Provably Optimal Test Cube Generation using Quantified Boolean Formula Solving ASP-DAC 2013

Albert-Ludwigs-Universität Freiburg

Matthias Sauer, Sven Reimer, Ilia Polian, Tobias Schubert, Bernd Becker Chair of Computer Architecture 01.24.13

Motivation - Test pattern relaxation

- Test cube:
- Parts of the pattern are unspecified (Don't Care)
- Test requirements still hold
- Used for:
- Refilling
- Minimizing power consumption
- Compaction (e.g., Embedded Deterministic Test)
- All known techniques are approximative
- Our approach:
- Test cube generation with maximum number of Don't Cares
\Rightarrow Optimal test cube
- Measure the quality of heuristic methods

Outline

1 Motivation
2 Preliminaries

- Circuit encoding
- Unspecified values
- Sensitizable paths + small delay faults

3 Optimal test cube generation
4 Experimental results
5 Conclusion

Circuit encoding

- Boolean satisfiability (SAT) formulation in CNF: Tseitin encoding [Tseitin '68]
- Additional variables for each gate
- Linear in circuit size

Circuit encoding

- Boolean satisfiability (SAT) formulation in CNF: Tseitin encoding [Tseitin '68]
- Additional variables for each gate
- Linear in circuit size

Circuit encoding

- Boolean satisfiability (SAT) formulation in CNF: Tseitin encoding [Tseitin '68]
- Additional variables for each gate
- Linear in circuit size

Circuit encoding

$E \leftrightarrow \neg(A \wedge B)$

- Boolean satisfiability (SAT) formulation in CNF: Tseitin encoding [Tseitin '68]
- Additional variables for each gate
- Linear in circuit size

Circuit encoding

$$
\begin{aligned}
(A \vee E) \wedge & \overbrace{(B \vee E)}^{\text {Clause }} \wedge(\overbrace{\neg A}^{\text {Literal }} \vee \neg B \vee \neg E) \\
& E \leftrightarrow \neg(A \wedge B)
\end{aligned}
$$

- Boolean satisfiability (SAT) formulation in CNF: Tseitin encoding [Tseitin '68]
- Additional variables for each gate
- Linear in circuit size

Unspecified values $-01 X$ logic [Jain et al. '00]

- Three-valued logic:
$0_{01 X}$ (logic 0), $1_{01 X}$ (logic 1), $X_{01 X}$ (unknown)
$-01 X$ in SAT: $0_{01 X}=(0,1), 1_{01 X}=(1,0), X_{01 X}=(0,0)$
- SAT encoding for $01 X$ doubles size of the formula
- In example: Output F is unknown if input B is unspecified

Unspecified values - Exact formulation

Simulation for $B=0$

- But: F can be set to 1 , even if B is unspecified

Unspecified values - Exact formulation

- But: F can be set to 1 , even if B is unspecified
\Rightarrow QBF: Universally quantified variables for unknown values
$\square \underbrace{\exists\{A, C\} \forall\{B\} \exists\{D, E, F, G\}}_{\text {Prefix }} \cdot \underbrace{\varphi(A, \ldots, G)}_{\text {Tseitin encoding }} \wedge(A) \wedge(C) \wedge \underbrace{(F)}_{\text {property }}$

Unspecified values - Exact formulation

$$
\text { Simulation for } B=0
$$

- But: F can be set to 1 , even if B is unspecified
\Rightarrow QBF: Universally quantified variables for unknown values
$\square \underbrace{\exists\{A, C\} \forall\{B\} \exists\{D, E, F, G\}}_{\text {Prefix }} \cdot \underbrace{\varphi(A, \ldots, G)}_{\text {Tseitin encoding }} \wedge(A) \wedge(C) \wedge \underbrace{(F)}_{\text {property }}$
■ QBF: reconvergent paths are resolved by formulation

Unspecified values - Exact formulation

- But: F can be set to 1 , even if B is unspecified
\Rightarrow QBF: Universally quantified variables for unknown values
$\square \underbrace{\exists\{A, C\} \forall\{B\} \exists\{D, E, F, G\}}_{\text {Prefix }} \cdot \underbrace{\varphi(A, \ldots, G)}_{\text {Tseitin encoding }} \wedge(A) \wedge(C) \wedge \underbrace{(F)}_{\text {property }}$
■ QBF: reconvergent paths are resolved by formulation $01 X$: reconvergent paths may block propagation of values

