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Abstract-We propose a provably good performance-driven
global routing algorithm for both cell-based and building-block
design. The approach is based on a new bounded-radius mini-
mum routing tree formulation. We first present several heuris-
tics with good performance, based on an analog of Prim's min-
imum spanning tree construction. Next, we give an algorithm

which simultaneously minimizes both routing cost and the long-
est interconnection path, so that both are bounded by small
constant factors away from optimal. This method is based on
the following two results. First, for any given value of a param-
eter e, we can construct a routing tree with longest intercon-
nection path length at most (I + e) R, and with cost at most
(1 + (2/e)) times the minimum spanning tree weight. More-
over, for Steiner global routing in arbitrary weighted graphs,
we achieve longest path length at most (1 + e) R, with wiring
cost within a factor 2 . (1 + (2/e)) of the optimal Steiner tree
cost. In both cases, R is the minimum possible length from the
source to the furthest sink. We also show that geometry helps
in routing: in the Manhattan plane, the total wire length for
Steiner routing improves to 3/2 (1 + (I /e)) times the optimal

Steiner tree cost, while in the Euclidean plane, the total cost is
further reduced to (2/af3) ((I + (I /e)) times optimal. Fur-
thermore, our method generalizes to the case where varying
wire length bounds are prescribed for different source-sink
paths. Extensive simulations confirm that this approach works
well, using a large set of examples which reflect both cell-based
and building-block layout styles.

I. INTRODUCTION

W TH progress in VLSI fabrication technology, in-
terconnection delay has become increasingly sig-

nificant in determining circuit speed. Recently, it has been
reported that interconnection delay contributes up to 50%
to 70% of the clock cycle in the design of dense, high-
performance circuits [5], [25]. Thus, with submicron de-
vice dimensions and up to a million transistors integrated
on a single processor, on-chip and chip-to-chip intercon-
nections play a major role in determining the performance
of digital systems.

Because of this trend, performance-driven layout de-
sign has received increased attention in the past several
years. Most of the work in this area has been on the tim-
ing-driven placement problem, where a number of meth-
ods have been developed for placing blocks or cells in
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timing critical paths close together. The so-called zero-
slack algorithm was proposed by Hauge, Nair, and Yoffa
[91; fictitious facilities and floating anchors methods were
used by Marek-Sadowska and Lin [191, and a linear pro-
gramming approach was used by Jackson, Srinivasan, and
Kuh [13], [14]. Several other approaches, including sim-
ulated annealing, have also been studied [5], [18], [25].
Since no global routing solution is generally available at
the placement step, most of these placement algorithms
use the net bounding box semiperimeter to estimate the
interconnection delay of a net.

While such techniques have been developed for timing-
driven placement, only limited progress has been reported
for the timing-driven interconnection problem. In [6], net
priorities are determined based on static timing analysis;
nets with high priorities are processed earlier using fewer
feedthroughs. In [15], a hierarchical approach to timing-
driven routing was outlined. In [21], a timing-driven
global router based on the A* heuristic search algorithm
was proposed for building-block design. However, these
results do not provide a general formulation of the timing-
driven global routing problem. Moreover, these solutions
are not flexible enough to provide a trade-off between in-
terconnection delay and routing cost.

In this paper, we begin by proposing a new model of
timing-driven global routing for cell-based design, based
on the idea of finding minimum spanning trees with
bounded radius. Our method constructs a spanning tree
with radius (I + e) R by using an analog of the classical
Prim minimum spanning tree (MST) construction, where
R is the minimum possible tree radius and e is a non-
negative user-specified parameter. Such an approach of-
fers a very natural, smooth trade-off between the tree ra-
dius (maximum signal delay) and the tree cost (total in-
terconnection length). This gives the circuit designer a
great deal of algorithmic flexibility, as the parameter e can
be varied depending on performance constraints. The
method is easy to describe and implement, and empirical
performance results are very good; e.g., we obtain an
average of 25% reduction in longest source-sink path for
10-pin nets. However, the total wire cost using this
method can be an unbounded factor worse than optimal.

With this in mind, we also propose a second method
for timing-driven global routing, which is based on a
provably good algorithm that simultaneously minimizes
both total wire length and maximum delay. More specif-
ically, given a positive real parameter e and a set of ter-
minals, our method produces a routing tree with radius at
most (I + e) - R, and with total cost at most (I + (2/e))
times the MST cost. In other words, both the total wire
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length and the maximum delay of the routing are simul-
taneously bounded by constant factors away from their

optimal values. The method applies to building-block lay-
out styles in addition to the more geometric cell-based

designs. In fact, our method generalizes to arbitrary
weighted graphs, and also to Steiner routing formula-
tions, where we achieve a wire length bound of 2 (I +
(2/e)) times the optimal Steiner tree cost, while still ob-

serving the (1 + c) - R radius limit.
We then show that geometry helps in routing: in the

Manhattan plane, our wire length bound for Steiner rout-

ing can be improved to (3/2) (1 + (I/e)) times opti-
mal, and in the Euclidean plane, the Steiner routing bound

improves further to (2/ 3) * (1 + (1 /e)) times optimal.
This series of results is especially surprising since con-
struction of a minimum spanning tree with bounded di-
ameter in a general graph is NP-complete [10], as is the

Steiner problem in graphs [ 121.
Our construction can minimize either total wire length

(a minimum spanning tree) or the longest source-sink path
(a minimum delay, or minimum radius, tree), depending

respectively on whether we set e = o or e = 0. Between
these two extremes, the method offers a continuous,
smooth trade-off. In practice, our algorithm exhibits very
good empirical performance, which confirms this smooth
trade-off between the competing requirements of mini-

mum delay and minimum total wire length.
Note that in VLSI circuit design, the timing is actually

path-dependent, rather than net-dependent. In other
words, the timing constraint is specified by the delay from
primary inputs to primary outputs. Thus, we may wish to
use varying wire length constraints on the different

source-sink paths within a given signal net; for example,
a source-sink connection on a timing-critical path will re-

quire a small value of c, while a connection not on any
critical path can allow large e. We therefore extend our

method to handle this case, and establish analogous con-
stant-factor bounds on both wire length cost and the ra-
dius of the routing solution.

The remainder of this paper is organized as follows. In

Section II, we present the general formulation of the per-
formance-driven global routing problem. In Section III,
we give a very natural heuristic construction (as well as

several simple variants) with good empirical performance
for computing bounded-radius routing trees. In Section

IV, we present a second effective algorithm for computing
bounded-radius routing trees, and show that the algorithm

is provably good with constant-factor performance bounds

with respect to both delay and routing cost. Section V

generalizes our method to Steiner tree global routing. Sec-

tion VI generalizes our approach to the case where differ-

ent values of c are allowed within a given signal net, and

experimental results are reported in Section VII.

II. THE PROBLEM FORMULATION

A signal net N is a set of terminals, with one terminal
s e N a designated source and the remaining terminals

sinks. Because terminals of a signal net can be embedded

in the Manhattan plane (for standard-cell or sea-of-gates
design) or within a channel intersection graph (for macro-
cell or block design), the global routing problem can have
two distinct flavors. In the former case, the cost of routing
between two nodes is given by geometric distance, while
in the second case the cost is the total edge cost of the
shortest path between the nodes.' With this in mind, we
define the underlying routing graph to be a connected
weighted graph G = (V, E). A net is a subset of the nodes
in this graph. A routing solution of a net N is a tree in G,
which we call the routing tree of the net, connecting all

the terminals/nodes in N.
Since the routing tree may be treated as a distributed

RC tree, we may use the first-order moment of the im-

pulse response (also called Elmore's delay) to approxi-
mate interconnection delay [8], 123]. A more accurate ap-
proximation can be obtained using the upper and lower
bounds on delay in an RC tree derived in [23]. However.
although both the formula for Elmore's delay and those
in [23] are very useful for simulation or timing verifica-
tion, they involve sums of quadratic terms and are difficult
to compute and optimize during the layout design process.

