
Algorithmica (1995) 14:480~530 Algorithmica
�9 1995 Springer-Verlag New York Inc.

Provably Good Approximation Algorithms for Optimal
Kinodynamic Planning for Cartesian Robots and

Open-Chain Manipulators I

B. R. D o n a l d 2 and P. G. Xavier 3

Abstract. In optimal kinodynamic plannino, given a robot system, we must find a minimal-time
trajectory that goes from a start state to a goal state while avoiding obstacles by a speed-dependent
safety margin and respecting dynamics bounds. With Canny and Reif [1], we approached this problem
from an e-approximation standpoint and introduced a provably good approximation�9 algorithm for
optimal kinodynamic planning for a robot obeying particle dynamics. If a solution exists, this algorithm
returns a trajectory e-close to optimal in time polynomial in both (l/e) and the geometric complexity.

We extend [1] and [2] to d-link three-dimensional robots with full rigid-body dynamics amidst
obstacles. Specifically, we describe polynomial-time approximation algorithms for Cartesian robots
obeying L2 dynamic bounds and for open-kinematic-chain manipulators with revolute and prismatic
joints. The latter class includes many industrial manipulators. The correctness and complexity of these
algorithms rely on new trajectory tracking lemmas for robots with coupled dynamics bounds.

Key Words. Robot motion planning, Optimal control, Polynomial-time e-approximation algorithm,
Time-optimal trajectory, Full dynamics, Shortest path, Kinodynamics, Polyhedral obstacles.

1. Introduction. I t has been the hope of theore t ica l compu te r science tha t by

mak ing simplifying assumpt ions in robot ics problems, precise combina to r i a l

a lgor i thms could be obta ined , and tha t these results could la ter be general ized to

cover " r ea l " robo t s with con t ro l uncer ta in ty , full dynamics , and imperfect models.

F o r example , it is c o m m o n to assume po in t robo t s (often planar) , perfect pos i t ion-

control , and tr ivial dynamics . Op t imiza t i on i s sues - - such as f inding the "fas tes t"

p a t h - - a r e often ignored. Genera l iz ing the ear ly results and re laxing these assump-

t ions are essential if a lgor i thmic analysis is to have an impac t in the theory and

pract ice of robot ics , pa r t i cu la r ly in m o t i o n planning.

As descr ibed in our c o m p a n i o n p a p e r [3], the kinodynamic planning problem 4
[1], [2] is to synthesize a r o b o t m o t i o n subject to s imul taneous k inemat ic

cons t ra in ts and dynamics constra ints , including the dynamics law tha t governs

1 This paper describes research done at the Computer Science Robotics Laboratory at Cornell
University. Support for our robotics research there is provided in part by the National Science
Foundation under Grant Nos. IRI-8802390 and IRI-9000532, by a Presidential Young Investigator
award, and in part by the Mathematical Sciences Institute, Intel Corporation, and AT&T Bell
Laboratories.
2 Department of Computer Science, Cornell University, Ithaca, NY 14853-7501, USA.
3 Sandia National Laboratories, Albuquerque, NM 87185-0951, USA.

Reference [2] is the journal revision of [1].

Received February 16, 1993; revised December 10, 1993. Communicated by J.-D. Boissonnat.

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 481

the motion. A kinodynamic solution is a trajectory specification, such as a start
state and a mapping from time to generalized forces or accelerations. Because of
errors in control, models, and sensing, a trajectory plan can only be considered
safe if it avoids obstacles by some safety margin. This margin is incorporated into
the kinodynamic constraints. An important problem is to synthesize time-optimal
kinodynamic solutions, which require minimal time with respect to the kinodynamic
constraints. This problem is NP-hard in three dimensions [-3], [4], and thus it is
reasonable to develop approximation algorithms.

A provably good polynomial-time approximation algorithm for kinodynamic
planning is guaranteed to find a solution that is provably close to optimal when
a solution exists. Suppose an optimal trajectory that avoids obstacles by the
speed-dependent margin 6v (as in our companion paper [3]; also see (6)) takes
time Topt. Then, given an encoding of the problem and an approximation
parameter e, the algorithm will find a trajectory that:

(a) Takes at most time (1 + e)Top,.
(b) Approximates the start and goal states to within a factor of e.
(c) Avoids obstacles by the margin (1 - e)bv.

Furthermore, the running time of the algorithm is polynomial in both 1/e and the
geometric complexity of the problem.

Canny et al. [1] provided a provably good polynomial-time approximation
algorithm for two- and three-dimensional optimal kinodynamic planning in the
restricted case of particle dynamics. Donald and Xavier [3], [-5] modify this
algorithm to improve the accuracy and complexity.

Here, we extend our approach to robots with coupled dynamics bounds, in
particular to a class of robot systems that includes d-link open-chain manipulators
with revolute and prismatic joints as well as Cartesian robots obeying Lz-norm
dynamics bounds. Our algorithms find two types of trajectories: ones that obey
piecewise-constant extremal controls, and ones that obey piecewise-constant
near-extremal accelerations, The algorithms have asymptotic complexity bounds
and branching factors (in the search) lower than those for the approximation
algorithm of [6]-[8], which also generalizes the results of [-1] to d-link open-chain
manipulators,

2. Kinodynamic Motion Planning for Robots with Coupled Dynamics Bounds

2.1. A More General Kinodynamic Planning Problem. We now reformulate the
optimal and e-optimal kinodynamic planning problems to accommodate a wider
class of robots than covered by our companion paper [3].

We again denote robot configuration space by C, and its phase space, the robot
state space, by TC. A robot motion taking time T I can be specified by a
twice-differentiable map p: [0, Ts] ~ C, called the path of the motion. The tra-
jectory of a robot motion is the map F: [0, TI] ~ TC given by F(t) = (p(t), p(t)).
Thus, a motion is determined by an initial state (Po, %) and an acceleration function

482 B.R. Donald and P. G. Xavier

a = ii. We retain the convention of denoting the position and velocity components
of a subscripted trajectory F, by p, and [~,, respectively.

As before, a robot with d degrees of freedom must move from a start state
S = (s, g) to a goal state G = (g, g) while avoiding a set of obstacles and configura-
tion (e.g., joint) limits; these are the kinematic constraints. However, we now allow
the dynamics constraints to be more general than in our previous work.

The robot motion is governed by a dynamics law, which relates applied
generalized forces f to states, accelerations, and forces G(p) induced by gravity.
For open kinematic chains [9], [10],

(1) f(t) = M(p(t))a(t) + [pT(t)C(p(t))p(t)] + G(p)(t)).

M(p(t)), the robot intertia tensor, is orthogonal, symmetric, and positive-definite.
C(p(t)) is a tensor of rank three, and [pT(t)C(p(t))p(t)] denotes the column vector
in which

(2) [pr(t)C(p(t))p(t)]i = pr(t)C'(p(t))p(t), where C,(p(t))i, k _ 3Mjk(p) 1 ~Mjk(p)
~Pk 2 OPi

(See [9] for a deviation.) It is important to note that each component of M(p) and
G(p) is a sum of products of components of p and their sines and cosines (e.g., Pi,
cos(p j), etc.).

We call a robot whose inertia tensor is constant and whose dynamics law
simplifies to

(3) f(t) = Ma(t)

a Cartesian robot.

A robot motion p obeys dynamic bounds (r~, ~) if for all times t the joint velocities
[~ and the applied generalized forces f obey the following at each joint i:

(4) IP,(t) l < ~, and I f~(t)[~< f,.

These bounds imply global acceleration bounds h (via (10)), and we define

Ama x = m a x ~i.
i

In practice, acceleration bounds are sometimes used instead of force bounds for
Cartesian robots; because of (3), an algorithm that works for one formulation
suffices for the other. In a further simplification, all the dynamics bounds are
sometimes given in an Lp-norm, e.g., for p = 2,

(5) Hv(t)[[2 _< ~ and qla(t)ll2 ~ c~.

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 483

We consider the Lz-norm in this paper, whereas in [1] and [3] we used the

Lo~-norm.
The dynamics laws and dynamics bounds that apply to a robot are its dynamics

constraints. Note that in this paper we use "Cartesian" only to describe the
dynamics laws obeyed by the robot, whereas in [3] and [4] the "Cartesian
Kinodynamic Planning Problem" refers to a point robot obeying L~-norm
dynamics bounds.

The problem parameters must include an encoding Jg of the robot's dynamics
equation. Since the general form of the equation is given by (1), this involves
supplying an encoding of the matrices M(p) and C(p) and the vector G(p) in terms
of configuration p E C. In addition, there must be an encoding (9 of the workspace
obstacles. An instance of the 9eneral kinodynamic planning problem, then, is a tuple

= ((9, S, G, f, ~, ~r An exact solution is a trajectory F such that F(0)= S,
F(Ts) = G at some time TI, and F obeys the kinematic and dynamics constraints.
Thus, the corresponding map p must avoid all obstacles and respect (1) and (4).
The time for solution F is simply T I. The time-optimal kinodynamic planning
problem is to find a minimal-time solution, which is represented as a Suitable
encoding of the start state and the acceleration function a.

We assume that the robot and obstacles are polyhedral, and that they have
been mapped to N configuration-space (C-space) constraints, as in [11]-[14], that
give rise to the C-space obstacles. Free space is the complement of the C-space
obstacles in C. For a polyhedral robot of geometric complexity m and a set of
polyhedral obstacles with geometric complexity n, the number of configuration
space constraints N = O(m(m + n)), since an arm must avoid self collisions [11].
Finally, we assume that all linear (i.e., nonrevolute) degrees of freedom are bounded
from above by a length 1.

As before, we define a trajectory to be 6v-safe if and only if, for all times t in
[0, TI], all real-space obstacles are avoided by a distance of at least

(6) ~5~(Co, cO(p(t)) -~ Co + el llp(t))ll,

where Co > 0 and cl > 0 are problem parameters. In other words, we can
think of each obstacle as having a shell whose thickness grows with the
trajectory speed][p(t)J[; contact with these grown obstacles is avoided under
a fly-safe trajectory. This is different from requiring that there be a ball about
p(t) in free space at all times t. Note that any rational p-norms can be used
for distance and speed in (6), since the expanded obstacles would still be semi-
algebraic.

For any scalars c o > 0 and el > 0 we define an optimal (6~-safe) kinodynamic
solution to be a 6v-safe solution whose time is minimal. An instance of the optimal
(6v-safe) kinodynamic planning problem is a tuple ((9, S, G, f, ~, l, J / , Co, el). f, ~, Co,
and c a are the kinodynamic bounds. Together, the kinodynamic bounds and J/ '
are the kinodynamie specifications of the robot.

484 B.R. Donald and P. G. Xavier

As before [-1], [3], the quality of a solution is measured in terms of an
approximation parameter z. A solution Fq: [0, T j --* TC is z-optimal if:

(a) Fq(0) and Fq(Tq) are within O(z) tolerances of S and G, respectively:
(b) Tq < (1 + e)Tovt, where Topt is the time of an optimal solution.
(c) Fq ish'~(e 0, c0-safe, where

(7) 6"(eo, cO(p(t)) = (1 - z)6.iCo, cO(p(t)).

2.2. Statement of Results: Robots with Coupled Dynamics Bounds. A d-degree-
of-freedom (d-DOF) robot system obeys coupled dynamics bounds if:

(a) Its dynamics equations cannot be separated into the dynamics equations of d
independent one-dimensional systems.

(b) There is no fixed coordinate transformation such that the velocity and
acceleration bounds in each axial direction are independent of the bounds in
all other axial directions.

We describe provably good approximation algorithms for the optimal (safe)
kinodynamic planning problems for two classes of robots with coupled dynamics
bounds: Cartesian robots with LE (-norm) dynamics bounds and open-chain
manipulators with revolute and prismatic joints. Given a problem instance and
an approximation parameter e, these algorithms will find an e-optimal solution if
a 3~(Co, Cx)-safe solution exists.

These algorithms run in time polynomial in the geometric complexity N of the
configuration space obstacles and in the resolution (l/e). In the following two
theorems c o and c~ are constants dependent only on the kinodynamic specifica-
tions of the robot and are polynomial in d, and thus c~ and c~ are constant for
any particular robot. Our algorithms are e-approximation schemes that are fully
polynomial in the combinatorial complexity of the geometry and pseudopolynomial
in the kinodynamic specifications. As in [1], a key intuition is to reduce the
problem to searching a graph whose edges correspond to "primitive" trajectory
segments.

Formally stated, we show the following:

THEOREM 2.1. Let gt and ~ be velocity and acceleration bounds, respectively.
Let ((9, S, G, gt, ~, l, Co, cl) be an optimal kinodynamic planning problem for a d-degree
of freedom Cartesian robot obeying L z dynamics bounds. Let 0 < e < 1.

Suppose there is a 6v(Co, cO-safe trajectory from S to G taking time Top t. Then the
algorithms we describe each find a (1 - e)3v(c o, c l)-safe trajectory taking time at most
Topt(1 + e) and going from some S * = (s*,~*) to some G * = (g, g*) such that
S* and G* are e-close to S and G, respectively.

The asymptotic running time of the algorithms is O(c~op(N, z, d)(1/z) 6d- 1), where
N is the geometric complexity of the C-space obstacles, co is a constant dependent
on the algorithm and the kinodynamic specifications and is polynomial in d, and
p(N, e, d) is the time-complexity of checking the (1 - z)6~(co, el)-safety of one of the
"primitive" trajectory segments the algorithms consider.

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 485

THEOREM 2.2. Let ((9, S, G, f, ~, Jg, I, c o, cl) be an optimal kinodynamic plan-
ning problem for an open-chain manipulator with revolute and/or prismatic joints.
Let O < e < 1.

Suppose there is a 6v(c o, cO-safe trajectory from S to G taking time Top t. Then
the algorithms we describe each find a (1 - e)tSv(Co, cO-safe trajectory taking time at
most Topt(1 + e) and going from some S* = (s*, g*) to some G* = (g*, g*) such that
S* and G* are e-close to S and G, respectively.

The asymptotic running time of the algorithms is O(c~p(N, e, d)(1/e) 6d- 1) where N
is the geometric complexity of the C-space obstacles, c E is a constant dependent on
the algorithm and the kinodynamic specifications and is polynomial in d, and p(N, e, d)
is the time-complexity of checkin9 the (1 - e)6v(Co, cl)-safety of one of the "primitive"
trajectory segments the algorithms consider.

We have omitted the complexity factors containing kinodynamic specifications
because they are constant for a given robot and because the terms can be very
complicated. We express their overall contribution to the complexity bounds as
a factor of c~ (or cne). Our claim that the complexities are pseudopolynomial in
the kinodynamic specifications and 0((1/~) 6d- 1) is substantiated in the sections that
follow. In Section 3 we sketch our approach, and in Section 4 we prove two lemmas
key to our results. Detail is provided in Section 5, with further detail given in
Appendix A.

In Section 5.4 we give an approach for safety checking and argue that p(N, e, d)
is roughly O(N(d + log N)). As we discuss there, for non-Cartesian open-chain
manipulators amidst polyhedral real-space obstacles, exact collision detection for
quadratic paths requires the solution of mixed trigonometric equations that cannot
be transformed into algebraic equations using the usual substitution methods, such
as [12]. Furthermore, for these manipulators, trajectory segments corresponding
to constant extremal controls are solutions to systems of ordinary trigonometric
differential equations, and the trajectories found by the corresponding algorithm
are extremal to the accuracy of the solution method; see Section 3.1.2. In both of
these cases, certain parameters would be adjusted, and numerical techniques would
be used to do safety checking approximately.

For a choice of C-space coordinates in which the path is algebraic in time and
in which the obstacles are represented as semialgebraic sets in configuration space,
p(N, e, d) would be O(N log N) for the True-Extremal Algorithm (applied to
Cartesian robots) and for the Near-Extremal Algorithm (in general). Finally, we
note that the True-Extremal Algorithm is more theoretical than the Near-Extremal
Algorithm, and that for a given robot it yields a larger co or cE.