Unspecified values - Exact formulation

- But: F can be set to 1 , even if B is unspecified
\Rightarrow QBF: Universally quantified variables for unknown values
$\square \underbrace{\exists\{A, C\} \forall\{B\} \exists\{D, E, F, G\}}_{\text {Prefix }} \cdot \underbrace{\varphi(A, \ldots, G)}_{\text {Tseitin encoding }} \wedge(A) \wedge(C) \wedge \underbrace{(F)}_{\text {property }}$
- QBF: Exact formulation for Don't Cares 01X: Approximative formulation for Don't Cares

Sensitizable paths + small delay faults

- Sensitizable path: Transition from input to output
- Length of a path according to sum of gate delays

Sensitizable paths + small delay faults

- Length 6
- Length 2

- Sensitizable path: Transition from input to output
- Length of a path according to sum of gate delays

Sensitizable paths + small delay faults

- Sensitizable path: Transition from input to output
- Length of a path according to sum of gate delays
- Small delay faults: Assume additional delay for one gate
- Output transition too late for clock
- Two-pattern delay test
- The longer the path the higher the detection quality

Optimal test cube generation

- Small delay faults over two timeframes
- Test cube with maximum number of unspecified inputs using QBF
- Quantify unspecified inputs universally, specified ones existentially
- If path for small delay fault is sensitizable:

Universally quantified inputs: excluded from test cube
Existential quantified inputs: test cube

- But: The quantifier of a variable cannot be changed in QBF Unspecified inputs are unidentified a-priori Which inputs have to be quantified universally?

Multiplexed inputs

$$
\psi=\exists\left\{S_{1}, \ldots, S_{n}, E_{1}, \ldots, E_{n}\right\} \forall\left\{A_{1}, \ldots, A_{n}\right\} \exists \ldots \varphi_{\text {Circuit }} \wedge \varphi_{\text {Property }} \wedge \varphi_{M U X}
$$

- Dynamic choice of (un-)specified input with multiplexer
- Select input S_{i} switches between specified ($S_{i}=0: \exists E_{i}$) and unspecified ($S_{i}=1: \forall A_{i}$) for any primary input I_{i}
- Find the maximum number of select inputs that can be set to 1

Maximization

- Sort select-inputs S_{i} with Bitonic sorting network [Batcher '68]
- Circuit size of sorter: $O(n \log n)$
- Input vector \vec{S} is sorted by 1's and 0's
\Rightarrow Sorted output vector $\overrightarrow{S O}$

Optimal test cube generation

$$
\begin{aligned}
\psi(j)= & \exists\left\{S O_{1}, \ldots, S O_{n}, S_{1}, \ldots, S_{n}, E_{1}, \ldots, E_{n}\right\} \forall\left\{A_{1}, \ldots, A_{n}\right\} \exists \ldots \\
& \varphi_{\text {Circuit }} \wedge \varphi_{\text {Property }} \wedge \varphi_{M U X} \wedge \varphi_{\text {Sorter }} \wedge\left(S O_{j}\right)
\end{aligned}
$$

\Rightarrow Binary search over j

- Search for k, such that: path is sensitizable with k unspecified inputs $\left(S O_{k}=1\right)$, but not with $k+1\left(S O_{k+1}=0\right)$
- QBF solver returns assignment for outermost existential variables: S_{1}, \ldots, S_{n} : unspecified inputs; remaining E_{1}, \ldots, E_{n} : test cube
- Optimal test cube, i.e., maximum number of Don't Cares

$01 X$-Optimal test cube generation

\Rightarrow Binary search over j

- Search for k, such that: path is sensitizable with k unspecified inputs $\left(S O_{k}=1\right)$, but not with $k+1\left(S O_{k+1}=0\right)$
- If $T_{i}=1$, corresponding input l_{i} is set to $X_{01 X}$
- SAT solver returns assignment for all variables:
T_{1}, \ldots, T_{n} : unspecified inputs; remaining input variables: test cube
- $01 X$-Optimal test cube, i.e., optimal for $01 X$ encoding

Experimental setup

- Sequential versions of ISCAS 89 and ITC 99 benchmarks
- SAT-based path generator PHAETON [Sauer et al. '11]: 100 longest broadside testable paths of each circuit
- In-house SAT solver antom [Schubert et al. '10] and QBF solver quantom
- Cone-of-influence (COI) reduction
- Average percentage of Don't Cares (DC)

Results for ISCAS 89 \& ITC 99 circuits

Comparison of QBF-optimal result

Static (initial test pattern needed):

1. Lifting [Ravi, Somenzi '04] (best case QBF-optimal)
2. Simulation (best case $01 X$-optimal)

- Average over 100 random initial test patterns

Dynamic (find test cube directly with given test requirements):
3. $01 X$-optimal

Comparison

$$
{ }^{*} \operatorname{Loss}(\text { Method })=1-\frac{D C_{\text {Method }}-D C_{\mathrm{COI}}}{D C_{\text {Optimal }}-D C_{\mathrm{COI}}}
$$

Conclusion

- Novel technique for generation test cubes with QBF
- First approach producing test cubes with maximum number of Don't Cares
- Framework adaptable to any task that maximizes number of unspecified lines
- Compare heuristic approaches with true optimum
\square New and fast method for $01 X$ encoding ($01 X$-optimal)

Future work

- Adapt framework to other applications and fault models
- Increase scalability of QBF-solver

SAT + QBF

- Satisfiability problem or SAT problem:

Given propositional formula φ. Is there an assignment to the variables, such that φ is satisfied?

