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Abstract. We develop a new technique to lower bound the minimum dis-
tance of quasi-cyclic codes with large dimension by reducing the problem
to lower bounding the minimum distance of a few significantly smaller di-
mensional codes. Using this technique, we prove that a code which is sim-
ilar to the SHA-1 message expansion code has minimum distance at least
82, and that too in just the last 64 of the 80 expanded words. Further the
minimum weight in the last 60 words (last 48 words) is at least 75 (52 re-
spectively). We expect our technique to be helpful in designing future prac-
tical collision-resistant hash functions. We also use the technique to find
the minimum weight of the SHA-1 code (25 in the last 60 words), which
was an open problem.

Keywords: linear codes, minimum distance, collision-resistant hash
functions, SHA-1.

1 Introduction

Recall the SHA-1 message expansion code which is a binary linear code of dimen-
sion 512: the 512 information bits are packed into 16 32-bit words 〈W0, · · · , W15〉,
and 64 additional words are generated by the recurrence:

Wi = (Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) <<< 1 for i = 16, · · · , 79 (1)

The 80 words 〈W0, · · · , W79〉 can be seen as constituting a code-word in a linear
code over F2 with the above parity check equations. Unfortunately, this code
has a minimum distance or weight of no more than 44. Further, the weight
restricted to the last 60 words is only 25. This has been exploited in [21] to give
a differential attack on SHA-1 with complexity 269 hash operations. Recently,
the complexity has further been improved to 263 hash operations [19].

The code for SHA-0, which is same as (1) but without the rotation (see
[14], has an even worse minimum weight. The small minimum weight of these
codes is an integral part of the attack strategies on these hash functions (see
[22,23,3,2,1,20,21]). The question naturally arises as to why codes with better
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minimum weight were not employed, even though the coding theory literature
[17] is rife with codes with proven good minimum weight. However, as we point
out later in section 2, none of them comes close to being as efficient to implement
in software (i.e., do not have an efficient encoder) as the code (1) above. One
is then led to ask if codes more complex than (1), but still easy to implement,
could be shown to have a better minimum distance. Surprisingly, it was not
even known how to lower bound the minimum weight of the above SHA-1 code,
even though it is related to codes such as Hadamard code [17] (we address this
relationship in section 2).

The purpose of this paper is three-fold. First, to introduce a novel technique
for lower bounding efficient-to-implement codes such as given by (1). Second,
to use this technique to lower bound this particular code (which was an open
problem). Third, to show how one can design efficient-to-implement codes with
a much better minimum distance, and to actually give such a code. We expect
our technique to be helpful in designing future practical collision-resistant hash
functions.

Before we describe our technique, we mention the specific code we analyze, as
this specific example will help in understanding the complexity of the problem
and the intricacy of the technique. The code, C, we consider is a 80 × 32 length
binary code of dimension 16 × 32, given by the following recurrence relation (or

parity check equations): Let Vi
def
= Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16.

Wi
def
=

{
Vi ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15) <<< 1) if 16 ≤ i < 36
Vi ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15 ⊕ Wi−20) <<< 1) if 36 ≤ i ≤ 79

(2)
We will show that this code has minimum distance 82, and that too in just the
last 64 words (contrast this with SHA-1 which has minimum weight at most 30
[21], and 192 for the highly inefficient Reed Solomon code described in Section 2).
Of course, since the dimension of this code is 16 × 32, a brute force search of
216×32 is infeasible. Further, it is known that computing minimum weight of an
arbitrary linear code is NP-hard (see [18]), and that approximating within a
constant factor is NP-hard under randomized reduction (see [5]).

Still, there is additional structure in the above codes (i.e. (1) and (2)), and we
intend to exploit that. Note that a codeword of the above codes can be seen as
an 80 × 32 matrix, with each column representing the codeword projected on a
particular bit position. Further, the above codes have the property that they are
closed under column rotations. Such codes are called quasi-cyclic codes in the
literature, and have been studied extensively (see [13,4,8,9]). As for estimating
the minimum weight of such codes by algorithmic means, the presently known
techniques are computationally infeasible [4,8].

Our novel technique reduces the problem of lowerbounding the minimum weight
of a k × n dimensional quasi-cyclic code to a function of the minimum weight of
a few k × n′ dimensional codes, where n′ is much smaller than n. We now briefly
explain the main idea of our technique, using the above example code given by (2).
For any codeword represented as a 80 × 32 matrix, note that either (a) there are
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no all-zero columns in the codeword, in which case we would like to show that on
average there are a few (three, e.g.) non-zero bits in each column, or (b) there is
a zero column in the codeword, in which case we would like to show that the code
projected on a few columns (say, m << n) has a large minimum distance.

