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Motivation – Test pattern relaxation

Test cube:
Parts of the pattern are unspecified (Don’t Care)
Test requirements still hold

Used for:
Refilling
Minimizing power consumption
Compaction (e.g., Embedded Deterministic Test)

All known techniques are approximative
Our approach:

Test cube generation with maximum number of Don’t Cares
⇒ Optimal test cube

Measure the quality of heuristic methods
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Boolean satisfiability (SAT) formulation in CNF:
Tseitin encoding [Tseitin ’68]
Additional variables for each gate
Linear in circuit size
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Circuit encoding

A

B
E

E ↔ ¬(A ∧B)

Boolean satisfiability (SAT) formulation in CNF:
Tseitin encoding [Tseitin ’68]
Additional variables for each gate
Linear in circuit size

01.24.13 Sven Reimer – Provably Optimal Test Cube Generation using Quantified Boolean Formula Solving 4 / 17



Circuit encoding

A

B
E

E ↔ ¬(A ∧B)
(A ∨ E) ∧

Clause︷ ︸︸ ︷
(B ∨ E)∧(

Literal︷︸︸︷
¬A ∨¬B ∨ ¬E)

Boolean satisfiability (SAT) formulation in CNF:
Tseitin encoding [Tseitin ’68]
Additional variables for each gate
Linear in circuit size
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Unspecified values – 01X logic [Jain et al. ’00]

A = 101X

C = 101X

B = X01X

E = X01X

D = X01X

G = 101X

F = X01X

D = X01X

Three-valued logic:
001X (logic 0), 101X (logic 1), X01X (unknown)
01X in SAT: 001X = (0,1), 101X = (1,0), X01X = (0,0)
SAT encoding for 01X doubles size of the formula
In example: Output F is unknown if input B is unspecified
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Unspecified values – Exact formulation

A = 1

B

C = 1
D

E

F

G

= 0
= 1

= 1
= 0

= 0
= 1

= 1
= 1

= 1
= 1

D= 0
= 1

Simulation for B= 0
= 1

But: F can be set to 1, even if B is unspecified

⇒ QBF: Universally quantified variables for unknown values
∃{A,C}∀{B}∃{D,E ,F ,G}︸ ︷︷ ︸

Prefix

. ϕ(A, . . . ,G)︸ ︷︷ ︸
Tseitin encoding

∧(A)∧ (C)∧ (F )︸︷︷︸
property

QBF: reconvergent paths are resolved by formulation
01X : reconvergent paths may block propagation of values
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. ϕ(A, . . . ,G)︸ ︷︷ ︸
Tseitin encoding

∧(A)∧ (C)∧ (F )︸︷︷︸
property

QBF: Exact formulation for Don’t Cares
01X : Approximative formulation for Don’t Cares
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Sensitizable paths + small delay faults

FF1

FF2

FF3

FF4

Sensitizable path: Transition from input to output
Length of a path according to sum of gate delays

Small delay faults: Assume additional delay for one gate
Output transition too late for clock
Two-pattern delay test
The longer the path the higher the detection quality
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Optimal test cube generation

Primary inputs

Two-pattern delay test

F
li

p-
Fl

op
s

F
li

p-
F

lo
ps

p1 ... pi
pi+1 ... pm

x

x

x

x

Small delay faults over two timeframes
Test cube with maximum number of unspecified inputs using QBF
Quantify unspecified inputs universally, specified ones existentially
If path for small delay fault is sensitizable:
Universally quantified inputs: excluded from test cube
Existential quantified inputs: test cube
But: The quantifier of a variable cannot be changed in QBF
Unspecified inputs are unidentified a-priori
Which inputs have to be quantified universally?
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Multiplexed inputs

Primary inputs
E1 A1

MUX1S1

..
.

En An

Sn MUXn
..

.

Multiplexed Inputs Two-pattern delay test
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ip

-F
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s

F
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p
s

p1 ... pi
pi+1 ... pm

x

x

x

x

ψ = ∃{S1, . . . ,Sn,E1, . . . ,En}∀{A1, . . . ,An}∃ . . .ϕCircuit ∧ϕProperty ∧ϕMUX

Dynamic choice of (un-)specified input with multiplexer

Select input Si switches between specified (Si = 0 : ∃Ei ) and unspecified
(Si = 1 : ∀Ai ) for any primary input Ii
Find the maximum number of select inputs that can be set to 1
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Maximization

Primary inputs
E1 A1
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..
.

En An

Sn MUXn
..
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..
.