Thus, a linear RC model (where interconnection delay
between a source and a sink is proportional to the wire
length between the two terminals) is often used to derive
a simpler approximation for interconnection delay (e.g.,
[18], [221). In this paper, we shall also use wire length to
approximate interconnection delay in the construction of
routing solutions. In practice, a subsequent iterative im-

provement step, based on a more accurate RC delay
model, may be used to enhance the routing solutions.

We say that the cost of a path in G is the sum of the

edge weights in the path. A shortest path in G between

two terminals x, y e N, denoted by minpathG(x, y), is a
path connecting x and y with minimum cost. In a routing

tree, T, minpathT(x, y) is simply the unique path between
x and y. Note that in the geometric case, the cost of

minpathG(x, y) is simply geometric distance, and we
use the notation dist(x, y) for clarity. For a weighted

graph G, we use distG(x, y) to denote the cost of min-
pathG(x, y).

Definition: The radius R of a signal net is the cost of
a shortest path in G from the source to the farthest sink,

i .e., max,, N distc (s, x) .

Definition: The radius of a routing tree T denoted by

r(T), is the cost of a (shortest) path in Tfrom the source
s to the furthest sink. Clearly, r(T) 2 R for any routing

tree T.

According to the linear RC delay model, we minimize
the interconnection delay of a net by minimizing the ra-
dius of the routing tree, which measures the maximum

interconnection delay between the source and any sink.

'For simplicity of presentation, our definition of the cost of an edge re-

flects only the wire length. It is straightforward to extend the cost definition
to be an increasing function of wire length, channel capacity. and current
channel density. The results presented in the next four sections will still

hold.
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Fig. I An example where the cost of a shortest path tree (right) is Q( N
times larger than the cost of a minimum spanning tree (left).

2 2

6< 3 21X3
433 3

(a) (b) (c)

Fig. 2. An example in the Manhattan plane of how increasing the value of

e may result in decreased tree cost, but increased radius r(T): (a) = 0,

cost(T) = 17, n(T) = 6; (b) c - 1, cost(T) - 15, n(T) - 10; (c) e
cost(T) = 14, r(T) = 14.

On the other hand, we also want a routing tree with small

total wire length. Without this latter consideration, we

could simply use the shortest path tree (SPT) of the net,

i.e., the union of all the shortest source-sink paths com-

puted by Dijkstra's single-source shortest-path algorithm

[20]. Although the SPT has the smallest possible radius

r(SPT) of any routing tree, the SPT cost might be very

high. Fig. I shows a case where the cost of the shortest

path tree can be R(I N i) times greater than the cost of the

minimum spanning tree.

A routing tree with high cost may increase the overall

routing area. Moreover, high cost also contributes to the

interconnection delay, which is not captured in the linear

RC model. Therefore, neither tree shown in Fig. 1 is par-

ticularly desirable. In order to consider both the radius

and the cost in the routing tree construction, we formulate

the timing-driven global routing problem as follows:

The Bounded Radius Minimum Routing Tree (BRMRT)
Problem: Given a parameter e 2 0 and a signal net with

radius R, find a minimum-cost routing tree T with radius

r(T) s (I + e) - R.
The parameter e controls the trade-off between the ra-

dius and the cost of the tree. When e = 0, we minimize

the radius of the routing tree and thus obtain a shortest-

path tree for the signal net; on the other hand, when e =

0o we minimize the total cost of the tree and obtain a min-

imum spanning tree. In general, as E grows, there is less

restriction on the radius, allowing further reduction in tree

cost. Fig. 2 shows an example where three distinct span-

ning trees are obtained using different values of e: Fig.

2(a) shows the minimum radius spanning tree correspond-

ing to the case e = 0, with maximum path length r(T) =
6; Fig. 2(b) shows a solution with r(T) = 10, correspond-

ing to the case e I; and Fig. 2(c) shows the minimum

spanning tree corresponding to the case e = xi, with

r(T) = 14.

Fig 3 An example in the Manhattan plane where a SPICE simulation in-

dicated that the routing produced by our algorithm (middle) outpertottims an

MST routing (right) by 81 ps, and outperforms the SPT routing (lefr) by
414 ps, The coordinates of the terminals are 1(102. 98), (147. 153), (202,

202), (153, 249). (53, 147), (253, 153), (153, 52). (100, 203). (200, 103)(,

and e = 1,5. The SPICE simulation assumes a generic CMOS design:

MOSIS 2.0 Am CMOS technology, layout normalized to a I cm die and

0.3 pF gate loading capacitance.

Because the circuit delay is determined by critical paths

between primary inputs and primary outputs, Section VI

below will generalize the BRMRT formulation to allow

different e, parameter values to be associated with each

sink xi e N in a given net. To validate the use of the linear

delay model, SPICE simulations for a number of routing

examples were examined. As an example, Fig. 3 shows

how the optimal delay routing indeed embodies a trade-

off between the shortest path tree routing and the mini-

mum-weight spanning tree routing.

111. A BOUNDED-RADIUS MINIMUM SPANNING

TREE HEURISTIC

In global routing for cell-based design, the distances

between nodes are given by geometric distance. and the

underlying routing graph is G = (V, E) with V = N. For

this case, many global routing methods are based on con-

structing a spanning tree for each net (e.g., see [3]).

Therefore, the BRMRT problem becomes the bounded

radius minimum spanning tree (BRMST) problem.

We now give a very natural and simple heuristic that

finds a routing solution by growing a single component,

following the general scheme of Prim's classical mini-

mum spanning tree construction.

A. The Basic Algorithm

Our basic algorithm grows a tree T = (V', E') which

initially contains only the source s. At each step, we

choose x e V' and y e N - V' such that dist (x, y) is min-

imum. If adding (x, y) to T would not violate the radius

constraint, i.e., distT(s, x) + dist(x, y) s (1 + e) R,

we include the edge (x, y) in T. Otherwise, we "back-

trace" along the path from x to s to find the first terminal

x' such that (x', y) is appropriate (i.e., distT(s. x') +
dist(x', y) < R), and add (x', y) to the tree. In the worst

case, the backtracing will terminate with x' = s, since the

edge (s, y) is always appropriate.

Note that in backtracing we could choose x' such that

distT(s, x') + dist(x', y) < (I + e) - R. However, our

choice of appropriate edges leads to fewer backtracing op-

erations, while guaranteeing that backtracing is still al-

ways possible. In other words, we intentionally introduce

some "slack" at v so that terminals within an cR neigh-

borhood of y will not cause additional backtracing. Lim-
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iting the amount of backtracing in this way will keep the

cost of the resulting tree close to that of the minimum

spanning tree.

We call this algorithm the Bounded Prim (BPRIM) con-

struction. The high-level description is given in Fig. 4.

This algorithm has several advantages. First, we can show

that the radius of the resulting tree is never greater than

the radius of the MST whenever the MST is unique.

