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PROVABLY RECURSIVE REAL NUMBERS

WILLIAM J. COLLINS

1 Introduction In this paper we shall begin development of a theory of
provably recursive real numbers similar in spirit to the theory of provable
recursive functions discussed by Kreisel [7, 8], Fischer [4] and Ritchie and
Young [12]. For example, we say that a program i names a provably
recursive real number if we can prove (in some axiomatization at least as
powerful as elementary number theory) that the function defined by i is
total and satisfies a recursive Cauchy criterion. Of special interest will be
the contrasts between provably recursive real numbers and recursive real
numbers.

Neither our base theory nor our metatheory will be specified ex-
plicitly. For our base theory we let S be an axiomatization of any theory
which encompasses elementary number theory; we require that our
metatheory be powerful enough to express the soundness of S for arith-
metic. All of our theorems will have as an implicit hypothesis that S is
sound for arithmetic; this hypothesis would be unnecessary if S were an
axiomatization of elementary number theory and the metatheory were full
set theory because we can prove in set theory that S is sound for arith-
metic. We take as fixed the enumeration φ0, φl9 φ2, . . . of partial recursive
functions of one variable described in Davis [3] (which can be proven, in S,
to be a standard enumeration). Let K = {i: φi(i)i}. K is a nonrecursive,
recursively enumerable set (and a proof of this can be carried out in S).
Let rat (see Kleene and Post [6]) be a one-to-one primitive recursive
function mapping the set N of natural numbers onto the set Q of rationale in
lowest terms.

Our treatment will be informal: we will usually present the intuitive
idea behind a proof and leave to the reader the details of carrying the proof
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out in S; details are provided in [1], Our notation will be similarly
informal; for example, we write

(3i)N[\-φi is a total function]

rather than

(3ήN[KVn)(3m)[T(f,n, w)]]

where T is Kleene's T-predicate.

The recursive real numbers, first defined by Turing [14], are those
real numbers which can be effectively approximated to an arbitrarily high
degree of accuracy. We can make this definition precise by means of
recursive functions. The following definition is equivalent (in the sense of
Mayoh [9]) to the most general definition of a Cauchy index for a recursive
real number as given by Moschovakis [11].

Definition 1: A natural number i is called a "Cauchy index for a recursive
real number" if

1. φi is a total function;

2. (Vn)[|rαt(φ<(»)) " rαt(φ<(n + D) I « 10"*].

(Hereafter we omit rat when no confusion results). Let

C = {i: ί is a Cauchy index for a recursive real number}.

For i e C, we let i = limi φi(n) and we let O = {i: i e C}. We say that & is the
«->oo

set of recursive real numbers.

2 Provably recursive real numbers We now define "provably Cauchy
index'':

Definition 2: A natural number i is called a "provably Cauchy index for a
recursive real number" if

1. \-φi is a total function;

2. H(vn) [\φM) - Φi(n + 1) k 10""].

(Note: we write \- instead of ^ since S is fixed). Let

P = {i: i is a provably Cauchy index for a recursive real number}.

We shall abbreviate this by writing P = {i hieC}. For ieP we let T=
lim φi(n) and we let -P = {T:ieP}. We say that -P is the set of provably

recursive real numbers. If S is sound for arithmetic then P QC and thus

Examples We can show that each of the following is a provably recursive
real number by proving, in S, that its canonical program is a Cauchy index
for a recursive real number: 1. every rational number; 2. every algebraic
number; 3. e, π, and cos(l).

The following definitions extend the notions of recursive enumerability
and productivity to subsets of recursive real numbers.
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Definition 3: A subset 0 of O is said to be recursively enumerable if there
is a recursively enumerable subset D of C such that JJ'= {r. ze 2)}.

Definition 4: A subset «#Όf O is said to be productive if, for every recur-
sively enumerable subset # of &, we can find a recursive real number a
such that aeJJ - •#.

Since the theorems of S can be effectively enumerated, P is recursively
enumerable and thus ί> is also recursively enumerable; a simple diagonali-
zation shows that 0 itself is productive (and thus not recursively enumer-
able). Hence we can find an eoe C such that eoft-P. We now use that fact to
show that the decision problem for P is just as difficult as the decision
problem for K, in the sense that they are one-to-one equivalent.

Theorem 1 P is one-to-one equivalent to K.

Proof: Take eoeC such that e^t^P. Define a total recursive function g by

Ueo(n),iiiίKM;

(φ e o K), if n>no*no= (μm)[ie KKm}].

Now take any i e N. Clearly we have

1. iiK-* g(ΐ)iP.

