
that some graph trajectory will track an ~-time-rescaled optimal trajectory Fop t 
closely enough. In Section 3.2.6 we present the Robust Coupled Tracking Lemma 
(Lemma 3.3), which gives conditions ensuring that (bx, b,)-pruning during a 
breadth-first search of the reachability graph will not eliminate trajectories 
the True-Extremal Algorithm needs to find. Thus, Lemmas 3.2 and 3.3 are 
the key to showing algorithm correctness and complexity, modulo safety 
checking. 

Proofs for Lemmas 3.2 and 3.3 are presented in Section 4. Details of how the 
algorithms choose the reachability graph parameters are given in Sections 5.2 and 
5.3. An approximate but sufficiently precise computational method of safety 
checking is described in Section 5.4. 

3.2.2. Safe Tracking. Assuming that a optimal trajectory Fop t exits, we must 
determine a tracking tolerance that guarantees that any trajectory tracking ["opt 
to that tolerances will be (1 - e)6~(Co, ca)-safe. 

LI~MMA 3.1 (The Safe Tracking Lemma [1]). Suppose that by is specified by Co 
and c~ and that F r is a by-safe trajectory relative t6 the C-space obstacles. Let 
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0 < 5 < 1, and let 3' v = (1 - 5)5~. Then a tolerance (tl~ , tl, ) exists such that, for any 
trajectory Fq, the following hold: 

1. I f  Fq tracks Fr to tolerance (tl~, rl~), then F~ is 3'v-safe. 
2. Furthermore, for any positive r, the following choices suffice: 

CO5 

~/v<-q(1 g)+ (15) -- fl' 

r/x _</~rl.. 

The lemma is independent of norm, as long as a particular norm is consistently 
used, and distances and velocities are in TC. A proof is found in [1]. 

If we wish the safety margin to correspond to the distance between the 
physical robot and the obstacles, then t/x can be divided by the maximum 
modulus of the forward kinematic map. Similarly, if we wish the velocity to 
correspond to the velocity of a point on the physical robot, then t/v can be 
divided by maxp.p [I J(P)Pt[, where J(p) is the manipulator Jacobian. We denote these 
divisors by Pmax and J~,~, respectively. Then we (conservatively) require 

(16) 

C06 
r/v < 

Jma~(C~(1 - -  ~) + B)'  

tiros 
rl~ <__ 

Pm~(C~(1 - -  5) + /~)" 

By choosing fl--- 1 we see that r/x and t/v can both be O(e). The algorithm 
chooses fl to maximize the timestep and thus minimize the overall complexity. 
Given Co, cl and e, we call a tolerance (qx, t/v) that obeys (16) a physical 
e-safe-tracking tolerance. 

Finally, because the safety-checking procedure is a numerical method, when 
computing the parameters that determine the reachability graph, the t/X given 
by (15) or (16) must be reduced fractionally to account for the numerical error. 

3.2.3. Time-Rescaling and Instantaneous Acceleration Advantages. If trajectory 
F r obeys L~ dynamics bounds ~ and ~, then the e-time-rescaled trajectory F' r obeys 
L~ dynamics bounds ~/(1 + e) z and U(1 + e). For any d-vector a of l's and - l ' s  
there is a d-vector ~ of l's and - l's such that if Jla(t)][~ < a/(1 + 5) 2, then, for each 
dimension i, 

ai(~ia - ai(t)) >-- 
a(25 + g 2) 

(1 + 5) z " 

Therefore, a trajectory obeying (& z)-bang control [1], [3] can always out- 
accelerate the 5-time-rescaled trajectory F'r by'an a(2~ + 52)/(1 + e) 2 margin in any 
direction over the entirety ofa timestep, as long as this would not violate the velocity 
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bound. We can thus immediately reduce the analysis for Lo~ Cartesian robots to 
the one-dimensional case, where we exploit this acceleration advantage to relate 
the timestep z to how closely some (& z)-bang trajectory is guaranteed to track 
F' r (in the absence of obstacles). We use an acceleration advantage together with 
the dynamics bounds, Lemma 3.1, and Lemma 3.2 or 3.3 to choose a timestep z. 

As the first step toward defining a type of acceleration advantage appropriate 
for sets of acceleration functions, as used in the Coupled Tracking Lemma, we 
describe a generalization of "instantaneous acceleration advantage" to both L z 
Cartesian robots and open-chain manipulators. 

Recall that the robot motion obeys the following equation: 

(1) fit) = M(p(t))a(t) + [pr(t)C(p(t))p(t)] + G(p(t)). 

Suppose a trajectory F, obeys the bounds f. Recall that F'r is F~ e-time-rescaled 
(8). We find [10] that at time (1 + e)t: 

f,(t) 2e Oi- /~2 
(17) f',((1 + e)t) - (1 + e) 2 + (1 + e) 2 G(p,(t)). 

This immediately means that F'r obeys some tighter bounds f if the robot 
is Cartesian or if there is no gravity. For an open-chain manipulator, F'r obeys 
tigher bounds t" as long as the bounds f are large enough for the robot to be held 
stationary in the presence of gravity in all configurations. In particular, suppose 
that the forces necessary to balance gravity obey the bound (1 - xf)f, so that the 
scalar x s describes the advantage over gravity. Then F'~ obeys the bounds 

1 + (1 - xs)(2e + ~2)~ 
(18) /, 

(1 + ~)2 

in addition to 

(19) ~ , = (  1 )~r 
i q" 

Then, for every degree of freedom i, 

_ xs(2 e + ~z) XS e 
(20) f ' - f [ >  ( l + e )  2 f i > ~ f i .  

Recall that ~r denotes the sets of feasible instantaneous accelerations at the 
state X under the force bound f. Let d~t denote the corresponding set under the 
force bounds f', and let fmi, = mini fi- Recall that, for any y ~ R a, 

(21) Ily[Ioo ~ Ilyll2 ~ ~/dlly[Ioo. 
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Now, because M(x) in (i) is orthogonal, (20) implies that, for all a �9 d x  and 
a'�9 

(22) 
~f  fmin/~ 

Ila - a'/12 --- 2)~max , 

where 2max is the maximum eigenvalue of M(x) taken over all of C. Equation 
(22) is also true for a Cartesian manipulator obeying Lz-norm dynamics bounds; 
in this case it follows from (3) that ~:I = 1 and f~n = f" The L2 acceleration 
bound case is trivial, since it is equivalent to setting M to the identity matrix. 

In all three cases d k  lies entirely inside ~r by some O(e) margin. In particular, 
we can always find a scalar xt > 0 such that, for any a e d ~  and any d-vector o- 
of l's and - l ' s ,  there is an h e C3dx such that, for all degrees of freedom i, 

r i - -  a i )  >_ tr t. 

Hence, we say that d x  has a Kt instantaneous acceleration advantage over d ~ .  
(See Figure 3.) 

3.2.4. Acceleration Functions and Uniform Advantages. We now introduce a 
form of acceleration advantage useful for comparing sets of acceleration functions. 
We say that a trajectory F, respects a set o~ of acceleration functions in interval 

I 

- - -  "x - j  

i/. i 

tz = t~l 

Fig. 3. Allowable accelerations for the L 2 Cartesian robot at any state X. ~r obeys ~, d ~  obeys 
h/(1 + 5) 2. For any a e d k ,  in each direction given by a vector of l's and - l ' s ,  there is some ~ledx 

that has a xt advantage over a; the intersections of the dotted lines and the outer circle (Sdx) represent 
"witnesses." Thus, dx has a uniform xt advantage over d~r for any duration z (as long as the velocity 
bound is not violated). If the actual uniform advantage is large enough and all/t~ are small enough, 
then the ~,  z)-extremal shell of accelerations ~(X, z) (see (13)) has a uniform lq advantage over ~r 
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[-tl, t2] if there is an acceleration function a �9 Y/such that a,(t) = a(t - tl) for all 

t �9 [t~, t23. Suppose that o~ is also a set of acceleration functions, and suppose that, 

for every a �9 ~ and each d-vector a of l 's and - l's, there is some h �9 ~ such that, 

for all t �9 [0, z], 

(23) ai(~(t) ~*o a~s) ds) >_ ~fi. 

Then we say that o~ has a uniform Kt advantage over ~ for duration z. 
Because the set of feasible accelerations for a Cartesian robot is essentially 

state-invariant, we can find an acceleration advantage x~ and discretizations 

#i, # that are | and such that both the (~, z)-extremal shell of accelera- 

tions Yf(X, z) and the set of true (/3, z)-bangs ~ ( X ,  z) at every state X have 

a uniform x~ advantage over the acceleration of F'opt(t) at every time t for any 

duration z. We note that this discussion about the set of feasible accelerations 

does not consider velocity bounds, and that the inclusion of velocity bounds 

changes the set of feasible accelerations for states on the velocity boundary. 

This technical detail is minor because of the effect e-time rescaling has on a 

trajectory's velocity bound. 

We now generalize the notion of a set of instantaneous accelerations d x  to 

a mapping 

d :  TC ~ {~176 is a set of acceleration functions} 

from TC to sets of  acceleration functions. For  a given robot d (X)  is defined to 

be the set of acceleration functions obeying the dynamics bounds f and 

for a robot motion (in the absence of obstacles) beginning at state X. Thus, 

a, �9 d (X)  if and only if there is a trajectory F, that begins at state X and obeys 

the dynamics bounds. Furthermore, an instantaneous acceleration (vector) a x �9 d x  

if and only if there is some acceleration function a �9 d (X)  such that a x = a(0). 

Strictly speaking, Yg(X, z) c d(X),  and for each a �9 Zg(X, z) there is a constant 
a x �9 d x  such that a(t) = a x for all times t �9 [0, z]. 

We say that F, respects d if, for all intervals It1, tEl, F,(t0 = X implies that 

F, respects d (X)  in [q,  t23. d '  denotes the map from TC to all acceleration 
functions feasible under the bounds f' and ~' given in (18) and (19). 

Since the set of feasible instantaneous accelerations for an open-chain manipula- 

tor is state-dependent, to choose the discretization parameter fi (or /~) and a 

timestep z, we consider the relationship between feasible acceleration functions 

(such as the members of d(X))  and feasible sets of instantaneous accelerations 

(such as dx). Suppose F, respects d ' .  Then the average acceleration of F, over 

the interval [nz, (n + 1)z] is 

vr((n + 1)z) - -  Vr(n'c ) 
(24) �9 U d~,{t). 

T t~[n~,(n+ 1)'~] 
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Suppose that Fq is a ~ ,  z)-bang trajectory. Then, for all t e [nz, (n + 1)z], 

aq(t) = a t") for some constant a t") such that, for all i, u~ divides a! ") and 

(25) a~")e ~ dry.).  
te[n~,(n+ 1)~] 

If Fq(nz) and F~(nz) are close enough and z is small enough, then 

(26) ~ dr .(0 ~ (~ dr.(o c d r ,  t.~), 
t~[n~,(n+ l)~] te[n~,(n+ 1)~] 

and, furthermore, the boundaries of Ut~[.~,(.+ 1)~j dr.~0 and dr~.~) are separated 
by some distance. (Recall (12).) 

If this separation distance is great enough compared with xz and ]JpJlco and 

/2, then both the (p, T)-extremal shell at Fq(nZ) and the set of true (/~, z)-bangs at 

Fq(nz) will have uniform xl advantages over d'(F.(nz)). We use this relationship 

between sets of instantaneous accelerations as a criterion for comparing maps 

from TC to sets of acceleration functions. 