Property 1: If the MST is unique, then r(TBPRIM)

r (Tqs7, -

Proof: If r(TMST) - (1 + e) - R, then r(TBPRIM)

r(TMsT) since the two trees will be identical. Otherwise,

r(TBPRjsl) S (I + e) R < r(TMST) by construction. Z

If the MST is not unique, then the radius of different

minimum spanning trees can vary by an unbounded

amount, and r(TBPRIM) may be greater than r(TWST); i.e.,

Property 1 will not hold for some choice of the MST. Fig.

5 shows a point set where a Prim-like minimum spanning

tree algorithm may choose a connection to point yl instead

of point xi; or Y2 instead of x2 , etc., so that the tree radius

is much greater than optimum. In this way, for some MST

it may be possible for an unfortunate sequence of choices

by BPRIM to yield r(TBpRM) > r(MST) even though the

two trees have identical cost. However, r(TBpRlM) cannot

be greater than the maximum possible MST radius.

With regard to total tree cost, we note that the differ-

ence between BPRIM and MST tree cost will depend on

the parameter c. In practice, most nets will have between

two and four pins. Furthermore, it is unlikely that a single

gate will be used to drive more than six gates in CMOS

design. In this case, we can show that the cost of the re-

sulting tree is within a small constant factor of the cost of

the MST for nets of practical size. Table I gives the worst-

case ratio of BPRIM cost over MST length for small val-

ues of I N l, as a function of e.

Property 2: Let B(e) be the worst-case ratio of the cost

of BPRIM output to the MST cost. Then the bounds listed

in Table I hold.

Proof: These results are obtained by studying the

number of backtracings that can occur. We show the proof

for \ N I - 5. Other cases are similar.

Assume that the coordinates of the set of terminals have

been scaled so that the set has unit radius, and let

cost(MST) be the cost of a minimum spanning tree. If

backtracing occurs, then cost(MST) 2 1 + F. Suppose

that there is only one backtracing. Let cost(e) be the cost

of the edge which caused the backtracing. Then

B(e) c cost (MST) - cost (e) + 1

cost(MS7I)

I 1 2 +
•+ ~ <1I+ 1

cost(MST) I + e I +

If backtracing occurs twice, let cost (x) and cost(y) be

the costs of the edges which cause the backtracings. Then,

Fig. 4. Algorithm BPRIM: computing a hounded radius spanning tree. T.
for a given set of terminals, N, with source, s e N, and radius, R, using

parameter e.

Fig. 5. An example where the radius of the rutting tree (MST) produced
by a Prim-like construction (right) is arbitrarily larger than a minimum-
radius MST (left).

TABLE I
ANALYSIS FOR SMALL NETS IN THE MANhATTAN PLANE

Net size Bound B(c) = 0 c = Ic =I

NI =2 1 1 1 1

INI = 3 2 2 4 11Tf 3

N1 = 4 max(2+f, 1+E3 3 2

NI = 5 max(3+, " ) 4 7 2

IN= max(,1+44h) 32

B(e) -
cost(MST) - cost(x) - cost(y) + 2

cost(MST)

2 2 3+ e
c I + 1 - I + l = l

cost (MST) 1I- + 1 + E

If backtracing occurs three times, the tree produced by
BPRIM is a star graph. Moreover, in this case, it is easy
to see that cost (MST) 2 1 + 3e. Thus,

4 4
B(t) < l +

cost (MST) 1 ± 3E

T = (V',E') = ({s),0)
while V'I < INI

Select two terminals x E V' and y e N - V' minimizing dist(r, y)

if distr(s, X) + dist(x, y) < (1 + c) R then x' = x
else find the first terminal x' along the path in T from x to s

such that diStT(S, X') + dist(x', y) < R
V' = V' U jr']

E'= E'U {(',y)}

742
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Therefore,

B(E : mx 2 + e 3 + e 4 \
B(c) < max ( I +1+ e: I + 3e)

-m 3 + e 43
- tax( + e ,I + 3E)

In fact, the experimental results of Section V show that

B(e) is still bounded by a small constant even for very

large nets (i.e., see the tables of Appendix I). However,

examples exist which show that the worst-case perfor-

mance ratio of BPRIM is not bounded by any constant for

any value of e.

Theorem 1: For any e there exists a net for which

BPRIM will have an arbitrarily large performance ratio.

Proof: On the net shown in Fig. 6, BPRIM will have

an unbounded performance ratio. The optimal solution is

shown on the left, where all source-leaf path lengths are

equal to R. Terminal v is situated so that the path length

from the source to any leaf via y is slightly greater than

(1 + e) * R. This will cause the BPRIM construction to

backtrace from all of the leaves back to the source, yield-

ing an unbounded performance ratio. If e is large, y can

be replaced by a long path of many closely spaced ter-

minals so that BPRIM creates a long path between s and

x; this yields the arbitrarily large performance ratio for

any value of e. 0

The time complexity of BPRIM is 0(n 2 ), and there are

instances where this bound is tight, since each new ter-

minal can force examination of most of the terminals that

have already been added to the tree.

B. Extensions of BPRIM

As it turns out, the bounded-radius construction can also

be applied to minimum spanning tree methods other than

Prim's algorithm. A more general algorithm template is

given in Fig. 7. This general template gives rise to a num-

ber of distinct variants, depending upon how the pair of

terminals x and y are selected inside the inner loop. Sev-

eral variants give significant performance improvements

over the BPRIM algorithm:

* HI-Find x and y as in BPRIM, and select the ter-

minal x' along the path in T from x to s which yields

a minimum-length appropriate edge (x', y); add (x',

y) to T.
* H2-Find a terminal v e N - V minimizing dist(x,

y) for any x e V', and select the terminal x' e V'

which yields a minimum-length appropriate edge (x',

y); add (x', y) to T.
* H3-Find a pair of terminals x e V' and y e N -V'

that yield a minimum-length appropriate edge (x, y);

add (x, y) to T.

Property 1 also holds for each of the variants HI, H2,

and H3. The time complexity of variants HI and H2 is

0(n2 ), while variant H3 can be easily implemented within

2

clock
source'-,,

.

ly

Fig. 6. Example where the performance ratio of the algorithm is not

bounded by any constant for any e. The optimal solution is shown on the

left, while the BPRIM output is shown on the right.

T= (V',E') = ({sJ,0)
while lV'j < INI

Select two terminals x E V' and y E N - V',

with distT(s, z) + dist(x,y) < (1 + o) R

V'= V' U {X}
E'= E' U { (Z y)}

Fig. 7. A more general BPRIM template computing a bounded-radius

spanning tree T for a given set of terminals N with source s C N and radius

R, using parameter e.

time 0(n 3). Empirical results of the BPRIM method are

very promising, as can be seen in Appendix I. However, Fig.

6 shows that BPRIM will also have unbounded worst-case

performance ratio. Thus, the next section develops a new,

provably good approach to performance-driven global routing

based on a combination of minimum spanning tree and shortest

path tree constructions.

IV. BOUNDED-RADIUS SPANNING TREE

GLOBAL ROUTING

The basic idea of our provably good bounded-radius

minimum spanning tree algorithm is to construct a

subgraph Q which spans N and has both small total cost

and small radius. Then the shortest path tree of Q will

also have small cost and radius, and will correspond to a

good routing solution. We again use the routing graph G

= (V, E), with V = N. Our algorithm is as follows.

* Compute the shortest path tree SPTG of G, and com-

pute the minimum spanning tree MSTG of G. Also,

initialize the graph Q to be equal to MSTG.

* Let L be the sequence of vertices corresponding to a

depth-first tour of MSTG, where each edge of MSTG

is traversed exactly twice (see Fig. 8). The total edge

cost of this tour is twice that of MSTG.