- φ in conjunctive normal form (CNF), e.g.,
$\varphi\left(x_{1}, \ldots, x_{n}\right)=(x_{1} \vee \underbrace{\neg x_{2}}_{\text {literal }}) \wedge \underbrace{\left(x_{2} \vee x_{3} \vee \neg x_{4}\right)}_{\text {clause }} \wedge \ldots$
- Notation: $\varphi\left(x_{1}, \ldots, x_{n}\right)=\left\{\left\{x_{1}, \neg x_{2}\right\},\left\{x_{2}, x_{3}, \neg x_{4}\right\}, \ldots\right\}$
- Properties of CNF:

Clause is satisfied iff at least one literal is assigned to 1. CNF is satisfied iff all clauses are satisfied.

- Combinational circuits can be transformed into CNF in linear size of the circuit (Tseitin encoding)
- Well known NP-complete problem with enormous improvements in the last decades

SAT + QBF

■ Quantified Boolean formula (QBF) is an extension of SAT: variables are quantified existentially (\exists) or universally (\forall)

- Example for a QBF ψ in prenex normal form: $\psi\left(x_{1}, \ldots, x_{n}\right)=\underbrace{\exists\left\{x_{1}\right\} \forall\left\{x_{2}, x_{3}\right\} \exists\left\{x_{4}\right\} \ldots \exists\left\{x_{n}\right\}}_{\text {prefix }} \cdot \underbrace{\varphi\left(x_{1}, \ldots, x_{n}\right)}_{\text {matrix (CNF) }}$
- Semantics (for this example): ψ is satisfied iff there exists one assignment for x_{1} such that for every assignment of x_{2} and x_{3}, there exists one assignment for x_{4} and so forth, such that φ is satisfied.
- PSPACE-complete problem with increasing interest in the last decade

Circuit encoding

- Circuit to propositional formulae in CNF via Tseitin encoding [Tseitin '68]

Circuit encoding

- Circuit to propositional formulae in CNF via Tseitin encoding [Tseitin '68]
- Introduces additional Tseitin variables

Circuit encoding

- Circuit to propositional formulae in CNF via Tseitin encoding [Tseitin '68]
- Introduces additional Tseitin variables
- Resulting formula is linear in circuit size

Encode small delay faults

Encode both timeframes ...

Encode small delay faults

Encode both timeframes ...

Encode small delay faults

- Encode both timeframes ...
... and trigger path with unit clauses
(in this example: $\left\{\left\{\neg C_{1}\right\},\left\{C_{2}\right\},\left\{\neg D_{1}\right\},\left\{D_{2}\right\},\left\{\neg F_{1}\right\},\left\{F_{2}\right\}\right\}$)

Literature

[Batcher '68]
[Jain et al. '00]
[Ravi, Somenzi '04]
[Sauer et al. '11]
[Schubert et al. '10]
[Tseitin '68]
M. Sauer, A. Czutro, T. Schubert, S. Hillebrecht, I. Polian, and B. Becker, "SAT-based analysis of sensitisable paths," in IEEE Design and Diagnostics of Electronic Circuits and Systems, pp. 93-98, 2011.
K. E. Batcher, "Sorting networks and their applications," in AFIPS Spring Joint Computing Conference, pp. 307-314, ACM, 1968.
A. Jain, V. Boppana, R. Mukherjee, J. Jain, M. Fujita, and M. S. Hsiao, "Testing, Verification, and Diagnosis in the Presence of Unknowns," in VLSI Test Symp., pp. 263-269, 2000.
K. Ravi and F. Somenzi, "Minimal assignments for bounded model checking," in Tools and Algorithms for the Construction and Analysis of Systems, vol. 2988, pp. 31-45, Springer, 2004.
T. Schubert, M. Lewis, and B. Becker, "antom - Solver Description," in SAT Race, 2010.
G.S. Tseitin, "On the complexity of derivations in propositional calculus," in Studies in Constructive Mathematics and Mathematical Logics, 1968.