Unfortunately, there are two major hurdles in this plan (related to case (b)).
Consider the first non-zero column next to a zero column (either to the left or
the right). It turns out that the code projected on that column is not expected to
be any better than the code for SHA-0, and hence we do not expect a minimum
weight of more than 15-20 for that column. Thus, we would need m to be about
five to get a minimum weight of 75, in which case the dimension of the projected
code is still too large, i.e. 16×5. Further, there are pathological cases (and which
cannot be avoided) where the code projected on a column yields a minimum
weight as low as 1. Thus, we may be forced to consider m to be much larger
than five. The novelty of our approach lies in tackling these two major hurdles.
We show that the minimum weight of the sub-code in case (b) can be lower
bounded by a function of the minimum weight of a few codes (some of which are
subspaces), each of dimension at most 16 × 3. A “lazy” brute force search with
early-stopping then yields a lower bound of 82.

Other Contributions: We also use the techniques developed to give a lower
bound of 25 (in the last 60 words) on the minimum weight of the codewords
of SHA-1 (this was an open problem). A codeword of weight smaller than 25,
could potentially lead to an even more drastic attack on SHA-1. As for further
advancement of our techniques, we also prove that the minimum weight of our
example code (2) is at least 75 (52) when restricted to the last 60 (48 resp.)
words. We will give detailed proof of this in the full version of the paper. Note
that front truncations are not equivalent to back truncations for this code.

Organization: The rest of the paper is organized as follows: In section 2 we
review limitations of known algebraic techniques. In section 3 we give an informal
description of the proof technique and the intuition behind why certain codes
are easier to analyze. In section 4 we give a detailed proof of a lower bound on
the code given by (2). In the Conclusion section, we describe applications of our
methods to designing hash functions. In Appendix A, we give detailed algebraic
proofs of some lemmas in section 4.

2 Limitations of Purely Algebraic Techniques

We first investigate the SHA-0 code restricted to a single column, which is a length
80 binary code of dimension 16, given by the binary parity check equations:

ai = ai−3 ⊕ ai−8 ⊕ ai−14 ⊕ ai−16 for i = 16, · · · , 79 (3)

Consider the polynomial h(X) = X16 + X13 + X8 + X2 + 1, which is known to
be a primitive polynomial, as the smallest n such that h(X) divides Xn − 1 is
216−1. Hence, if the above code was extended up to length 216−1, it would be the
code generated by the LFSR (Linear Feedback Shift Register) given by primitive



Provably Good Codes for Hash Function Design 379

polynomial h(X). However, such codes are well known [24,7] to be a subcode of
first-order Reed Muller codes (also known as Hadamard codes) with one digit
dropped. Such codes have an extremely good minimum distance of 215 − 1, or
fractional distance 1/2. Unfortunately, nothing useful can be said about this code
truncated to just the first 80 bits, based purely on known algebraic methods.
In fact, any such code (i.e. using any degree 16 primitive polynomial) has a
minimum weight of at most 26, i.e. a fractional distance of less than 1/3 (as can
be checked by a computer).

The lack of purely algebraic techniques to lower bound even this single column
code emphasizes the difficulty of analyzing the more complex codes such as SHA-
1 and that given by Equation (2). Of course, if h(X) above was not primitive,
and divided X80 − 1, then we would get a cyclic code of length 80. Such codes
can be analyzed much more easily, and it is not too difficult to see that the best
cyclic code gives a minimum distance of only 8. However, there are non-cyclic
linear codes known of minimum distance 31, though they are really difficult to
encode. One could also consider cyclic codes of length 85, which have a much
better minimum distance and then truncate them. However, the analysis does
not extend to codes which do column mixing like SHA-1.

Instead of quasi-cyclic codes as SHA-1 or Equation (2 ), one could consider
cyclic codes of length 80 × 32, or of an appropriate length. First note that a
random code will give minimum distance roughly 475 for a code with rate 1/4
and length 64 × 32 (follows from the Gilbert-Varshamov bound). Of course,
finding such a code is infeasible. Alternatively, one can try a Reed Solomon
code over F28 of length 28 − 1 (bytes), and dimension 64 (bytes). Such a code
has distance 256 − 64 = 192 (over bytes). However, the encoder for this code
requires multiplication by various elements in F28 , and is not at all suitable for
software implementations. A binary cyclic code of dimension 16 × 32 would also
be extremely cumbersome to implement. Similar considerations rule out known
good quasi-cyclic codes.

3 Intuition Behind the Code

Let us start by examining why the message expansion code in SHA-1 given by
Equation (1) is not satisfactory (observed independently in [11] and [10]). We
can rewrite Equation (1) as follows:

∀i, 0 ≤ i ≤ 63, Wi = Wi+2 ⊕ Wi+8 ⊕ Wi+13 ⊕ (Wi+16 >>> 1), (4)

where “>>> 1” denotes a one bit rotation to the right. The above clearly shows
that a difference created in the last 16 words propagates to only up to 4 different
bit positions.