Since we can bound the minimal distance between members of ad x  and 

members of Odk,  we now consider how points on gdx and Odk "move" in 

response to small, continuously realizable changes, or perturbations, to state X. It 

is straightforward (but tedious) to show that physically possible state perturbations 

(Ax, Av) cause points on 3dx  and Odk to move by distances that are O(Ax) and 

O(Av). Therefore, because we assume global dynamics bounds, points on 3dr~t) 

and points on Odr;~) move by O(At) over a duration of length At. Specifically, we 

can globally bound the effect of perturbations (Ax, Av, At) on 3dx by hqo(tlAt[[) + 

hql([lAx]l, IlAvll) and the effect of a perturbation At on t3d)  by h,(llAtll), where 

hqo , h~l, and h, are linear. (See Figure 4 and Appendix A.) 

Fig. 4. Sets in acceleration space, d x obeys bound f; d~ obeys I'. The outer dotted parallelogram 
represents the boundary of the set obtained by considering all "perturbations" of dx by up to hql 
(~/~, ~/~) + hqo(Z) and taking the intersection. The intersection of this set with the p-grid has a ~c l 
advantage over the set (represented by the inner dotted parallelogram) obtained by considering all 
"perturbations" of d~ by up to h,(z) and taking the union. The eight #-grid patches crossed by dashed 
lines show this xl advantage with respect to an acceleration (vector) a. 
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This means that we can find | uniform acceleration advantage xt, 
discretization p, fundamental timestep %, and maximal tracking tolerances 

qxo and t/, o such that if X is within (r/~o, ~/,o) of Y, then the (#, 'c)-extremal 
shell of accelerations at X, ~ (X,  'c), has a uniform xt advantage over d(Y) 
for duration min(~, To). Hence, the fundamental timestep is defined to be the 
maximum that guarantees some (It, 'c)-bang trajectory will be able to stay 
within some constant tracking tolerance of an e-time-rescaled trajectory. Follow- 
ing :similar steps, we can choose /2 to guarantee that the set of true (/2, "c)- 
bangs at X, s~(X, "c), also has a uniform x~ advantage. (Details in Section 
5.3.) 

In other words, we can choose a set of consistent parameters (#, %, rl~ o, tl~ o, xz): 
a maximal discretization parameter # for either acceleration or control, a maximal 
timestep %, a maximal tracking tolerance (r/~ o, ~/~o), and a uniform acceleration 
advantage ~q. For any timestep 'c ___ "c o and any trajectory F~ that respects ~/', the 
following will be true: if state X is within (r/~o, t/~o) of F,(n'c), and both/2, N#II ~ -< ~, 
then both the ~ ,  "c)-extremal shell of accelerations ~ (X,  'c) and the set ~ (X,  'c) 
of true (/2, "c)-bangs have uniform xt advantages over ~r  nr)) for dura- 
tion 'c. 

For this general case, we describe how to choose sufficiently small #, ~h, 'co, t/~o, 
and ~/vo that are O(e) in Section 5.3. The Cartesian case, in which 'co, ~/xo, and q~o 
do not arise, is handled in Section 5.2. 

3.2.5. The Coupled Tracking Lemma. The Coupled Tracking Lemma is the key 
to choosing, for a given tracking tolerance, ~t timestep "c and other parameters that 
guarantee the following:for any e-time-rescaled trajectory F'r beginning at S', some 

(p, 'c)-bang trajectory and some true ~ ,  'c)-bang trajectory will track F', to that 
tolerance. Note that the set of acceleration functions associated with a given state 
can be arbitrary, as long as that set has the necessary uniform acceleration 
advantage. This allows us to apply the lemma to sets of true (/2, r)-bangs without 
knowing their forms as path functions; i.e., we do not need a series or closed-form 
representation. The lemma can be applied more generally to state-dependent sets 
of bounded acceleration functions whose exact form is unknown but whose 
time-derivatives are also bounded. 

LEMMA 3.2 (The Coupled Tracking Lemma). Let Area x be the global Lo~ accelera- 

tion bound. Consider functions ~ ,  .~: TC --* {~#: ~# is a set of acceleration functions}. 

Let ~ have the property that if, for some state X, a E ~(X), then, for all times t, 

Ila(t)tl ~ < Area. - tq. Let ~ have the property that if acceleration function a ~ -q(X), 
then, for all times t, Ila(t)tl~ < Zm.x. Let Fr(t ) respect ~.  

Suppose that a maximal tracking tolerance (tlxo, tlvo) and a fundamental timestep 

T o exist such that for all "c <<_ % the following is true: if state X is within (tlxo, tlvo) 
of state Y, then the set of acceleration functions .~(X) has a uniform lq advantage 7 
over ~(Y)for duration z. 

7 Recall (23). 
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Then, for any L~o tracking tolerance (r/x, r/r), a timestep z and a velocity v o exist 
such that if  trajectory F, respects ~ and Ilpr(0) - v o II oo -< 2Am,xZ, then a trajectory 
Fq exists such that: 

1. vq(0) = Vo. 
2. pr(O) = p,(O). 
3. F~ tracks F~ to tolerance (qx, qy). 
4. For each n, Fq respects ~(Fq(nz)) in [nz, (n + 1)z]. 

Moreover, it is sufficient that 

(27) 

~ ~ 0 ,  
/ 
/_ min(qx,  ~xo)tc; , 

< ~/Ama~(8Am.x + 6~c;) 

rain(ft., rlvo) 

4Amax 

PROOF. Presented in Section 4. 

Recall from Section 3.2.2 that there is an e-safe tracking tolerance (qx, t/v) where 
both qx and r/v are | The Near-Extremal algorithm uses the Coupled Tracking 
Lemma (above) to choose a timestep z that is | and that guarantees that if a 
solution Fop t exists, then there will be a ~ ,  z)-graph trajectory that tracks F'opt 

to tolerance (r/x, r/r ). The True-Extremal Algorithm can choose r similarly, but 
because of the search pruning, this alone will not guarantee it can find such a 
trajectory. For the True-Extremal Algorithm, we must apply a stronger tracking 
lemma. 

3.2.6. Coupled Tracking and (b x, bv)-Bucket Pruning. In the True-Extremal 
Algorithm, the kinodynamic constraints, ~, and the choices of discretization param- 
eter #, timestep z, and root vertex S* determine a reachability graph f# whose 
vertices are states and whose edges correspond to (1 - e)fv(Co, c:safe  (#, r)-bangs. 

Recall that in (bx, bv)-bucket pruning, the state space TC is divided into voxels 
with diameter bx in spatial dimensions and by in velocity dimensions. A breadth- 
first search with (bx, bv)-bucket pruning proceeds as a normal breadth-first search 
does, except that when the search finds a vertex in a voxel that contains another 
vertex found in a previous generation or earlier in the current generation, the edges 
out of the newly found vertex will be pruned from the search; i.e., no edges out 
of that vertex will be explored. 

Consider any breadth-first search of fq with (bx, bv)-bucket pruning. We call 
removing all edges and vertices in f# that are not explored during this search a 
breadth-first (bx, bv)-bucket pruning off#. We say that a graph-trajectory F remains 
after that breadth-first (b x, bv)-bucket pruning if the path in ff corresponding to 
it is not affected b y  the pruning. 

Like the Coupled Tracking Lemma, the Robust Coupled Tracking Lemma 
applies to sets of acceleration functions more general than (/~, 0-bangs and 
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(iu, z)-bangs. We introduce three new terms used in its statement. First, let ~ be 

a mapping ~: ~(C -~ {~: ~ is a finite set of acceleration functions}. We say that 
a trajectory segment from state X to state Y is a (& z)-trajeetory segment if there 
is a trajectory Fr such that G(0) = X, G(z) = Y, and ar ~ .~(X). Second, a vertex S* 
and the set of (& z)-trajectory segments determine, via transitive closure, the 
(.~, z)-reachability graph (r rooted at S*. Finally, if ~ is a subset of TC, then the 

maximal subgraph of ff lying in ~ is the maximal subgraph fr of ff such that all 
vertices and all edges (as trajectory segments) in fr lie in ~ .  

LEMMA 3.3 (The Robust Coupled Tracking Lemma). Consider functions ~ ,  ~: 
TC--; {Yr q/ is a set of acceleration functions}. Let ~ have the property if 
a s ~ ( X )  for some state X, then, for all times t, [la(t)lk~o < Zmax-1s  l. Let ~ have 
the properties that ~(X) is finite for all X ~ TC and that ijr a E ~(X), then, for 
all times t, Ila(t)ll o~ < Amax. 

Suppose that a maximal tracking tolerance (rlxo, Go) and a fundamental timestep 
z o exist such that for all z <_ Zo the following is true: if state X is within (rIxo, tloo) 
o f  state Y, then the set of acceleration functions ~(X) has a uniform tct advantage 
over ~(Y)for  duration r. 

Let (G, G) be an L~o tracking tolerance, and let timestep r obey the following 
inequalities: 

T ~TO, 

/ 4_min(.xo,.x) , 
(28) z ~ "Q 24AmaxKl + 2x~ + (SAma x + KI)2' 

2 min(G o, qv) 

8Amax q-/r 

Let ~ be the (~, z)-reachability graph rooted at some state S*. 
Now, suppose that F~ respects ~ ,  F~(0) is within 2Am,xZ of g*, and Pr(0) = s*. 

Suppose that ~ is a subset of TC containing the (~l~, G)-tube induced by F ,  and 
that if' results from some breadth-first (xtz2/4, Klz/2)-pruning of the maximal 
subgraph of ~ that lies in ~ .  Then there is a Fq in if' such that Tq < T~, Fq(0) = S*, 
and Fq(Tq) approximates F,(T~) to tolerance (qx, ~l~). 

PROOF. Presented in Section 4. 

Note that ~ is introduced to model the union of the (G, G) -tube induced by 
the arbitrary Fr and the 6"(Co, Cl)-safe region of TC. The lemma guarantees that 
if 9~ contains the (G, qv)-tube, then some trajectory with the necessary endpoint 
properties will survive the pruning of the reachability graph in ~ .  The lemma does 
not guarantee that a trajectory that tracks F, to tolerance (~/x, q~) or that lie close 
to Fr for its entirety survives the pruning. 

Having chosen /3 as described in Section 3.2.4 (and in detail in Sections 5.2 
and 5.3), the True-Extremal Algorithm uses Lemma 3.3 to choose a timestep z 
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that is | and pruning bucket dimensions bx and b| that are | 3) and | 
respectively. The parameters chosen will ensure that if a go-safe solution Fop t exists, 
then a (/~, ~)-trt~e-bang graph trajectory that tracks F'opt to the e-safe tracking 
tolerance .(rl~, qo) also exists, and the algorithm will find such a trajectory if no 
sufficient shorter or equivalent-length graph trajectory survives the pruning. 

3.3. Asymptotic Bounds. In the preceding sections we have described the key 
concepts we use in obtaining asymptotic bounds for parameters that guarantee 
our algorithms will find an e-optimal solution when a solution exists. We now 
sketch how to arrive at the complexity bounds of these algorithms. 

Given a problem and an approximation parameter e, the Safe Tracking Lemma 
shows how to find a family of e-safe-tracking tolerances (qx, qo) such that ~/x and 
q| are | Sections 3.2.3 and 3.2.4 sketch why, for Cartesian robots, there will 
be sufficiently small discretization parameters /i and /h and an acceleration 
advantage x~ that are | For open-chain manipulators we find consistent 
parameters /t (or #), %, t/~o, ~/oo, and l~l that are | where ~c z is a uniform 
acceleration advantage over %. 