2.3. Previous and Related Work. Canny et al. [1] and Donald et al. [2] address
the problem of kinodynamic planning for a point robot with L~-normal velocity
bound g and acceleration bound ~ in an environment with polyhedral obstacles.
Canny et al. [-1] provide the first formulation of kinodynamic planning as an
approximation problem and obtain the first provable polynomial-time approxima-
tion algorithm for kinodynamic planning in more than one dimension. A review
of the body of previous and related work on planning robotic motions subject to

486 B.R. Donald and P. G. Xavier

dynamics constraints and obstacle avoidance can be found in [3] and in [1]
itself. The key innovation that differentiates [1] from previous graph-search-
based algorithms for motion planning is that the parameters of the reach-
ability graph guarantee that if the kinodynamic planning problem instance
is solvable, then the shortest path in the graph from the root vertex to some
vertex approximating the problem goal will yield an e-optimal kinodynamic
trajectory.

By improving the algorithm and its complexity anlaysis, we obtained the
better accuracy and complexity results in our companion paper [31 which
were initially reported in [5] and [15]. Through a coordinate trans-
formation, all these algorithms can be applied to kinodynamic planning for
a Cartesian robot with Lo~-norm dynamics bounds and polyhedral C-space
obstacles.

Jacobs et al. [6]-[8] 5 built on the methods in [1] to obtain the first polynomial
time approximation algorithm for optimal kinodynamic planning for open-chain
manipulators--the first for robot systems with state-dependent dynamics. Their
work introduces several techniques to the kinodynamic planning literature,
including:

(a) Discretizing acceleration-space according to the problem parameters.
(b) Reducing state-dependent dynamics to being locally constant.

Our approach (see the early description in [15]-[171) toward state-dependent
dynamics is similar, but we obtain better complexity results. 6 In concurrent work,
Reif and Tate [18] used a parameter-dependent acceleration-space discretization
implicitly to obtain a polynomial-time approximation algorithm for robots with
decoupled dynamics, L2 dynamics bounds, and polyhedral C-space obstacles.
For this L 2 problem we also obtain an algorithm with a lower complexity
bound.

3. Robots with Coupled Dynamics Bounds. In this section we provide an over-
view of the algorithms and describe the key concepts used in obtaining our
results.

3.1. Aloorithms Overview. We describe the basic ideas behind two general
algorithms for finding near-optimal kinodynamic trajectories for Cartesian robots
with Lz-norm dynamics bounds and for open-chain manipulators. The first
algorithm searches a reachability graph corresponding to piecewise-constant,
extremal forces and torques, and we refer to it as "the True-Extremal Algorithm."
The second uses piecewise-constant, near-extremal accelerations, "and we call it
"the Near-Extremal Algorithm."

5 We refer to this body of work as [6]-[8].

6 The result in [6]-[8] preceded the result in [15]-[17].

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 487

3.1.1. The Basic Idea. Our algorithms transform the problem of finding an

approximately optimal trajectory to that of finding the shortest path in a directed
graph, in a general sense, we follow the technique from [1]:

(a) The vertices of the graph are states in TC.
(b) The graph is a reachability 9raph, whose root vertex approximates the start

state and whose edges are (1 - e)rv(co, c0-safe trajectory segments.
(c) These (1 - e)bv(c o, c0-safe trajectory segments are generated by a finite set of

control primitives and each takes duration z, the timestep chosen by the
algorithm.

(d) The graph is explored from the root vertex, and the search terminates when
either a vertex approximating the goal state is found or when no new vertices
are generated (found).

Since we use the notion of a "slowed-down" trajectory often, we now formalize
two definitions, as in [1].

DEFINITION 3.1. Let Fr: [0, TI] ~ TC, and suppose that e > 0. Then we define
the e-time resealed trajectory F'/ [0, (1 + e)Ty] ~ TC as follows:

(8)
t 1 t

Thus, if Fop t is an optimal kinodynamic trajectory, then F~,pt will be e-optimal
when e < 1.

DEFINITION 3.2. Let X = (x,/~) e TC, and suppose that e _> 0. Then the e-time-
rescaled state X' = (x',/() is defined by

(9)

X t -~- X ,

1 /t

These two definitions are important because our proofs extensively utilize dynami-
cal properties associated with states in rescaled trajectories.

As in the algorithm of [1], in our new algorithms the root vertex of the
reachability graph will approximate the e-time-rescaled start state in the kinodyna-
mic planning problem instance. The basic idea is that if a solution F r to the
problem instance exists, then some graph trajectory will track F'r closely enough
to be e-optimal.

The algorithms presented here differ from the algorithms in [1]-[3] in three
important ways.

First, the control primitives our new algorithms use to generate the reachability
graph correspond to extremal or near-extremal accelerations that differ from their
"neighbors" by O(e). This is necessary to guarantee, as required by our proof
technique, that a trajectory constrained to the control primitives can out-accelerate

488 B.R. Donald and P. G. Xavier

an e-time-rescaled optimal trajectory. Let us consider a point robot obeying
Lz-norm acceleration bound d. For any fixed finite set d of acceleration vectors
obeying this bound, an e > 0 exists such that, in some direction n, there will be
no convex combination a of vectors in d such that a- n > fi/(1 + e) 2. Thus, a point

obeying acceleration bound ~/(1 + ~)2 would be able to out-accelerate a point
limited to accelerations from d .

Second, the control primitives used by the True-Extremal Algorithm generally
do not yield a finite reachability graph. While our previous algorithms would
potentially explore the entire reachability graph, the True-Extremal Algorithm
instead bounds its search by only exploring nodes that are not too close to
previously found nodes. Hence, a state density condition limits its search size.

Third, the True-Extremal Algorithm uses constant applied force/torques, which
can yield nonconstant accelerations, as its control primitives. Although the main
purpose of our algorithms is only to guarantee e-approximately optimal trajector-
ies, it would be desirable for an algorithm possibly to find a truly optimal trajectory
with respect to 6'v-safety, even for a "nearby" problem (as in numerical analysis).
In robotics and control theory [19] there is a family of results (e.g., [20]--[22])
on the feasibility of planning and approximating optimal trajectories using only
piecewise-extremal controls; these results are often called "bang-bang" theorems.
Among other things, they imply that such an algorithm would have to include
piecewise-extremal trajectories in its search. Under the less restrictive dynamics
model we use here, this generally excludes piecewise-constant accelerations.

The use of a grid of O(e)-spaced accelerations as control primitives is shared by
[18], and [6]-[8]. Our use of near-extremal and extremal accelerations as control

primitives distinguishes our algorithm from the latter work and, with our proof
techniques, contributes to our lower complexity bound. Our use of state density
(or spatial hashing) to prune the reachability graph is a first in provably good
kinodynamic planning.

3.1.2. Control Primitives Used by the True-Extremal Algorithm. Although the
correctness of the True-Extremal Algorithm is harder to prove than the correctness
of the Near-Extremal Algorithm, the former is conceptually simpler.

We now describe the control primitives the True-Extremal Algorithm uses to
generate the edges in its teachability graph. Let ~//be the set of generalized (control)
forces that are extremal with respect to given bounds f. (We can define similar
sets for Lp bounds f and &) Given a scalar diseretization parameter/~ > 0, we
say that ~//~ : ~ is a ~-diseretization of the control extremals if for every u~ E q/
there is some ub e ~//~ such that �89 [I u, - ub II o~ </?. As long as/~ is small enough, our
algorithm may choose any such ~ , so we henceforth refer to ~//~ as the ~-
discretization of control extremals.

The application of a member of ://~ for duration v is called a true (~, ~)-bang.
(The "true" distinguishes it from uses of "bang" which refer to controls that are
constant, but only nearly extremal.) Recall that the dynamics equation maps states
and generalized forces to accelerations. From (1), the acceleration is given by

(i0) a(p, [~, f) = M - :(p)(f - [[~TC(p)p] -- G(p)).

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 489

Thus, a true (/~, z)-bang and a state X together determine a trajectory segment

of duration z starting at X, i.e., the solution to (10) with initial state X and f
constant over the duration of the (/i, z)-bang. If this trajectory ends at state Y,
then we say that there is a true (#, ~)-bang from X to Y. Thus, we sometimes use
"true (~, z)-bang" to refer to the trajectory segment generated by a bang when
the meaning is clear.

Furthermore, the acceleration functions associated with true (), ":)-bangs begin-
ning at a given state X are important to our discussion. We call these functions
the true (fl, z)-bangs at X, and the set of them is denoted by ~(X, ~). A true
(fL, z)-bang trajectory is a concatenation of true (/Z z)-bangs. If F, is a true
(9, z)-bang trajectory, then a,(t - nz) e o@(F,(nz),z) during each open time interval
(nz, (n + 1)z).

For an open-chain manipulator or a n L 2 Cartesian robot, the number of states
reachable from a root vertex S* via a sequence of m (1 - s)6v-safe (/Z z)-bangs
can, in general, be exponential in the path length m. Worse yet, the total number
states reachable via an infinite number of such bangs can be unbounded, even in
a bounded state space. Therefore, we apply (bx, b,)-bucket pruning, a spatial hashing
technique, in the search. (See Figure 1.) In (b~, b,)-bucket pruning TC is divided
into voxels of diameter bx in spatial dimensions and b in velocity dimensions.
When the graph search finds a vertex in a voxel in which another vertex has
previously been found, the edges from the new vertex are simply not explored,
and we say they are pruned from the search. (Compare this with the search in
[13], Figure 31 on p. 315.) Since the state space is bounded and the reachability

i
_ ~ J L J L _ _

I / I
" ' , I I i

" 1 - . I i
I ' - , 4 I

I " " . , I

~ i " q . I

- - 7 . - - " X 71 "--", I r - -

I I P~" I ' , I

I I / ", 1

- P X �9 ' , '

i ' " �9 i �9 ",, i

/ , - , ~ \ , t ".\ ,
_ _ J t _ " _ ' : " :_ - t _ _ _ , - ~:_-~. . :~ , ,...~

i ' , I

i ,, i
i ", L

7 . 1 ' , , i

i "1 , E _ _ ' ~ _ - . _ . _ : . _ ;_
i " ' . , .

Fig. 1. (bx, bv)-bucket prur ing search pruning. During the search, an edge (trajectory segment) to vertex
(state) Xp, is found, but a previously found vertex Xki u is in the same bucket. Consequently, edges from
Xp, are pruned from the search. (Compare with Figure 31 on p. 315 of [13]. In Section 4.3 we show
that the True-Extremal Algorithm still has the desired completeness with this search pruning.

490 B.R. Donald and R G. Xavier

graph has an 0((/2) -(~-~)) branching factor, the size of the subgraph searched is
O((fi)-~d- ~(b~b~)-~).

We note that for non-Cartesian open-chain manipulators, (10) generally has no
closed-form solution. Thus, we consider the True-Extremal Algorithm is purely
theoretical: we either choose a model of computation in which (10) is solved by
an oracle, or we settle for approximate, numerically computed (#, ~)-bangs.
Under the latter choice, the planned trajectory segments cannot really be extremal
without risking their being unexecutable. (See Section 5.1.)

3.1.3. Control Primitives Used by the Near-Extremal Algorithm: Cartesian
Robots. As an alternative to (bx, b,)-bucket pruning and the problem of compu-
ting true (~, ~)-bangs, the Near-Extremal Algorithm builds a teachability graph
using trajectory segments corresponding to constant near-extremal accelerations
that each last one timestep. These accelerations and a root vertex are chosen so that
the size of the reachability graph is automatically bounded. Under our current
proof techniques, the algorithm has a much lower constant term in its complexity
than the True-Extremal Algorithm, We now describe the accelerations and outline
the algorithm.

A positive vector p e Nd determines a grid that discretizes the acceleration space
R e. Precisely, let #~ be the grid-spacing in dimension i, and let the grid be aligned
with the coordinate axes so that the origin 0 is a gridpoint; i.e., it lies at one of
the interstices of the grid. We, call the set of gridpoints the p-grid. For now,
suppose that timestep r has been chosen and that the set of accelerations has
been discretized. Given a state X e TC, let dx denote the set of instantaneous
accelerations possible at X under the dynamics constraints. (Recall that we assume
that the set of control forces q/ is state-invariant, but that these forces map to
accelerations via (10).)

Let ~x c dx denote the set of constant accelerations (i,e., vectors) possible
for trajectories of duration r beginning at state X:

Sex = { a r 0 dr(x,a.o},
te[O,fl

where F(X, a, t) is the trajectory that results in applying constant acceleration a
at state X. Then a "constant acceleration" analogue of the set of true (fi, z)-bang
accelerations would be the set of p-gridpoints that lie within a p-grid-spacing
of the boundary ~3~ x of ~r

For now, we call these accelerations and the corresponding trajectory segments
(It, r)-bangs. Suppose that, for a state S* and in each dimension i, the acceleration
discretization #i divides the state velocity J*. Then all states reachable from S*
via a sequence of (p, z)-bangs lie at the interstices of an underlying grid covering
TC, with a grid spacing I1 iz2/2 in position dimension i and #~z in velocity dimension
i. Thus, a p-grid, a timestep r, and a choice of origiri in C induce an underlying
regular TC-grid. If S* is the root vertex of a teachability graph, then the number
of its vertices is bounded above by the number of TC-gridpoints. (See [1], [2]
and ensuing work such as [3], [6], [17], and [18].)

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 491

For Cartesian robots, the sets ~x are easily computed, and hence the Near-
Extremal Algorithm for Cartesian robots uses ~ , z)-bangs as described above
to generate a reachability graphs. ~ , z)-bangs are defined formally in the section
below, which also covers the non-Cartesian case.

3.1.4. Control Primitives Used by the Near-Extremal Algorithm: More General
Dynamics. Unfortunately, it appears that ~ x is very difficult to compute for the
general dynamical case (10). For non-Cartesian robots, we therefore define sets o f
near-extremal constant accelerations using conservative subset approximations of

the sets dx .
Let ~x c TC denote the set of states that can be reached from X within time

without violating the dynamics constraints. Then one conservative approxima-
tion to ~x is

(11) ~x = ~ d v < ~ x .
Y~-~x

This set still might be difficult to compute when the robot dynamics are nonlinear,
since the intersection is taken over a set of states.

The dynamics and dynamics bounds determine global bounds on the magni-
tudes Ax and Av of the possible position and velocity changes during a duration
of length ~. Using these bounds, we can compute an analogous "acceleration
space" bound EA, which has the following property: if a v ~ d v for some Y
within (Ax, Av) of X, then there is some aX ~ ~r such that lqa v - aXl] ___ E a. (See
Section 5.3.1 and Appendix A.)

We now define:

(12) ~ * = (-] {a~Cxl3a'~dx, a = a ' + Aa},
Aa~B~:A(O)

where B~(y) denotes the f-ball about y. Since d x is a parallelepiped or a dosed
Lp-norm d-ball, this set has a simple geometry. Thus,

with equality among the first three terms in the case of a Cartesian robot, except
at the velocity bounds. (See Figure 2.)

We call ~ * the set of conservatively z-feasible constant accelerations at X. Our
algorithms treat ~ * , the boundary of ~* , as the set of"most-extremal" constant
accelerations feasible for a trajectory of duration z starting at state X.

We now define the (p, z)-extremal shell of accelerations at X to be

(13) ~f~(X, z) = {a s/~-gridl3a' ~ 8~* , Vi,]ai - a[] </zi}.

This notation and this term also refer to the corresponding set of constant
acceleration functions.

492 B.R. Donald and P. G. Xavier

/ ~, //~A/

�9 X

Fig. 2. Sets of accelerations. ~x is the set of possible instantaneous accelerations at state X. ~x is the
set of accelerations that can be maintained for duration z by trajectories starting at X. ~7 x = (~ S4y,
where the intersection is taken over all Y �9 !~x, is a conservative estimate of this set. ~*, used by
the Near-Extremal Algorithm to obtain the (/u, z)-extremal shell of accelerations out~ z), is "geometric-
ally computable." a is a member of ~4"(X, z). This figure is only a Venn diagram.

The application of a 0u, v)-extremal acceleration for durat ion v is called a

Ou, v)-bang. Terminology concerning (8, z)-bangs and true (/;, ~)-bangs will be

analogously extended to (~, v)-bangs. For example, if a ~ , z)-bang results in the

transition from state X to state Y, we say there is a ~ , z)-bang from X to Y.