* Traverse L while keeping a running total S of tra-

versed edge costs. As this traversal reaches each node

Li, check whether S is greater than e * distG(s, Li).

I1% q
s

v a

F

- I
e * @ ;
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Fig. 8. A spanning tree and a depth-first tour.

If so, reset S to 0 and merge minpathG (s, Li) into Q.
Continue traversing L while repeating this process.

* Our final routing tree is SPTQ, the shortest path tree
over Q.

A formal description of the algorithm is given in Fig. 9.
We now prove that for any fixed e this algorithm pro-

duces a routing tree with radius and total cost each simul-
taneously bounded by a constant times optimum:

Theorem 2: For any weighted graph G and parameter
e, the routing tree T constructed by our algorithm has ra-
dius r(T) < (1 + e) R.

Proof: For any v e V, let v, I be the last node be-
fore v on the MST traversal L for which we added
minpathG(s, v; -) to Q in the algorithm, as shown in Fig.
10. By the construction of the algorithm, we know that
distL(v,- I, v) S e R. We then have

dist7 (s, v) C distA(s, Vi - I) + distL(v - 1, V)

• distG(s, Vi -) + e * R

s R + e R = (I + e) -R. El

Theorem 3: For any weighted graph G and parameter
e, the routing tree T constructed by our algorithm has
cost(T) < (I + (2/e)) cost(MSTG).

Proof: Let vs, v2, *, v. be the set of nodes to
which the algorithm added shortest paths from the source
node, and let v0 = s. We have

cost(T) s cost(MSTG) + L distG(s, Vi).

since T is a subtree of the union of the MST with all of
the added shortest paths. By the algorithm construction
distL(vi- I, v) Ž e distG(s, v,), and so we obtain

ICcost(T) e cost(MSTG) + E- diStL(vji- I Vi)

< cost (MSTG) + cost(L).

Fig. 9. Computing a bounded-radius spanning trec Tfor G = (V. E). with
source s e V and radius R, using parametel t. 7 will have radius at most (I
+ e) R, and cost at most (I + (2/c)) cosr(tIST0 ).

S

minpath (svi-)

L =MST tour dStL(vilI V)p-p
1. Vi.- V

Fig. 10. Depiction of the bounded-radius construction.

Since cost (L) • 2 cost (MSTG), we have

2
cost(T) c cost(MSTG) + - cost (MSTG)

f

(1 + -) . cost(MSTG). CD

Because our method yields a bounded-radius, bounded-
cost routing tree, we call this the BRBC algorithm.
Theorem 3 suggests that for C = 0, the ratio
cost(T)/cost (MSTG) is not bounded by any constant; in-
deed, this is true for the example of Fig. I above, where
cost(T)/cost(MSTG) is Q(|(NJ). A similar idea was re-
cently used in the distributed computation literature by
Awerbuch, Baratz, and Peleg [I] for constructing span-
ning trees with small diameter and small weight. How-
ever, our algorithm treats the bounded-radius minimum
spanning tree problem, while they treat the tree diameter
instead. Moreover, our method involves a simpler con-
struction with tighter performance bounds.

V. BOUNDED-RADIIUS STEINER TREE GLOBAL ROUTING

In the previous section, we treated the bounded-radius
minimum spanning tree problem, where each net N is
routed in an underlying routing graph G = (V, E), with
V = N. As noted earlier, the spanning tree routing has
proved useful in cell-based design. In this section we treat
the more general version of the problem, where Steiner
points are allowed.

compute MSTG and SPTG
Q = MSTG

L = depth-first tour of MSTG
S=O
for i = 1 to ILI-1

S = S + cost(Li, Li+ I)
if S > e distG(s, Li+t) then

Q = Q U minpathG(s, Lj+I)
S=a

T = shortest path tree of Q

744

1-1U -J -- I, I



745
CONG t a.: PROVABLY GOOD PERFORMANCE DRIVEN GLOBAL ROUTING

A. An Algorithm for Arbitrary Weighted Graphs With
Steiner Points

For building-block design, the underlying routing graph

is based on the channel intersection graph [4], and a net

N is a subset of the vertices of G. In this case, the BRMRT

problem is actually the bounded radius optimal Steiner
tree (BROST) problem, and the channel intersection

points (i.e., the nodes in V - N) arc potential Steiner

points. The following is immediate:

Lemma 1: The BROST problem in NP-complete.

Proof: Setting e = x yields the graph Steiner prob-

lem, which is known to be NP-complete 112]. 7

Hence, in the BROST problem, even the construction

of a "minimum spanning tree" for N in G is equivalent

to the Steiner problem in graphs. This means that if we

are to apply our graph version of the BPRIM algorithm to

the BROST problem and still maintain polynomial com-

plexity, we have to be satisfied with an approximation to

the minimum-cost tree spanning N (i.e., a Steiner tree)

within G.
Recall that in applying the BRBC algorithm to general

graphs, the only reason we use the MST is to obtain a

reasonably short tour of the vertices. Toward this end,

any tour of the vertices will suffice (e.g., traveling sales-

man, Chinese postman). In constructing this tour we are

not even restricted to visiting each node at most once, just

as long as every node is visited at least once, and the total

cost of the tour is still reasonably small.

Our approximation algorithm for the bounded-radius

optimal Steiner tree problem is similar to the algorithm

presented in Section IV. Note that given any approximate

Steiner tree T, we can use the approach of Section IV to

construct a routing tree with radius within (I + c) ' r( T)
and cost within (1 + (2/e)) * cost(T). Ouralgorithm uses

a heuristic from Kou, Markovsky and Berman (KMB)

117], [26] to build a Steiner tree T - TKMB in the under-

lying routing graph, with TKMB having cost within a factor

2 of optimal.2

We construct a depth-first tour of the heuristic Steiner

tree TKwB. Next, we traverse the tour, adding to TKMB the

shortest paths from the source to the appropriate vertices

of the tour, as in Section IV. Finally, we compute the

shortest path trec in the resulting graph and output the

union of the shortest paths from the source to all terminals

in N (which includes intermediate nonterminal nodes on

the shortest paths as Steiner points). Note that the cost of

the tour will be at most four times the optimal Steiner tree

(T,,,,) cost. Thus, the resulting routing tree cost is at most

2 * (1 + (2/e)) times optimal.

2Given a graph G = FV, F) and a net of terminals N V V. the method

of Kou, Markovskv, and Berman is as follows First, construct the corn

plete graph over N with each edge weight equal to the cost of the corre-

sponding shortest path in G. Compute T, the minimum spanning tree of

this complete graph, and expand each edge of T into the corresponding

shortest path, yielding a subgraph G' that spans N. Finally, compute the

minimum spanning tree T of G', and delete edges from T' until all leaves

are nodes of N. Output the resulting tree

Theorem 4: For any weighted graph G = (V, E), node

subset N c V, and parameter e, the routing tree T con-

structed by our algorithm has radius r(T) s (I + e) - R.
and cost(T) c 2 (I + (2/e)) cost(T(,p,).