Multiplexed Inputs Two-pattern delay testMaximization
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Sort select-inputs Si with Bitonic sorting network [Batcher ’68]

Circuit size of sorter: O(n logn)

Input vector
−→
S is sorted by 1’s and 0’s

⇒ Sorted output vector
−→
SO
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Optimal test cube generation

Primary inputs
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SOk+1

ψ(j) = ∃{SO1, . . . ,SOn,S1, . . . ,Sn,E1, . . . ,En}∀{A1, . . . ,An}∃ . . .
ϕCircuit ∧ϕProperty ∧ϕMUX ∧ϕSorter ∧ (SOj )

⇒ Binary search over j
Search for k , such that: path is sensitizable with k unspecified inputs
(SOk = 1), but not with k +1 (SOk+1 = 0)
QBF solver returns assignment for outermost existential variables:
S1, . . . ,Sn: unspecified inputs; remaining E1, . . . ,En: test cube
Optimal test cube, i.e., maximum number of Don’t Cares
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01X -Optimal test cube generation

Primary inputs

..
.
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Trigger X Two-pattern delay testMaximization
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ϕ(j) = ϕCircuit︸ ︷︷ ︸
01X encoding

∧ϕProperty ∧ϕTrigger ∧ϕSorter ∧ (SOj )

⇒ Binary search over j
Search for k , such that: path is sensitizable with k unspecified inputs
(SOk = 1), but not with k +1 (SOk+1 = 0)
If Ti = 1, corresponding input Ii is set to X01X

SAT solver returns assignment for all variables:
T1, . . . ,Tn: unspecified inputs; remaining input variables: test cube
01X -Optimal test cube, i.e., optimal for 01X encoding
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Experimental setup

Sequential versions of ISCAS 89 and ITC 99 benchmarks
SAT-based path generator PHAETON [Sauer et al. ’11]:
100 longest broadside testable paths of each circuit
In-house SAT solver antom [Schubert et al. ’10] and
QBF solver quantom

Cone-of-influence (COI) reduction
Average percentage of Don’t Cares (DC)
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Results for ISCAS 89 & ITC 99 circuits
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Comparison of QBF-optimal result

Static (initial test pattern needed):
1. Lifting [Ravi, Somenzi ’04] (best case QBF-optimal)
2. Simulation (best case 01X -optimal)

Average over 100 random initial test patterns

Dynamic (find test cube directly with given test requirements):
3. 01X -optimal
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Comparison
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Conclusion

Novel technique for generation test cubes with QBF
First approach producing test cubes with maximum number
of Don’t Cares
Framework adaptable to any task that maximizes number of
unspecified lines
Compare heuristic approaches with true optimum
New and fast method for 01X encoding (01X -optimal)

Future work
Adapt framework to other applications and fault models
Increase scalability of QBF-solver
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SAT + QBF

Satisfiability problem or SAT problem:
Given propositional formula ϕ. Is there an assignment to the
variables, such that ϕ is satisfied?
ϕ in conjunctive normal form (CNF), e.g.,
ϕ(x1, . . . ,xn) = (x1∨ ¬x2︸︷︷︸

literal

)∧ (x2∨x3∨¬x4)︸ ︷︷ ︸
clause

∧ . . .

Notation: ϕ(x1, . . . ,xn) = {{x1,¬x2},{x2,x3,¬x4}, . . .}
Properties of CNF:
Clause is satisfied iff at least one literal is assigned to 1.
CNF is satisfied iff all clauses are satisfied.
Combinational circuits can be transformed into CNF in linear
size of the circuit (Tseitin encoding)
Well known NP-complete problem with enormous
improvements in the last decades
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SAT + QBF

Quantified Boolean formula (QBF) is an extension of SAT:
variables are quantified existentially (∃) or universally (∀)
Example for a QBF ψ in prenex normal form:
ψ(x1, . . . ,xn) = ∃{x1}∀{x2,x3}∃{x4} . . .∃{xn}︸ ︷︷ ︸

prefix

.ϕ(x1, . . . ,xn)︸ ︷︷ ︸
matrix (CNF)

Semantics (for this example):
ψ is satisfied iff there exists one assignment for x1 such that
for every assignment of x2 and x3, there exists one
assignment for x4 and so forth, such that ϕ is satisfied.
PSPACE-complete problem with increasing interest in the
last decade
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Circuit encoding

Circuit to propositional formulae in CNF via
Tseitin encoding [Tseitin ’68]

Introduces additional Tseitin variables
Resulting formula is linear in circuit size
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Circuit encoding

A

B

C
D

D ↔ B ∧ C
{{B,¬D}, {C,¬D}, {¬B,¬C,D}}

F ↔ D ∨ E
{{¬D,F}, {¬E,F}, {D,E,¬F}}

E

F

G

G ↔ A ∨ E
{{¬A,G}, {¬E,G}, {A,E,¬G}}E ↔ ¬(A ∧B)

{{A,E}, {B,E}, {¬A,¬B,¬E}}

Circuit to propositional formulae in CNF via
Tseitin encoding [Tseitin ’68]
Introduces additional Tseitin variables
Resulting formula is linear in circuit size
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Encode small delay faults

A

B

C
D

D ↔ B ∧ C
{{B,¬D}, {C,¬D}, {¬B,¬C,D}}

F ↔ D ∨ E
{{¬D,F}, {¬E,F}, {D,E,¬F}}

E

F

G

G ↔ A ∨ E
{{¬A,G}, {¬E,G}, {A,E,¬G}}E ↔ ¬(A ∧B)

{{A,E}, {B,E}, {¬A,¬B,¬E}}

Encode both timeframes . . .

. . . and trigger path with unit clauses
(in this example: {{¬C1},{C2},{¬D1},{D2},{¬F1},{F2}})
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Encode small delay faults
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[E1, E2]
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[B1, B2]

[C1, C2]
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