3.2. Key Concepts. To show the correctness of our algorithms, we follow the

general technique from [1]. We formalize the not ion of an acceleration advantage

and generalize it to sets of acceleration functions, and we use and prove two

tracking lemmas that are more general than the ones in [1], [3], [6] - [8] , and

[18] and yield tighter complexity bounds for our algorithms than those obtained

in [6] - [8] , [18].

3.2.1. Overview. As in [1], tracking is a key concept;

DEFINITION 3.3. Let F~ and Fb be trajectories, and suppose that, for all t e [0, T],

(14))]pa(t) -- pb(t)llo~ < t/~ and I]pa(t) -- [%(t)]p~ G ~/~.

Then we say that F a tracks F b to tolerance (qx, qv). Furthermore, for all t e [0, T],

Fo(t) approximates Fb(t) to tolerance (Vlx, vlv).

The Safe Tracking Lemma [1] relates Co, Cl, and ~ to a family of tracking

tolerances. Specifically, given Co, c 1 and e, the lemma provides a set of tracking

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 493

tolerances (t/x, ~/v) such that if a trajectory F, is 6v(c o, q)-safe and F b tracks F, to
tolerance (t/x, t/v), then Fb will be (1 - ~)6v(Co, q)-safe. This lemma is stated in
Section 3.2.2, and it ensures that the algorithms can choose sufficiently small e-safe
tracking tolerances t/x and ~/v that are |

Recall that, for a trajectory F, F' denotes F e-time-rescaled (8). To prove the
correctness of each algorithm we show that if a given problem has an optimal
solution Fopt taking time Top t, then the algorithm's choice of root vertex state S*,
timestep z, and discretization ~ (or /~) guarantee that it will, at worst, find a
graph trajectory Fq that tracks Fop t to tolerance 0/x, t/v)- Fq will therefore be
(1 -e)6v(Co, cl)-safe and approximate G' to within O(e) at time (1 + e)Top,. Since
e < 1, S' and G' are within O(~) of S and G. It follows that Fq(0) and Fq((1 + e)Topt)
will also be within O(e) of S and G.

Following an analysis similar to that found in [1], we observe that if a Cartesian
robot trajectory F r respects L z dynamics bounds 8 and g, then the e-time-
rescaled trajectory F', will respect bounds 8' and tS' that are smaller than 8 and
by a | factor. This is also true for open-chain manipulators as long as the force
bound f is great enough to overcome gravity in all configurations when the robot
is stationary.

At this point, we introduce techniques that significantly extend those in [1]. In
Sections 3.2.3 and 3.2.4 we generalize from feasible instantaneous accelerations to
state-dependent sets of acceleration functions and formalize an appropriate notion
of acceleration advantage over a time interval.

The Coupled Tracking Lemma (Lemma 3.2) presented in Section 3.2.5 relates
such an acceleration advantage th, a maximum acceleration, and a desired
tracking tolerance to a timestep z. Using the lemma we can choose | param-
eters #i, /~, and z that guarantee the existence of graph trajectories that will
track Fop t to the | tolerances obtained via the Safe Tracking Lemma. For
the Near-Extremal Algorithm, this enables us to find conditions that guarantee
that some graph trajectory will track an ~-time-rescaled optimal trajectory Fop t
closely enough. In Section 3.2.6 we present the Robust Coupled Tracking Lemma
(Lemma 3.3), which gives conditions ensuring that (bx, b,)-pruning during a
breadth-first search of the reachability graph will not eliminate trajectories
the True-Extremal Algorithm needs to find. Thus, Lemmas 3.2 and 3.3 are
the key to showing algorithm correctness and complexity, modulo safety
checking.

Proofs for Lemmas 3.2 and 3.3 are presented in Section 4. Details of how the
algorithms choose the reachability graph parameters are given in Sections 5.2 and
5.3. An approximate but sufficiently precise computational method of safety
checking is described in Section 5.4.

3.2.2. Safe Tracking. Assuming that a optimal trajectory Fop t exits, we must
determine a tracking tolerance that guarantees that any trajectory tracking ["opt
to that tolerances will be (1 - e)6~(Co, ca)-safe.

LI~MMA 3.1 (The Safe Tracking Lemma [1]). Suppose that by is specified by Co
and c~ and that F r is a by-safe trajectory relative t6 the C-space obstacles. Let

494 B.R. Donald and P. G. Xavier

0 < 5 < 1, and let 3' v = (1 - 5)5~. Then a tolerance (tl~ , tl,) exists such that, for any
trajectory Fq, the following hold:

1. I f Fq tracks Fr to tolerance (tl~, rl~), then F~ is 3'v-safe.
2. Furthermore, for any positive r, the following choices suffice:

CO5

~/v<-q(1 g)+ (15) -- fl'

r/x _</~rl..

The lemma is independent of norm, as long as a particular norm is consistently
used, and distances and velocities are in TC. A proof is found in [1].

If we wish the safety margin to correspond to the distance between the
physical robot and the obstacles, then t/x can be divided by the maximum
modulus of the forward kinematic map. Similarly, if we wish the velocity to
correspond to the velocity of a point on the physical robot, then t/v can be
divided by maxp.p [I J(P)Pt[, where J(p) is the manipulator Jacobian. We denote these
divisors by Pmax and J~,~, respectively. Then we (conservatively) require

(16)

C06
r/v <

Jma~(C~(1 - - ~) + B)'

tiros
rl~ <__

Pm~(C~(1 - - 5) + /~)"

By choosing fl--- 1 we see that r/x and t/v can both be O(e). The algorithm
chooses fl to maximize the timestep and thus minimize the overall complexity.
Given Co, cl and e, we call a tolerance (qx, t/v) that obeys (16) a physical
e-safe-tracking tolerance.

Finally, because the safety-checking procedure is a numerical method, when
computing the parameters that determine the reachability graph, the t/X given
by (15) or (16) must be reduced fractionally to account for the numerical error.

3.2.3. Time-Rescaling and Instantaneous Acceleration Advantages. If trajectory
F r obeys L~ dynamics bounds ~ and ~, then the e-time-rescaled trajectory F' r obeys
L~ dynamics bounds ~/(1 + e) z and U(1 + e). For any d-vector a of l's and - l ' s
there is a d-vector ~ of l's and - l's such that if Jla(t)][~ < a/(1 + 5) 2, then, for each
dimension i,

ai(~ia - ai(t)) >--
a(25 + g 2)

(1 + 5) z "

Therefore, a trajectory obeying (& z)-bang control [1], [3] can always out-
accelerate the 5-time-rescaled trajectory F'r by'an a(2~ + 52)/(1 + e) 2 margin in any
direction over the entirety ofa timestep, as long as this would not violate the velocity

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 495

bound. We can thus immediately reduce the analysis for Lo~ Cartesian robots to
the one-dimensional case, where we exploit this acceleration advantage to relate
the timestep z to how closely some (& z)-bang trajectory is guaranteed to track
F' r (in the absence of obstacles). We use an acceleration advantage together with
the dynamics bounds, Lemma 3.1, and Lemma 3.2 or 3.3 to choose a timestep z.

As the first step toward defining a type of acceleration advantage appropriate
for sets of acceleration functions, as used in the Coupled Tracking Lemma, we
describe a generalization of "instantaneous acceleration advantage" to both L z
Cartesian robots and open-chain manipulators.

Recall that the robot motion obeys the following equation:

(1) fit) = M(p(t))a(t) + [pr(t)C(p(t))p(t)] + G(p(t)).

Suppose a trajectory F, obeys the bounds f. Recall that F'r is F~ e-time-rescaled
(8). We find [10] that at time (1 + e)t:

f,(t) 2e Oi- /~2
(17) f',((1 + e)t) - (1 + e) 2 + (1 + e) 2 G(p,(t)).

This immediately means that F'r obeys some tighter bounds f if the robot
is Cartesian or if there is no gravity. For an open-chain manipulator, F'r obeys
tigher bounds t" as long as the bounds f are large enough for the robot to be held
stationary in the presence of gravity in all configurations. In particular, suppose
that the forces necessary to balance gravity obey the bound (1 - xf)f, so that the
scalar x s describes the advantage over gravity. Then F'~ obeys the bounds

1 + (1 - xs)(2e + ~2)~
(18) /,

(1 + ~)2

in addition to

(19) ~ , = (1)~r
i q"

Then, for every degree of freedom i,

_ xs(2 e + ~z) XS e
(20) f ' - f [> (l + e) 2 f i > ~ f i .

Recall that ~r denotes the sets of feasible instantaneous accelerations at the
state X under the force bound f. Let d~t denote the corresponding set under the
force bounds f', and let fmi, = mini fi- Recall that, for any y ~ R a,

(21) Ily[Ioo ~ Ilyll2 ~ ~/dlly[Ioo.

496 B.R. Donald and P. G. Xavier

Now, because M(x) in (i) is orthogonal, (20) implies that, for all a �9 d x and
a'�9

(22)
~f fmin/~

Ila - a'/12 --- 2)~max ,

where 2max is the maximum eigenvalue of M(x) taken over all of C. Equation
(22) is also true for a Cartesian manipulator obeying Lz-norm dynamics bounds;
in this case it follows from (3) that ~:I = 1 and f~n = f" The L2 acceleration
bound case is trivial, since it is equivalent to setting M to the identity matrix.

In all three cases d k lies entirely inside ~r by some O(e) margin. In particular,
we can always find a scalar xt > 0 such that, for any a e d ~ and any d-vector o-
of l's and - l ' s , there is an h e C3dx such that, for all degrees of freedom i,

r i - - a i) >_ tr t.

Hence, we say that d x has a Kt instantaneous acceleration advantage over d ~ .
(See Figure 3.)

3.2.4. Acceleration Functions and Uniform Advantages. We now introduce a
form of acceleration advantage useful for comparing sets of acceleration functions.
We say that a trajectory F, respects a set o~ of acceleration functions in interval

I

- - - "x - j

i/. i

tz = t~l

Fig. 3. Allowable accelerations for the L 2 Cartesian robot at any state X. ~r obeys ~, d ~ obeys
h/(1 + 5) 2. For any a e d k , in each direction given by a vector of l's and - l ' s , there is some ~ledx

that has a xt advantage over a; the intersections of the dotted lines and the outer circle (Sdx) represent
"witnesses." Thus, dx has a uniform xt advantage over d~r for any duration z (as long as the velocity
bound is not violated). If the actual uniform advantage is large enough and all/t~ are small enough,
then the ~, z)-extremal shell of accelerations ~(X, z) (see (13)) has a uniform lq advantage over ~r

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 497

[-tl, t2] if there is an acceleration function a �9 Y/such that a,(t) = a(t - tl) for all

t �9 [t~, t23. Suppose that o~ is also a set of acceleration functions, and suppose that,

for every a �9 ~ and each d-vector a of l 's and - l's, there is some h �9 ~ such that,

for all t �9 [0, z],

(23) ai(~(t) ~*o a~s) ds) >_ ~fi.

Then we say that o~ has a uniform Kt advantage over ~ for duration z.
Because the set of feasible accelerations for a Cartesian robot is essentially

state-invariant, we can find an acceleration advantage x~ and discretizations

#i, # that are | and such that both the (~, z)-extremal shell of accelera-

tions Yf(X, z) and the set of true (/3, z)-bangs ~ (X , z) at every state X have

a uniform x~ advantage over the acceleration of F'opt(t) at every time t for any

duration z. We note that this discussion about the set of feasible accelerations

does not consider velocity bounds, and that the inclusion of velocity bounds

changes the set of feasible accelerations for states on the velocity boundary.

This technical detail is minor because of the effect e-time rescaling has on a

trajectory's velocity bound.

We now generalize the notion of a set of instantaneous accelerations d x to

a mapping

d : TC ~ {~176 is a set of acceleration functions}

from TC to sets of acceleration functions. For a given robot d (X) is defined to

be the set of acceleration functions obeying the dynamics bounds f and

for a robot motion (in the absence of obstacles) beginning at state X. Thus,

a, �9 d (X) if and only if there is a trajectory F, that begins at state X and obeys

the dynamics bounds. Furthermore, an instantaneous acceleration (vector) a x �9 d x

if and only if there is some acceleration function a �9 d (X) such that a x = a(0).

Strictly speaking, Yg(X, z) c d(X), and for each a �9 Zg(X, z) there is a constant
a x �9 d x such that a(t) = a x for all times t �9 [0, z].

We say that F, respects d if, for all intervals It1, tEl, F,(t0 = X implies that

F, respects d (X) in [q, t23. d ' denotes the map from TC to all acceleration
functions feasible under the bounds f' and ~' given in (18) and (19).

Since the set of feasible instantaneous accelerations for an open-chain manipula-

tor is state-dependent, to choose the discretization parameter fi (or /~) and a

timestep z, we consider the relationship between feasible acceleration functions

(such as the members of d(X)) and feasible sets of instantaneous accelerations

(such as dx). Suppose F, respects d ' . Then the average acceleration of F, over

the interval [nz, (n + 1)z] is

vr((n + 1)z) - - Vr(n'c)
(24) �9 U d~,{t).

T t~[n~,(n+ 1)'~]

498 B.R. Donald and P. G. Xavier

Suppose that Fq is a ~ , z)-bang trajectory. Then, for all t e [nz, (n + 1)z],

aq(t) = a t") for some constant a t") such that, for all i, u~ divides a! ") and

(25) a~")e ~ dry.).
te[n~,(n+ 1)~]

If Fq(nz) and F~(nz) are close enough and z is small enough, then

(26) ~ dr .(0 ~ (~ dr.(o c d r , t.~),
t~[n~,(n+ l)~] te[n~,(n+ 1)~]

and, furthermore, the boundaries of Ut~[.~,(.+ 1)~j dr.~0 and dr~.~) are separated
by some distance. (Recall (12).)

If this separation distance is great enough compared with xz and]JpJlco and

/2, then both the (p, T)-extremal shell at Fq(nZ) and the set of true (/~, z)-bangs at

Fq(nz) will have uniform xl advantages over d'(F.(nz)). We use this relationship

between sets of instantaneous accelerations as a criterion for comparing maps

from TC to sets of acceleration functions.

Since we can bound the minimal distance between members of ad x and

members of Odk, we now consider how points on gdx and Odk "move" in

response to small, continuously realizable changes, or perturbations, to state X. It

is straightforward (but tedious) to show that physically possible state perturbations

(Ax, Av) cause points on 3dx and Odk to move by distances that are O(Ax) and

O(Av). Therefore, because we assume global dynamics bounds, points on 3dr~t)

and points on Odr;~) move by O(At) over a duration of length At. Specifically, we

can globally bound the effect of perturbations (Ax, Av, At) on 3dx by hqo(tlAt[[) +

hql([lAx]l, IlAvll) and the effect of a perturbation At on t3d) by h,(llAtll), where

hqo , h~l, and h, are linear. (See Figure 4 and Appendix A.)

Fig. 4. Sets in acceleration space, d x obeys bound f; d~ obeys I'. The outer dotted parallelogram
represents the boundary of the set obtained by considering all "perturbations" of dx by up to hql
(~/~, ~/~) + hqo(Z) and taking the intersection. The intersection of this set with the p-grid has a ~c l
advantage over the set (represented by the inner dotted parallelogram) obtained by considering all
"perturbations" of d~ by up to h,(z) and taking the union. The eight #-grid patches crossed by dashed
lines show this xl advantage with respect to an acceleration (vector) a.

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 499

This means that we can find | uniform acceleration advantage xt,
discretization p, fundamental timestep %, and maximal tracking tolerances

qxo and t/, o such that if X is within (r/~o, ~/,o) of Y, then the (#, 'c)-extremal
shell of accelerations at X, ~ (X, 'c), has a uniform xt advantage over d(Y)
for duration min(~, To). Hence, the fundamental timestep is defined to be the
maximum that guarantees some (It, 'c)-bang trajectory will be able to stay
within some constant tracking tolerance of an e-time-rescaled trajectory. Follow-
ing :similar steps, we can choose /2 to guarantee that the set of true (/2, "c)-
bangs at X, s~(X, "c), also has a uniform x~ advantage. (Details in Section
5.3.)