Proof: By our previous arguments, r(T) < (1 + e)
R. In addition, cost(T) < (I + (2/e)) COSt(TKMB),

where TKMB is the approximate Steiner tree produced by

the method of [17]. Since cost(TAMB) < 2 cost(T,,P,),
we have cost(T) c 2 (1 + (2/e)) * cost(Tl,,,). El

B. Geometry Helps in Routing

If we are routing in a metric space and are allowed to

introduce arbitrary Steiner points to reduce the routing

cost/diameter, we can slightly modify the basic algorithm

(of Fig. 9) to introduce Steiner points on the tour L when-

ever S = 2c R. From each of these Steiner points we

construct shortest paths to the source and add them to Q

as in the original algorithm. Thus, each node in the tra-

versal of L will be within e - R of a Steiner point, i.e.,

within (I + c) R of the source. In this case, we can

show that the same radius bound is maintained

Theorem 2': In the geometric plane., for a given pa-

rameter e the routing tree T constructed by our algorithm

has radius r(T) c (I + e) R. [7

At the same time, we can show that the cost of the routing

tree will be reduced to the following:

Theorem 3': In the geometric plane, for a given pa-

rameter e the routing tree T constructed by our algorithm

has cost(T) s 2 (I + (I /e)) cost (T,,,,). [L

The proofs of these two results are similar to those of

Theorems 2 and 3.
In addition, well-known results which bound the

MST/ Steiner ratio in various geometries can be used with

Theorem 4 and the above scheme to yield even better

bounds whenever the edge weights correspond to a metric

(e.g., Manhattan or Euclidean). To illustrate how these

observations can be combined to yield improved bounds

for Steiner routing in metric spaces, we give two imme-

diate examples.

Corollary 1: Given a set of terminals N in the Man-

hattan plane and a real parameter c, our algorithm will

produce a routing tree T with r(T) bounded by (I + e)

times optimal and with cost bounded by (3/2) ( (I
(I/e)) times optimal.

Proof: By a result of Hwang [111, the rectilinear

minimum spanning tree gives a 3/2 approximation to the

rectilinear optimal Steiner tree. We then apply arguments

similar to those of Theorems 2 and 3. [l

Corollary 2: Given a set of terminals N in the Euclid-

ean plane and a real parameter c, our algorithm will pro-

duce a routing tree Twith r(T) bounded by (I + e) times

optimal and with cost bounded by (2/s3i) (I + (I /e))

times optimal.
Proof: By a recent result of Du and Hwang [7], the

Euclidean minimum spanning tree gives a 2/13 approx-
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imation to the Euclidean optimal Steiner tree. We again
apply the arguments of Theorems 2 and 3. F]

Note that this result generalizes when we have in-
creased flexibility in the wiring geometry, e.g., 30°-600-
900 wiring instead of rectilinear. By applying a recent re-
sult [24] for X geometries (allowing angles i7r/X), a cost
bound of (2/\13) cos (?r/X) (1 + (I /6)) may be estab-
lished. When X approaches ox, this bound approaches the
bound of the corollary above.

VI. GENERALIZATION TO NONUNIFORM VALUES OF e

Often we may wish to use varying wire length con-
straints on the different source-sink paths within a given
signal net, since timing in VLSI circuits is actually path-
dependent rather than net-dependent. For example, a
source-sink connection on a timing-critical path will re-
quire a small value of e, whereas for a connection not on
any critical path, we may allow large e in order to reduce
total wire length. This yields the following generalization
of the BRMRT formulation:

The Nonuniform Bounded Radius Minimum Routing
Tree (NBRMRT) Problem: Given parameters 6, - 0 as-
sociated with each sink terminal tj of a signal net having
source s and radius R, find a minimum-cost routing tree
T such that distT(s, t) c (1 ±+ ei) R for each ti.

In this section, we extend our method to handle this
case, and establish constant-factor bounds on both wire
length cost and radius of the routing solution. Although
we restrict the discussion to spanning tree routing, exten-
sions to (geometric) Steiner routing are straightforward,
using the techniques of Sections IV and V.

To handle a different path length constraint E, for each
terminal tj in the net N, we modify the original algorithm
of Fig. 9 by changing the conditional inside the loop from
S 2 E * dist; (s, Li , 1) to S 2 E+i + I distG (s, Li + l). An

argument identical to that in the proof of Theorem 2 yields
the following bound on the pathlengths:

Lemma 2: For an arbitrary weighted graph G with
source s and radius R, and a set of terminal radius param-
eters El, C2, * * *, eINI, our modified algorithm constructs

a routing tree T such that distT(s, ti) ' (1 + 6,) * R for

each terminal ti.

Clearly, by arguments similar to those used earlier, our
modified algorithm constructs a routing tree T with
cost(T) < (I + 2/min (El, E2, * * , EIN )) cost(MSTG).
However, it is possible to improve this bound, as
follows. Without loss of generality, we can assume that
all of the ci's are sorted in nondecreasing order: El <

E2 * EN1. Let e = maxj'l i,, and define k =
[2 * cost(MSTG)/((1 + e) * R)]

Lemma 3: For any weighted graph G and a set of
terminal radius parameters El - E2 -' * c eN, our

modified algorithm constructs a routing tree T with

S

dSt ~s,viN

L =MST tour p

Bob -1 1 v V

Fig. 11. Tree construction using nonuniform values of e.

cost(T) s (I + (k/(k- 1)) 2/HM(cl, C2, ' * *, Ek))

cost(MSTG), where HM denotes harmonic mean.

Proof: Let vl, v2 , ' * *, v, be the set of nodes to

which the algorithm added shortest paths from the source

node, as shown in Fig. 11. As usual, the routing tree pro-

duced by our modified algorithm is a subtree of Q, the

union of MSTG and the added shortest paths. The routing

tree cost is therefore bounded by cost(Q) = cost(MST)

+ 7', I distG(s, Uv) c cost (MST) + Em'. , I1/i distL(vi-1,
vi). Let 1, denote distL(vi 1, vi). By the construction, we

have i, > ci 6 distG(s, vi). Because no edge length is

greater than R, 1I c (I + e) R. and E' li = 2

cost (MSTG) c k * (I + e) * R. Therefore,

1i (I (1+ e) * R
i= IEi i I ,

E - distL6(7, ,, Vi)
i=l Ie;

since 1i - (I + e) * R, ET I 1I • k (1 + e) R, and the

EC's are in sorted order. Factoring out (1 + e) and using

the definition of k, we obtain

k1

(1 + e) * E - R

1 2 * cost(MSTG)

c (I + e) i~ Eei (1 + e) (k - 1)

Canceling (I + e), multiplying by k/k, and regrouping,

we get

k 1

k I iC * 2 cost(MSTG)
k 1 k

k I *2 * cost (MST,).

k- I HM(E, E2, ,6k)

It follows that

cost(Q) - cost(MST) +
k - I HWE(I1 E2, ,66)

* 2 - cost (MSTG)

( k- I HM(cj, E2, , EJ)

* cost(MSTC)

These results are summarized as follows:

FD
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Fig. 12. Example where BPRIM outperforms variants H2 and H3; here S

is a very small real number and e - (2 - 36l)/(2 + 36).

1L E-=100

E =0.50

C=0.l0 '*%**
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Fig. 13 These charts illustrate the smooth trade-off between total routing cost and maximum signal delay produced by the

BPRIM algorithm. The parameter e determines the trade-off between the shortest path tree aed the minimum spanning tree.