Inversely, suppose i e K. Then, since recursive predicates are numeralwise
expressible in S, we can prove, in S, that ieK, and thus, by the above
construction, that φg(t ) is eventually constant and thus defines a recursive
real number. Thus ieK-* ^g(i) e C, that is

2. ieK-* g(i)eP.

Combining 1. and 2. we get (Vz)N [i e K<r->g(i) e P]. The recursive function g
is clearly one-to-one. The recursive enumerability of P immediately
implies that there is a one-to-one recursive function h such that (VZ)N[^€

P<-^>h(i) e K\. Thus P is one-to-one equivalent to K.

Corollary P is a nonrecursive set.

Remark: If we let T = {z: h ^ is total}, then an even simpler version of the
above argument shows that T is one-to-one equivalent to K. In fact, every
result about P in this paper has an analogous (and more easily proven)
result about T. For other results about T, see Fischer [4].

Note that H[(VZ) [i e P] —* P is recursive], and so

\-[P is nonrecursive —* (3i)[l\-i e C]].

Also, i-(Vz)[lConss—• v-ie C], and so

H[(3i)[Ίhf€C]- Consj].1

Therefore, \-[P is nonrecursive —* Conss], so that, by Gδdel's Second
Incompleteness Theorem,



516 WILLIAM J. COLLINS

Ί H [ P is nonrecursive].

Therefore, since \-\K is nonrecursive],

Ί h [ P is one-to-one equivalent to K];

thus neither Theorem 1 nor its Corollary can be proved in S.

3 Classification of provably recursive real numbers Since the set of
provably recursive real numbers was defined in terms of rational numbers,
the dichotomy of provably recursive real numbers into rationale and
irrationals is certainly the most natural. In this section we examine this
dichotomy and show that it is deficient in at least one respect, namely that
it cannot be carried out effectively (cf. Corollary 1 of Theorem 2).

Definition 5: An index ie P is said to be an "irrational index" if Irra-
tional (i):

(Vj)N(3m)N(3k)N(Vnh \n>k-+ \φ{{n) - rαt(j)| > ^ l \

i is a "provably irrational index" if h Irrational (i).

Remark: We define a "rational index", a "provably rational index", and
Rational (i) in the obvious way.

Definition 6: A provably recursive real a is said to be provably irrational
if (3a)[ae P Aa = a A a is a provably irrational index].

Example: Let e0 be the canonical Cauchy program for VίΓ(viz. the one given
by the algorithm for finding square roots). Then eoeP and e0 is a
"provably irrational index" since the proof that V2~ is irrational can be
carried out in S using the program e0. Thus VΪΓis provably irrational.

Since every rational has a "provably rational index", there is no point
in defining "provably rational". We are thus naturally led to ask:

(1) Is every irrational number in <P provably irrational?

We provide a negative answer to this question later in the section. The
following construction answers a related question by showing that some
irrational indices are not provably irrational and that some rational indices
are not provably rational. (Note that the set of theorems of S is recursively
enumerable).

For each ee N we define a sequence of programs {g(i,e)} as follows:
φgafe) is defined to look like φe until and unless i is found to be a provably
irrational index (in which case φgate) becomes a nearly rational) or a
provably rational index (in which case φg(i>e) becomes a nearly irrational).
We can arithmetize the Extended Recursion Theorem {cf. Rogers [13]) to
obtain a provably total function h such that

(Ve)N[hφh(e) = φg(h(e).e)]

We immediately obtain
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(Ve)
N
[eeP->h(e)eP].

If S is sound for arithmetic, the above construction thus yields a uniform
method whereby, given any index e e P, we can find another index h(e) e P
which defines the same real number as e but which is neither a provably
rational nor a provably irrational index. (For a different proof of a similar
result, see Goodstein [5].)

Notation: L e t ^ = {ΐ: Rational (z)}. Thus l i s the set of provably recursive
reals which are rational. Since the set of canonical programs for rationale
is recursively enumerable (even recursive), JL is easily seen to be recur-
sively enumerable. What about 1> -JL, the irrationals? We now use a
' 'delaying" technique2 to show that f> - !L is productive, and thus not
recursively enumerable. An immediate corollary of this theorem provides
a negative answer to Question (1).

Theorem 2 f> - JLis productive.