In other words, we can choose a set of consistent parameters (#, %, rl~ o, tl~ o, xz):
a maximal discretization parameter # for either acceleration or control, a maximal
timestep %, a maximal tracking tolerance (r/~ o, ~/~o), and a uniform acceleration
advantage ~q. For any timestep 'c ___ "c o and any trajectory F~ that respects ~/', the
following will be true: if state X is within (r/~o, t/~o) of F,(n'c), and both/2, N#II ~ -< ~,
then both the ~ , "c)-extremal shell of accelerations ~ (X, 'c) and the set ~ (X, 'c)
of true (/2, "c)-bangs have uniform xt advantages over ~r nr)) for dura-
tion 'c.

For this general case, we describe how to choose sufficiently small #, ~h, 'co, t/~o,
and ~/vo that are O(e) in Section 5.3. The Cartesian case, in which 'co, ~/xo, and q~o
do not arise, is handled in Section 5.2.

3.2.5. The Coupled Tracking Lemma. The Coupled Tracking Lemma is the key
to choosing, for a given tracking tolerance, ~t timestep "c and other parameters that
guarantee the following:for any e-time-rescaled trajectory F'r beginning at S', some

(p, 'c)-bang trajectory and some true ~ , 'c)-bang trajectory will track F', to that
tolerance. Note that the set of acceleration functions associated with a given state
can be arbitrary, as long as that set has the necessary uniform acceleration
advantage. This allows us to apply the lemma to sets of true (/2, r)-bangs without
knowing their forms as path functions; i.e., we do not need a series or closed-form
representation. The lemma can be applied more generally to state-dependent sets
of bounded acceleration functions whose exact form is unknown but whose
time-derivatives are also bounded.

LEMMA 3.2 (The Coupled Tracking Lemma). Let Area x be the global Lo~ accelera-

tion bound. Consider functions ~ , .~: TC --* {~#: ~# is a set of acceleration functions}.

Let ~ have the property that if, for some state X, a E ~(X), then, for all times t,

Ila(t)tl ~ < Area. - tq. Let ~ have the property that if acceleration function a ~ -q(X),
then, for all times t, Ila(t)tl~ < Zm.x. Let Fr(t) respect ~.

Suppose that a maximal tracking tolerance (tlxo, tlvo) and a fundamental timestep

T o exist such that for all "c <<_ % the following is true: if state X is within (tlxo, tlvo)
of state Y, then the set of acceleration functions .~(X) has a uniform lq advantage 7
over ~(Y)for duration z.

7 Recall (23).

500 B.R. Donald and P. G. Xavier

Then, for any L~o tracking tolerance (r/x, r/r), a timestep z and a velocity v o exist
such that if trajectory F, respects ~ and Ilpr(0) - v o II oo -< 2Am,xZ, then a trajectory
Fq exists such that:

1. vq(0) = Vo.
2. pr(O) = p,(O).
3. F~ tracks F~ to tolerance (qx, qy).
4. For each n, Fq respects ~(Fq(nz)) in [nz, (n + 1)z].

Moreover, it is sufficient that

(27)

~ ~ 0 ,
/
/_ min(qx, ~xo)tc; ,

< ~/Ama~(8Am.x + 6~c;)

rain(ft., rlvo)

4Amax

PROOF. Presented in Section 4.

Recall from Section 3.2.2 that there is an e-safe tracking tolerance (qx, t/v) where
both qx and r/v are | The Near-Extremal algorithm uses the Coupled Tracking
Lemma (above) to choose a timestep z that is | and that guarantees that if a
solution Fop t exists, then there will be a ~ , z)-graph trajectory that tracks F'opt

to tolerance (r/x, r/r). The True-Extremal Algorithm can choose r similarly, but
because of the search pruning, this alone will not guarantee it can find such a
trajectory. For the True-Extremal Algorithm, we must apply a stronger tracking
lemma.

3.2.6. Coupled Tracking and (b x, bv)-Bucket Pruning. In the True-Extremal
Algorithm, the kinodynamic constraints, ~, and the choices of discretization param-
eter #, timestep z, and root vertex S* determine a reachability graph f# whose
vertices are states and whose edges correspond to (1 - e)fv(Co, c:safe (#, r)-bangs.

Recall that in (bx, bv)-bucket pruning, the state space TC is divided into voxels
with diameter bx in spatial dimensions and by in velocity dimensions. A breadth-
first search with (bx, bv)-bucket pruning proceeds as a normal breadth-first search
does, except that when the search finds a vertex in a voxel that contains another
vertex found in a previous generation or earlier in the current generation, the edges
out of the newly found vertex will be pruned from the search; i.e., no edges out
of that vertex will be explored.

Consider any breadth-first search of fq with (bx, bv)-bucket pruning. We call
removing all edges and vertices in f# that are not explored during this search a
breadth-first (bx, bv)-bucket pruning off#. We say that a graph-trajectory F remains
after that breadth-first (b x, bv)-bucket pruning if the path in ff corresponding to
it is not affected b y the pruning.

Like the Coupled Tracking Lemma, the Robust Coupled Tracking Lemma
applies to sets of acceleration functions more general than (/~, 0-bangs and

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 501

(iu, z)-bangs. We introduce three new terms used in its statement. First, let ~ be

a mapping ~: ~(C -~ {~: ~ is a finite set of acceleration functions}. We say that
a trajectory segment from state X to state Y is a (& z)-trajeetory segment if there
is a trajectory Fr such that G(0) = X, G(z) = Y, and ar ~ .~(X). Second, a vertex S*
and the set of (& z)-trajectory segments determine, via transitive closure, the
(.~, z)-reachability graph (r rooted at S*. Finally, if ~ is a subset of TC, then the

maximal subgraph of ff lying in ~ is the maximal subgraph fr of ff such that all
vertices and all edges (as trajectory segments) in fr lie in ~ .

LEMMA 3.3 (The Robust Coupled Tracking Lemma). Consider functions ~ , ~:
TC--; {Yr q/ is a set of acceleration functions}. Let ~ have the property if
a s ~ (X) for some state X, then, for all times t, [la(t)lk~o < Zmax-1s l. Let ~ have
the properties that ~(X) is finite for all X ~ TC and that ijr a E ~(X), then, for
all times t, Ila(t)ll o~ < Amax.

Suppose that a maximal tracking tolerance (rlxo, Go) and a fundamental timestep
z o exist such that for all z <_ Zo the following is true: if state X is within (rIxo, tloo)
o f state Y, then the set of acceleration functions ~(X) has a uniform tct advantage
over ~(Y)for duration r.

Let (G, G) be an L~o tracking tolerance, and let timestep r obey the following
inequalities:

T ~TO,

/ 4_min(.xo,.x) ,
(28) z ~ "Q 24AmaxKl + 2x~ + (SAma x + KI)2'

2 min(G o, qv)

8Amax q-/r

Let ~ be the (~, z)-reachability graph rooted at some state S*.
Now, suppose that F~ respects ~ , F~(0) is within 2Am,xZ of g*, and Pr(0) = s*.

Suppose that ~ is a subset of TC containing the (~l~, G)-tube induced by F , and
that if' results from some breadth-first (xtz2/4, Klz/2)-pruning of the maximal
subgraph of ~ that lies in ~ . Then there is a Fq in if' such that Tq < T~, Fq(0) = S*,
and Fq(Tq) approximates F,(T~) to tolerance (qx, ~l~).

PROOF. Presented in Section 4.

Note that ~ is introduced to model the union of the (G, G) -tube induced by
the arbitrary Fr and the 6"(Co, Cl)-safe region of TC. The lemma guarantees that
if 9~ contains the (G, qv)-tube, then some trajectory with the necessary endpoint
properties will survive the pruning of the reachability graph in ~ . The lemma does
not guarantee that a trajectory that tracks F, to tolerance (~/x, q~) or that lie close
to Fr for its entirety survives the pruning.

Having chosen /3 as described in Section 3.2.4 (and in detail in Sections 5.2
and 5.3), the True-Extremal Algorithm uses Lemma 3.3 to choose a timestep z

502 B.R. Donald and P. G. Xavier

that is | and pruning bucket dimensions bx and b| that are | 3) and |
respectively. The parameters chosen will ensure that if a go-safe solution Fop t exists,
then a (/~, ~)-trt~e-bang graph trajectory that tracks F'opt to the e-safe tracking
tolerance .(rl~, qo) also exists, and the algorithm will find such a trajectory if no
sufficient shorter or equivalent-length graph trajectory survives the pruning.

3.3. Asymptotic Bounds. In the preceding sections we have described the key
concepts we use in obtaining asymptotic bounds for parameters that guarantee
our algorithms will find an e-optimal solution when a solution exists. We now
sketch how to arrive at the complexity bounds of these algorithms.

Given a problem and an approximation parameter e, the Safe Tracking Lemma
shows how to find a family of e-safe-tracking tolerances (qx, qo) such that ~/x and
q| are | Sections 3.2.3 and 3.2.4 sketch why, for Cartesian robots, there will
be sufficiently small discretization parameters /i and /h and an acceleration
advantage x~ that are | For open-chain manipulators we find consistent
parameters /t (or #), %, t/~o, ~/oo, and l~l that are | where ~c z is a uniform
acceleration advantage over %.

Using the lemmas from Sections 3.2 and 3.3 we can then show that there are
correct choices of'c that are | Section 3.3 implies that since K~ and z are both
| we can choose (b~, bo)-pruning bucket dimensions that are | 3) and |
respectively.

It follows that for a given problem, the number of TC-gridpoints that can be
considered by the Near-Extremal Algorithm and the number of (b~, bv)-pruning
buckets that can be visited by the True-Extremal Algorithm is O((1/e)sa). Since/~
and the/~i are @(e), the out-degree of each graph is | d- 1).

The complexities of each algorithm, then, are O(caop(N, e, d)(1/e) 6a-1) and
O(c~p(N, e, d)(1/e) 6a- 1), where p(N, e, d) is the cost of checking the (1 - e)6v(Co, ct)-
safety of a (#, z)-bang or a (p, v)-bang, co and c~ are constants dependent on the
particular robot and the algorithm and are polynomial in d. In Section 5.4 we
review numerical techniques sufficient for safety checking that will have a cost of
O(N(d + log N) per bang when e is sufficiently small. Our algorithms therefore
have overall asymptotic complexity bounds of O(cdN(d + log N)(1/~) ca- 1).

4. Proving the Coupled Tracking Lemmas. We now present the proofs of the
Coupled' Tracking Lemma (Lemma 3.2) and the Robust Coupled Tracking Lemma
(Lemma 3.3). These two lemmas are fundamental to obtaining our results. We use
them to show how the algorithm can choose discretization parameters p and
/~ and a timestep z, and how we can calculate a uniform acceleration advan-

tage ~t-
If a system has decoupled dynamics bounds, then a set of coordinate axes exists

such that the acceleration or velocity cfiosen along any one axis never affects what
accelerations or velocities are possible along any other axis. This is why tracking
the trajectory of a Cartesian robot obeying L~o bounds reduce trivially to the
one-dimensional case. On the other hand, if a system has coupled dynamics
bounds, then, for any set of coordinate axes, choosing a maximal acceleration

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 503

along one axis can limit the accelerations along another. Furthermore, if the
dynamics equations are state dependent, then the set of instantaneous extremal

accelerations is state dependent. The definition of a uniform ~c~ acceleration
advantage over a timestep is thus crucial to our proofs of Lemmas 3.2 and 3.3.

4.1. The Tracking Game. To prove Lemmas 3.2 and 3.3, we begin by considering
a game against an adversary in a one-dimensional space. In this game certain rules
simulate dynamics. When simultaneous independent games are played, the adver-
sary can force our movements to be governed by accelerations in the ~ , z)-
extremal shell or by true (/~, z)-bangs.

4. !. 1. Defining 'the Game. Consider a game in which you are trying to track an
adversary in a one-dimensional space. The game is a series of rounds, each of
which simulates motions taking duration z. The game begins with the adversary

in state (Xo, Vo) and you in state (x~, v~). A round simulates an interval of
time with length z. Note that in our discussion of tracking games, the "!" symbol
does not denote e-time�9

Let game parameters Area x and x~ be given such that Ama x 3> tr t > 0. When
discussing the game, we use x , , v,, etc., to denote game variables that correspond
to round n.

In each round the following takes place:

Play fo r Round n.

1. The adversary plays first by choosing an acceleration function a,(t) for himself
such that, for all t ~ [nz, (n + 1)z], ta.(t)[< A~a x - ~h, His state (x.+ 1, v,+ 1) at
the end of the round (beginning of round n + 1) is computed fiom this state
(x., v.) and this acceleration fimction by integration over the time interval
[n~, (n + 1)~2.

2. For your play in round n, you then choose either HIGH or LOW, This choice
limits the acceleration function that the adversary can choose for you, which
determines your state (x'.+ 1, v'.+ ~) at the end of the round. Note that you play
only HIGH or LOW; the adversary chooses your acceleration as well as his own,

However, his choice of your acceleration is constrained by your play,

3, Let a ~ = (v. + ~ - v,~)/~. If you played HIGH, then your adversary can choose
any function a'.(t) such that a',(t)_>, a~. + ~ for a!l t e [nv, [nz,(n + 1)z], If
instead you played LOW, then your adversary's choice must obey the condition

�9 a'.(t)< a ~ -~:1 for alt t E [m,(n + 1)z]. In both cases, a'.(t) must obey the
condition [a'.(t)l _<. Am.x for all t e [nz, (n + 1)z], (See Figure 5.)

4. Your state (x'. + ~, v'. + a) at the end of the round is computed by using your state
at the end of the previous round and integrating a'.(t) over the time interval
End, (n + 1)~],

4.1.2. A Winning Simple Strategy fo r the Tracking Game, A simple high-level
strategy for the Tracking Game is: try to go faster than the adversary if you have
fallen behind; try to go slower than the adversary if you are ahead; but never go
much faster or much slower than the adversary. The uniform ~h advantage you

504 B.R. Donald and P. G. Xavier

..,:___ t... LOW f a~ HIGH

: + "1
- A a ~ - ~t 0 a ~ + ~l A

acceleratio~z

Fig. 5. Details from a game against an adversary. Suppose in the current round the adversary's average

acceleration is a ~ . Then if you choose HIGH, the adversary assigns you an acceleration function whose

range lies in [a ~ + xl, Am j ; if you choose LOW, the adversary assigns you an acceleration function

whose range lies in [- A a ~ - tq]. This function controls your motion for the current round, which

covers a time interval of length z.

have over the adversary's average acceleration during a round assures that we can

fol low such a strategy. (See Figure 6.)

W e n o w give the detailed strategy in terms of the game parameters.

Simple Strategy. In round n c h o o s e H I G H or L O W according to the fo l lowing

rules:

1. If Ix. - x'~[< 2Amax z2, then c h o o s e H I G H if v .+ l -> v'., L O W otherwise.

2. Else if x . - x'. > 2A~.x z2, then c h o o s e H I G H if v'. < v.+a + 2 A m J , L O W

otherwise.

3. Else ch oos e L O W if v'. _> v.+ 1 - 2Amax z, H I G H otherwise.

' . .___ 8 A m ~ / m

t I � 9 �9 ~ . +

t

Fig. 6. Intuition for proving Lemma 3.2: a game in one dimension. We try to track an adversary whose

acceleration a, obeys the condition lar(t)[__ A,,ax - xz- We generate our velocity function vq timestep

by timestep, trying to limit lye(t) - v,(t) l and I~(vr(t) - vq(t)) dt I. During each round we can only choose

whether our acceleration aq(t) is above or below the adversary's average acceleration over the timestep

by ~t. The adversary otherwise controls our acceleration, except for the restriction that laq(t)[_< Amax.