Theorem 5: For any weighted graph, G, and a set of

terminal radius parameters el ' <2 '< * • e - vl, our

modified algorithm constructs a routing tree T with each

terminal tj having distT(s, tO) < (1 + ej) R, and with

cost(T) < (1 + (k/(k- 1)) 2/HM(cl, C2, * , 4))

cost(MSTG), where k = 72 cost(MSTG)/((I + e)

R)] and HM denotes harmonic mean. D

VII. EXPERIMENTAl RESULTS

The BPRIM algorithm and variants HI, H2, and H3,

as well as the approximation algorithms for bounded-ra-

dius minimum spanning tree routing and for bounded-ra-

dius optimal Steiner tree routing, were implemented in

ANSI C for the Sun-4, Macintosh, and IBM environ-

ments; code is available from the authors upon request.
The BPRIM algorithm and variants Hi, H2, and H3

were tested on a large number of random nets of up to 50

terminals, generated from a uniform distribution in the

1000 x 1000 grid. These are standard testbeds which cap-

ture the statistical properties of signal nets in actual lay-

outs. As noted in, e.g., [16], any set of approximation

heuristics induces a meta-heuristic which returns the best

solution found by any heuristic in the set and has asymp-

totic complexity equal to that of the slowest heuristic; we

implemented the meta-heuristic over BPRIM, HI, H2 and

H3, denoted by Meta (BPRIM, Hi, H2, H3). Here, Meta

(BPRIM, HI. H2, H3) returns the routing tree with min-

imum cost.
Although there exist examples where the BPRIM al-

gorithm outperforms the more complicated variants (e.g.,

see Fig. 12), the data shown in Table III in Appendix I

indicate that, on average, variant HI dominates BPRIM,

H2 dominates HI, and H3 dominates H2. Fig. 13 shows

that the BPRIM approach produces a very smooth trade-

off between routing cost and tree radius.
The BRBC algorithm for spanning tree routing was

tested on a large number of random nets generated from

a uniform distribution in the grid. Results are summarized

in Fig. 14, which clearly shows the trade-off between

routing cost and maximum delay. As E decreases, both the

cost and radius curves shift monotonically from that of

the minimum spanning tree to that of the shortest path
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Fig 14. Thcsc charts illustrate the smooth trade-off produced by our algorithm between total routing cost and maximum signal

delay. In both cases the envelope of performance lies between thc shortest path tree and the minimum spanning tree, and the

parameter e determines the exact trade-off.

tree. More detailed data is given in Table IV in Appen-

dix II.
The BRBC algorithm for Steiner tree routing was tested

on random block layouts in the grid; these were generated
by adding a fixed number of nonoverlapping blocks, with
length, width, and lower-left coordinates all uniformly
distributed. Given a block design, nets with terminals on
the block peripheries were routed within the correspond-
ing channel intersection graph. An example of the output

from our algorithm is shown in Fig. 15.
A detailed summary of experimental results for Steiner

routing in block designs is contained in Table V in Ap-
pendix II. Once again, the simulations confirm the trade-

offs inherent in the bounded-radius routing approach. Note
that although our construction starts with the heuristic
Steiner tree of Kou, Markovsky, and Berman, our routing
solution may in some cases have smaller cost than the
KMB tree. In all cases, the radius of our routing tree is

no larger than that of the KMB tree. This too is reflected
in the experimental data. Finally, SPICE was used to

compare routings produced by our algorithm with MST
routings for selected nets, as noted earlier in Fig. 3.

From Tables II, III, and IV, we observe the following.
For any given value of e, the BPRIM approach, being

inherently greedy, will yield a routing solution with ra-

dius approaching (1 + e) R, but with small tree weight.
On the other hand, the BRBC approach, being more con-
servative, will yield a routing solution with radius notice-
ably smaller than (I + e) * R, but at the expense of slightly
larger tree cost. Therefore, the BRBC algorithm will have

a slightly shifted cost-radius curve compared with the
BPRIM algorithm. In practice, the asymptotic efficiency
of implementation and the provably good output provide

Fig. 15. A set of placed modules and their channel intersection graph. The
highlighted tree is the routing produced by our algorithm.

compelling reasons to adopt the BRBC algorithm, rather
than the BPRIM approach.

VIII. CONCLUSIONS

We have proposed a new bounded-radius minimum
spanning tree formulation for timing-driven global rout-

ing in both cell-based and building-block design. An ef-
fective method based on an analog of Prim's minimum
spanning tree construction is given. Furthermore, we have

also proposed a new, provably good general algorithm for
timing-driven global routing. This method is based on a
routing tree construction where both the total wire length

and the maximum delay of the routing are bounded by

minimum spanning tree
AA I
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TABLE II

MINIMUM, AVERAGE, AND MAXIMUM RADIUS RATIOS FOR VARIOUS VALUES OF C.

net BPRIM 12 H3 Meta

size n Tave max min ave max min ave I max min ave max min ave max

0.10 5 0.42 0.82 1.00 0.42 0.82 1.00 0.42 0.82 1.00 0.42 0. 1.0 042 082 1.00

0.10 8 0.26 0.77 1.00 0.26 0.77 1.00 0.28 0.77 1.00 0.28 0.77 1.00 0.28 0.77 1.00

0.10 10 0.36 0.75 1.00 0.36 0.74 1.00 0.36 0.75 1.00 0.36 0.75 1.00 0.36 0.75 I .00

0.10 15 0.34 0.71 1.00 0.34 0.71 1.00 0.34 0.71 1.00 0.34 0.71 1.00 0.34 0.71 1.00

0.10 25 0.33 0.69 1.00 0.33 0.68 1.00 0.33 0.69 1.00 0.32 0.69 1.00 0.32 0.69 1.00

0.10 50 0.30 0.61 0.99 0.30 0.61 0.99 0.31 0.61 0.99 0.30 0.61 0.99 0.30 0.61 0.99

0.50 5 0.41 0.93 1.00 0.41 0.92 1.00 0.41 0.92 1.00 0.41 0.92 1.00 0.41 0.92 1.00

0.50 8 0.48 0.92 1.00 0.33 0.92 1.00 0.33 0.92 1.00 0.44 0.92 1.00 0.44 0.92 1.00

0.50 10 0.46 0.91 1.00 0.45 0.90 1.00 0.45 0.90 1.00 0.48 0.90 1 .00 0.48 0.90 1.00

0.50 15 0.44 0.90 1.00 0.44 0.89 1.00 0.44 0.89 1.00 0.41 0.89 1.31 0.41 0.89 1.31

0.50 25 0.38 0.86 1.00 0.37 0.86 1.00 0.37 0.86 1.00 0.37 0.86 1.07 0.37 0.86 1.07

0.50 50 0.39 0.83 1.00 0.39 0.83 1.00 0.38 0.82 1.00 0.39 0.82 1.04 0.39 0.82 1.04

1.00 5 0.58 1.00 1.00 0.58 0.99 1.00 0.58 0.99 1.00 0.58 0.99 1.00 0.58 0.99 1.00

1.00 8 0.67 0.99 1.00 0.56 0.99 1.00 0.56 0.99 1.00 0.53 0.99 1.00 0.53 0.99 1.00

1.00 10 0.65 0.99 1.00 0.57 0.98 1.00 0.57 0.98 1.00 0.57 0.98 1.00 0.57 0.98 1.00

1.00 15 0.65 0.98 1.00 0.54 0.98 1.00 0.54 0.9T 1.00 0.54 0.97 1.06 0.54 0.97 1.06

1.00 25 0.48 0.98 1.00 0.48 0.97 1.00 0.48 0.97 1 .00 0.46 0.97 1.10 0.46 0.97 1.10

1.00 50 0.53 0.95 1.00 0.53 0.94 1.00 0.53 0.94 1.00 0.53 0.94 1.06 0.53 0.94 1 .06

2.00 5 1.00 1. 00 .0 1. 1.00 0 1.00 1 0.69 1.00 1.00 0.69 1.00 1.00 0.69 1.00 1.00