One way to remedy this situation is to let Wi = (Wi+2 >>> 1) ⊕ Wi+8 ⊕
Wi+13 ⊕ (Wi+16 >>> 1). Now Equation (1) becomes Wi = (Wi−3 ⊕ Wi−8 ⊕
Wi−16) <<< 1 ⊕ Wi−14. Thus, whether you consider the evaluation in the
forward direction or in the reverse direction, the spread of differences to the
neighboring columns (i.e. neighboring bits) is more frequent. However, it is not
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enough to just have a good intuition about the code, but one also needs to prove
a good lower bound on the minimum weight of such codes.

The strategy we use to prove lower bounds on such codes is to divide the
proof into two main cases. We argue that either there are no zero columns in a
codeword (a column in the codeword is the codeword projected on a particular
bit position) or starting from an all zero column, the first neighboring non-zero
column is actually a codeword in a good code, and so on.

Elaborating on the first case, i.e., when there are no zero columns, if every
column has at least 3 bits ON, we are done. So, assume that there is some column
which has 1 or 2 bits ON. Thus, there are (64 × 63)/2 + 64 choices for picking
these bits in the column. Having picked these bits, the neighboring column is
completely specified by at most 16 bits in that column. Now the two columns
together either have weight 6, in which case we are maintaining an average of 3
per column, or the weight of these two columns is at most 5. Thus, our search
is quite restricted. We continue in this fashion, noting that the code has to be
designed carefully so as to satisfy a property as in Claim 3.

As for the second case, we consider a contiguous band of zero columns, bor-
dered on both sides with non-zero columns (we prove that they cannot be same;
in fact we prove by a rank argument that there must be at least four consec-
utive non-zero columns). We have to assure that when a column is zero, and
the neighboring column is non-zero (whether to the right or left), the result-
ing code for the neighboring column is a good code, i.e., with a good minimum
weight. Note that this is important since we may possibly have at most 5-6 non-
zero columns. Therefore it is desired that the disturbance propagates fast across
columns. Unfortunately, this is impossible for the codes we are considering so
far.

Consider a SHA-1 like code, with dimension 16 × 32, and which is invariant
under column rotations. Moreover, suppose that the code is of the form

Wi =
16∑

t=1

atWi−t +

((
16∑

t=1

btWi−t

)
<<< 1

)
, (5)

where a1, · · · , a16, b1, · · · , b16 are boolean. If a16 and b16 are equal, then there is
a codeword which is zero everywhere, except for W0 which is the all one 32-bit
word. Thus for the sake of the argument, assume that b16 = 0 and a16 = 1.
However in this case, suppose t′ < 16 is the largest t such that bt′ is non-zero.
First note that if a column, say Cj , is zero, then in the column to its right, say
Cj−1, Cj−1

k (for k = 0 to 15 − t′ ) can take any value (i.e., are free variables),
and the rest of the column Cj−1 can be all zero. Further, the propagation to
columns Cj−2, Cj−3 etc. can be rather weak.

A similar situation arises when the code is evaluated in the backward direction.
The trick is to keep the above free variables few in number, so that the subspace
of such pathological cases is of a relatively small dimension. This small dimension
is absolutely necessary to keep the exhaustive search over this space tractable.
One way to get rid of these pathological free variables is to include a term like
Wi−20, as we do in our code. This in fact gets rid of all the pathological variables



Provably Good Codes for Hash Function Design 381

in the forward direction and thereby yields a fast expansion. In the backward
direction at least one pathological free variable per column remains, and we must
search over such subspaces.

4 A Lower Bound on the Minimum Distance

In this section we will prove a lower bound on the code described in the in-
troduction. As mentioned earlier, this is a general technique for reducing the
problem to smaller dimensional codes. However, if the reduction is to codes with
dimensions too large, then a brute force search may not be feasible. On the other
hand, if the reduction is to codes which have really low minimum weight, then
we will not obtain a good bound.

We will see in Claim 7 and Claim 8 (in Appendix A) that if the polynomi-
als describing the parity check equations (5) have a certain algebraic property,
namely that the polynomial corresponding to coefficients at is irreducible, and
does not divide the polynomial corresponding to coefficients bt, then some key
reduced codes have low dimensions. Although, these are not necessary condi-
tions, they make a good choice. Similarly, if the coefficients b1 and b15 are both
one, then the number of pathological variables per column is small.

We will prove a lower bound on the minimum weight of the code given by
Equation (2), but projected on the last 64 words. Clearly, the same bound holds
for the full 80 words. The reason we focus on the last 64 words is because the
recent attacks on hash functions have shown that the weight of the code in early
words (the information words, and a few following words) is mostly immaterial
(see “message modification technique” in [21]), and hence the weight in the latter
words decides the complexity of the attack.

Since we will be arguing about the weight of this code in the last 64 words,
we instead consider the following code C64 : Let W0, · · · , W15 be the message
blocks. Let Vi

def
= Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16.

Wi
def
=

{
Vi ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15) <<< 1) if 16 ≤ i < 20
Vi ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15 ⊕ Wi−20) <<< 1) if 20 ≤ i ≤ 63

(6)

We first prove that this is indeed sufficient.

Lemma 1. If the code C64 described above has minimum weight at least w,
then C has minimum weight at least w in its last 64 words.