Mimicking the adversary's velocity v, to within 2Am,xz is straightforward, but in making up for position

error, our strategy can result in a velocity error of 4AmaxZ; v + = vr + 4AmaxZ and v 7 = v r -- 4AmaxZ in

the figure. Following a good strategy will keep [S(v,(t) - vq(t)) dtl within a constant bound dependent
on r. The game conditions give us a uniform xt acceleration advantage over each timestep.

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 505

We make the following claim:

CLAIM 4.1. Suppose that you play the Tracking Game against an adversary and

follow the Simple Strategy above, and suppose that Ix o -X 'o[< 2Amax z2 and
[v o - v~)] < 2Am,xZ. Let two trajectories Fr and Fq be defined as follows:

r , (o) = (Xo, Vo),

G(t) = a.(t -- nz) for all

rq(o) = (x ; , x ;) ,

aq(t) = a'.(t - nr) for all

t e [n~, (n + 1)z),

t ~ [nz, (n + 1)z).

Then, for all t,

(29)

Iv,(t) - vq(t)l ~ 4Amax'G

8Amax-C 2
I x~(t) - xq(t) l < - -

1r I
+ 6Amax't: 2.

PROOF. Suppose the hypotheses hold. (See Figure 6.) The velocity condit ion in

(29) holds by inspection, since]ar(t) - aq(t)] < 2Ama x for all t. We now define

x o , (t) = x , (t) - xq(t) ,

Verr(t) = Yr(t) - - Vq(t).

To obtain a bound on [X~r,(t)], we first bound the length of the interval for

which x,r, and Vorr can have the same nonzero signs. Suppose that I xe,r(nZ)l >

2Amax z2 and that Vor, > 0. Then following the strategy ensures that vr = 0 at

some least time tr > nz, and, in particular, tr < nz + 4AmaxZ/~c~. Then

I xerr(tc) -- Xerr(n'c) l G - -

2 2
8AmaxZ

K;/

The velocity condi t ion ensures that if IXe~r(nZ)[< 2Amax ~2 but [xe,,((n + 1)z)l >

2Area x z z, then we know that

Ixe,((n + 1)z)l < 6Amax z2.

Therefore,

2 2
8Amax~

(30) maxlxcrr(t)[< - - + 6Amax z2.
t /~l

4.2. Applying the Game To Prove Lemma 3.2. We now use facts proven about

the Tracking Game to obtain a p roof of Lemma 3.2.

506 B.R. Donald and P. G. Xavier

PROOF OF LEMMA 3.2. Let N and ~ be functions ~ , ~: TC--* {0': ~J is a set
of acceleration functions}. Let N have the property that if X e TC and a s ~(X),
then, for all times t, Ila(t)l]oo < Area, - ~t. Let .~ have the property that if Xe T C
and a e ~(X), then, for all times t, ![a(t)]l ~o -< Amax" Let F~(t) respect ~ .

Suppose that a maximal tracking tolerance (r/xo, q,o) and fundamental timestep
% exist such that for all ~ < % the following is true: if state X is within (t/xo, t/,o)
of state Y, then the set of acceleration functions ~(X) has a uniform ~ advantage
over N(Y) for duration z.

Suppose that (t/x, t/y) is given, and that z obeys the conditions

"C _~Z'0~

min(qx, qxo)Kz

(31) z ~ (8Area x --I- 6Kl)Arnax'

min(qv, r/~o)

4Amax

Consider d simultaneous independent playings of the Tracking Game in which
your adversary's trajectory in the ith game is Fr, i and yours is Fq,i, and in which
F~.i(0) and Fq,i(0) meet the starting (t = 0) closeness hypotheses of Claim 4.1.

We consider play during round n, assuming that you have followed the Simple
Strategy and play has proceeded legally through the end of the previous round.
By Claim 4.1, in each game i, Fq,i(n~) is within (qx0, q~o) of Fr,i(nz). Then during
round n, for each of the 2 a combinations of HIGH and LOW, there is some
function a ~'" e ~q((Fq(n~)) such that the adversary can legally return s a~" in the ith
game, provided you follow the Simple Strategy. Suppose you do so. Then by Claim
4.1, in each game i, Fq,i(t) is within (t/x o, t/~o) of F~,i(t) for all t e [nz,(n + 1)z]. By
induction, we see that (29) holds for the duration of the game.

Therefore, if, for all n, for all t ~ [nz, (n + 1)z], aq(t) = a~'n(t), then Fq tracks F,

to Lo~ tolerance (t/X, ~/~). []

4.3. Altering the Game to Prove the Robust Lemma (Lemma 3.3). We now
consider a version of the Tracking Game in which the adversary is allowed to
perturb your state between moves. This perturbation will correspond to a branch
of the search of the reachability graph being eliminated by (bx, b~)-bucket pruning,
and a proof of the lemma follows from a successful strategy for the game.

(See Figure 7.)

4.3.1. The Tracking Game with Perturbations. Let us take the Tracking Game
and alter the rules:

4. A temporary state (2n+1, ~,+i) is computed for you by using your state at the

8 That is, he can choose it as your acceleration in part 3 of the rounds; see Section 4A.1.

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 507

i

, i

s J i ~ i

)" .N " '
t l . �9 i

�9 i I ~ - ~) - k +
s

�9 i l , i r

,~ , i / ; \ \ , ,

- - - ~ i i 1 i

t i

' , ~ ' � 9 ' i v q

j s s - - - , ~ r .
i s i i - - i - ~ __
i �9 i i J r

�9 f i i

. . . . I i

I r

I , i

I I

i I

Fig. 7. Intuition for proving Lemma 3.3: another tracking game in one dimension. This time the
adversary can perturb our state at the end of each round, by xtz2/2 in position and KF/2 in velocity;
the discontinuities in vq correspond to the perturbations. However, we can still track him, though to
a looser tolerance, v~ + + = vr + 4 A ~ j + ~i/2, and v,- - = v, - 4Am,xZ - xlz/2.

beginning of the round (end of the previous round) (x,, v,) and integrating
a',(t) over the time interval [nz, (n + 1)z] from (x,, v,).

A and a velocity perturbation 5. The adversary chooses a position perturbation x,
A v, to be applied to your temporary position and velocity. Your position at

the end of round n is

~ A

X n + 1 ~ X n + 1 -'[- X n ~

t ~ A
V n + l ~ V n + l -[- Vn"

We call the resulting game the Tracking Game with Perturbations

CLAIM 4.2. Suppose that you play the Tracking Game with Perturbations against
an adversary and follow the Simple Strategy above. Suppose that at the start of
the game [Xo - x~l _< 2Amax z2 and [v o - v~[< 2Amaxz. Furthermore, suppose that
the adversary always chooses perturbations such that]x~ a] ~< ~ct~2/2 and [v~[<_ ~:lz/2.

Let two trajectories F, and F~ be defined as follows:

rr(n~) = (x. , v.),

ar(t) = a.(t - n~) f o r all

F~(n~) = (x; , v;),

aq(t) = a' . (t - n z) f o r all

t ~ (n~, (,~ + 1)~),

t ~ (n~, (n + 1)~).

508 B.R. Donald and P. G. Xavier

Then, f o r all t,

(32)

I v~(t) - v~(t)l ~ 4Am.~'c + 2 "

(8Amax + K/)2~.2 Kl,~2
[xdt) - xq(t)l < + 6Zmax z2 + - -

4x~ . 2

PROOF. The analysis proceeds similarly to that for Claim 4.1. Again, we let

X~,r(t) = x,(t) -- x~(t), and v~,~(t) = v,(t) -- v~(t), and bound the length of an interval

for which x~,~ and v**~ can have the same nonzero sign. Because of the velocity

perturbation, our effective acceleration advantage is only ~h/2. Therefore,

if Ix~,(nz)[> 2Ama,~: 2, following the strategy ensures that V~r(tc) = 0 at some later

time t~ < nz + (SAma x + ~q)z/2K t. Then

I x~.(t~) - xo.(nv) l _<
(8Ama x -[- KI)2T 2

4tq

Because of the perturbations at the end of a round, the x,z /2 term must be

added to the velocity-tracking tolerance and xtz2/2 must be added to the position

term in the final tracking accuracy. Therefore

(8Area x + KI)2T 2 /r 2
(33) max[x~r(t)[< + 6Amax z2 + - []

~ 4t h 2

4.3.2. Using the Game with Per turbat ions To Prove the L e m m a . We can now

prove Lemma 3.3.

PROOF OF LEMMA 3.3. Let ~ and ~ be functions ~ , ~: TC ~ {~: q/ is a

set of accelerations}. Let ~ have the property that, for all X ~ T C , if a ~ ~(X),

then, for all times t, [a(t)]o~ < Amax - xt. Let ~ have the properties that ~(X) is

finite for all X~ TC and that if a ~ (X) , then, for all times t, [a(t)[oo _< Am,x-

Suppose that a maximal tracking tolerance (t/xO, t/~o) and a fundamental timestep

Zo exist such that for all ~ < To the following is true: if state X is within

(r/xO, qvo) of state Y, then the set of acceleration functions ~(X) has a uniform

xz advantage over ~(Y) for duration z.

Suppose that (t/x, r/~) is an L~ tracking tolerance and that

(28)

~--<Vo,

/ 4 min(q~o' qx)~q

z < X/24AmaxtCt + 2tc2 + (8Amax + KI)2 ,

2 min(t/~o, q~)
z <

8Amax + K t

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 509

Let f~ be the obstacle-free (.~, z)-reachability graph rooted at some S*. Suppose

that Fr respects N, Fr(0) is within 2AmaxZ of g*, and p,(0) = S*. Suppose that
is a subset of TC containing the (r/x, r/v) tube induced by F r, and that f#' results
from some breadth-first (tctz2/2, xlz/2)-pruning of the maximal subgraph of fr
that lies in N.

Consider d simultaneous independent plaTings of the Tracking Game with
Perturbations in which the adversary's trajectory in the ith game is Fr,i and
yours is Fq,i. Suppose that all the F~,i(0) and Fq,i(0) meet the starting (t = 0)
closeness hypothesis of Claim 4.2. Let (x,, v,) denote your state (i.e, the vector
of your states in the individual games) at the beginning of round n.

Now, suppose you follow the Simple Strategy. Because the breadth-first pruning
buckets and perturbation size are both (~clz2/2, KlZ/2), by induction on n, Claim
4.2 and the definitions of ~ , ~, ~9, and fr assure that the following can legally

occur in each round n of the game:

1. The adversary chooses his acceleration in each game, yielding a vector
F~((n + 1)z) of his new states.

2. You then chose LOW or HIGH separately for each game using the Simple
Strategy, yielding a d-vector of choices.

3. Then the adversary chooses a member of ~(Fq(nZ)) for your (vector of) accelera-
tions, obeying your choices.

4. Then the adversary perturbs your state (i ,+1, ~.+1) if and only if it is not in
if'. In particular, if he perturbs your-state, he perturbs it to the state in if' that

caused (:~,+1,~,+1) to be pruned from fr Thus, for some graph trajectory
~,+1) in fr and some m < n + 1, I'~"+l)(mz) is this state. q

If you and the adversary play in this manner, then by Claim 4.2, for all n:

1. (x,, v,) will be within (r/x , r/v) of F,(nz).
2. (i , , ~,) will be within (r/x, r/v) of Fr(nz).
3. Your trajectory Fq(t) will be within (r/~, qv) of F,(t) for all t e [nz, (n + 1)z].

Furthermore, for each n there will be some F~ ") in f#' such that, for some m < n:

1. F~")(mz) = Fq(nz).
2. F~")(t - (n - re)z) = Fq(t) for all t e [nz, (n + 1)z).

Since this holds for all n, there must be some trajectory F* in fg' such that, for
some Tq < T~, F*(Tq) approximates F,(T~) to within (r/x, r/v)- []

5. Algorithms and Bounds

5.1. Algorithm Outlines. We now present the algorithms in outline form. These
outlines rely heavily on definitions and descriptions in the preceding chapters.
Fuller descriptions of how certain parameters are chosen are given in Sections 5.2
and 5.3.

Recall the definitions of ~ (X , z) and W(X, z) from Sections 3.1.2 and 3.1.4. For
given/t,/~, and z, we define the maps ~ , 3r TC ~ {Yr Y/is a set of acceleration

510 B.R. Donald and P. G. Xavier

functions} by

(34) 5r = ~/g(X, z)

and

(35) ~ (x) = ~ (x , ~).

NEAR-EXTREMAL ALGORITHM OUTLINE. Given a kinodynamic planning problem
((9, S, G, f , ~, l, ~P/, Co, c~) for a n L 2 Cartesian robot or an open-chain manipu-
lator, the Near-Extremal Algorithm does the following:

1. Computes consistent parameters (#, ~o, q~o, t/vo, xz) obeying the conditions in
Section 3.2.

2. Chooses a timestep v and an acceleration-space discretization p such that
obeys the conditions of Lemma 3.2 with respect to the dynamic bounds of
e-time-rescaled trajectories, z and all #~ are | If the ith joint has configuration
space S ~ (as revolute joints without limits do), then #~ must be chosen so that
Kil.li~ 2 = 4re for some integer Kv

3. It then chooses the root vertex state S* such that s* = s and

I~* < min~ #~z.
1

1 + ~ -

4. Let fq be the (O,z)-reachability graph rooted at S* whose edges are
(1 - e)6o(Co, c0-safe (O, ~)-bangs. The algorithm searches for the shortest path
from S* to any vertex that is within (r/~, t/v) of (g, (1(1 + e))g), t/~ and t/v are both
| The search is done breadth-first. The algorithm constructs the graph on
the fly, so that it only computes what it searches.

5. I fa 5,(Co, c0-safe solution exists, then the algorithm returns the (1 - ~)6v(c0, c 0-
safe graph trajectory that corresponds to the first vertex it finds that meets the
approximation conditions at the goal state.

TRUE EXTREMAL ALGORITHM OUTLINE. Given a kinodynamic planning prob-
lem instance ((9, S, G, f , ~, ~/, c o, c 0 for an L z Cartesian robot or an open-chain
manipulator, the True-Extremal Algorithm does the following:

1. Computes consistent parameters (#, %, ~o , Ovo, xz) obeying the conditions
in Section 3.2.

2. It chooses a fimestep r and an extremal controls discretization /~ such that
obeys the conditions of Lemma 3.3 with respect to the dynamics bounds

of 5-time-rescaled trajectories. Both z and/2 are |
3. Chooses the root vertex S* by 5-rescaling S; i.e., s* = s and g* = (1/(1 + e))g.
4. Let fq be the reachability graph rooted at S* whose edges are (1 - 5)c5v(co, c0-

safe (/2, z)-bangs. The algorithm searches for the shortest path from S* to any
vertex that is within (t/~, t/v) of (g, (1/(1 + e)g). q~ and r/v are both | The
search is done breadth-first with (b~, b~)-bucket pruning in which bx is | 3)
and b v is | The algorithm constructs the graph on the fly, so that it only
computes what it searches.

Optimal Kin| Planning for Cartesian Robots and Open-Chain Manipulators 511

5. If a 6v(Co, c0-safe solution exists, then the algorithm returns the (1 - e)6v(Co, Cl)-
safe graph trajectory that corresponds to the first vertex it finds that meets the
approximation conditions at the goal state.

Thus, the controls of a trajectory found by the True-Extremal Algorithm are
constant and extremal over each individual timestep, while the acceleration will
be extremal but may vary with time, according to the integration of (10). This
contrasts with the trajectories found by the Near-Extremal Algorithm, whose
accelerations are constant and near-extremal over each timestep, but whose
controls may be time-varying, as given by (1).

Note that for robots with revolute joints there is generally no closed form for
trajectory segments corresponding to true (/~, z)-bangs. However, using an rth-
order numerical integration procedure will yield trajectory segments correspond-
ing to controls within O(~ r) (and therefore within | of being constant and
extremal. Thus, as long as e is sufficiently small, it would appear that we could
use, say, r = 4 and Runge-Kutta numerical integration. However, in order to
guarantee that the trajectory segments are executable under the force bounds, we
cannot use truly extremal controls, but ones that are within some polynomial of

of being extremal. For this reason, we consider the Near-Extremal Algorithm
to be only theoretical.