Proof: Let 0 be a recursively enumerable subset of ^ - JL and let h be a
primitive recursive function such that 0={h(i): ieN}.3 The construction
proceeds as follows: We define φeo(0), φeo(l), . . . to be rαt(O) until (and
unless4) we discover that rαt(O) is different from h(0). When this happens
(say after n0 steps) we define φeo(no) to be some nearby rational rαt(j0) so
that e~l will be different both from rαt(O) and from h(0); if rαt(l) is such a
nearby rational, then j0 = 1. We then define φeo(no + 1)> Φeo(

no + 2), . . . to be
rat (jo) until (and unless) we discover that rαt(j0) is different from h(l).
When this happens (say after nγ steps) we define 0eo(^i)to be some nearby
rational rαt( jγ) so that ΊΓ0 will be different both from rαt( j0) and from h(l); if
rαt(2) is such a nearby rational then jλ = 2. Continuing in this fashion we
obtain a recursive real i^ which is different from every rational and from
every member of 0. Thus all that remains is to show that e0 e P. Since we
can prove by induction (in S) that every primitive recursive function is
provably total, we have

v-h is a total function.

Thus, by the above construction,

hφeo is a total function.

Furthermore the construction guarantees that we can prove that successive
values of φe are close together. Combining these two facts, we obtain

\-eoe C, that is e0e P.

We have thus produced a provably recursive real Έ^e (P - SL) - 0.
Thus -P - JLis productive.

Remark: In the above Theorem we could not prove uniformly that every
h(ή) was an irrational index. Thus we could not prove that the function φβQ

would not eventually ''settle'' on some rational, and so the program e0 is an
irrational index but not a provably irrational index.
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Corollary 1 -P - JLis not recursively enumerable.

Proof: Otherwise we could find an a e {P - X) - (-P - JL), a, contradiction.

Corollary 2 We can find a provably recursively real which is irrational but
not provably irrational.

Proof: Since we can effectively enumerate the set of all indices i such that

i-Irrational (i),

the set &= {a: ae-P and a is provably irrational} is recursively enumer-
able. Thus, by Theorem 2, we can find a provably recursive real which is
irrational but not member of ff.

Results such as Corollary 1 are interesting partly because -P itself is
recursively enumerable. Since & is not recursively enumerable, it follows
immediately (and uninterestingly) that ί > - i i s not recursively enumerable.
In recursive analysis, a better analogue of Corollary 1 would be: ί > - i i s
not listable.5 Moschovakis proves this in [11]. More generally, it follows
from the Ceitin-Moschovakis continuity theorem for recursive analysis that
& cannot be decomposed into two disjoint, dense, listable subsets. Thus a
natural question for provably recursive analysis is: Can ^ b e decomposed
into two disjoint, dense, recursively enumerable subsets? Clearly (by
Corollary 1) the canonical decomposition into rationale and irrationals will
not work. We now show that in contrast with # , f> can be nicely decom-
posed.6

Theorem 3 There are subsets 01/and 19 of P such that

1. d/ and iff are recursively enumerable.
2. O/M& = φ.
3. O/\M3 = P.
4. Both β/and β are dense in P.

Proof: The idea of the proof is to define, in stages, two recursively
enumerable subsets A and J*_of P such that A_U_B = P. We will thus
correspondingly define d/ = {p(i)ι p(i) e A} and 13 = {p(i): p(i) e B} (where that
p is any recursive function which enumerates P).

Stage 0: Put p(0) into A (and thus put /KO) into (Z).

For n= 0, 1, 2, . . .

Stage 3n + 1: Suppose i is the largest integer such that p(i) has already
been put into A or B. For each element p(j) of A, we seek exactly one
element p(k)y where k > i, such that p(k) has not yet been put into ^but
such that

\W)-W)\<^-1

Put each such p(k), when and if it is found, into B.
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Stage 3n + 2: Suppose i is the largest integer such that p(i) has already
been put into Λ or JB. For each element p(j) of B, we seek exactly one
element p(k), where k > i, such that p(k) has not yet been put into 43 but

such that \p(j) - p(k) | < -. Put each such p{k), when and if it is found,

into A.

Stage 3n + 3: Suppose i is the largest integer such that p(i) has already
been put into A or B. For each m < i9 if p(m) has not yet been put into A or
B, then put />(m) into A if we discover that p{m)^43 before we discover that
p{m)iCO\ if, however, we discover that p{m)iff/ before we discover that
p(m)fίi&9 then put p(m) into B.

We now show that the above construction does the job.