Proof. Consider any nonzero codeword in C, say U = 〈U0, · · · , U79〉. Denote X =
〈U0, · · · , U15〉 and Y = 〈U16 · · · , U31〉 and Z = 〈U32 · · · , U79〉. Therefore U =
〈X, Y, Z〉. From Equation 2 observe that the code C is completely determined by
specifying any consecutive 16 word block provided the block starts anywhere in
0 to 20, since the rest can then be obtained by solving the recurrence relation.
We therefore choose to specify Y = 〈U16, · · · , U31〉, that is we treat Y as the
message symbols. Note that a fixed choice of Y also fixes X and Z. Following
this observation it is now clear that 〈Y, Z〉 is a codeword in C64 .
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Assume that the minimum weight of C64 is d. Then we need to show that any
non-zero codeword in C has weight at least d in its last 64 words. This follows
provided a non-zero X implies a non-zero Y . However, if Y is zero then X is
zero, as X is a linear function of Y .

Therefore the minimum weight of C64 is exactly the minimum weight of code
C in its last 64 words.

Next we prove a lower bound on the minimum distance of C64 . We break down
the proof into several sub-cases. In each sub-case, we argue often following an
exhaustive search over a small space that the minimum weight of the code is
at least 82. We mention that a naive algorithm may require to search a space
as large as 232×16 which is clearly not feasible. Therefore the novelty in our
approach lies in a careful sub-division of the problem into a small number of
tractable cases.

Theorem 2. The code C64 as defined by Equation 6 has minimum distance at
least 82.

Proof. It is easy to see that the code C64 is a quasi-cyclic code by noting that it
is invariant under a 64 bit cyclic shift. From now onwards, we view the codewords
of C64 as a matrix that has 32 columns where each column is 64-bit long. The
quasi-cyclic property then just mean that the code is invariant under column
rotations. Unless otherwise specified, the arithmetic in the superscript will be
modulo 32.

Now consider any non-zero codeword. Since the code is linear, it suffices to
prove that it has weight at least 82. We break down the proof into two main
cases depending upon whether or not a codeword has zero columns.

1. (All Columns Non-Zero Case:) Consider any such codeword. Also, con-
sider any non-zero column, w.l.o.g., let it be C0. Denote the columns, to the
left of it by C1, C2, · · · , C31. Note that all Ci’s are non-zero. In this case the
following claim holds.

Claim 3. For any non-zero column Cj , there exists k, 0 ≤ k ≤ 7 such that
the combined weight of columns Cj , Cj+1, · · · , Cj+k is at least 3 · (k + 1).

Proof. This is easily verified by a computer program. We mention that for
k ≤ 6, an average of 3 cannot be assured (see Appendix B for an example).

Next we create a partition of the 32 columns into several groups. We pick
a non-zero column Cj . Now following Claim 3, there exists (k + 1)-columns
(0 ≤ k ≤ 7) such that the average weight of each column is at least 3.
Consider the smallest k that achieves this. Then put these (k + 1) columns
Cj , Cj+1, · · · , Cj+k into a group. Call these columns good columns and the
group a good group. We then choose Ck+j+1 and form another group. We
continue like this till no more good groups can be created. The remaining
columns are then grouped together. Call this group a bad group. Note that
the bad group has average weight at least 1. Now let e be the size of this
bad group. Then we have (32 − e) good columns. Also following Claim 3, e
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could be at most 7. Therefore the total weight of the codeword is at least
3 · (32 − e) + e = 96 − 2 · e ≥ 82.

2. (At least One column Zero Case:) Assume that there is at least one zero
column. W.l.o.g. let C0 be a zero column such that the column to the left of
it is non-zero (note that such a column always exists since we are considering
a non-zero codeword). Denote the columns to the left of C0 by C1, C2, · · ·
(see figure).

Also, going towards the right of C0, denote
the first non-zero column by E1 and thereafter
E2, E3, · · · . Denote the column to the left of
E1 by E0. (Note that it may be possible that
C0 and E0 are the same column.) We argue
that a few columns to the left and right of a
band of zero columns must contribute a total
weight of at least 82.

It will be immaterial in our analysis below
if there are some non-zero columns between C0

and E0. All we require in our analysis is that
C0 and E0 are zero.

O

C

C

C

2

3

1

0C

2E

E0

1E

E3Z
E
R

Next consider C1, C2, · · · . How soon can the sequence yield a zero column,
i.e., what is the smallest value of j such that Cj = E0? In order to answer
this question, first note that since C0 is everywhere zero, C1 is essentially
generated by the code whose parity check equations over F2 are given as
follows: Denote C1 = 〈y0, · · · , y63〉. Then

∀i, 16 ≤ i ≤ 63, 0 = yi + yi−3 + yi−8 + yi−14 + yi−16. (7)

Similarly for a fixed C1, the column C2 is generated by the code whose parity
check equations over F2 are given as follows: Denote C2 = 〈x0, · · · , x63〉. Let

ui
def
= xi + xi−3 + xi−8 + xi−14 + xi−16.