5.2. Search-Space Bounds for Cartesian Manipulators. Here, we first consider an
L2 Cartesian robot with acceleration bound a. We choose an acceleration dis-
cretization/~ and a | scalar tq such that:

(a) All #i are 0(~).
(b) For all X, Y ~ TC, the (~i T)-extremal shell of accelerations NF(X, ~) at X

has a uniform ~:t advantage over d~ for any -c.

We then derive a similar choice of p for cases when an L2-norm force bound
f is given instead of an acceleration bound. We then return our focus to the
acceleration bound case and examine the Near-Extremal Algorithm in detail to
illustrate how the algorithm chooses the reachability graph parameters p and
v. We briefly discuss the derivation of the control discretization parameter # for
the True-Extremal Algorithm.

5.2.1. Parameter Choices and Acceleration Advantages for an L z Cartesian
Robot. The set of constant accelerations obeying the Lz-norm bound a has a
uniform acceleration advantage of

a(2e + e 2) ag
>

,/a(t + 2,/a

over the set of accelerations obeying the L2-norm bound a/(1 + ~)2. Recall that

{]Y]{~ < IlyHz < ,Jdl]YN~ for any y e ~a (21). If/* and ~ have the property that

ag

(36) 111'11oo -< ~, < 4x/d,

512 B.R. Donald and P. G. Xavier

then, for any state X and any duration z, the (/t, z)-extremal shell of accelerations

~ (X ,r) has a uniform xz advantage over the set of acceleration functions obeying
the La-norm bound a/(1 + e) 2.

For any state X, consider the sets of feasible instantaneous accelerations d x

and d~: that correspond to force bounds f and f/(1 + s) z, respectively. Recall that

the inertia matrix M is symmetric and positive definite and thus orthogonal. In

addition, recall that M is constant for a Cartesian robot. If 2m~. and 2m, x are the

minimum and maximum eigenvalues of M, respectively, and a e ~ r then

[[a -- a'112 > f(2s + S2)/2max(1 + g) 2. More compactly,

f s
Ila - a'l12 > 2Am.~"

(37)

It follows that if

(38)
fs fs

m

~c, _< 4X/~),ma * and I1~11oo ~ 4 ~ 2 m a ,

then ~ (X , ~) has a uniform ~c t advantage over d ' (Y) for any z, X, and Y.

5.2.2. Timestep Choice and Search-Space Bounds for the Near-Extremal Algo-
rithm. By applying the Safe Tracking Lemma, we find a family of tlx and G that

are | and guarantee that any trajectory tracking a 5v(co, 71)-safe trajectory to

tolerance (G, G) will be (1 - e)6v(co, c0-safe. Specifically.

CoS

~/v < c1(1 e)+ (15) - ~ '

r/~ = flr/v.

It is simplest to choose fl = 1, which implies t/x = G- However, by using a

technique from [1] we show how to choose f to minimize the bound on the

possible size of the reachability graph searched by the Near-Extremal Algorithm

applied to a Cartesian robot with L2 acceleration and velocity bounds a and ~.

First, we choose an underlying acceleration discretization /l consistent with

a uniform acceleration advantage ~g (36):

as
(39) /~i = # = K l - �9

4Jd

We parametrize our choice of timestep z as a function of ft. We use Lemma 3.2
to obtain

x/2d(cl(1 - s) + fl)(Sx/2d+ 3&)'

(40) %(//) = c~

4a(c1(1 -- e) + fl)'

z(fl) = min(%(fi), %(13)).

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 513

Since zx monotonic and]3 must be positive, r(]3) is maximized when %(]3) and %(]3)
are equal. Solving for]3 to get a positive r yields

(41)]3 1 __Cl(1 8) + 2(i - - e)2 + 2 d "

We use the Coupled Tracking Lemma (Lemma 3.2) to guarantee that a tracking
trajectory would obey the velocity bound. Thus we choose

(42) min
*"' 2~/(c1(1 - e) + x/c2(1 - ~)2 + Co(16x/~ + 3~)/2~/))"

Given the desired start state S, the Near-Extremal Algorithm chooses the root
vertex S* to meet the conditions at t = 0 in the Coupled Tracking Lemma, relative
to ~-time-rescaled start state S'. (Recall (8).) If an optimal trajectory Fop t exists, then

there will be some graph trajectory Fq that tracks F'op t to the tolerance (qx, fly)
determined by the Safe Tracking Lemma and the choice of]3 above. (See (15) and
(41).) Since (~x, r/o) meets the conditions of the Safe Tracking Lemma, such a Fq
would be guaranteed to be (1 - e)6v(Co, c0-safe. Since G and G are O(e), Fq would
meet the approximation criteria at the desired start and goal states.

We can now bound the size of the reachability graph for a Cartesian robot
whose maximum speed is ~ and whose configuration space is contained within
a d-dimensional cube with diameter I. Let

~t = m i n / A .

i

Then the total number of possible velocities for reachability graph vertices is
bounded above by (2U/~z + 1) a and the number of configurations by (I/#z 2 + 1) e.
Thus, the total number of reachability graph vertices is

1 l a. (43) Gf(&/~, ~, ~, l, d) < ~ + ~ + 1

Using the choices of /, and z above in (36) (or (38)), (39), and (42), we see
that the right-hand side of (43) is O((dZOl)a(1/e)sa). Recalling the definition of
the ~ , z)-extremal shell, the out-degree of this graph is bounded above by
d(~/#)a-1. Thus the total number of graph edges is

(44) + 1 l + 9;
/ / l \ 6 a - 1) .

We can follow a similar, straightforward development if L 2 force bounds (instead
of acceleration bounds) are used. In particular, we choose /* using (38), define
analogues of (40), and choose fl to maximize r to get the necessary reachability

514 B.R. Donald and P. G. Xavier

graph parameters. We substitute f /2m~ for ~ in (45) to obtain bounds with

the same exponents on the size of the teachability graph.

We summarize these results for a Cartesian robot obeying L 2 dynamics bounds

with the following lemma.

LEMMA 5.1. Given a kinodynamic planning problem for a Cartesian robot with
L2-norm dynamics bounds and given an approximation parameter e such that
0 < e < 1, the Near-Extremal Algorithm will search a reachability graph with
O(ca(1/e)6d-1) vertices and edges, c is a constant dependent on the kinodynamics
specifications and polynomial in d. I f an optimal (safe) solution Fop t exists, then
some graph trajectory is z-optimal and will be found.

5.2.3. True-Extremal Algorithm Search Space for a Cartesian Robot. Now,

suppose the (Cartesian) robot obeys L 2 force bound f , and again let 2rain and

2m,x denote the minimum and maximum eigenvalues of its inertia matrix M. If

I[fa[12, Jlfbll2 -< f and [[fa -- fbl[~ --<]~, then

I[M-lfa - M-lfbll2 ~ - -
~rnin '

At the same time, if []f~/12 = f and Ilfbl[2 = f / (1 + e) 2, then

I [M- ' f , - M-1LIIz > - -
fe

22max"

Therefore, if we choose ~c l as in (38) and

~ m i n f ~
(45) /~ < - -

- 4 d 2 ~ '

we guarantee that the set of true (/i,r)-bangs J/g(X,r) (Section 3.1.2) has a

uniform xl advantage over d ' (Y) for any two states X and Y over any duration z.

Again using the Safe Tracking Lemma (Lemma 3.1) to find a family of sufficiently

close tracking tolerances (t/x, G), we can now apply the Robust Coupled Tracking

Lemma (Lemma 3.3) to find a maximal timestep z using the uniform acceleration

advantage ~ above. The algorithm's choice of S* trivially satisfies the t = 0

condition of the lemma. Clearly, since xt, r/x, and t/~ are O(e), ~ will be 0(5) also.
Finally, the algorithm chooses pruning-bucket dimensions prescribed by Lemma

3.3:

KTIT 2
b x - in configuration, and

2
(46)

by = --xlz in velocity.
2

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 515

These quantities clearly will be to(e 3) and to(e2), respectively. The number of

buckets is therefore O((l/e)5a). Recalling the definition of true (/~, z)-bangs, we

see that each vertex has O((1/e) a-l) out-edges. Since the algorithm explores

the out-edges of at most one vertex from each bucket, the True-Extremal
Algorithm will search O((1/e) 6a-1) vertices and edges of a reachability graph.

Summarizing:

LEMMA 5.2. Given a kinodynamic plannino problem for a Cartesian robot with
Lz-norm dynamics bounds and given an approximation parameter e such that
0 < ~ < 1, the True-Extremal Alyorithm will search a reachability 9raph with
O(d(1/e) 6d-1) vertices and edoes, c is a constant dependent on the kinodynamic
specifications and polynomial in d. I f an optimal (safe) solution Fop t exists, then some
oraph trajectory is e-approximately optimal and will be found.

Since the complexity of each of our algorithms is the number of graph edges
that might be explored multiplied by the time it takes to check the (1 - e)6(Co, cO-
safety of each edge (as a trajectory segment), we determine the asymptotic
complexities by combining this lemma with the bounds from Section 5.4. This
yields Theorem 2.1.

5.3. Applyin9 the Coupled Traekin9 Lemma and Robots with State-Dependent
Dynamics. We now derive lower bounds for the discretization and timestep
parameters used by the Near-Extremal and True-Extremal Algorithms for robots
obeying the open chain dynamics equation (1). The Near-Extremal Algorithm must
choose underlying acceleration discretization #~ and a timestep z ensuring that if
a cSv-safe solution exists, then the algorithm will find an e-approximately optimal
solution. We describe how to find sufficiently small #i and z that are t0(e).
We also show that the True-Extremal Algorithm can choose a timestep z and a
control discretization parameter/2 that are to(e) and that ensure the algorithm
will find an e-approximately optimal solution under the same conditions.

Let the problem parameters and e be given. Recall from Section 3.2.4 that d
and d ' denote mappings from TC to {~/: Y/is a set of acceleration functions}
under bounds f and t" (from (18)), respectively. Now, let trajectory F, respect
d ' , and let Fq respect d .

We now sketch how to find a set of consistent parameters (~, Zo, t/xo, qvo, ~:t): a
maximal discretization parameter # for either acceleration or control, a maximal
timestep -Co, a maximal tracking tolerance (qxo, t/~o), and a uniform acceleration
advantage x~. For any timestep z < Zo and any trajectory F, that respects d ' , the
following will be true: if state X is within (qxo, ~/~0) of F,(nz), and both/2, 1]/~11 ~ _< #
then both the ~ , z)-extremal shell of accelerations ~ (X, z) and the set ov/~(X, z) of
true (/2, z)-bangs have uniform x z advantages over d' (F,(t -- nz)) for duration z. We
will show how to find sufficiently small #, tq, %, r/xo, and ~/~o that are all to(e).

Having obtained these parameters, the algorithms can apply the Coupled
Tracking Lemmas to choose z. This leads us to bounds on the size of the
reachability graphs the algorithms search.

516 B.R. Donald and P. G. Xavier

5.3.1. Sufficient Conditions. Observe that the sets of feasible instantaneous accel-
erations ~r and ~r are d-dimensional parallelepipeds for all X e TC. Let
'~min and 2ma x be the minimum 9 and maximum eigenvalues of the inertia tensor
M(p) over all positions. Let fm~. = min~ fi, and let f = maxi f~. Let the force
required to hold the robot stationary in the presence of gravity obey the
bound (1 - ~::)f. From Section 3.2.3, the minimum L2 distance between &~Cx
and Osr is greater than

/s fmin/3
- - - generally, and

22max

fmin ~
- in the absence of gravity.

22m~

(47)

Suppose that Fq respects the mapping ~r (see Section 3.2.4) and tracks F, to
tolerance (t/xO, ~/.o), and fix z o > 0. For any z _< %, consider what happens over
a timestep [nz, (n + 1)z]. For any t s [nz, (n + !)z], F~(0 - F~(nz) and Fo(t) -- F~(nz)
belong to sets of possible state perturbations that are functions of %. That is,
minimal sets y.(%), yq(%) ~ TC exist such that, for all h _< %,

(48) Fr(t + h) - Fr(t) e 7,('Co) and Fq(t + h) - Fq(t) e 7q(%).

State perturbations about Fr(nz) and Fq(nr) result in perturbations of Odl-m)
and t?dr,c~) about Od~-:.~) and ~dro~.~). We now bound the magnitudes of these
perturbations as functions of t/~o, ~/~o, and %, respectively.

Let a(p, p, f) be given by

(10) a(p, p, f) = M - ~(p)(f - [prC(p)p] - G(p)),

and let B6(y) denote the a-ball about y. We denote global perturbation bounds

(49)

h~(zo)

hqo(Zo)

h~l(rlxO, rl~o)

= maxlIa(p, [~, f) - a(p + Ap, : p + Apr., f)l12,

= maxlla(p, [~, f) - a(p + Aprq, p + A[~rq, 0112,

= maxlla(p, p. IF) - a(p + Ap~ o, p + Ap.~ o, t)llz,

where the maxima are taken as:

(a) (p, p) ranges over TC.
(b) f and f obey the constraints f~ ---fl and f{ <_ f'i for all coordinates i.

(c) (Apt r, A[%) ranges over Vr(zo).
(d) (Apr,, Apt) ranges over yq(%).
(e) (Ap,~0, Ap,~0) ranges over B,~0(0) x B,~0(0).

9 2rain is the only parameter that is neither given in the problem instance nor bounded (below) in the
derivation; a loose bound is given by the minimum of the smallest link mass and smallest link inertia
(in generalized units). A bound for 2m. x follows from the bound on IIM(p)II found in Appendix A.

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 517

Note that hqo(Zo) determines the acceleration perturbation bound EA from Section
3.1.4, modulo norm.

Suppose that I1~11 ~ -- ~ and z < %. Recall (21). If

(50) #w/d + s:tx/~ + h,(zo) + hqo(Zo) + hq,(rl~o, rico) <_ ~,

then for an interval o f length z, the ~ , z)-extremal shell of accelerations at Fq(nz),
namely ~t~(Fq(nz), z), will have a uniform x I advantage over the set of acceleration
functions d'(F,(nz)) feasible under the bound f. Similarly, if

(51)
~min

- - + xt~/d + hr(zo) + h~o(Zo) + hql(rl~o, ~l~o) <- ~,

then the set of true (/~, z)-bangs at Fq(nz), ~(Fq(nz), z) will have a uniform x l
advantage over ~r).

The two constraints (50) and (51) are obeyed if

(52) /z, ~q < _ ~ . and hr(zO), hqo(Zo), hql(r/~o, r/~o) <
/~min' 5"

5.3.2. Bounds for Perturbations. We show that hr(zo) and hqo(Zo) are 0(%), and
that hq~0/xo, ~/~o) is O(~xo) and O(~o). We first note that IIM(p) - M(p + Ap)II is
O(LIApll, or O(d21[Ap) if we include the degrees of freedom d. Now, define

(53) ~(f , P, [0 = f - [PrC(p)P] - G(p).

Substituting into (49) and differentiating

m a x F O M -1] 1-~o~. 0o~]
hr(zO)<to L ~ p p [~ ~ (f , o , [0 + M - I (0) L ~ - p p + ~ a 7

< M - P § (54) hqo(Zo) z o L~-p [~ ~ (f ' p' [~) + a ,

M - (P)L Ap A 0 . h~l(n~, 7~ -< L ~ p p Ap ~(f, p, p) + + 7 p

Now, recall a derivation of (1), say from [9], and recall that

[pr(t)C(p(t))p(t)]i = pr(t)Ci(p(t))p(t), (2)

where

Ci(p(t))ik _ ~Mjk(p) 1 ~Mjk(p)
@k 2 63pi

518 B.R. Donald and P. G. Xavier

Now, M(p) is simply the inertia tensor, and

,9~/dp)
G(p) - - - ,

dp

where UG(P) is the gravitational potential energy at state p. Hence, each component
of M(p) and G(p) is a sum of the products of components of p and their sines and
cosines (e.g., Pi, cos(p j), etc.) This implies that O~(f, p, p)/dp and O~(f, p, p)/Op are
globally bounded. Specifically, it follows that there are Cr, Cqo, Cq~, and Cqz such
that

(55)

h~(zo) < C~zo,

hqo(Zo) <_ Cqozo,

hql(~/x,~/~) < Cqlr/~o + C02r/~o.