1. Since < and Φ are recursively enumerable predicates on />, the searches
at Stages 3n + 1 and 3n + 2, will succeed.
2. It follows by induction that Ct/ and # are disjoint (and thus the test at
Stage 3n + 3 will succeed).
3. Since A and B are recursively enumerable (by Church's Thesis) and
A U B = P, it follows that ^> and # are recursively enumerable and
# Ί J # = /\
4. Since ^ and 43 are dense in each other (by the union over all n of
Stages 3w -f 1 and 3n + 2), they are both dense in P.

This completes the proof of the theorem.

Remark: We can use the sets A and B defined in the above theorem to
obtain an apparently interesting result: Define, for every ie N,

(Oii p(i)eA;

Φf(pU)) = )
(1 if p(i) e B.

Then / is a partial recursive function which satisfies

(V*)(VΛ [W) = PU)-> Tim = MM,

so we can define an "effective operator" <^on 4P by setting

^(φpω) = </>/(£(*» > f o r e v e r y * e #•

Since the operator £Γ is (everywhere) discontinuous, it would seem that we
have disproved, in provably recursive analysis, the analogue of the Ceitin-
Moschovakis continuity theorem of recursive analysis. Further reflection,
however, reveals that the proper analogue of an effective operator on ί>
should be an operator on O which is provably correct, that is, implemented
by a partial recursive function / which satisfies:

H(Vz)(vj)[̂ ω ^H])^fϊPU))=fϊPΪJ))l

It is not apparent that the above operator is not provably correct. In
fact, no 0 - 1 valued operator can be provably correct (although, in [2]
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we do construct a provably correct operator which is everywhere discon-
tinuous) .

4 Relationship between provably recursive real numbers and primitive
recursive real numbers Let E be the set of canonical programs for
primitive recursive functions (viz., those given by the primitive-recursive
defining equations) and let PR be the subset of E consisting of those
programs which are Cauchy indices for recursive real numbers. Then
?&= {i: ie PR} is the set of primitive recursive real numbers. Given any
i € E, if we define

φio(0)=φi(0),

and, for n ^ 0,

ίφi(n + 1), if \φ{ (n) - φfr + 1)| « 1(Γ;

Φi0(n + 1) =
{φiQ(n), else

then ioeP, and i0 = i whenever iePR. Thus / ^ c /\ Furthermore, since
ioe PR for every i € E, and E is recursively enumerable, we conclude that
PΊ& is recursively enumerable.7 In the proof that f - l i s productive, the
program e0 is, in fact, primitive recursive. Thus 4>&- l i s productive and
hence not recursively enumerable. Since ί>& is a recursively enumerable
set, it can be decomposed into two disjoint, dense recursively enumerable
subsets (via the technique of Theorem 3) and thus, as in the Remark
following Theorem 3, we obtain an apparent discontinuity theorem in
primitive recursive analysis. But, again, the function / is deficient: now
because it is not primitive recursive. The operator constructed in [2] is
primitive recursive and establishes a discontinuity theorem in primitive
recursive analysis. For other results in primitive recursive analysis, see
Mazur [10].
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NOTES

1. Consg is the Gδdel sentence whose standard interpretation is that S is consistent.

2. This technique was invented by Paul Young and used to construct a discontinuous provably
correct operator on the provably recursive reals. This result is presented in [2],

3. Note that for every recursively enumerable set D of natural numbers, we can effectively find
a primitive recursive (and thus provably total) function which enumerates D.

4. Although (V«)[Irrational(ft(«))], we will not, in general, have KVn)[Irrational(Λ(«))]. Thus,
since we want \-e0 e C, we cannot assume, in defining φeQ(n), that h(ή) is an irrational index.
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5. A subset £ of O is listable if there is a subset L of C and a recursively enumerable set W such
that
l . ^ = { / : i e l } ;

3.(VO(V/)[ieLΛ7=/^/eL].

6. More generally, the construction used in the proof of Theorem 3 shows that any dense recur-
sively enumerable subset of <y can be "nicely" decomposed. We shall use this observation in
Section 4.

7. Paradoxically, PR itself is neither recursively enumerable nor a subset of P: let s and t be
primitive recursive functions which enumerate the sentences of S and theorems of S, respec-
tively. Define, for all / and n,

(O, if 5(0 *{ί(0), ί( l) , . . . , /(«)};

[n, otherwise.

Then (V/)[g(0 e PR *-* s(i) is not a theorem of S], so if PR were recursively enumerable, then
we could enumerate the unprovable sentences of S, which is known to be impossible. Thus
PR is not recursively enumerable. But if PR were a subset of P, we would have PR = P Π E
(since PR C E and P Π E C C C\ E - PR), and so />/? would be recursively enumerable since
both P and E are. Thus PΛ cannot be a subset of P.
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