0 =

{
ui + yi−1 + yi−2 + yi−15 for 16 ≤ i ≤ 19
ui + yi−1 + yi−2 + yi−15 + yi−20 for 20 ≤ i ≤ 63

(8)

On the other hand E1 is generated by the code whose parity check equations
over F2 are given as follows: Denote E1 = 〈w0, · · · , w63〉. Then

0 =

{
wi−1 + wi−2 + wi−15 for 16 ≤ i ≤ 19
wi−1 + wi−2 + wi−15 + wi−20 for 20 ≤ i ≤ 63

(9)

Similarly for a fixed E1, the column E2 is generated by the code whose parity
check equations over F2 are given as follows: Denote E2 = 〈z0, · · · , z63〉. Let

vi
def
= wi + wi−3 + wi−8 + wi−14 + wi−16. Then

0 =

{
vi + zi−1 + zi−2 + zi−15 for 16 ≤ i ≤ 19
vi + zi−1 + zi−2 + zi−15 + zi−20 for 20 ≤ i ≤ 63

(10)
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The following claim shows that at least four consecutive columns have to be
non-zero.

Claim 4. If C0 is everywhere zero, and C1 is non-zero, then C2, C3 and
C4 are all non-zero.

Proof. Suppose for a j it is the case that Cj = E1, i.e., Cj+1 is all zero. Then
a homogeneous system of linear equations over F2 can be set up. Consider
the 64 × j variables in column C1 through Cj . There are 48 equations for
each of the columns C1 through Cj . Also, there are 48 more equations for
Cj+1. It is well known that such a system can have a non-trivial solution
if and only if the rank of the co-efficient matrix is strictly smaller than the
number of variables. It can easily be verified by a computer program that
for j = 1, 2, 3, the system has full rank, that is exactly 64 × j. This can also
be proved algebraically for j = 1, 2. We give a simple algebraic proof in the
appendix (see Appendix A).

This proof also highlights that for the rank to be full the recurrence relation
must satisfy nice properties. Ranks of all linear systems considered in this
paper have been computed using Gaussian elimination. We now divide the
proof into two cases.

(a) (Number Of Consecutive Non-Zero Columns is at most Five):
By the claim above, we can safely as-
sume that we have at least four consecu-
tive non-zero columns. Also, if we assume
C4 = E1, then the number of nontrivial
solutions can be at most 216 − 1 (since
the co-rank or nullity of the matrix is 16,
as verified by implementing a Gaussian
elimination program). Similarly, assuming
C5 = E1, the number of nontrivial solu-
tions can be at most 232 −1. We do an ex-
haustive search to conclude that the min-
imum weight in the latter case is at least
90. (Note that this latter case alone is suf-
ficient.)

5

C

O

R

E

Z
}}
> 90

O

R

E

Z

C1
C2

CC 4
3

Case 2(a)

(b) (Number Of Consecutive Non-Zero Columns is at least Six):
If case 1 and case 2(a) do not hold then, the only case that remains
to be considered is the one where at least six consecutive columns are
non-zero. Note that C1, C2, C3 are then distinct from E1, E2, E3. We
use a computer program to verify that in this case the combined weight
of C1, C2 and C3 is at least 42. However the same cannot be said of
E1, E2, E3, and we have to do a more detailed analysis.

Now recall Equation 9, the constraints induced on E1. A quick ob-
servation reveals that its free variables are the first 15 bits and the very
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last bit. Depending on the values taken by E1s first 15 bits we sub-divide
our proof into two cases:
i. (Non-Pathological Case:) Not all of the first 15 bits of E1 are zero.

This is the simpler case. In
this case, the recurrence induces
a good expansion. By an ex-
haustive search we obtain that
in this case the combined weight
of E1, E2 and E3 is at least
40. Since the combined weight of
C1, C2 and C3 is at least 42, and
that Ci, Ei are all distinct, to-
gether they establish this case.

ii. (Pathological Case:) Here we
assume that the first 15 variables
of E1 are all zero. This is the most

0

C

C

C

2

3

1

0C

2E

E0

1E

E3Z
E
R
O

}> 42 }> 4

Case 2(b)i

subtle and difficult case. Going back to Equation 9, we note that in
this case it must hold that w63 = 1 and for all 0 ≤ i ≤ 62, wi = 0.
We call such w pathological.

Now consider Equation 10. We can have two cases here.
In the first case, assume that the first 15 variables of z are zero.

In that case, it must hold that z62 = 1. (Plugging in i = 16 to 62
in Equation 10 will yield zj = 0 for all 15 ≤ j ≤ 61 since wi = 0
for these values.) Also note that z63 is free. In this case, we also
call z pathological. In fact this may continue along the diagonal i.e.,
E3, E4, · · · may be pathological. If that happens then it is easy to
show that the first non-zero bits of E3 will be its 61st bit, that of E4

will be 60th bit and so on. Also each column will have a free variable
in its 63rd bit.