Using the lemmas from Sections 3.2 and 3.3 we can then show that there are 
correct choices of'c that are | Section 3.3 implies that since K~ and z are both 
| we can choose (b~, bo)-pruning bucket dimensions that are | 3) and | 
respectively. 

It follows that for a given problem, the number of TC-gridpoints that can be 
considered by the Near-Extremal Algorithm and the number of (b~, bv)-pruning 
buckets that can be visited by the True-Extremal Algorithm is O((1/e)sa). Since/~ 
and the/~i are @(e), the out-degree of each graph is | d- 1). 

The complexities of each algorithm, then, are O(caop(N, e, d)(1/e) 6a-1) and 
O(c~p(N, e, d)(1/e) 6a- 1), where p(N, e, d) is the cost of checking the (1 - e)6v(Co, ct)- 
safety of a (#, z)-bang or a (p, v)-bang, co and c~ are constants dependent on the 
particular robot and the algorithm and are polynomial in d. In Section 5.4 we 
review numerical techniques sufficient for safety checking that will have a cost of 
O(N(d + log N) per bang when e is sufficiently small. Our algorithms therefore 
have overall asymptotic complexity bounds of O(cdN(d + log N)(1/~) ca- 1). 

4. Proving the Coupled Tracking Lemmas. We now present the proofs of the 
Coupled' Tracking Lemma (Lemma 3.2) and the Robust Coupled Tracking Lemma 
(Lemma 3.3). These two lemmas are fundamental to obtaining our results. We use 
them to show how the algorithm can choose discretization parameters p and 
/~ and a timestep z, and how we can calculate a uniform acceleration advan- 

tage ~t- 
If a system has decoupled dynamics bounds, then a set of coordinate axes exists 

such that the acceleration or velocity cfiosen along any one axis never affects what 
accelerations or velocities are possible along any other axis. This is why tracking 
the trajectory of a Cartesian robot obeying L~o bounds reduce trivially to the 
one-dimensional case. On the other hand, if a system has coupled dynamics 
bounds, then, for any set of coordinate axes, choosing a maximal acceleration 
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along one axis can limit the accelerations along another. Furthermore, if the 
dynamics equations are state dependent, then the set of instantaneous extremal 

accelerations is state dependent. The definition of a uniform ~c~ acceleration 
advantage over a timestep is thus crucial to our proofs of Lemmas 3.2 and 3.3. 

4.1. The Tracking Game. To prove Lemmas 3.2 and 3.3, we begin by considering 
a game against an adversary in a one-dimensional space. In this game certain rules 
simulate dynamics. When simultaneous independent games are played, the adver- 
sary can force our movements to be governed by accelerations in the ~ ,  z)- 
extremal shell or by true (/~, z)-bangs. 

4. !. 1. Defining 'the Game. Consider a game in which you are trying to track an 
adversary in a one-dimensional space. The game is a series of rounds, each of 
which simulates motions taking duration z. The game begins with the adversary 

in state (Xo, Vo) and you in state (x~, v~). A round simulates an interval of 
time with length z. Note that in our discussion of tracking games, the "!" symbol 
does not denote e-time�9 

Let game parameters Area x and x~ be given such that Ama x 3> tr t > 0. When 
discussing the game, we use x , ,  v,, etc., to denote game variables that correspond 
to round n. 

In each round the following takes place: 

Play fo r  Round  n. 

1. The adversary plays first by choosing an acceleration function a,(t) for himself 
such that, for all t ~ [nz, (n + 1)z], ta.(t)[ < A~a x - ~h, His state (x.+ 1, v,+ 1) at 
the end of the round (beginning of round n + 1) is computed fiom this state 
(x., v.) and this acceleration fimction by integration over the time interval 
[n~, (n + 1)~2. 

2. For your play in round n, you then choose either HIGH or LOW, This choice 
limits the acceleration function that the adversary can choose for  you, which 
determines your state (x'.+ 1, v'.+ ~) at the end of the round. Note that you play 
only HIGH or LOW; the adversary chooses your acceleration as well as his own, 

However, his choice of your acceleration is constrained by your play, 

3, Let a ~ = (v. + ~ - v,~)/~. If you played HIGH, then your adversary can choose 
any function a'.(t) such that a',(t)_>, a~. + ~ for a!l t e [nv, [nz,(n + 1)z], If 
instead you played LOW, then your adversary's choice must obey the condition 

�9 a'.(t)< a ~ -~:1 for alt t E [m,(n + 1)z]. In both cases, a'.(t) must obey the 
condition [a'.(t)l _<. Am.x for all t e  [nz, (n + 1)z], (See Figure 5.) 

4. Your state (x'. + ~, v'. + a) at the end of the round is computed by using your state 
at the end of the previous round and integrating a'.(t) over the time interval 
End, (n + 1)~], 

4.1.2. A Winning Simple Strategy fo r  the Tracking Game, A simple high-level 
strategy for the Tracking Game is: try to go faster than the adversary if you have 
fallen behind; try to go slower than the adversary if you are ahead; but never go 
much faster or much slower than the adversary. The uniform ~h advantage you 
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..,:___ t... LOW f a~ HIGH 

: . . . . . . .  + . . . . .  "1 . . . .  
- A  ..... a ~ - ~t 0 a ~ + ~l A .. . .  

acceleratio~z 

Fig. 5. Details from a game against an adversary. Suppose in the current round the adversary's average 

acceleration is a ~ . Then if you choose HIGH, the adversary assigns you an acceleration function whose 

range lies in [a ~ + xl, Am j ;  if you choose LOW, the adversary assigns you an acceleration function 

whose range lies in [ -  A . . . .  a ~ - tq]. This function controls your motion for the current round, which 

covers a time interval of length z. 

have over the adversary's average acceleration during a round assures that we can 

fol low such a strategy. (See Figure 6.) 

W e  n o w  give the detailed strategy in terms of  the game parameters.  

Simple Strategy. In round n c h o o s e  H I G H  or L O W  according to the fo l lowing 

rules: 

1. If Ix. - x'~[ < 2Amax z2, then c h o o s e  H I G H  if v .+ l  -> v'., L O W  otherwise.  

2. Else if x .  - x'. > 2A~.x z2, then c h o o s e  H I G H  if v'. < v.+a + 2 A m J ,  L O W  

otherwise.  

3. Else ch oos e  L O W  if v'. _> v.+ 1 - 2Amax z, H I G H  otherwise.  

' . .___ 8 A m ~ / m  

t I � 9  �9 ~ . + 

t 

Fig. 6. Intuition for proving Lemma 3.2: a game in one dimension. We try to track an adversary whose 

acceleration a, obeys the condition lar(t)[ __ A,,ax - xz- We generate our velocity function vq timestep 

by timestep, trying to limit lye(t) - v,(t) l and I~(vr(t) - vq(t)) dt  I. During each round we can only choose 

whether our acceleration aq(t) is above or below the adversary's average acceleration over the timestep 

by ~t. The adversary otherwise controls our acceleration, except for the restriction that laq(t)[ _< Amax. 

Mimicking the adversary's velocity v, to within 2Am,xz  is straightforward, but in making up for position 

error, our strategy can result in a velocity error of 4AmaxZ; v + = vr + 4AmaxZ and v 7 = v r -- 4AmaxZ in 

the figure. Following a good strategy will keep [ S(v,(t) - vq(t)) dtl  within a constant bound dependent 
on r. The game conditions give us a uniform xt acceleration advantage over each timestep. 
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We make the following claim: 

CLAIM 4.1. Suppose that you play the Tracking Game against an adversary and 

follow the Simple Strategy above, and suppose that Ix o -X 'o[  < 2Amax z2 and 
[v o - v~)] < 2Am,xZ. Let two trajectories Fr and Fq be defined as follows: 

r , ( o )  = (Xo, Vo), 

G(t) = a.(t -- nz) for all 

rq(o )  = ( x ; ,  x ; ) ,  

aq(t) = a'.(t - nr) for all 

t e [n~, (n + 1)z), 

t ~ [nz, (n + 1)z). 

Then, for all t, 

(29) 

Iv,(t) - vq(t)l ~ 4Amax'G 

8Amax-C 2 
I x~(t) - xq(t) l < - -  

1r I 
+ 6Amax't: 2. 

PROOF. Suppose the hypotheses hold. (See Figure 6.) The  velocity condit ion in 

(29) holds by inspection, since ]ar(t ) - aq(t)] < 2Ama x for all t. We now define 

x o , ( t )  = x , ( t )  - xq( t ) ,  

Verr(t) = Yr(t ) - -  Vq(t). 

To obtain a bound  on [X~r,(t)], we first bound  the length of the interval for 

which x,r, and Vorr can have the same nonzero  signs. Suppose that  I xe,r(nZ)l > 

2Amax z2 and that  Vor, > 0. Then  following the strategy ensures that  vr = 0 at 

some least time tr > nz, and, in particular, tr < nz + 4AmaxZ/~c~. Then  

I xerr(tc) -- Xerr(n'c) l G - -  

2 2 
8AmaxZ 

K;/ 

The velocity condi t ion ensures that  if IXe~r(nZ)[ < 2Amax ~2 but  [xe,,((n + 1)z)l > 

2Area x z z, then we know that  

Ixe,((n + 1)z)l < 6Amax z2. 

Therefore,  

2 2 
8Amax~ 

(30) maxlxcrr(t)[ < - -  + 6Amax z2. 
t /~l 

4.2. Applying the Game To Prove Lemma 3.2. We now use facts proven about  

the Tracking Game  to obtain a p roof  of Lemma 3.2. 
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PROOF OF LEMMA 3.2. Let N and ~ be functions ~ ,  ~: TC--* {0': ~J is a set 
of acceleration functions}. Let N have the property that if X e TC and a s ~(X), 
then, for all times t, Ila(t)l]oo < Area, - ~t. Let .~ have the property that if Xe  T C  
and a e ~(X), then, for all times t, ![a(t)]l ~o -< Amax" Let F~(t) respect ~ .  

Suppose that a maximal tracking tolerance (r/xo, q,o) and fundamental timestep 
% exist such that for all ~ < % the following is true: if state X is within (t/xo, t/,o) 
of state Y, then the set of acceleration functions ~(X) has a uniform ~ advantage 
over N(Y) for duration z. 

Suppose that (t/x, t/y) is given, and that z obeys the conditions 

"C _~Z'0~ 

min(qx, qxo)Kz 

(31) z ~ (8Area x --I- 6Kl)Arnax' 

min(qv, r/~o) 

4Amax 

Consider d simultaneous independent playings of the Tracking Game in which 
your adversary's trajectory in the ith game is Fr, i and yours is Fq,i, and in which 
F~.i(0) and Fq,i(0) meet the starting (t = 0) closeness hypotheses of Claim 4.1. 

We consider play during round n, assuming that you have followed the Simple 
Strategy and play has proceeded legally through the end of the previous round. 
By Claim 4.1, in each game i, Fq,i(n~) is within (qx0, q~o) of Fr,i(nz ). Then during 
round n, for each of the 2 a combinations of HIGH and LOW, there is some 
function a ~'" e ~q((Fq(n~)) such that the adversary can legally return s a~"  in the ith 
game, provided you follow the Simple Strategy. Suppose you do so. Then by Claim 
4.1, in each game i, Fq,i(t ) is within (t/x o, t/~o) of F~,i(t) for all t e  [nz,(n + 1)z]. By 
induction, we see that (29) holds for the duration of the game. 