2.00 8 0.86 1.00 1.00 0.80 1.00 1.00 0.67 1 .00 1.00 0.67 1.00 1.00 0 67 1.00 1.00

2.00 10 0.96 1.00 1.00 0.96 1.00 1.00 0.78 1.00 1.00 0.78 1.00 1.18 0.78 1.00 1.18

2.00 15 .00 1.00 1.00 1.00 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.10 0.85 1.00 1.10

2.00 25 0.84 1.00 1.00 0.84 1.00 1.00 0.81 1.00 1.00 0.69 1.00 1.26 0.69 1.00 1.26

2.00 50 0.82 1.00 1.00 0.82 5.00 1,00 0.78 1.00 1.00 0.58 0.99 1.16 0.58 0.99 1.16

constant factors away from optimal. Our approach readily
extends to Steiner tree routing in arbitrary weighted
graphs, where again the routing tree is only a small con-
stant factor away from optimal in terms of both cost and
radius. Extensive simulations over geometric routing
graphs as well as channel intersection graphs derived from
random block designs confirm that our approach gives
very good performance. The results of Section VII indeed
exhibit a smooth trade-off between the competing require-
ments of minimum delay and minimum total wire length.

Based on our methods for constructing bounded-radius
routing trees, the global routing procedure will work as
follows. We route all nets, one by one, according to their
priorities. For each net, we construct a bounded-radius
minimum spanning tree or bounded-radius minimum
Steiner tree using the algorithms presented in Sections IV
and V. The parameter e is either given by the user or com-
puted based on an estimation of the timing constraints for
the net. As noted in Section VI, different values of e, can
be used within a single net to reflect timing constraints in
various input-output paths. The cost of each edge in the
routing graph is a function of wire lengths, channel ca-
pacities, and the distribution of current channel densities.
After routing each net, we update the edge costs in the
routing graph. After all nets are routed, we may compute
the timing-critical paths and, if necessary, further reduce
the interconnection delay by rerouting some critical nets
based on more accurate distributed RC delay models.

Our algorithms readily extend to other norms and to
alternate geometries (e.g., 450 or 30°-60°-900 routing
regimes). There are several remaining open problems,
such as the complexity of computing the minimum cost
bounded-radius spanning tree in the Manhattan plane or

the complexity of choosing an MST with minimum radius
when the MST is not unique.

APPENDIX I

BPRIM AND ITS VARIANTS

A. Experimental Data for Ratios of Heuristic Tree
Radius to MST Radius

Table II gives the minimum, maximum, and average
ratios of the heuristic tree radius to the MST radius, as
computed by the BPRIM algorithm and its variants HI,
H2, H3, and Meta (BPRIM, HI, H2, H3). The data
shown represent averages of 500 cases generated from a
uniform distribution in the unit square. The source node
was selected to be one of the terminals at random. Note
that the radius of the Meta (BPRIM, HI, H2, H3) solution
may be larger than the radius produced by any single
method, because the meta-heuristic is selecting the low-
est-cost routing tree.

B. Experimental Data for Ratios of Heuristic Tree Cost
to MST Cost

Table III gives the minimum, maximum, and average
ratios of the heuristic tree cost to the MST cost, as com-
puted by the BPRIM algorithm and its variants Hi, H2,
H3, and Meta (BPRIM, Hl, H2, H3). The data shown
represent averages of 500 cases generated from a uniform
distribution in the unit square. The source node was se-
lected to be one of the terminals at random.
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TABLE III
MINIMUM, AVERAGE. AND MAXIMUM COST RATIOS FOR VARIOUS

VALUES OF C.

net BPUIM III H2 H3 Meta
E size nun ave max min ave max min ave max mirn ave max IliU ave max

0.10 5 1.00 1.17 2.22 1.00 1.17 2.22 1.00 117 2.22 1.00 1.16 2.22 1.00 1.16 2.22

0.10 8 1.00 1.25 2.20 1.00 1.23 1.94 1.00 1.22 2.26 1.00 1.20 2.26 1.00 1.20 1.94

0.10 10 1.00 1.28 2.33 1.00 1.26 2.33 1.00 1.25 2.18 1.00 1.23 2.18 1.00 1.22 2.18

0.10 15 1 00 1.39 2.79 1.00 1.32 2.77 1.00 1.28 2.53 1.00 1.25 2.28 1.00 1.23 2.28

0.10 25 1.00 1.53 2.71 1.00 1.39 2.45 1.00 1.33 2.30 1.00 1.28 2.16 1.00 1.25 2.00

0.10 50 1.00 1.92 3.49 1.00 1.52 2.91 1.00 1.41 2.92 1.00 1.33 2.22 1.00 1.30 2.22

0.50 5 1.00 0.05 1.60 1.00 1.04 1.56 1.00 1.04 1.16 1.00 1.04 1.56 1.00 1.04 1.56

0.50 8 1.00 1.07 1.97 1.00 1.05 1.59 1.00 1.05 1.39 1.00 1.04 1.84 1.00 1.04 1.59

0.50 10 1.00 1.09 1.73 1.00 1.06 1.59 1.00 1.06 1.59 1.00 1.05 1.59 1.00 1.05 1.59

0.50 15 1.00 1.13 2.08 1.00 1.08 1.60 1.00 1.06 1.53 1.00 1.05 1.53 1.00 1.05 1.53

0.50 25 1.00 1.21 2.91 1.00 1.10 1.97 1.00 1.08 1.88 1.00 1.05 1.72 1.00 1.05 1.72

0.50 50 1.00 1.40 3.67 1.00 1.15 1.93 1.00 1.10 1.75 1.00 1.06 1.77 1.00 1.06 1.74

1.00 5 1.00 1.00 1.27 1.00 1.00 1.27 1.00 1.00 1.27 1.00 1.00 1.27 1.00 1.00 1.27

1.00 8 1.00 1.01 1.73 1.00 1.01 1.54 1.00 1.01 1.54 1.00 1.01 1.54 1.00 1.01 1.54
1.00 10 1.00 1.02 1.47 1.00 1.01 1.32 1.00 1.01 1.31 1.00 1.01 1.31 1.00 1.01 1.31

1.00 15 1.00 1.03 1.79 1.00 1.02 1.30 1.00 1.01 1.30 1.00 1.01 1.30 1.00 1.01 1.30
1.00 25 1.00 1.04 2.38 1.00 1.02 1.39 1.00 1.01 1.37 1.00 1.01 1.33 1.00 1 .01 1.33

1.00 50 1.00 1.13 2.66 1.00 1.04 1.71 1.00 1.03 1.47 1.00 1.02 1.31 1.00 1 .02 1.31

2.00 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00

2.00 8 1.00 1.00 1.34 1.00 1.00 1.07 1.00 1.00 1.07 1.00 1.00 I.07 1.00 1.00 1.07

2.00 10 1.00 1 .00 1.08 1.00 1.00 1.08 1 .00 1.00 1.08 1.00 1.00 1.08 1.00 2.00 1.08

2.00 15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00

2.00 25 1.00 1.00 1.39 1.00 1.00 1.14 1.00 1.00 1.14 1.00 1.00 1.09 1.00 2.00 1.09