In the second case, we assume that not all of its first 15 variables
are zero. We call such z’s to be non-pathological.

We now sub-divide into many small cases depending primarily
on the number of pathological columns (and thus on the number of
free variables).
A. (# Pathological Columns ≤ 8) We break this case into two

sub-cases. That each of these sub-cases holds has been verified
using a computer program.

(I). 6th and earlier non-pathological columns are non-zero:
In this case, we verify that the combined weight of the patho-
logical columns and the first three non-pathological columns
to the right of the pathological columns is at least 40. This
ensures that in this case the minimum weight is at least 82.

We mention that the search space has dimension

# of Pathological vars + # of Non-Pathological Cols. × 16,

which is at most 40 in this case.
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We next consider the case where the non-pathological columns
are same as one of C1, C2 or C3.

(II). 6th or earlier non-pathological column is identically
zero: Firstly note that it suffices to check the case where the
6th non-pathological column is identically zero (that is E3 =
C3), since other cases do fall in this case. Now we consider the
parity check equations induced on the pathological columns
and the six non-pathological columns. Note that C1 satisfies
Equation 7 and that E1 satisfies Equation 9. Also note that
in between columns satisfy equations similar to Equations 8
and 10. These equations then set up a homogeneous system of
linear equations whose nullity can be verified (by a computer
program) to be at most 40.

Let the number of pathological columns be p and the number of
non-pathological columns be n. Specifically then the nullity of
the system can then be shown to be exactly (see Appendix A
Claim 9) : p + 64 × n − 48× (n + 1) = p + 16 · n − 48, which is at
most 40 in this case. We do an exhaustive search over the null
space to establish that the min-weight is at least 82.

B. (8 < # Pathological Columns ≤ 16): We also break this case
into two sub-cases. That each of these sub-cases holds has been
verified using a computer program.

(I). 5th and earlier non-pathological columns are non-zero:
In this case, we verify that the combined weight of the patho-
logical columns and the first two non-pathological columns to
the right of the pathological columns is at least 40. This en-
sures that in this case the minimum weight is at least 82.

Therefore the case that remains to be considered is the one
where the non-pathological columns are same as one of C2 or
C3 which leads us to the next case.

(II). 5th or earlier non-pathological column is identically
zero: Firstly, note that it suffices to check the case when the
5th non-pathological column is identically zero (that is E2 =
C3), since other cases do fall in this case. As in the 2nd sub-
case of the previous case (i.e., Case 2(b)(ii)(A)(II)), we verify
that the min-weight is at least 82.

C. (16 < Pathological Columns ≤ 28): First of all, notice that 28
columns is enough, since by our assumption there is at least one
zero column and three non-pathological column (i.e., C1, C2, C3).
Now, we also break this case into two sub-cases. That each of these
sub-cases holds has been verified using a computer program.

(I). 4th and earlier non-pathological columns are non-zero:
In this case, we verify that the combined weight of the patho-
logical columns and the first non-pathological column to the
right of the pathological columns is at least 40. This ensures
that in this case the minimum weight is at least 82.
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Therefore the case that remains to be considered is the one
where the 1st non-pathological column is the same as C3.

(II). 4th non-pathological column is identically zero: As in
the 2nd sub-case of the previous case (or Case 2(b)(ii)(A)(II)),
we verify that the min-weight is at least 82.
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Fig. 1. Illustrations of various cases in the proof of Theorem 2
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We remark that the minimum weight of this code can at most be 82 and
therefore our result is tight (see Appendix B). Extending our approach, we can
further prove the following theorem whose proof has been deferred to the full
version.

Theorem 5. The code C64 , as defined by Equation (6), has minimum weight
at least 75 (and at least 52) in its last 60 words (and in its last 48 words,
respectively).

We remark that a simple variants of the above technique can be used to give a
lower bound on the minimum weight of SHA-1 (of course, there are much fewer
cases to consider here). Specifically we have the following theorem whose proof
has been deferred to the full version of this paper (also see [6]).

Theorem 6. SHA-1 message expansion code has minimum weight 25 in the last
60 words.

5 Conclusion

In this paper we have shown how lower bounds on minimum weight of quasi-
cyclic linear codes of dimension m × n given by parity equations of the form

Wi =
i∑

t=1

aitWi−t +

((
i∑

t=1

bitWi−t

)
<<< 1

)
for i ≥ n,

can be obtained by reducing the problem to the minimum weight of significantly
smaller dimensional codes. Note that this equation is more general than Equa-
tion (5), and Equation (2) is of this form rather than the simpler Equation (5). In
some cases, we obtain the exact minimum weight, including the example codes
we considered. An obvious generalization is to consider three or more column
mixing (the equation above has only two column mixing), which could lead to
codes with even better minimum distance.