Therefore, if, for all n, for all t ~ [nz, (n + 1)z], aq(t) = a~'n(t), then Fq tracks F, 

to Lo~ tolerance (t/X, ~/~). [] 

4.3. Altering the Game to Prove the Robust Lemma (Lemma 3.3). We now 
consider a version of the Tracking Game in which the adversary is allowed to 
perturb your state between moves. This perturbation will correspond to a branch 
of the search of the reachability graph being eliminated by (bx, b~)-bucket pruning, 
and a proof of the lemma follows from a successful strategy for the game. 

(See Figure 7.) 

4.3.1. The Tracking Game with Perturbations. Let us take the Tracking Game 
and alter the rules: 

4. A temporary state (2n+1, ~,+i) is computed for you by using your state at the 

8 That is, he can choose it as your acceleration in part 3 of the rounds; see Section 4A.1. 
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Fig. 7. Intuition for proving Lemma 3.3: another  tracking game in one dimension. This time the 
adversary can perturb our state at the end of each round, by xtz2/2 in position and KF/2 in velocity; 
the discontinuities in vq correspond to the perturbations. However, we can still track him, though to 
a looser tolerance, v~ + + = vr + 4 A ~ j  + ~i/2, and v,- - = v, - 4Am,xZ - xlz/2. 

beginning of the round (end of the previous round) (x,, v,) and integrating 
a',(t) over the time interval [nz, (n + 1)z] from (x,, v,). 

A and a velocity perturbation 5. The adversary chooses a position perturbation x, 
A v, to be applied to your temporary position and velocity. Your position at 

the end of round n is 

~ A 

X n +  1 ~ X n +  1 -'[- X n ~  

t ~ A 
V n +  l ~ V n +  l -[- Vn"  

We call the resulting game the Tracking Game with Perturbations 

CLAIM 4.2. Suppose that you play the Tracking Game with Perturbations against 
an adversary and follow the Simple Strategy above. Suppose that at the start of 
the game [Xo - x~l _< 2Amax z2 and [v o - v~[ < 2Amaxz. Furthermore, suppose that 
the adversary always chooses perturbations such that ]x~ a ] ~< ~ct~2/2 and [ v~[ <_ ~:lz/2. 

Let two trajectories F, and F~ be defined as follows: 

rr(n~) = (x. ,  v.), 

ar(t) = a.(t  - n~) f o r  all 

F~(n~) = (x; ,  v;), 

aq( t )  = a' . ( t  - n z )  f o r  all 

t ~ (n~, (,~ + 1)~), 

t ~ (n~, (n + 1)~). 
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Then,  f o r  all t, 

(32) 

I v~(t) - v~(t)l ~ 4Am.~'c + 2 " 

(8Amax + K/)2~.2 Kl,~2 
[xdt) - xq(t)l < + 6Zmax z2 + - -  

4x~ . 2 

PROOF. The analysis proceeds similarly to that for Claim 4.1. Again, we let 

X~,r(t) = x,(t) -- x~(t), and v~,~(t) = v,(t) -- v~(t), and bound the length of an interval 

for which x~,~ and v**~ can have the same nonzero sign. Because of the velocity 

perturbation, our effective acceleration advantage is only ~h/2. Therefore, 

if Ix~,(nz)[ > 2Ama,~: 2, following the strategy ensures that V~r(tc) = 0 at some later 

time t~ < nz + (SAma x + ~q)z/2K t. Then 

I x~.(t~) - xo.(nv) l _< 
(8Ama x -[- KI)2T 2 

4tq 

Because of the perturbations at the end of a round, the x,z /2  term must be 

added to the velocity-tracking tolerance and xtz2/2 must be added to the position 

term in the final tracking accuracy. Therefore 

(8Area x + KI)2T 2 /r 2 
(33) max[x~r(t)[ < + 6Amax z2 + -  [] 

~ 4t h 2 

4.3.2. Using the Game  with Per turbat ions  To Prove  the L e m m a .  We can now 

prove Lemma 3.3. 

PROOF OF LEMMA 3.3. Let ~ and ~ be functions ~ ,  ~: TC ~ {~: q/ is a 

set of accelerations}. Let ~ have the property that, for all X ~ T C ,  if a ~ ~(X), 

then, for all times t, [a(t)]o~ < Amax - xt. Let ~ have the properties that ~(X) is 

finite for all X~ TC and that if a ~ ( X ) ,  then, for all times t, [a(t)[oo _< Am,x- 

Suppose that a maximal tracking tolerance (t/xO, t/~o) and a fundamental timestep 

Zo exist such that for all ~ < To the following is true: if state X is within 

(r/xO, qvo) of state Y, then the set of acceleration functions ~(X) has a uniform 

xz advantage over ~(Y) for duration z. 

Suppose that (t/x, r/~) is an L~ tracking tolerance and that 

(28) 

~--<Vo, 

/ 4 min(q~o' qx)~q 

z < X/24AmaxtCt + 2tc2 + (8Amax + KI)2 , 

2 min(t/~o, q~) 
z <  

8Amax + K t 
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Let f~ be the obstacle-free (.~, z)-reachability graph rooted at some S*. Suppose 

that Fr respects N, Fr(0) is within 2AmaxZ of g*, and p,(0) = S*. Suppose that 
is a subset of TC containing the (r/x, r/v) tube induced by F r, and that f#' results 
from some breadth-first (tctz2/2, xlz/2)-pruning of the maximal subgraph of fr 
that lies in N. 

Consider d simultaneous independent plaTings of the Tracking Game with 
Perturbations in which the adversary's trajectory in the ith game is Fr,i and 
yours is Fq,i. Suppose that all the F~,i(0) and Fq,i(0) meet the starting (t = 0) 
closeness hypothesis of Claim 4.2. Let (x,, v,) denote your state (i.e, the vector 
of your states in the individual games) at the beginning of round n. 

Now, suppose you follow the Simple Strategy. Because the breadth-first pruning 
buckets and perturbation size are both (~clz2/2, KlZ/2), by induction on n, Claim 
4.2 and the definitions of ~ ,  ~, ~9, and fr assure that the following can legally 

occur in each round n of the game: 

1. The adversary chooses his acceleration in each game, yielding a vector 
F~((n + 1)z) of his new states. 

2. You then chose LOW or HIGH separately for each game using the Simple 
Strategy, yielding a d-vector of choices. 

3. Then the adversary chooses a member of ~(Fq(nZ)) for your (vector of) accelera- 
tions, obeying your choices. 

4. Then the adversary perturbs your state (i ,+1, ~.+1) if and only if it is not in 
if'. In particular, if he perturbs your-state, he perturbs it to the state in if' that 

caused (:~,+1,~,+1) to be pruned from fr Thus, for some graph trajectory 
~,+1) in fr and some m < n + 1, I'~"+l)(mz) is this state. q 

If you and the adversary play in this manner, then by Claim 4.2, for all n: 

1. (x,, v,) will be within (r/x , r/v) of F,(nz). 
2. ( i , ,  ~,) will be within (r/x, r/v) of Fr(nz). 
3. Your trajectory Fq(t) will be within (r/~, qv) of F,(t) for all t e [nz, (n + 1)z]. 

Furthermore, for each n there will be some F~ ") in f#' such that, for some m < n: 

1. F~")(mz) = Fq(nz). 
2. F~")(t - (n - re)z) = Fq(t) for all t e [nz, (n + 1)z). 

Since this holds for all n, there must be some trajectory F* in fg' such that, for 
some Tq < T~, F*(Tq) approximates F,(T~) to within (r/x, r/v)- [] 

5. Algorithms and Bounds 

5.1. Algorithm Outlines. We now present the algorithms in outline form. These 
outlines rely heavily on definitions and descriptions in the preceding chapters. 
Fuller descriptions of how certain parameters are chosen are given in Sections 5.2 
and 5.3. 

Recall the definitions of ~ (X ,  z) and W(X, z) from Sections 3.1.2 and 3.1.4. For 
given/t,/~, and z, we define the maps ~ ,  3r TC ~ {Yr Y/is a set of acceleration 
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functions} by 

(34) 5r = ~/g(X, z) 

and 

(35) ~ ( x )  = ~ ( x ,  ~). 

NEAR-EXTREMAL ALGORITHM OUTLINE. Given a kinodynamic planning problem 
((9, S, G, f ,  ~, l, ~P/, Co, c~) for a n  L 2 Cartesian robot or an open-chain manipu- 
lator, the Near-Extremal Algorithm does the following: 

1. Computes consistent parameters (#, ~o, q~o, t/vo, xz) obeying the conditions in 
Section 3.2. 

2. Chooses a timestep v and an acceleration-space discretization p such that 
obeys the conditions of Lemma 3.2 with respect to the dynamic bounds of 
e-time-rescaled trajectories, z and all #~ are | If the ith joint has configuration 
space S ~ (as revolute joints without limits do), then #~ must be chosen so that 
Kil.li~ 2 = 4re for some integer Kv 

3. It then chooses the root vertex state S* such that s* = s and 

I~* < min~ #~z. 
1 

1 + ~  - 

4.  Let fq be the (O,z)-reachability graph rooted at S* whose edges are 
(1 - e)6o(Co, c0-safe (O, ~)-bangs. The algorithm searches for the shortest path 
from S* to any vertex that is within (r/~, t/v ) of (g, (1(1 + e))g), t/~ and t/v are both 
| The search is done breadth-first. The algorithm constructs the graph on 
the fly, so that it only computes what it searches. 

5. I fa  5,(Co, c0-safe solution exists, then the algorithm returns the (1 - ~)6v(c0, c 0- 
safe graph trajectory that corresponds to the first vertex it finds that meets the 
approximation conditions at the goal state. 

TRUE EXTREMAL ALGORITHM OUTLINE. Given a kinodynamic planning prob- 
lem instance ((9, S, G, f ,  ~, ~/,  c o, c 0 for an L z Cartesian robot or an open-chain 
manipulator, the True-Extremal Algorithm does the following: 

1. Computes consistent parameters (#, %, ~o ,  Ovo, xz) obeying the conditions 
in Section 3.2. 

2. It chooses a fimestep r and an extremal controls discretization /~ such that 
obeys the conditions of Lemma 3.3 with respect to the dynamics bounds 

of 5-time-rescaled trajectories. Both z and/2 are | 
3. Chooses the root vertex S* by 5-rescaling S; i.e., s* = s and g* = (1/(1 + e))g. 
4. Let fq be the reachability graph rooted at S* whose edges are (1 - 5)c5v(co, c0- 

safe (/2, z)-bangs. The algorithm searches for the shortest path from S* to any 
vertex that is within (t/~, t/v ) of (g, (1/(1 + e)g). q~ and r/v are both | The 
search is done breadth-first with (b~, b~)-bucket pruning in which bx is | 3) 
and b v is | The algorithm constructs the graph on the fly, so that it only 
computes what it searches. 
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5. If a 6v(Co, c0-safe solution exists, then the algorithm returns the (1 - e)6v(Co, Cl)- 
safe graph trajectory that corresponds to the first vertex it finds that meets the 
approximation conditions at the goal state. 

Thus, the controls of a trajectory found by the True-Extremal Algorithm are 
constant and extremal over each individual timestep, while the acceleration will 
be extremal but may vary with time, according to the integration of (10). This 
contrasts with the trajectories found by the Near-Extremal Algorithm, whose 
accelerations are constant and near-extremal over each timestep, but whose 
controls may be time-varying, as given by (1). 