2.00 50 1.00 1.00 1.71 1.00 1.00 1.13 1.00 1.00 111 100 1.00 1.11 100 100 1.09

TABLE IV
BRBC TREE AND SHORTEST PATH TREE RADIUS AND COST STATISTICS FOR

RANDOM NETS, EXPRESSED AS A FRACTION OF TIIE CORRESPONDING

MINIMUM SPANNING TREE VALUES

net tree radius of Shortest Pathi tree cost uf Shortest Patht

t size our algorithm tree radius our algorithm tree cost

min ave max mill ave iumax min ave max min ave max
0.10 5 0.44 0.82 1.00 0.44 0.81 1.00 1.00 1.25 1.84 1.00 1.30 1 .96

0.10 8 0.43 0.74 1.00 0.43 0.74 1.00 1.03 1.35 1.99 1.03 1.41 1.99

0.10 10 0.38 0.71 1.00 0.38 0.70 1.00 1.00 1.39 1.96 1.05 1.45 2.25

0.10 15 0.27 0.65 1.00 0.27 0.65 1.00 1.20 1.53 2.66 1.20 1.60 2.71

0.10 25 0.34 0.64 0.94 0.34 0.63 0.93 1.25 1.57 2.03 1.25 1.66 2.16

0.50 5 0.57 0.90 1.00 0.47 0.85 1.00 1.00 I 1L 2 1.60 1.00 1.25 2.04

0.50 8 0.48 0.74 0.99 046 0.69 0.99 100 1.22 166 1.02 1.37 1.94

0.50 10 0.42 0.81 1.00 0.37 0.75 1.00 1.00 1.23 1.57 1.02 1.45 2.05

0.50 15 0.44 0.72 0.99 0.42 0.69 0.99 1.11 1.29 1 .53 1.13 1.54 1.94

0D50 25 0.33 0.66 0.97 0.31 0.63 0.97 .17 1.34 1.73 1.32 1.60 2.14

1.00 5 0.66 0.95 1100 0.56 0.83 1.00 1.00 103 1.30 1.00 1.22 1.90

1.00 8 0.56 0.84 1.00 0.411 0.74 0.95 1.00 1.11 1.31 1.12 1.37 1.96

1.00 10 0.51 0.81 1.00 0.30 0.73 1.00 1.00 1.13 1.47 1.03 1.45 1 .96

1.00 15 0.44 0.73 1.00 0.30 0.66 0097 1.00 1.19 1.41 1.14 1.61 2.28
1.00 25 0.32 0.66 0.99 0.31 0.61 0.93 1.11 1.25 1.43 1.37 1.71 2.38
2.00 5 0.84 0.99 1.00 0.50 0.78 1.00 1.00 1.01 1.15 1.00 1.30 2.03
2.00 8 0.47 0.93 1.00 0.40 0.72 0.94 1.00 1.05 1.22 1.03 1.48 2.06
2.00 10 0.51 0.86 1.00 0.38 0.69 1.00 1 .00 1.07 1.23 1.10 1.50 2.28
2.00 15 0.48 0.86 1.00 0.35 0.69 1.00 .00| 1.08 1.19 1.18 1.49 1.95
2.00 25 0.36 0.74 1.00 0.23 0.60 1.00 101 1.12 1.27 1.25 1.68 2.31

APPENDIX II

BRBC ALGORITHM FOR SPANNING AND STEINER

TREE ROUTING

A. Experimental Data for Random Nets

generated from a uniform distribution in the unit square,
and the minimum, average, and maximum values were
computed. The source was selected to be one of the ter-
minals at random.

Table IV shows the cost and radius of the BRBC tree B. Experimental Data for Channel Intersection Graphs
and the SPT, compared with the corresponding MST val- of Random Block Designs
ues, for bounded-radius minimum spanning tree routing. Table V shows the cost and radius of the BRBC tree
For each e value and net size, 50 random test cases were and the SPT, compared with the corresponding KMB val-
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TABLE V
HEURIS'lic TREE AND SHORTEST PATH TREE RADIUS AND COST STATISTICS

FOR RANDOM BLOCK DESIGNS, EXPRESSED AS FRACTIONS OF THE

CORRESPONDING KMB TREE VALUFS

net tree radius of Shortest Path tree cost of Shortest Path

size our algorithm tree radius our algorithm tree cost

mm inave max mi ave max min ave max in ave max

0.10 3 0.63 0.93 1.00 0.63 0.93 1.00 0.91 1.12 1.42 0.91 1.12 1.42

0.10 4 0.50 0 90 1.00 0.50 0.90 1.00 0.96 1.14 1.69 0.96 1.14 1.69

0.10 5 0.43 0.84 1.00 0.43 0.84 1.00 0.99 1.17 1.51 0.99 1.18 1.57

0.10 7 0.42 0.82 1.00 0.42 0.82 1.00 0.99 1.14 1.45 0.99 1.15 1.47

0.10 10 0.51 0.82 1.00 0.51 0.82 1.00 1.00 1.22 1.58 1.00 1.22 1.38

0.10 15 0.31 0.81 1.00 0.31 0.80 1.00 1.02 1.21 1.53 1.02 1.22 1.53

0.50 3 0.60 0.94 1.00 0.60 0.94 1.00 0.89 1.09 1.57 1.00 1.14 1.61

0.50 4 0.55 0.88 1.00 0.52 0.86 1.00 0.98 1.11 1.43 1.00 1.16 1.51

0.50 5 0.43 0.89 1.00 0.43 0.87 1.00 0.97 1.15 1.68 0.97 1.23 1.61

0.50 7 0.48 0.86 1.00 0.45 0.82 1.00 0.90 1.11 1.41 0.96 1.20 1.61

0.50 10 0.42 0.80 1.00 0.42 0.77 1.00 0.98 1.17 1.50 1.00 1.27 1.58

0.50 15 0.40 0.78 1.00 0.40 0.75 1.00 0.96 1.15 1.41 0.96 1.19 1.51

1.00 3 0.65 0.99 1.00 0.57 0.93 1.00 0.89 1.02 1.27 0.89 1.14 1.72

1.00 4 0.64 0.99 1.00 0.54 0.91 1.00 0.97 1.02 1.19 1.00 1.15 1.71

1.00 .5 0.67 0.95 1.00 0.48 0.86 1.00 1.00 1.09 1.38 1.00 1.23 1.87

1.00 7 0.55 0.92 1.00 0.55 0.84 1.00 1.00 1.09 1.37 1.00 1.21 1.58

1.00 10 0.53 0.90 1.00 0.47 0.81 1.00 0.96 1.10 1.32 1.01 1.22 1.69

1.00 15 0.47 0.85 1.00 0.47 0.78 1.00 0.98 1.11 1.30 0.97 1.21 1.71

2.00 3 1.00 1.00 1.00 0.62 0.92 1.00 1.00 1.00 1.00 1.00 1.13 1.51

2.00 4 0.71 0.99 1.00 0.55 0.89 1.00 0.92 1.01 1.26 0.92 1.15 1.59

2.00 5 0.61 0.99 1.00 0.59 0.85 1.00 1.00 1.02 1.23 1.00 1.19 1.64

2.00 7 0.49 0.97 1.00 0.43 0.80 1.00 0.95 1.03 1.22 0.97 1.22 1.59

2.00 10 0.49 0.93 1.00 0.45 0.81 1.00 1.00 1.05 1.25 1.02 1.26 1.75

2.00 15 0.46 0.88 1.00 0.45 0.76 1.00 0.99 1.06 1.21 1.06 1.25 1.49

ues, for bounded-radius Steiner routing. For each e value
and net size, 50 test cases were generated, each with 15
randomly placed modules. Routing was performed in the
channel intersection graph, and minimum, average, and
maximum values were computed. The source was se-

lected to be one of the terminals at random.
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