Cr, Cqo, Cql, and Cq2 c a n be bounded, given the robot parameters, by bounding
the norms of the tensors arising from O~(f, p, p)/Op and ~ (f , p, p)/~p. This can be
done loosely by inspection because all terms are bounded; However, simple
expressions bounding the tensor norms have been calculated by [23], and
derivations of C,, Cqo, Cqx and Cq2 can be found in Appendix A. Recalling (47) and
(50), we therefore choose

to min()
\ 5 C , 5Cqo

cx

(56) t/x~ - 10Cql'

~ / v O m

lOCq2

Recalling the previous section, we can thus choose consistent parameters
%, t/xo, t/~ o, #, and x, that are all | Now, recall (34) and (35). If [[p[[co </~ and
/~ _< #, then the functions 4 o and Y?~o respectively satisfy (as functions .~, and
with respect to d ') the hypotheses of (Coupled Tracking) Lemmas 3.2 and 3.3.
Since we can use the Safe Tracking Lemma to find sufficiently small t/x and t/~
that are | we obtain a timestep ~ that is O(e) by applying the appropriate
Coupled Tracking Lemma. The pruning bucket size is again given by (46).

Thus, we have the following lemma:

LEMMA 5.3. Given a kinodynamic'planning problem for an open-chain manipulator
and given an approximation parameter e such that 0 < e < 1, the Near-Extremal
Algorithm and the True-Extremal Algorithm will search reachability graphs with
O(ca(1/e) 6d-l) vertices and edges; c is a constant dependent on the kinodynamic
parameters and polynomial in d. I f an optimal (safe) solution Fop t exists, then each
algorithm will find some graph trajectory that is e-approximately optimal.

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 519

5.4. Safety Checking and Final Bounds

5.4.1. Quadratic Paths and Polyhedral C-Space Obstacles. Consider any kino-
dynamic solution Fq found by the Near-Extremal Algorithm or by the True-
Extremal Algorithm for a Cartesian robot. We observe that Fq will have a
piecewise-constant acceleration ii~. Hence, the solution trajectory Fq is piecewise
algebraic: pq is quadratic and pq is linear in time t. Therefore, when the C-space
obstacles are polyhedral, we can check for safety violations exactly as in the L~
dynamics bounds case (Cartesian kinodynamic planning) in [3]. The C-space
obstacles can be "grown" affinely with trajectory speed (]]v]] ~ ~) to obtain
expanded C-space obstacles in C x ~. Safety checking for a single (4, r)-bang or
~ , z)-bang can be accomplished by intersecting the (quadratic) time-parametrized
trajectory with these surfaces. Hence, we "lift" collision detection to C x ~ to do
safety checking, with the ~ dimension encoding speed. For d < 3, this can be
done in time O(N). In higher dimensions the basic technique could be extended,
but a good complexity bound would require a tight bound on the complexity
of computing the Minkowski sum of convex d-polytopes and a d-cube. See [3]
for a discussion.

5.4.2. Nonpolyhedral C-Space Obstacles. For kinematic chains, and in cases
when the C-space obstacles are nonpolyhedral, safety is checked by affinely
growing the workspace obstacles and checking for intersections along the tra-
jectory. (Recall the discussion of 6v-safety in Section 2.1.) We describe a C-space
obstacle representation and a robot-obstacle collision detection method that can
be generalized to a safety-checking method similar to that described in [1] and
[3] and reviewed above. It would be convenient if we could apply an algebraic
collision detection predicate such as that described by Canny [12], [24]. (We shall
soon describe why we cannot.) In fact, our 6v-safety predicate uses the structure
of his predicate and the same logical evaluation method for each pair of polyhedra
that could possibly collide.

The nonoverlap condition for two convex polyhedra is given by the nonoverlap
predicate

(57) A V A V > o)
i j k l

described in [14], with the exact form of constraint functions Cuu: C -~ ~ given
in [12]. When the real-space obstacles (polyhedra) are grown affinely with speed,
the overlap predicate has the same structure as (57). (See [3].) The signs of the
CUk~(X) correspond exactly to spatial relationships among the vertices, edges, and
faces of the possibly overlapping polyhedra. The zeros of the CUk ~ are surfaces that
contain faces of C-space obstacles, so we call them C-spaced obstacle surface
functions. To detect collisions along a path p: time ~ TC, we substitute p(t) for
x in (57) and "merge" the sign intervals of the resulting functions in time [12].
While the exact form of the Cuu found in [12] for a robot polyhedron uses
quaternions to represent orientation, we can use other C-space representations and
obstacle surface functions that yield the same sign invariant sets in C-space. For an
open kinematic chain, one set of natural C-space surface functions would be mixed

520 B.R. Donald and P. G. Xavier

trigonometric polynomials--the sums of products of C-space coordinates and their
cosines and/or sines [13]. In [24] Canny represents these surfaces algebraically
by using quarternion and half-angle substitutions.

Unfortunately, algebraic collision detection requires a C-space coordinate
system in which the surfaces of the C-space obstacles are algebraic and in which
the robot path is algebraic in time. In the joint coordinate system for an open
kinematic chain, the position components Pi of (p, z)-bangs are quadratic in time,
and the velocity components vi are linear. While it is possible to describe the
C-space obstacles algebraically by using substitutions such as uj = tan(p j/2) for
revolute joints j, for the trajeci:ories generated by our algorithms there is no way
(when the configuration space has more than one dimension) to parametrize the
path functions that result from this substitution simultaneously algebraically. When
each p~ is a quadratic polynomial in time t, we can choose either:

(a) A coordinate system in which the C-space obstacle surfaces are the zeros of
algebraic functions, and some path-position components pj are inverse trigono-
metric functions of time; or

(b) A coordinate system in which the C-space obstacle surfaces are the zeros of
trigonometric polynomials, but each path-position component p~ is an alge-
braic function of time.

Thus, there is no coordinate system in which both the C-space obstacle surface
functions and (p, z)-bang robot paths are algebraic, and we cannot in general
perform safety checking algebraically.

We can, however, approximately evaluate the collision predicated for (p, z)-
bangs by using approximating polynomials for each of the C-space obstacle surface
functions. (The set of polynomials would have different sets of coefficients for each
0u, z)-bang.) The same can be done for a corresponding @safety predicate. The
degree r of the polynomials we need depend on how accurately we wish to
approximate the trigonometric polynomials. Intuitively, we expect that since each
timestep is finite, and in practice would be very short, this polynomial approxima-
tion is reasonable. More precisely, the resulting error er in checking safety can be
bounded and made arbitrarily small by increasing the degree of the polynomial.
Then either a conservative algorithm, which only finds solutions that are
(6'v(v) + er)-safe, or an "optimistic" algorithm that finds solutions that are
(6'v(v) - er)-safe could be implemented.

We now argue that for the purpose of deriving an asymptotic complexity we
can fix the degree of the approximating polynomials to a constant. Simply put, if
we truncate the Taylor expansions of expanded C-space obstacle surface functions
to rth-order polynomials, er will be 0(~') because the timestep z is l)(e). Thus, if
we set r = 2, er will be O(e2), and thus the error of the safety-checking approxima-
tion will be smaller than O(e).

Since the structure of our 6v-safety violation predicate is similar to that of [12],
it contains O(N) polynomials in t and requires O(N log N) time to evaluate, once
the sign-intervals of the polynomials are known. If we restrict ourselves to
polynomials of degree re, the total number of terms in the polynomials will be
O(rcN), and forming the expressions for expanded C-space obstacle functions will

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 521

take time O(rcdN). If finding the sign-intervals for a polynomial of degree r~ has
cost S(r~), then checking the (1 - ~)6~(Co, Ca)-safety of a single trajectory segment
could be done in time.

O(Nrc(log N + d + log rc) + NS(r3).

By the truncated series approximation error argument above, we can choose a
constant r c as long as e is guaranteed to be sufficiently small. Continuing this
reasoning, we argue that safety checking takes time roughly O(N(d + log N)),
which is the time required under a model of computation in which finding the
sign-intervals of a univariate trigonometric polynomial of constant size and degree
takes unit time. This completes the discussion of safety checking for the Near-
Extremal Algorithm. We now turn to the True-Extremal case.

For the general open chain manipulator, true (/i, z)-bangs are the solutions
to the set of ordinary differential equations

(58) ([a(t)~ (M_ l(p(t)){f - v(t)
+(t) / = [v (t)TC(p(t)) v (t)] - G(p(t))})'

Since the right-hand side of (58) is C ~ and its time-derivative can be bounded
globally, standard integration techniques (e.g., Runge-Kutta) can be used to
approximate the image of a (/~, v)-bang to arbitrary precision for time t E [0, ~],
with computation time growing sublinearly with the accuracy [25]. Alternatively,
we can approximate the trajectory segment with a set of polynomials of fixed order
(e.g., 4th order Runge-Kutta) that approximate it in respective subintervals of the
timestep; for a given timestep, a kth order integrator, and m subintervals, accuracy
will be o(zkm l-k). To do safety checking of the True-Extremal Algorithm, then,
we can again use approximating polynomials in our by-safety predicate.

To summarize, under a combinatorial model that charges unit cost for finding
the roots of a univariate trigonometric polynomial of fixed degree and size, safety
checking for the Near-Extremal Algorithm can be done in time O(N(d + log N))
for sufficiently small e. In practice, numerical methods would be used to find
sign-intervals for approximating polynomials in t. The error in these methods can
be bounded and incorporated into the safety margin. Approximating polynomials
can also be used to check the safety of general open chain manipulator (/~, z)-
bangs. Thus, the algorithms have a time-complexity of O(N(d + log N)) in the
asymptotic case, i.e., for sufficiently small e.

5.4.3. Asymptotic Bounds. For each of our algorithms, the final complexity is
the complexity of the number of graph edges explored multiplied by the cost of
checking the safety of each edge as a trajectory segment. By combining the
graph-size bounds of Lemmas 5.1-5.3 with the safety-checking costs described
above, we obtain a final approximate cost OfO(c~N(d + log N)(1/e) 6a- 1), assuming
sufficiently small e > 0. Letting p(N, e, d) exi~ress the exact cost of safety checking
for one bang yields Theorems 2.1 and 2.2; that is, the O(caN(d + log N)(1/e) 6d-a)
bound is derived by arguing that p(N, ~, d) = O(N(d + log N)).

522 B.R. Donald and P. G. Xavier

6. Conclusions. In this paper we obtained provably good approximation algo-
rithms for kinodynamic planning that extend the results of [1] to open kinematic
chains and to Cartesian robots obeying L2-norm dynamics bounds. These algo-
rithms find trajectories that are approximately optimal with respect to a possibly
speed-dependent safety margin. We presented algorithms that find near-extremal
trajectories and algorithms that find truly extremal trajectories. Our True-Extre-
mal Algorithm is the first such provablygood algorithm that uses a state density
condition to prune an otherwise exponential search to polynomial size. Our
techniques yield lower complexity bounds than the earlier algorithms of [6]-[8].

To obtain, our results we proved two crucial lemmas by considering simple
adversary games. By using the first lemma (Lemma 3.2), given robot dynamics
bounds, a safety margin, and e we can find parameters that determine a state
reachability graph such that, for every optimal trajectory whose start is approx-
imated by the root of the graph, there is a graph trajectory that is within e of
being optimal. A second lemma (Lemma 3.3) allows us simultaneously to derive
the state density condition for pruning (46)..

Although our results directly apply to two classes of robots, they can be easily
extended to a larger class. We conjecture this class is the class of robots that have
finite degrees of freedom, bounded configuration, convex generalized force and
velocity bounds, and acceleration maps that obey the following constraints:

(a) The dimension of the set of feasible accelerations is equal to the dimension of

the configuration space.
(b) The set of feasible accelerations is convex at each state.
(c) State perturbations (Ap, Ap) result in perturbations to the acceleration map

that are O(LIApll + llA[~l!).

In addition, there are many directions for future research.

l. We conjecture that the proofs of the Coupled Tracking Lemma (Lemma 3.2)
and the Robust Coupled Tracking Lemma (Lemma 33) can be adapted to show
that we can track an adversary's trajectory as long as the convex hull of our
allowable accelerations has a ~h advantage over the adversary's allowable
accelerations. This would imply a provably good polynomial-time approxima-
tion algorithm for kinodynamic planning using (approximately) bang-bang
controls. See [4].

2. Since the tracking lemmas do not require the force bounds to be state-invariant,
it should be possible to extend the results to relax this requirement.

3. Because of the use of ~h acceleration advantages, for Lemmas 3.2 and 3.3 to be
applicable (e.g., to obtain polynomial-time approximation algorithms for other
classes of robots), it is necessary for the set of feasible instantaneous accelera-
tions d(X) to have dimension d at every nonextremal state X e TC. For many
robot systems with nonholonomic constraints, such as wheeled mobile robots,
this is not so. A tracking lemma for such robots would allow us to extend the
general [1] approach to them.

4. We have so far used a single parameter e to characterize closeness to optimality.
In a finer analysis, we would use parameter er and es to describe separately

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 523

closeness to optimality in execution time and in observance of the safety margin.
We expect that suchan analysis would lead to algorithms that allow tradeoff
among time-optimality, safety, and running time. Furthermore, while a worst-
case analysis is necessary when considering safety, an expected-case analysis
would be appropriate for measuring time-optimality versus algorithmic com-
plexity. See [26] and [4].

We have presented provably good approximation algorithms for optimal
kinodynamic planning with the lowest known complexity for robots obeying
coupled dynamic bounds. While optimal kinodynamic planning has an optimiza-
tion flavor, our algorithms and proof techniques draw on several branches of
computer science and robotics. There is a great deal of challenging theoretical and
experimental work to be done, especially in the direction of practical approxima-
tion algorithms.

Appendix A. Computing Parameters for the True-Extremal and Near-Extremal
Algorithms for Open Chain Manipulators. We wish to show, for any given
problem such that the force bounds always exceed the forces necessary to hold
the robot stationary, and for a given e, that the parameters t/xo, t/uo, and z o will be
f~(e). We use (p, [~) to denote both trajectories and arbitrary states.

We first show that] [M - l (p) - - M - t (p _ Ap)i] are O([[ApII) or O(dellApll) for a
d-DOF system. We can then compute bounds for the perturbation magnitudes hr,
hqo, and hql, defined in (49), in terms of %, ~/x, and ~b" Given M(p) and U~(p) (or
G(p)), it is possible to bound their derivatives by inspection, because each of their
components is a sum of products of components of p and their sines and cosines.
In particular, following any derivation of (1), say from [9], the close relationship
to the kinematic map and Jacobian of the robot is noted. For example,

Gi(p) = ~ mjgrJ~J!(p),
J

where mj is the mass of the jth link, g is the gravitational acceleration vector, and
J~!(p) is the ith column of the linear velocity Jacobian for linkj. More importantly,

0) 7 (0 M(p) • (,) r ti) J~ (p) I,(plJ~ (p)),
= (miJL (P) JL (P) +

i

where m i is the mass of the ith link, Ii(p) is its inertia tensor, and J~) and J~)
are its linear velocity and angular velocity Jacobians.

Heinzinger and Paden [23] exploit similar relationships to bound the general
derivatives of M(p) and G(p). We use their results to show one way to derive the
desired bounds.

A.1. Bounding Changes in MZ-l(p). Let M(p) be the d x d inertia (tensor) matrix
for a d-DOF open kinematic chain. Observe that because all the derivatives of
the components of M(p) are bounded, IIM(p) - M(p + Ap)II2 is O(d2llAMy[lz).

524 B . R . D o n a l d and P. G. Xav ie r

Let M ' = M (p + A p) and AM = M - M ' . We wish to bound IIAM-1II :

IIM-~ - M ' - ~ II. Since M 'and M ' are inertia matrices, they are symmetr ic and

positive definite. Let J'min be the m i n i m u m of their m i n i m u m eigenvalues.

Now, consider the solutions x and y to the systems

M x ~ b ,

(59)
M ' y = b.