Note that for robots with revolute joints there is generally no closed form for 
trajectory segments corresponding to true (/~, z)-bangs. However, using an rth- 
order numerical integration procedure will yield trajectory segments correspond- 
ing to controls within O(~ r) (and therefore within | of being constant and 
extremal. Thus, as long as e is sufficiently small, it would appear that we could 
use, say, r = 4 and Runge-Kutta numerical integration. However, in order to 
guarantee that the trajectory segments are executable under the force bounds, we 
cannot use truly extremal controls, but ones that are within some polynomial of 

of being extremal. For this reason, we consider the Near-Extremal Algorithm 
to be only theoretical. 

5.2. Search-Space Bounds for Cartesian Manipulators. Here, we first consider an 
L2 Cartesian robot with acceleration bound a. We choose an acceleration dis- 
cretization/~ and a | scalar tq such that: 

(a) All #i are 0(~). 
(b) For all X, Y ~ TC, the (~i T)-extremal shell of accelerations NF(X, ~) at X 

has a uniform ~:t advantage over d~ for any -c. 

We then derive a similar choice of p for cases when an L2-norm force bound 
f is given instead of an acceleration bound. We then return our focus to the 
acceleration bound case and examine the Near-Extremal Algorithm in detail to 
illustrate how the algorithm chooses the reachability graph parameters p and 
v. We briefly discuss the derivation of the control discretization parameter # for 
the True-Extremal Algorithm. 

5.2.1. Parameter Choices and Acceleration Advantages for an L z Cartesian 
Robot. The set of constant accelerations obeying the Lz-norm bound a has a 
uniform acceleration advantage of 

a(2e + e 2) ag 
> 

,/a(t + 2,/a 

over the set of accelerations obeying the L2-norm bound a/(1 + ~)2. Recall that 

{]Y]{~ < IlyHz < ,Jdl]YN~ for any y e  ~a (21). If/* and ~ have the property that 

ag 

(36) 111'11oo -< ~, < 4x/d, 



512 B.R. Donald and P. G. Xavier 

then, for any state X and any duration z, the (/t, z)-extremal shell of accelerations 

~ ( X  ,r) has a uniform xz advantage over the set of acceleration functions obeying 
the La-norm bound a/(1 + e) 2. 

For  any state X, consider the sets of feasible instantaneous accelerations d x  

and d~: that correspond to force bounds f and f/(1 + s) z, respectively. Recall that 

the inertia matrix M is symmetric and positive definite and thus orthogonal. In 

addition, recall that M is constant for a Cartesian robot. If 2m~. and 2m, x are the 

minimum and maximum eigenvalues of M, respectively, and a e ~ r  then 

[[a -- a'112 > f(2s + S2)/2max(1 + g) 2. More compactly, 

f s  
Ila - a'l12 > 2Am.~" 

(37) 

It follows that if 

(38) 
fs fs 

m 

~c, _< 4X/~),ma * and I1~11oo ~ 4 ~ 2 m a ,  

then ~ ( X ,  ~) has a uniform ~c t advantage over d ' (Y)  for any z, X, and Y. 

5.2.2. Timestep Choice and Search-Space Bounds for the Near-Extremal Algo- 
rithm. By applying the Safe Tracking Lemma, we find a family of tlx and G that 

are | and guarantee that any trajectory tracking a 5v(co, 71)-safe trajectory to 

tolerance (G, G) will be (1 - e)6v(co, c0-safe. Specifically. 

CoS 

~/v < c1(1 e )+  (15) - ~ '  

r/~ = flr/v. 

It is simplest to choose fl = 1, which implies t/x = G- However, by using a 

technique from [1] we show how to choose f to minimize the bound on the 

possible size of the reachability graph searched by the Near-Extremal Algorithm 

applied to a Cartesian robot with L2 acceleration and velocity bounds a and ~. 

First, we choose an underlying acceleration discretization /l consistent with 

a uniform acceleration advantage ~g (36): 

as 
(39) /~i = # = K l -  �9 

4Jd 

We parametrize our choice of timestep z as a function of ft. We use Lemma 3.2 
to obtain 

x/2d(cl(1 - s) + fl)(Sx/2d+ 3&)' 

(40) %(//) = c~ 

4a(c1(1 -- e) + fl)' 

z(fl) = min(%(fi), %(13)). 
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Since zx monotonic and ]3 must be positive, r(]3) is maximized when %(]3) and %(]3) 
are equal. Solving for ]3 to get a positive r yields 

(41) ]3 1 __Cl( 1 8) + 2(i - - e)2 + 2 d  " 

We use the Coupled Tracking Lemma (Lemma 3.2) to guarantee that a tracking 
trajectory would obey the velocity bound. Thus we choose 

(42) min 
*"'  2~/(c1(1 - e) + x/c2(1 - ~)2 + Co(16x/~ + 3~)/2~/))" 

Given the desired start state S, the Near-Extremal Algorithm chooses the root 
vertex S* to meet the conditions at t = 0 in the Coupled Tracking Lemma, relative 
to ~-time-rescaled start state S'. (Recall (8).) If an optimal trajectory Fop t exists, then 

there will be some graph trajectory Fq that tracks F'op t to the tolerance (qx, fly) 
determined by the Safe Tracking Lemma and the choice of ]3 above. (See (15) and 
(41).) Since (~x, r/o) meets the conditions of the Safe Tracking Lemma, such a Fq 
would be guaranteed to be (1 - e)6v(Co, c0-safe. Since G and G are O(e), Fq would 
meet the approximation criteria at the desired start and goal states. 

We can now bound the size of the reachability graph for a Cartesian robot 
whose maximum speed is ~ and whose configuration space is contained within 
a d-dimensional cube with diameter I. Let 

~t = m i n / A .  

i 

Then the total number of possible velocities for reachability graph vertices is 
bounded above by (2U/~z + 1) a and the number of configurations by (I/#z 2 + 1) e. 
Thus, the total number of reachability graph vertices is 

1 l a. (43) Gf(&/~, ~, ~, l, d) < ~ + ~ + 1 

Using the choices of /, and z above in (36) (or (38)), (39), and (42), we see 
that the right-hand side of (43) is O((dZOl)a(1/e)sa). Recalling the definition of 
the ~ ,  z)-extremal shell, the out-degree of this graph is bounded above by 
d(~/#)a-1. Thus the total number of graph edges is 

(44) + 1  l + 9; 
/ / l \ 6 a - 1 ) .  

We can follow a similar, straightforward development if L 2 force bounds (instead 
of acceleration bounds) are used. In particular, we choose /* using (38), define 
analogues of (40), and choose fl to maximize r to get the necessary reachability 
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graph parameters. We substitute f /2m~ for ~ in (45) to obtain bounds with 

the same exponents on the size of the teachability graph. 

We summarize these results for a Cartesian robot obeying L 2 dynamics bounds 

with the following lemma. 

LEMMA 5.1. Given a kinodynamic planning problem for a Cartesian robot with 
L2-norm dynamics bounds and given an approximation parameter e such that 
0 < e < 1, the Near-Extremal Algorithm will search a reachability graph with 
O(ca(1/e)6d-1) vertices and edges, c is a constant dependent on the kinodynamics 
specifications and polynomial in d. I f  an optimal (safe) solution Fop t exists, then 
some graph trajectory is z-optimal and will be found. 

5.2.3. True-Extremal Algorithm Search Space for a Cartesian Robot. Now, 

suppose the (Cartesian) robot obeys L 2 force bound f ,  and again let 2rain and 

2m,x denote the minimum and maximum eigenvalues of its inertia matrix M. If 

I[fa[12, Jlfbll2 -< f and [[fa -- fbl[~ --< ]~, then 

I[M-lfa - M-lfbll2 ~ - -  
~rnin ' 

At the same time, if []f~/12 = f  and Ilfbl[2 = f / (1  + e) 2, then 

I [M- ' f ,  - M-1LIIz > - -  
fe 

22max" 

Therefore, if we choose ~c l as in (38) and 

~ m i n f  ~ 
(45) /~ < - -  

- 4 d 2 ~ '  

we guarantee that the set of true (/i,r)-bangs J/g(X,r) (Section 3.1.2) has a 

uniform xl advantage over d ' (Y)  for any two states X and Y over any duration z. 

Again using the Safe Tracking Lemma (Lemma 3.1) to find a family of sufficiently 

close tracking tolerances (t/x, G), we can now apply the Robust Coupled Tracking 

Lemma (Lemma 3.3) to find a maximal timestep z using the uniform acceleration 

advantage ~ above. The algorithm's choice of S* trivially satisfies the t = 0 

condition of the lemma. Clearly, since xt, r/x, and t/~ are O(e), ~ will be 0(5) also. 
Finally, the algorithm chooses pruning-bucket dimensions prescribed by Lemma 

3.3: 

KTIT 2 
b x - in configuration, and 

2 
(46) 

by = --xlz in velocity. 
2 
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These quantities clearly will be to(e 3) and to(e2), respectively. The number of 

buckets is therefore O((l/e)5a). Recalling the definition of true (/~, z)-bangs, we 

see that each vertex has O((1/e) a-l)  out-edges. Since the algorithm explores 

the out-edges of at most one vertex from each bucket, the True-Extremal 
Algorithm will search O((1/e) 6a-1) vertices and edges of a reachability graph. 

Summarizing: 

LEMMA 5.2. Given a kinodynamic plannino problem for a Cartesian robot with 
Lz-norm dynamics bounds and given an approximation parameter e such that 
0 < ~ < 1, the True-Extremal Alyorithm will search a reachability 9raph with 
O(d(1/e) 6d-1) vertices and edoes, c is a constant dependent on the kinodynamic 
specifications and polynomial in d. I f  an optimal (safe) solution Fop t exists, then some 
oraph trajectory is e-approximately optimal and will be found. 

Since the complexity of each of our algorithms is the number of graph edges 
that might be explored multiplied by the time it takes to check the (1 - e)6(Co, cO- 
safety of each edge (as a trajectory segment), we determine the asymptotic 
complexities by combining this lemma with the bounds from Section 5.4. This 
yields Theorem 2.1. 

5.3. Applyin9 the Coupled Traekin9 Lemma and Robots with State-Dependent 
Dynamics. We now derive lower bounds for the discretization and timestep 
parameters used by the Near-Extremal and True-Extremal Algorithms for robots 
obeying the open chain dynamics equation (1). The Near-Extremal Algorithm must 
choose underlying acceleration discretization #~ and a timestep z ensuring that if 
a cSv-safe solution exists, then the algorithm will find an e-approximately optimal 
solution. We describe how to find sufficiently small #i and z that are t0(e). 
We also show that the True-Extremal Algorithm can choose a timestep z and a 
control discretization parameter/2 that are to(e) and that ensure the algorithm 
will find an e-approximately optimal solution under the same conditions. 

Let the problem parameters and e be given. Recall from Section 3.2.4 that d 
and d '  denote mappings from TC to {~/: Y/is a set of acceleration functions} 
under bounds f and t" (from (18)), respectively. Now, let trajectory F, respect 
d ' ,  and let Fq respect d .  