A common paradigm for designing hash functions, including MD5[12], SHA-
0, SHA-1 and SHA-2[16] is the following: the 512-bit message is first expanded
into N words, and then the N words are used as step keys (sometimes known as
round keys) in N steps of a (non-linear) block cipher invoked on an initial vector.
The output of the block cipher is the output of the compression function. As
pointed out in the Introduction, one of the key ingredients of the recent differen-
tial attacks on MD5, SHA-0, and SHA-1 has been their poor message expansion
(in terms of minimum weight) into the N words. We propose SHA1-IME which
is SHA-1 with the original message expansion (see [15]) substituted by our im-
proved message expansion as given in Equation 2. A preliminary evaluation has
shown that this proposed compression function has at most a 5% overhead in
speed over SHA-1 in a software implementation, and at most a 10% overhead
in gate count in a high performance hardware implementation. However, on the
positive side this proposed compression function resists all presently known at-
tacks against SHA-1. Thus, we consider our novel technique to be an important
advance in the design of collision-resistant hash functions.
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A Rank Proofs

Claim 7. If C0 is zero, and C1 is non-zero, then C2 is non-zero.

Proof. Assume otherwise i.e., that C2 is zero. Consider the 48 × 64 dimensional
parity check matrices (essentially Equations (7) and (9)) over F2.⎛

⎜⎜⎜⎜⎜⎝

1010000010000100100000 · · · 000000000000000000
0101000001000010010000 · · · 000000000000000000

. . . · · · . . .
0000000000000000000000 · · · 010100000100001001

⎞
⎟⎟⎟⎟⎟⎠

H1⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0100000000000011000000 · · · 000000000000000000000
0010000000000001100000 · · · 000000000000000000000
0001000000000000110000 · · · 000000000000000000000
0000100000000000011000 · · · 000000000000000000000
1000010000000000001100 · · · 000000000000000000000
0100001000000000000110 · · · 000000000000000000000

. . . · · · . . .
0000000000000000000000 · · · 100001000000000000110

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

H2

Then we need to show that H =
(

H1
H2

)
has full rank. For that it is enough

to show that there are 64 linearly independent rows. We consider the 48 rows of
H1 and 16 additional rows, namely 5th through 20th rows of H2. We reduce the
problem to showing that a certain equation over polynomial ring F2[x] does not
have solutions in a restricted set of polynomials. We associate with the vector
c = 〈c0, · · · , c63〉 in F

64
2 the polynomial c(x) =

∑63
i=0 cix

i in F2[x]. Then the
following polynomials can be associated with the 1st and 5th rows of matrix H1
and H2, respectively:

p(x)
def
= x16 + x13 + x8 + x2 + 1, and r(x)

def
= x19 + x18 + x5 + 1.

Further note that the ith (note 1 ≤ i ≤ 48) row of H1 then gets associated with
xi−1p(s). Similarly the jth (note we restrict ourselves to 5 ≤ j ≤ 20) row of H2
then gets associated with xj−5r(s). Therefore, observe that if the 80 rows that

http://www.infosec.edu.cn/
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we are considering were dependent then we would have a non-zero solution of
the following polynomial equation : p(x)α(x) + β(x)r(x) = 0, with additional
constraints that degree(α) ≤ 47 and degree(β) ≤ 15. However, it is easy to check
that p(x) is irreducible, therefore if such a equation holds then it must be the
case that p(x) divides r(x). However, it is easy to check that p(x) does not divide
r(x), thus leading to a contradiction.
Therefore H has full rank.

We now strengthen the claim slightly.

Claim 8. If C0 is zero, and C1 is non-zero, then both C2, C3 are non-zero.

Proof. Consider the following polynomials :

p(x)
def
= x16 + x13 + x8 + x2 + 1,

q(x)
def
= x15 + x14 + x, and r(x)

def
= x19 + x18 + x5 + 1 = x4 · q(x) + 1.

Let H1 and H2 be as above. First of all note that H2 has full rank. (This is clear
from the matrix. Otherwise, note that we would have an identity: q(x) · a(x) +
r(x) · b(x) = 0, with degree(a) ≤ 3 and degree(b) ≤ 43. Since degree(q · a) <
degree(r), this cannot happen.) Now we will show that the rank of the matrix⎛

⎝H2 0
H1 H2
0 H1

⎞
⎠

is at least 128. Since H1 has full rank, observe that
(

H1 H2
0 H1

)
has rank at least

96. So consider the following 92 independent rows from the above matrix, namely
5th row onwards. We also argue that another additional 5th through 40th rows
of the top H2 are also independent. If not, then they would satisfy the following
polynomial equations

α(x)p(x) + β(x)r(x) = 0 (11)
x4β(x)p(x) + γ(x)r(x) = 0 (12)

with restrictions
degree(α) ≤ 47,
degree(β) ≤ 43, and
degree(γ) ≤ 35.

Since p(x) is an irreducible polynomial, and p(x) � r(x), observe from Equa-
tion (11) that p(x)|β(x). Hence, set β(x) = μ(x)p(x). Substituting in Equa-
tion (12) we get

x4p(x)2μ(x) + γ(x)r(x) = 0.