By substi tution,

M(y - x) = (M - M')y + M ' y - M x = AMy,

and thus IIM(x - y)ll : IIAMyII. We now choose to use the L2-norm. Now,

IIb[12
IIAMyI[2 ~ IIAM]I211Ylt2 ~ IIAMII2 ~min"

Since

Ami, llx -- 7112 ~ IIM(x -- Y)II2 = IIAMylI2,

it follows tha t

(6o) l lx - 7112 <
IIAMII211bI[2

22i~

Recall that

(61) A M - l b = (M -1 - M ' - l) b = x - y.

Since AM is a rb i t ra ry except for the condi t ion that M ' be nonsingular, and b

is arbi t rary, (60) and (61) imply that

IIAMll2
(62)]IAM-XII2 <

~2mln

Therefore, since IIAMII2 is O(d21lAplt), so is IIAM-1112 .

A.2. Acceleration Bounds and Perturbations. We first review a no ta t ion for

tensor-valued functions, as used by [23]. M is a smoo th tensor field, and M(p) is

a tensor of rank 2. Fo r x ~ C, M(x)(vl, v2) denotes the tensor acting on (vl, v2)

TxC x TxC. We have been representing M(p) as a matrix. Fo r example, the kinetic
energy of the system in state (p, p) can be expressed as �89 or �89 p).

The nth derivative of M(p) with respect to p is defined as follows:

d d ~Mtn~v"_._,._,ij . �9
�9 " ~n " (63) D"M(p)(~, ~)(~ ~.) = ,,J:~F~ ~, 2~~ ~p~...~p~. ~ ' ~ ~~

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 525

Hence, for a given state (p, p) and acceleration a, (1) corresponds to

(64) f(.) = M(p)(a, ') + DM(p)(p, .)([~) - �89 p)(.) + G(p)(');

with fi = f(e~), where ei is the usual ith basis vector in R a. The second and third
terms on the right-hand side are equivalent to the [prC(p)] term in (1).

We use four inequalities ((65)-(68)) that are results from 1-23]. Let M~ denote
the mass of link i, L~ its maximum length from the near j o in t axis, and /S,i the
greatest distance of its centroid from the first joint axis of the manipulator. Define

IlYlI~ = ~ : x lY~l- Then

d

(65) IM(p)(wl, w2)l ~ ~ miL/2llwa lit Ilwz[l~,
i = 1

d

(66) I D " M (p) (w l , w2)(w3, . . . ,Wn+2) [__< 2 a Z mlL~llwlllt... IIw,+21lt,
/=1

d

(67) I G(p)(w01 -< ~, gMdSillwl lit,
i = 1

d

(68) [D"G(p)(wl , w,+ 1)1 - Z gM~E~llwl lit... IIw,+l lit.
i = 1

Now, we bound the acceleration. Let us define

(69) ~ (f , p, [~) = f - [-prC(p)l~] - G(p).

Then we can rewrite (10) as

(70) a(p, p, f) = M - l (p) ~ (f , p, p).

Recalling (10),

lia(p,p,f)ll ~]IM-I(p)II Ilk(f, P, P)I[
1

(71) < S~- [I f - [[~rf(p)p] - G(p)II
-- fl~min

1
< ~ {llfll + II[[~Tf(p)P]ll + G(p)ll}.
- - /~min

Using (66) and recalling that IIxll2 -< IIxlll -< ,fdllxll2 for any d-vector x, we
obtain

(72) II[Prf(p)p]ll _ max {]DM(p)(p, x)(p)] + 1�89 P)(X)l}
IIxll2-< 1

d
< 2d-13 ~, x//dMiLff[IVm,x]l 2

i=1
d

<_ 2a-13da/e[[Vmax[12 ~ MIL 2.
i=1

526 B.R. Donald and P. G. Xavier

Using (67)

(73)
d

IlG(p)II ~ max ~ gM,E, Ilxllt
I/x[[2-< 1 i = 1

d

<- Z M,C,.
i = 1

Thus we have the following global bound for the acceleration;

(74) A~a x < y~- llfmax!l + 3d3/2llvmaxll2 Mi L2 q- g ~ MiLl �9
- - ~ m i n i = 1 i

We now bound hr(%), h~o(%), and hql(q~,, fly). Recalling definitions (49) we obtain

max [~M-1 1 1 F ~ - (~ J M P + h'(z~ < z~ k dP P ~(f ' p' [0 + a

(54) h~o(~o) -< ~o IIL-~-p ~ ~(f ' p' ~) + M- (p)L~- p [~ + ~ - a ,

[- ~ + a ~
hql(~x'q~))-<max F~M-1API '~ (f 'P 'P)+M-(P) [~-P A P L ~P ~-P APl "

Recall (62), which we use to bound] lM-l(p)- M-1(p + Ap)[], and observe
that

(75) IIM(p) - M(p + Ap)[I ~ max [DM(p)~x, y)(Ap)I
Ilxll = I]yll = 1

d

< 2dd3/ZllApl I ~ M,L~.
i = 1

By substitution, we obtain

(76) IIAM- xlb2 <
d 3 / 2 d 2 d IIPlI2,=IM, L2

M 2
(~ m i n)

It follows that

(77)

and

(78)

To ~M-lop p ~ 2ad3/211Pz~ 2 MiL~

~M-1 Ap _< 2ad3/211AplIS"~=I MiL~
~p (/~mMin) 2

O p t i m a l K i n o d y n a m i c P l a n n i n g for Car tes ian Robots and O p e n - C h a i n M a n i p u l a t o r s 527

Applying (66) and (72), we obtain

(79)

(8o)

c3[p;Cp(p)p] Ap < max {ID2M(p)([~, x)([~, Ap)I + I�89 0)(x, Ap)I}
IAII -< 1

d

< 2 a-1 . 3dZlrpllE/lAp[I ~ M,L~,
i = 1

< max { I DM(p)([~, x)(Ap)l + I DM(p)(Ap, x)(p)l + I DM(p)(A[~, [~)(x)l}
rail -< 1

-< 2 d-x~ 3d3/gl[0tl IIApll a~ MiL~,
i = l

and

OG(p)
Ap a (81) < gv/~ Y M,L,.

ap i=1

We now give the final bounds for h,(zo), hqo('Co) , and hql(tlxO, rlvO). First, we define

d

H = E M,L~,
i = 1

d

17 = ~ 9MiL i,
(82) i= 1

g = IIfPI + 2a -1" 3d3/2llVmaxll 2H + v/dg 17,

F ' = IIf'[I + 2 d- l" 3d3/2llV'maxll gH + ~/dg17,

In this notation, we can write (74) as

(83)
F

Amax < " M "
- - ~min

Finally,

(84) h,(zo) <
(2ad3/elfvma,,l117F' + 2 d-1 �9 3d2]lV~axil3)Zo

M
/~min

2 a- 1.3d3/21[v-x[[F,To
+

M 2
('~min)

528 B.R. Donald and P. G. Xavier

(85) hqo(Zo) <
(2ad3/2 II Ymax "CO II HF + 2 a- 1.3d 2 II u II 3)TO +

+

M
}~min

2,~- 1.3d3/2 II Vmax ZO II F'co
M 2

(~rnin)

~2ed3/2HF 2 d-1 3 d 2 ~ l l H , , / d g ~ q }
(86) hql(t/xO, qvo) ~ ~ (~mMin)2 -t- ~xO

2 a-1 �9 3d3/ENvmaxllH
+ M tlvo"

~min

We summarize these bounds by saying that hr(zo) and h~o(%) are linear in %,
and that hql(~o, ~,o) is linear in t/x o and tl.o. In other words, we can rewrite
(84)-(86) with obvious substitutions for C , Cqo, Cql, and Cqz, which depend on
d, the dynamics equation, and the dynamics bounds:

hr(zo) < Crzo,

(55) hqo(Zo) < Cqozo,

hql(~/xO, ~/~o) < Cql/~xo -~- Cq2~vo.

Appendix B. Guide to Notation.

C is the configuration space of a particular robot.
TC is the tangent bundle of C.
d is the number of dimensions of the configuration space C.
(9 is the encoding of the obstacle set.
6 v is a safety function parametrized by c o > 0 and c I >__ 0;

Co + ql/vll .
p(t) is a path; p: 7~me --* C.
(p, p) is a trajectory state; p is position and [~ is velocity.
x is a configuration (also y).
v is a velocity.
X is a state (also Y).
F is a trajectory; F: Tree --+ TC.
S is the start state, usually the desired start state.
G is the goal state, usually the desired goal state.
(t/X, q,) is a tracking tolerance.
a is acceleration.

is an acceleration bound.
is a vector of acceleration bounds.
is a velocity bound.
is a vector of velocity bounds.

Ama x is a scalar, global (nondimensional) acceleration bound.
f is a generalized force vector.

6v(Co, cO(v) =

Optimal Kinodynamic Planning for Cartesian Robots and Open-Chain Manipulators 529

is a vector of generalized force bounds; for each i, [f/I < fi-
dg is the encoding of the dynamics equation obeyed by a robot.

1 is the world diameter or length of the greatest translational degree of freedom.
e is an approximation parameter; 0 < e < 1.
6' v is a safety, function for e-safety; 6'v = (1 - e)6~.

F', is the trajectory F,, but e-time rescaled.
p' is the path (or state) p, but e-time rescaled.
S' is the time-rescaled start state.
G' is the e-time-rescaled goal state:
S* is an e-close approximation, of the start date.
G* is an e-close approximation of the goal state.

d x is the set of all instantaneous accelerations possible at state X obeying
dynamics bounds.

~ x is the set of possible constant accelerations of duration z for trajectories
beginning at state X; these trajectories must obey the dynamics bounds.

~ * is an easier-to-compute conservative approximation (subset) of d x .
d is first, a set of acceleration functions, later generalized to a function d :

T C --* {PC: P/is a set of acceleration functions}.
s4' is as above, but corresponding to tighter generalized force bounds.
~ , ~ are, with single arguments, arbitrary functions ~ , ~: T C --, {0~: pC is a set

of acceleration functions}.
is a timestep size.

~h is a minimal acceleration advantage.
/~ is a grid-spacing.
/t is a vector of grid-spacings;/t i is the spacing in dimension i.
/2 is a discretization (grid-spacing) parameter for generalized forces.
~ (X, r) is the (p, "c)-extremal shell at (corresponding to) state X; this is a set of

acceleration functions.

o@(X, r) is the set of true (/2, z)-bangs at (corresponding to) state X; another set
of acceleration functions.

yG(x) = ~ (x , ~).
yP~(x) = ~r ~).
To, for a given robot and e, is the fundamental timestep.
(qxo, Go), for a given robot and e, is a fundamental tracking tolerance.
| is the Minkowski sum.
Subscripts r, q, and u denote trajectories.
Subscript i usually denotes the ith coordinate axial direction.
Subscript n usually denotes a timestep.

References

[1] J. Canny, B. Donald, J. Reif, and P. Xavier. On the complexity of kinodynamic planning.
Proceedings of the 29th Annual Symposium on the Foundations of Computer Science, White Plains,
New York, 1988, pp. 306-316.

[2] B. Donald, P. Xavier, J. Canny, and J. Reif, Kinodynamic motion planning, Journal of the ACM,
40(5), 1993, 1048-1066. Journal version of [1].

[3] B. Donald and P. Xavier. Provably good approximation algorithms for optimal kinodynamic
planningi robots with decoupled dynamics bounds. Algorithmica, this issue, pp. 443-479.

530 B.R. Donald and P. G. Xavier

[4] P. Xavier. Provably good approximation algorithms for optimal kinodynamic robot motion
plans. Technical Report CUCS-TR92-1279, Computer Science Department, Cornell University,
Ithaca, New York, April 1992. Ph.D. thesis.

[5] B. Donald and P. Xavier. A provably good approximation algorithm for optimal-time trajectory
planning. Proceedings of the 1989 IEEE International Conference on Robotics and Automation,
Scottsdale, Arizona, 1989, pp. 958--963.

[6] P. Jacobs, G. Heinzinger, J. Canny, and B. Paden. Planning guaranteed near-time-optimal
planning in a cluttered workspace. Technical Report ESRC 89-20/RAMP 89-15, Engineering
Systems Research Center, University of California, Berkeley, California, October 1989.

[7] P. Jacobs, G. Heinzinger, J. Canny, and B. Paden. Planning guaranteed near-time-optimal
planning in a cluttered workspace. Proceedings of the International Workshop on Sensorial
Integration for Industrial Robots: Architectures & Applications, Zaragoza, Spain, 1989.

[8] G. Heinzinger, P. Jacobs, J. Canny, and B. Paden. Time-optimal trajectories for a robot
manipulator: a provably good approximation algorithm. Proceedings of the 1990 IEEE Interna-
tional Conference on Robotics and Automation, Cincinnati, Ohio, May 1990, pp. 150-155.

[9] H. Asada and J. J. Slotine. Robot Analysis and Control. Wiley, New York, 1986.
[10] J.M. Hollerbach. Dynamic scaling of manipulator trajectories. A.I. Memo 700, Massachusetts

Institute of Technology, Cambridge, Massachusetts, 1983.
[11] T. Lozano-P6rez. Spatial planning: a configuration space approach. IEEE Transactions on

Computers, 32(2):108-120, 1983. Also A.I. Memo 605, Massachusetts Institute of Technology,
Cambridge, Massachusetts, December 1982.

[12] J. Canny. Collision detection for moving polyhedra. 1EEE Transactions on Pattern Analysis and
Machine Intelligence, 8(2):200-209, 1986.

[13] B. Donald. A search algorithm for motion planning with six degrees of freedom. Artificial
Intelligence, 31(3): 295-353, 1987.

[14] J. Canny and B. Donald. Simplified Voronoi diagrams. Discrete and Computational Geometry,
3(3):219-236, 1988.

[15] B. Donald and P. Xavier. Provably good approximation algorithms for optimal kinodynamic
planning for cartesian robots and open chain manipulators. Proceedings of the Sixth Annual
Symposium on Computational Geometry, Berkeley, California, June 1990, pp. 290-300.

[16] B. Donald and P. Xavier. Near-optimal kinodynamic planning for robots with coupled dynamics
bounds. In A. C. Sanderson, A. A. Derochers, and K. Valvanis, editors, Proceedings of the Fourth
IEEE International Symposium on Intelligent Control, Albany, New York, 1989, pp. 354-359.

[17] B. Donald and P. Xavier. Provably good approximation algorithms for optimal kinodynamic
planning for cartesian robots and open chain manipulators. Technical Report TR-1095,
Department of Computer Science, Cornell University, Ithaca, New York, February 1990.
Supersedes TR-971.

[18] J. Reif and S. Tate. Approximate kinodynamic planning using /2-norm dynamics bounds.
Technical Report CS-1990-13, Department of Computer Science, Duke University, Durham,
North Carolina, 1990.

[19] Leitman. An Introduction to Optimal Control. McGraw-Hill, New York, 1966.
[20] H.M. Schaettler. On the optimality of bang-bang trajectories in Ea. Bulletin of the American

Mathematical Society, 16(1): 113-116, 1987.
[21] E. Sontag and H. Sussmann. Remarks on the time-optimal control of two-link manipulators.

Proceedings of the 24th Conference on Decision and Control, Ft. Lauderdale, Florida, 1985,
pp. 1646-1652.

[22] E. Sontag and H. Sussmann. Time-optimal control of manipulators. Technical Report, Depart-
ment of Mathematics, Rutgers University, New Brunswick, New Jersey, 1986.

[23] G. Heinzinger and B. Paden. Bounds on robot dynamics. Proceedings 1989 IEEE International
Conference on Robotics and Automation. Scottsdale, Arizona, 1989, pp. 1227-1232.

[24] J. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge, Massachusetts,
1988. Book version of Canny's 1986 Ph.D. thesis.

[25] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes in C. Cambridge
University Press, New York, 1988.

[26] B. Donald and P. Xavier. Time-safety trade-offs and a bang-bang algorithm for kinodynamic
planning. Proceedings of the 1991 IEEE International Conference on Robotics and Automation,
Sacramento, California, 1991, pp. 552-557.