We now sketch how to find a set of consistent parameters (~, Zo, t/xo, qvo, ~:t): a 
maximal discretization parameter # for either acceleration or control, a maximal 
timestep -Co, a maximal tracking tolerance (qxo, t/~o), and a uniform acceleration 
advantage x~. For any timestep z < Zo and any trajectory F, that respects d ' ,  the 
following will be true: if state X is within (qxo, ~/~0) of F,(nz), and both/2, 1]/~11 ~ _< # 
then both the ~ ,  z)-extremal shell of accelerations ~ (X,  z) and the set ov/~(X, z) of 
true (/2, z)-bangs have uniform x z advantages over d' (F,( t  -- nz)) for duration z. We 
will show how to find sufficiently small #, tq, %, r/xo, and ~/~o that are all to(e). 

Having obtained these parameters, the algorithms can apply the Coupled 
Tracking Lemmas to choose z. This leads us to bounds on the size of the 
reachability graphs the algorithms search. 
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5.3.1. Sufficient Conditions. Observe that the sets of feasible instantaneous accel- 
erations ~r and ~r are d-dimensional parallelepipeds for all X e TC. Let 
'~min and 2ma x be the minimum 9 and maximum eigenvalues of the inertia tensor 
M(p) over all positions. Let fm~. = min~ fi, and let f = maxi f~. Let the force 
required to hold the robot stationary in the presence of gravity obey the 
bound (1 - ~::)f. From Section 3.2.3, the minimum L2 distance between &~Cx 
and Osr is greater than 

/s fmin/3 
- - -  generally, and 

22max 

fmin ~ 
- in the absence of gravity. 

22m~ 

(47) 

Suppose that Fq respects the mapping ~r (see Section 3.2.4) and tracks F, to 
tolerance (t/xO, ~/.o), and fix z o > 0. For any z _< %, consider what happens over 
a timestep [nz, (n + 1)z]. For  any t s [nz, (n + !)z], F~(0 - F~(nz) and Fo(t ) -- F~(nz) 
belong to sets of possible state perturbations that are functions of %. That is, 
minimal sets y.(%), yq(%) ~ TC exist such that, for all h _< %, 

(48) Fr(t + h) - Fr(t ) e 7,('Co) and Fq(t + h) - Fq(t) e 7q(%). 

State perturbations about Fr(nz) and Fq(nr) result in perturbations of Odl-m) 
and t?dr,c~) about  Od~-:.~) and ~dro~.~). We now bound the magnitudes of these 
perturbations as functions of t/~o, ~/~o, and %, respectively. 

Let a(p, p, f) be given by 

(10) a(p, p, f) = M -  ~(p)(f - [prC(p)p] - G(p)), 

and let B6(y) denote the a-ball about y. We denote global perturbation bounds 

(49) 

h~(zo) 

hqo(Zo) 

h~l(rlxO, rl~o) 

= maxlIa(p, [~, f )  - a(p + Ap, :  p + Apr., f)l12, 

= maxlla(p, [~, f) - a(p + Aprq, p + A[~rq, 0112, 

= maxlla(p, p. IF) - a(p + Ap~ o, p + Ap.~ o, t)llz, 

where the maxima are taken as: 

(a) (p, p) ranges over TC. 
(b) f and f obey the constraints f~ ---fl and f{ <_ f'i for all coordinates i. 

(c) (Apt r, A[%) ranges over Vr(zo). 
(d) (Apr,, Apt) ranges over yq(%). 
(e) (Ap,~0, Ap,~0) ranges over B,~0(0) x B,~0(0 ). 

9 2rain is the only parameter that is neither given in the problem instance nor bounded (below) in the 
derivation; a loose bound is given by the minimum of the smallest link mass and smallest link inertia 
(in generalized units). A bound for 2m. x follows from the bound on IIM(p)II found in Appendix A. 
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Note that hqo(Zo) determines the acceleration perturbation bound EA from Section 
3.1.4, modulo norm. 

Suppose that I1~11 ~ -- ~ and z < %. Recall (21). If 

(50) #w/d + s:tx/~ + h,(zo) + hqo(Zo) + hq,(rl~o, rico) <_ ~, 

then for an interval o f  length z, the ~ ,  z)-extremal shell of accelerations at Fq(nz), 
namely ~t~(Fq(nz), z), will have a uniform x I advantage over the set of acceleration 
functions d'(F,(nz)) feasible under the bound f.  Similarly, if 

(51) 
~min 

- -  + xt~/d + hr(zo) + h~o(Zo) + hql(rl~o, ~l~o) <- ~, 

then the set of true (/~, z)-bangs at Fq(nz), ~(Fq(nz), z) will have a uniform x l 
advantage over ~r ). 

The two constraints (50) and (51) are obeyed if 

(52) /z, ~q < _ ~ .  and hr(zO), hqo(Zo), hql(r/~o, r/~o) < 
/~min' 5" 

5.3.2. Bounds for Perturbations. We show that hr(zo) and hqo(Zo) are 0(%), and 
that hq~0/xo, ~/~o) is O(~xo) and O(~o). We first note that IIM(p) - M(p + Ap)II is 
O(LIApll, or O(d21[Ap) if we include the degrees of freedom d. Now, define 

(53) ~( f ,  P, [0 = f - [PrC(p)P] - G(p). 

Substituting into (49) and differentiating 

m a x F O M  -1 ] 1-~o~. 0o~ ] 
hr(zO)<to L ~ p p  [~ ~ ( f , o , [ 0 + M - I ( 0  ) L ~ -  p p + ~ a  7 

< M -  P § (54) hqo(Zo) z o L~-p [~ ~ ( f '  p' [~) + a , 

M -  (P)L  Ap A 0 . h~l(n~, 7~ -< L ~ p p  Ap ~(f, p, p) + + 7 p  

Now, recall a derivation of (1), say from [9], and recall that 

[pr(t)C(p(t))p(t)]i = pr(t)Ci(p(t))p(t), (2) 

where 

Ci(p(t))ik _ ~Mjk(p) 1 ~Mjk(p ) 
@k 2 63pi 
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Now, M(p) is simply the inertia tensor, and 

,9~/dp) 
G(p) - - - ,  

dp 

where UG(P) is the gravitational potential energy at state p. Hence, each component 
of M(p) and G(p) is a sum of the products of components of p and their sines and 
cosines (e.g., Pi, cos(p j), etc.) This implies that O~(f, p, p)/dp and O~(f, p, p)/Op are 
globally bounded. Specifically, it follows that there are Cr, Cqo, Cq~, and Cqz such 
that 

(55) 

h~(zo) < C~zo, 

hqo(Zo) <_ Cqozo, 

hql(~/x,~/~) < Cqlr/~o + C02r/~o. 

Cr, Cqo, Cql, and Cq2 c a n  be bounded, given the robot parameters, by bounding 
the norms of the tensors arising from O~(f, p, p)/Op and ~ ( f ,  p, p)/~p. This can be 
done loosely by inspection because all terms are bounded; However, simple 
expressions bounding the tensor norms have been calculated by [23], and 
derivations of C,, Cqo, Cqx and Cq2 can be found in Appendix A. Recalling (47) and 
(50), we therefore choose 

to min( ) 
\ 5 C ,  5Cqo 

cx 

(56) t/x~ - 10Cql' 

~ / v O  m 

lOCq2 

Recalling the previous section, we can thus choose consistent parameters 
%, t/xo, t/~ o, #, and x, that are all | Now, recall (34) and (35). If [[p[[ co </~ and 
/~ _< #, then the functions 4 o  and Y?~o respectively satisfy (as functions .~, and 
with respect to d ' )  the hypotheses of (Coupled Tracking) Lemmas 3.2 and 3.3. 
Since we can use the Safe Tracking Lemma to find sufficiently small t/x and t/~ 
that are | we obtain a timestep ~ that is O(e) by applying the appropriate 
Coupled Tracking Lemma. The pruning bucket size is again given by (46). 

Thus, we have the following lemma: 

LEMMA 5.3. Given a kinodynamic'planning problem for an open-chain manipulator 
and given an approximation parameter e such that 0 < e < 1, the Near-Extremal 
Algorithm and the True-Extremal Algorithm will search reachability graphs with 
O(ca(1/e) 6d-l) vertices and edges; c is a constant dependent on the kinodynamic 
parameters and polynomial in d. I f  an optimal (safe) solution Fop t exists, then each 
algorithm will find some graph trajectory that is e-approximately optimal. 
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5.4. Safety Checking and Final Bounds 

5.4.1. Quadratic Paths and Polyhedral C-Space Obstacles. Consider any kino- 
dynamic solution Fq found by the Near-Extremal Algorithm or  by the True- 
Extremal Algorithm for a Cartesian robot. We  observe that Fq will have a 
piecewise-constant acceleration ii~. Hence, the solution trajectory Fq is piecewise 
algebraic: pq is quadratic and pq is linear in time t. Therefore, when the C-space 
obstacles are polyhedral, we can check for safety violations exactly as in the L~ 
dynamics bounds case (Cartesian kinodynamic planning) in [3]. The C-space 
obstacles can be "grown" affinely with trajectory speed (]]v]] ~ ~) to obtain 
expanded C-space obstacles in C x ~. Safety checking for a single (4, r)-bang or 
~ ,  z)-bang can be accomplished by intersecting the (quadratic) time-parametrized 
trajectory with these surfaces. Hence, we "lift" collision detection to C x ~ to do 
safety checking, with the ~ dimension encoding speed. For d < 3, this can be 
done in time O(N). In higher dimensions the basic technique could be extended, 
but a good complexity bound would require a tight bound on the complexity 
of computing the Minkowski sum of convex d-polytopes and a d-cube. See [3] 
for a discussion. 

5.4.2. Nonpolyhedral C-Space Obstacles. For kinematic chains, and in cases 
when the C-space obstacles are nonpolyhedral, safety is checked by affinely 
growing the workspace obstacles and checking for intersections along the tra- 
jectory. (Recall the discussion of 6v-safety in Section 2.1.) We describe a C-space 
obstacle representation and a robot-obstacle collision detection method that can 
be generalized to a safety-checking method similar to that described in [1] and 
[3] and reviewed above. It would be convenient if we could apply an algebraic 
collision detection predicate such as that described by Canny [12], [24]. (We shall 
soon describe why we cannot.) In fact, our 6v-safety predicate uses the structure 
of his predicate and the same logical evaluation method for each pair of polyhedra 
that could possibly collide. 

The nonoverlap condition for two convex polyhedra is given by the nonoverlap 
predicate 

(57) A V A V > o) 
i j k l 

described in [14], with the exact form of constraint functions Cuu: C -~ ~ given 
in [12]. When the real-space obstacles (polyhedra) are grown affinely with speed, 
the overlap predicate has the same structure as (57). (See [3].) The signs of the 
CUk~(X ) correspond exactly to spatial relationships among the vertices, edges, and 
faces of the possibly overlapping polyhedra. The zeros of the CUk ~ are surfaces that 
contain faces of C-space obstacles, so we call them C-spaced obstacle surface 
functions. To detect collisions along a path p: time ~ TC, we substitute p(t) for 
x in (57) and "merge" the sign intervals of the resulting functions in time [12]. 
While the exact form of the Cuu found in [12] for a robot polyhedron uses 
quaternions to represent orientation, we can use other C-space representations and 
obstacle surface functions that yield the same sign invariant sets in C-space. For an 
open kinematic chain, one set of natural C-space surface functions would be mixed 
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trigonometric polynomials--the sums of products of C-space coordinates and their 
cosines and/or sines [13]. In [24] Canny represents these surfaces algebraically 
by using quarternion and half-angle substitutions. 