Since p(x) is irreducible, and p(x) � r(x), and x � r(x), it must hold that x4

p(x)2|γ(x). But that is impossible, since degree(γ) ≤ 35 < 36 =degree(x4p(x)2).

Recall that we used E0 to denote a column that is zero everywhere. Also, recall
that the columns left to E0 are denoted E1, E2 and so on. In the following claim,
we will assume 3 ≤ n.
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Claim 9. Let E1, E2, · · · , Ep be p pathological columns. Also, letEp+1, Ep+2, · · · ,
Ep+n be n non-pathological columns. Further assume that Ep+n+1 = C0 is every-
where zero. If the nullity of the parity check equations resulting from these columns
for p = 0 is 16 ·n− 48, then the nullity of the parity check equations resulting from
these columns for any p ≤ 28 is p + 16 · n − 48.

Proof. Let Ni,j , (1 ≤ i ≤ n, 0 ≤ j ≤ 63) denote the entries in the non-pathological
columns. Also let Pi,j , (1 ≤ i ≤ p, for each i, 64− i ≥ j ≤ 63) be the pathological
variables. We will denote Ni = 〈Ni,0, · · · , Ni,63〉 and Pi = 〈Pi,64−i, · · · , Pi,63〉.
Let H1|i denote the matrix H1 restricted to the last i columns. (Note that only
the last i rows will be non-zero.) Also let H2|i denote the matrix H2 restricted to
the last i columns. (Note that only the last i− 1 rows will be non-zero.) Note that
〈P1, · · · , Pp, N1, · · · , Nn〉 must belong to the null space of the following matrix:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1|1 H2|2
H1|2 H2|3

. . .
. . .

H1|p−1 H2|p
H1|p H2

H1 H2
. . . . . .

H1 H2
H1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that when we restrict H1 or H2 to the last few columns, the top rows in
that restricted entries may become zero. We remove such rows if the entire row in
the above matrix H becomes everywhere zero. Note that with this modification,
the following sub-matrix is already in the echelon form:

H1 =

⎛
⎜⎜⎜⎝

H1|1 H2|2
H1|2 H2|3

. . . . . .
H1|p−1 H2|p

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(p − 1) blocks

(Observe that first block corresponding to (H1|1 H2|2) reduces to (1 10), and

that corresponding to (H1|2 H2|3) reduces to
(

10 100
01 110

)
.)

Furthermore, since by assumption the following sub-matrix has full rank:

H2 =

⎛
⎜⎜⎜⎜⎜⎝

H2
H1 H2
. . . . . .

H1 H2
H1

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(n + 1) blocks

the matrix H has full rank. Note here that in the top 48−p rows, H1|p is entirely
zero. However these rows in H are independent since H2 has full rank. In the
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remaining rows H1|p is in echelon form and hence independent. Note that the
number of rows i.e., number of constraints is:

48 × (n + 1) +
p−1∑
i=1

i = 48(n + 1) +
p(p − 1)

2
.

Also, note the number of variables i.e., columns is

64 × n +
p∑

i=1

i = 64 · n +
p(p + 1)

2
.

Thus the nullity of the system is

64 · n +
p(p + 1)

2
−

(
48(n + 1) +

p(p − 1)
2

)
= p + 16 · n − 48.

This completes the proof.

B Examples

We cite below an example where over 7 columns an average of 3 does not hold.
Below we only give 8 columns and the columns are placed horizontally. Note
that the 8 columns yield 29, whereas the first 7 columns yield only 14.

0000000000000000000000000000000000000000000000000000000001000000
0000000000000000000000000000000000000000000000000000000000110110
0000000000000000000000000000000000000000000000000000000000010100
0000000000000000000000000000000000000000000000000000000000001110
0000000000000000000000000000000000000000000000000000000000000100
0000000000000000000000000000000000000000000000000000000000000011
0000000000000000000000000000000000000000000000000000000000000001
1000101010000000001001000010000010000100101100000010001000010000

Below is a codeword in the code defined by Equation (6) with optimal mini-
mum weight. We found the following codeword while searching for Case 2(b)(ii)
(A)(II). Below we only give eight columns that includes six non-zero and two
zero columns. The rests are all zero columns. Below the columns are placed
horizontally.

0000000000000000 0000000000000000 0000000000000000 0000000000000000
0011110010011110 1000000001101001 1101001001010110 0000110010010000
1011000101000100 0010111101001000 1011100010101100 1101000000101111
1010101000111011 0010100100110010 1000000101001000 0110011000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000100
0000000000000000 0000000000000000 0000000000000000 0000000000000011
0000000000000000 0000000000000000 0000000000000000 0000000000000001
0000000000000000 0000000000000000 0000000000000000 0000000000000000


	Provably Good Codes for Hash Function Design
	Introduction
	Limitations of Purely Algebraic Techniques
	Intuition Behind the Code
	A Lower Bound on the Minimum Distance
	Conclusion 
	Rank Proofs
	Examples