Unfortunately, algebraic collision detection requires a C-space coordinate 
system in which the surfaces of the C-space obstacles are algebraic and in which 
the robot path is algebraic in time. In the joint coordinate system for an open 
kinematic chain, the position components Pi of (p, z)-bangs are quadratic in time, 
and the velocity components vi are linear. While it is possible to describe the 
C-space obstacles algebraically by using substitutions such as uj = tan(p j/2) for 
revolute joints j, for the trajeci:ories generated by our algorithms there is no way 
(when the configuration space has more than one dimension) to parametrize the 
path functions that result from this substitution simultaneously algebraically. When 
each p~ is a quadratic polynomial in time t, we can choose either: 

(a) A coordinate system in which the C-space obstacle surfaces are the zeros of 
algebraic functions, and some path-position components pj are inverse trigono- 
metric functions of time; or 

(b) A coordinate system in which the C-space obstacle surfaces are the zeros of 
trigonometric polynomials, but each path-position component p~ is an alge- 
braic function of time. 

Thus, there is no coordinate system in which both the C-space obstacle surface 
functions and (p, z)-bang robot paths are algebraic, and we cannot in general 
perform safety checking algebraically. 

We can, however, approximately evaluate the collision predicated for (p, z)- 
bangs by using approximating polynomials for each of the C-space obstacle surface 
functions. (The set of polynomials would have different sets of coefficients for each 
0u, z)-bang.) The same can be done for a corresponding @safety predicate. The 
degree r of the polynomials we need depend on how accurately we wish to 
approximate the trigonometric polynomials. Intuitively, we expect that since each 
timestep is finite, and in practice would be very short, this polynomial approxima- 
tion is reasonable. More precisely, the resulting error er in checking safety can be 
bounded and made arbitrarily small by increasing the degree of the polynomial. 
Then either a conservative algorithm, which only finds solutions that are 
(6'v(v) + er)-safe, or an "optimistic" algorithm that finds solutions that are 
(6'v(v) - er)-safe could be implemented. 

We now argue that for the purpose of deriving an asymptotic complexity we 
can fix the degree of the approximating polynomials to a constant. Simply put, if 
we truncate the Taylor expansions of expanded C-space obstacle surface functions 
to rth-order polynomials, er will be 0(~') because the timestep z is l)(e). Thus, if 
we set r = 2, er will be O(e2), and thus the error of the safety-checking approxima- 
tion will be smaller than O(e). 

Since the structure of our 6v-safety violation predicate is similar to that of [12], 
it contains O(N) polynomials in t and requires O(N log N) time to evaluate, once 
the sign-intervals of the polynomials are known. If we restrict ourselves to 
polynomials of degree re, the total number of terms in the polynomials will be 
O(rcN), and forming the expressions for expanded C-space obstacle functions will 
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take time O(rcdN). If finding the sign-intervals for a polynomial of degree r~ has 
cost S(r~), then checking the (1 - ~)6~(Co, Ca)-safety of a single trajectory segment 
could be done in time. 

O(Nrc(log N + d + log rc) + NS(r3). 

By the truncated series approximation error argument above, we can choose a 
constant r c as long as e is guaranteed to be sufficiently small. Continuing this 
reasoning, we argue that safety checking takes time roughly O(N(d + log N)), 
which is the time required under a model of computation in which finding the 
sign-intervals of a univariate trigonometric polynomial of constant size and degree 
takes unit time. This completes the discussion of safety checking for the Near- 
Extremal Algorithm. We now turn to the True-Extremal case. 

For the general open chain manipulator, true (/i, z)-bangs are the solutions 
to the set of ordinary differential equations 

(58) ([a(t)~ (M_ l(p(t)){f - v(t) 
+(t) / = [ v ( t )TC(p( t ) ) v ( t ) ]  - G(p(t))})' 

Since the right-hand side of (58) is C ~ and its time-derivative can be  bounded 
globally, standard integration techniques (e.g., Runge-Kutta) can be used to 
approximate the image of a (/~, v)-bang to arbitrary precision for time t E [0, ~], 
with computation time growing sublinearly with the accuracy [25]. Alternatively, 
we can approximate the trajectory segment with a set of polynomials of fixed order 
(e.g., 4th order Runge-Kutta ) that approximate it in respective subintervals of the 
timestep; for a given timestep, a kth order integrator, and m subintervals, accuracy 
will be o(zkm l-k). To do safety checking of the True-Extremal Algorithm, then, 
we can again use approximating polynomials in our by-safety predicate. 

To summarize, under a combinatorial model that charges unit cost for finding 
the roots of a univariate trigonometric polynomial of fixed degree and size, safety 
checking for the Near-Extremal Algorithm can be done in time O(N(d + log N)) 
for sufficiently small e. In practice, numerical methods would be used to find 
sign-intervals for approximating polynomials in t. The error in these methods can 
be bounded and incorporated into the safety margin. Approximating polynomials 
can also be used to check the safety of general open chain manipulator (/~, z)- 
bangs. Thus, the algorithms have a time-complexity of O(N(d + log N)) in the 
asymptotic case, i.e., for sufficiently small e. 

5.4.3. Asymptotic Bounds. For each of our algorithms, the final complexity is 
the complexity of the number of graph edges explored multiplied by the cost of 
checking the safety of each edge as a trajectory segment. By combining the 
graph-size bounds of Lemmas 5.1-5.3 with the safety-checking costs described 
above, we obtain a final approximate cost OfO(c~N(d + log N)(1/e) 6a- 1), assuming 
sufficiently small e > 0. Letting p(N, e, d) exi~ress the exact cost of safety checking 
for one bang yields Theorems 2.1 and 2.2; that is, the O(caN(d + log N)(1/e) 6d-a) 
bound is derived by arguing that p(N, ~, d) = O(N(d + log N)). 
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6. Conclusions. In this paper we obtained provably good approximation algo- 
rithms for kinodynamic planning that extend the results of [1] to open kinematic 
chains and to Cartesian robots obeying L2-norm dynamics bounds. These algo- 
rithms find trajectories that are approximately optimal with respect to a possibly 
speed-dependent safety margin. We presented algorithms that find near-extremal 
trajectories and algorithms that find truly extremal trajectories. Our True-Extre- 
mal Algorithm is the first such provablygood algorithm that uses a state density 
condition to prune an otherwise exponential search to polynomial size. Our 
techniques yield lower complexity bounds than the earlier algorithms of [6]-[8]. 

To obtain, our results we proved two crucial lemmas by considering simple 
adversary games. By using the first lemma (Lemma 3.2), given robot dynamics 
bounds, a safety margin, and e we can find parameters that determine a state 
reachability graph such that, for every optimal trajectory whose start is approx- 
imated by the root of the graph, there is a graph trajectory that is within e of 
being optimal. A second lemma (Lemma 3.3) allows us simultaneously to derive 
the state density condition for pruning (46).. 

Although our results directly apply to two classes of robots, they can be easily 
extended to a larger class. We conjecture this class is the class of robots that have 
finite degrees of freedom, bounded configuration, convex generalized force and 
velocity bounds, and acceleration maps that obey the following constraints: 

(a) The dimension of the set of feasible accelerations is equal to the dimension of 

the configuration space. 
(b) The set of feasible accelerations is convex at each state. 
(c) State perturbations (Ap, Ap) result in perturbations to the acceleration map 

that are O(LIApll + llA[~l!). 

In addition, there are many directions for future research. 

l. We conjecture that the proofs of the Coupled Tracking Lemma (Lemma 3.2) 
and the Robust Coupled Tracking Lemma (Lemma 33) can be adapted to show 
that we can track an adversary's trajectory as long as the convex hull of our 
allowable accelerations has a ~h advantage over the adversary's allowable 
accelerations. This would imply a provably good polynomial-time approxima- 
tion algorithm for kinodynamic planning using (approximately) bang-bang 
controls. See [4]. 

2. Since the tracking lemmas do not require the force bounds to be state-invariant, 
it should be possible to extend the results to relax this requirement. 

3. Because of the use of ~h acceleration advantages, for Lemmas 3.2 and 3.3 to be 
applicable (e.g., to obtain polynomial-time approximation algorithms for other 
classes of robots), it is necessary for the set of feasible instantaneous accelera- 
tions d(X) to have dimension d at every nonextremal state X e TC. For many 
robot systems with nonholonomic constraints, such as wheeled mobile robots, 
this is not so. A tracking lemma for such robots would allow us to extend the 
general [1] approach to them. 

4. We have so far used a single parameter e to characterize closeness to optimality. 
In a finer analysis, we would use parameter er and es to describe separately 



Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 523 

closeness to optimality in execution time and in observance of the safety margin. 
We expect that suchan analysis would lead to algorithms that allow tradeoff 
among time-optimality, safety, and running time. Furthermore, while a worst- 
case analysis is necessary when considering safety, an expected-case analysis 
would be appropriate for measuring time-optimality versus algorithmic com- 
plexity. See [26] and [4]. 

We have presented provably good approximation algorithms for optimal 
kinodynamic planning with the lowest known complexity for robots obeying 
coupled dynamic bounds. While optimal kinodynamic planning has an optimiza- 
tion flavor, our algorithms and proof techniques draw on several branches of 
computer science and robotics. There is a great deal of challenging theoretical and 
experimental work to be done, especially in the direction of practical approxima- 
tion algorithms. 

Appendix A. Computing Parameters for the True-Extremal and Near-Extremal 
Algorithms for Open Chain Manipulators. We wish to show, for any given 
problem such that the force bounds always exceed the forces necessary to hold 
the robot stationary, and for a given e, that the parameters t/xo, t/uo, and z o will be 
f~(e). We use (p, [~) to denote both trajectories and arbitrary states. 

We first show that ] [ M - l ( p ) - - M - t ( p _  Ap)i] are O([[ApII) or O(dellApll) for a 
d-DOF system. We can then compute bounds for the perturbation magnitudes hr, 
hqo, and hql, defined in (49), in terms of %, ~/x, and ~b" Given M(p) and U~(p) (or 
G(p)), it is possible to bound their derivatives by inspection, because each of their 
components is a sum of products of components of p and their sines and cosines. 
In particular, following any derivation of (1), say from [9], the close relationship 
to the kinematic map and Jacobian of the robot is noted. For example, 

Gi(p) = ~ mjgrJ~J!(p), 
J 

where mj is the mass of the jth link, g is the gravitational acceleration vector, and 
J~!(p) is the ith column of the linear velocity Jacobian for linkj. More importantly, 

0) 7 (0 M(p) • (,) r ti) J~ (p) I,(plJ~ (p)), 
= (miJL (P) JL (P) + 

i 

where m i is the mass of the ith link, Ii(p) is its inertia tensor, and J~) and J~) 
are its linear velocity and angular velocity Jacobians. 

Heinzinger and Paden [23] exploit similar relationships to bound the general 
derivatives of M(p) and G(p). We use their results to show one way to derive the 
desired bounds. 

A.1. Bounding Changes in MZ-l(p). Let M(p) be the d x d inertia (tensor) matrix 
for a d-DOF open kinematic chain. Observe that because all the derivatives of 
the components of M(p) are bounded, IIM(p) - M(p + Ap)II2 is O(d2llAMy[lz). 



524 B . R .  D o n a l d  and  P. G. Xav ie r  

Let M '  = M ( p + A p )  and  AM = M - M ' .  We wish to bound  IIAM-1II : 

IIM-~ - M ' - ~  II. Since M 'and M '  are inertia matrices,  they are symmetr ic  and 

positive definite. Let J'min be the m i n i m u m  of their m i n i m u m  eigenvalues. 

Now,  consider the solutions x and y to the systems 

M x ~ b ,  

(59) 
M ' y  = b. 

By substi tution, 

M(y - x) = (M - M')y  + M ' y  - M x  = AMy, 

and thus IIM(x - y)ll : IIAMyII. We now choose to use the L2-norm. Now,  

IIb[12 
IIAMyI[2 ~ IIAM]I211Ylt2 ~ IIAMII2 ~min" 

Since 

Ami, llx -- 7112 ~ IIM(x -- Y)II2 = IIAMylI2, 

it follows tha t  

(6o) l lx  - 7112 < 
IIAMII211bI[2 

22i~ 

Recall that  

(61) A M - l b  = (M -1 - M ' - l ) b  = x -  y. 

Since AM is a rb i t ra ry  except for the condi t ion that  M '  be nonsingular,  and b 

is arbi t rary,  (60) and (61) imply that  

IIAMll2 
(62) ]IAM-XII2 < 

~2mln 

Therefore,  since IIAMII2 is O(d21lAplt), so is IIAM-1112 . 

A.2. Acceleration Bounds and Perturbations. We first review a no ta t ion  for 

tensor-valued functions, as used by [23]. M is a smoo th  tensor  field, and M(p) is 

a tensor  of rank  2. Fo r  x ~ C, M(x)(vl,  v2) denotes  the tensor  acting on (vl, v2) 

TxC x TxC. We have been representing M(p) as a matrix.  Fo r  example,  the kinetic 
energy of the system in state (p, p) can be expressed as �89 or �89 p). 

The  nth derivative of  M(p) with respect to p is defined as follows: 

d d ~Mtn~v"_._,._,ij . �9 
�9 " ~n " (63) D"M(p)(~, ~)(~ . . . . .  ~.) = ,,J:~F~ ~, ..... 2~~ ~p~...~p~. ~ ' ~  ~~ 
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Hence, for a given state (p, p) and acceleration a, (1) corresponds to 

(64) f(.) = M(p)(a, ') + DM(p)(p,  .)([~) - �89 p)(.) + G(p)('); 

with fi = f(e~), where ei is the usual ith basis vector in R a. The second and third 
terms on the right-hand side are equivalent to the [prC(p)] term in (1). 

We use four inequalities ((65)-(68)) that are results from 1-23]. Let M~ denote 
the mass of link i, L~ its maximum length from the near j o in t  axis, and /S,i the 
greatest distance of its centroid from the first joint axis of the manipulator. Define 

IlYlI~ = ~ : x  lY~l- Then 

d 

(65) IM(p)(wl, w2)l ~ ~ miL/2llwa lit Ilwz[l~, 
i = 1  

d 

(66) I D " M ( p ) ( w l ,  w2)(w3, . . .  ,Wn+2) [ __< 2 a Z mlL~llwlllt... IIw,+21lt, 
/=1 

d 

(67) I G(p)(w01 -< ~, gMdSillwl lit, 
i = 1  

d 

(68) [D"G(p)(wl . . . .  , w,+ 1)1 - Z gM~E~llwl lit... IIw,+l lit. 
i = 1  

Now, we bound the acceleration. Let us define 

(69) ~ ( f ,  p, [~) = f -  [-prC(p)l~] - G(p). 

Then we can rewrite (10) as 

(70) a(p, p, f) = M - l ( p ) ~ ( f ,  p, p). 

Recalling (10), 

lia(p,p,f)ll ~ ]IM-I(p)II Ilk(f,  P, P)I[ 
1 

(71) < S~-  [ I f -  [[~rf(p)p] - G(p)II 
--  fl~min 

1 
< ~ {llfll + II[[~Tf(p)P]ll + G(p)ll}. 
- -  /~min 

Using (66) and recalling that IIxll2 -< IIxlll -< ,fdllxll2 for any d-vector x, we 
obtain 

(72) II[Prf(p)p]ll _ max {]DM(p)(p, x)(p)] + 1�89 P)(X)l} 
IIxll2-< 1 

d 
< 2d-13 ~, x//dMiLff[IVm,x]l 2 

i=1 
d 

<_ 2a-13da/e[[Vmax[12 ~ MIL 2. 
i=1 
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Using (67) 

(73) 
d 

IlG(p)II ~ max ~ gM,E, Ilxllt 
I/x[[2-< 1 i = 1 

d 

<- Z M,C,. 
i = 1  

Thus we have the following global bound for the acceleration; 

(74) A~a x < y~- llfmax!l + 3d3/2llvmaxll2 Mi L2 q- g ~  MiLl �9 
- -  ~ m i n  i = 1 i 

We now bound hr(%), h~o(% ), and hql(q~,, fly ). Recalling definitions (49) we obtain 

max [~M-1 1 1 F ~ -  ( ~  J M P + h'(z~ < z~ k dP P ~(f '  p' [0 + a 

(54) h~o(~o) -< ~o IIL-~-p ~ ~(f '  p' ~) + M-  (p)L~- p [~ + ~ -  a , 

[ - ~  + a ~  
hql(~x'q~))-<max F~M-1API '~ ( f 'P 'P )+M-(P) [~-P  A P L  ~P ~-P APl " 

Recall (62), which we use to bound ] lM-l(p)-  M-1(p + Ap)[], and observe 
that 

(75) IIM(p) - M(p + Ap)[I ~ max [DM(p)~x, y)(Ap)I 
Ilxll = I]yll = 1 

d 

< 2dd3/ZllApl I ~ M,L~. 
i = 1  

By substitution, we obtain 

(76) IIAM- xlb2 < 
d 3 / 2  d 2 d IIPlI2,=IM, L2 

M 2 
( ~ m i n )  

It follows that 

(77) 

and 

(78) 

To ~M-lop p ~ 2ad3/211Pz~ 2 MiL~ 

~M-1 Ap _< 2ad3/211AplIS"~=I MiL~ 
~p (/~mMin) 2 
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Applying (66) and (72), we obtain 

(79) 

(8o) 

c3[p;Cp(p)p] Ap < max {ID2M(p)([~, x)([~, Ap)I + I�89 0)(x, Ap)I} 
IAII -< 1 

d 

< 2 a-1 .  3dZlrpllE/lAp[I ~ M,L~, 
i = 1  

< max { I DM(p)([~, x)(Ap)l + I DM(p)(Ap, x)(p)l + I DM(p)(A[~, [~)(x)l} 
rail -< 1 

-< 2 d-x~ 3d3/gl[0tl IIApll a~ MiL~, 
i = l  

and 

OG(p) 
Ap a (81) < gv/~ Y M,L,. 

ap i=1 

We now give the final bounds for h,(zo), hqo('Co) , and hql(tlxO, rlvO). First, we define 

d 

H = E M,L~, 
i = 1  

d 

17 = ~ 9MiL i, 
(82) i= 1 

g = IIfPI + 2a -1"  3d3/2llVmaxll 2H + v/dg 17, 

F ' =  IIf'[I + 2 d- l"  3d3/2llV'maxll gH + ~/dg17, 

In this notation, we can write (74) as 

(83) 
F 

Amax < " M " 
- -  ~min 

Finally, 

(84) h,(zo) < 
(2ad3/elfvma,,l117F' + 2 d-1 �9 3d2]lV~axil3)Zo 

M 
/~min 

2 a- 1.3d3/21[v-x[[F,To 
+ 

M 2 
('~min) 
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(85) hqo(Zo) < 
( 2ad3/2 II Ymax "CO II HF + 2 a- 1.3d 2 II u II 3)TO + 

+ 

M 
}~min 

2,~- 1.3d3/2 II Vmax ZO II F'co 
M 2 

(~rnin) 

~2ed3/2HF 2 d-1 3 d 2 ~ l l H , , / d g ~ q }  
(86) hql(t/xO, qvo) ~ ~ (~mMin)2 -t- ~xO 

2 a-1 �9 3d3/ENvmaxllH 
+ M tlvo" 

~min 

We summarize these bounds by saying that hr(zo) and h~o(%) are linear in %, 
and that hql(~o, ~,o) is linear in t/x o and tl.o. In other words, we can rewrite 
(84)-(86) with obvious substitutions for C ,  Cqo, Cql, and Cqz, which depend on 
d, the dynamics equation, and the dynamics bounds: 

hr(zo) < Crzo, 

(55) hqo(Zo) < Cqozo, 

hql(~/xO, ~/~o) < Cql/~xo -~- Cq2~vo. 

Appendix B. Guide to Notation. 

C is the configuration space of a particular robot. 
TC is the tangent bundle of C. 
d is the number of dimensions of the configuration space C. 
(9 is the encoding of the obstacle set. 
6 v is a safety function parametrized by c o > 0 and c I >__ 0; 

Co + ql/vll .  
p(t) is a path; p: 7~me --* C. 
(p, p) is a trajectory state; p is position and [~ is velocity. 
x is a configuration (also y). 
v is a velocity. 
X is a state (also Y). 
F is a trajectory; F: Tree --+ TC. 
S is the start state, usually the desired start state. 
G is the goal state, usually the desired goal state. 
(t/X, q,) is a tracking tolerance. 
a is acceleration. 

is an acceleration bound. 
is a vector of acceleration bounds. 
is a velocity bound. 
is a vector of velocity bounds. 

Ama x is a scalar, global (nondimensional) acceleration bound. 
f is a generalized force vector. 

6v(Co, cO(v) = 
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is a vector of generalized force bounds; for each i, [f/I < fi- 
dg is the encoding of the dynamics equation obeyed by a robot. 

1 is the world diameter or length of the greatest translational degree of freedom. 
e is an approximation parameter; 0 < e < 1. 
6' v is a safety, function for e-safety; 6'v = (1 - e)6~. 

F', is the trajectory F,, but e-time rescaled. 
p' is the path (or state) p, but e-time rescaled. 
S' is the time-rescaled start state. 
G' is the e-time-rescaled goal state: 
S* is an e-close approximation, of the start date. 
G* is an e-close approximation of the goal state. 

d x  is the set of all instantaneous accelerations possible at state X obeying 
dynamics bounds. 

~ x  is the set of possible constant accelerations of duration z for trajectories 
beginning at state X; these trajectories must obey the dynamics bounds. 

~ *  is an easier-to-compute conservative approximation (subset) of d x .  
d is first, a set of acceleration functions, later generalized to a function d :  

T C  --* {PC: P/is a set of acceleration functions}. 
s4' is as above, but corresponding to tighter generalized force bounds. 
~ ,  ~ are, with single arguments, arbitrary functions ~ ,  ~: T C  --, {0~: pC is a set 

of acceleration functions}. 
is a timestep size. 

~h is a minimal acceleration advantage. 
/~ is a grid-spacing. 
/t is a vector of grid-spacings;/t i is the spacing in dimension i. 
/2 is a discretization (grid-spacing) parameter for generalized forces. 
~ (X,  r) is the (p, "c)-extremal shell at (corresponding to) state X; this is a set of 

acceleration functions. 

o@(X, r) is the set of true (/2, z)-bangs at (corresponding to) state X; another set 
of acceleration functions. 

yG(x)  = ~ ( x ,  ~). 
yP~(x) = ~r ~). 
To, for a given robot and e, is the fundamental timestep. 
(qxo, Go), for a given robot and e, is a fundamental tracking tolerance. 
| is the Minkowski sum. 
Subscripts r, q, and u denote trajectories. 
Subscript i usually denotes the ith coordinate axial direction. 
Subscript n usually denotes a timestep. 
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