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Abstract

Recent works have shown the effectiveness of randomized smoothing as a scalable
technique for building neural network-based classifiers that are provably robust to
ℓ2-norm adversarial perturbations. In this paper, we employ adversarial training
to improve the performance of randomized smoothing. We design an adapted
attack for smoothed classifiers, and we show how this attack can be used in an
adversarial training setting to boost the provable robustness of smoothed classifiers.
We demonstrate through extensive experimentation that our method consistently
outperforms all existing provably ℓ2-robust classifiers by a significant margin on
ImageNet and CIFAR-10, establishing the state-of-the-art for provable ℓ2-defenses.
Moreover, we find that pre-training and semi-supervised learning boost adversar-
ially trained smoothed classifiers even further. Our code and trained models are
available at http://github.com/Hadisalman/smoothing-adversarial2.

1 Introduction

Neural networks have been very successful in tasks such as image classification and speech recogni-
tion, but have been shown to be extremely brittle to small, adversarially-chosen perturbations of their
inputs [33, 14]. A classifier (e.g., a neural network), which correctly classifies an image x, can be
fooled by an adversary to misclassify x + δ where δ is an adversarial perturbation so small that x
and x+ δ are indistinguishable for the human eye. Recently, many works have proposed heuristic
defenses intended to train models robust to such adversarial perturbations. However, most of these
defenses were broken using more powerful adversaries [4, 2, 35]. This encouraged researchers to
develop defenses that lead to certifiably robust classifiers, i.e., whose predictions for most of the test
examples x can be verified to be constant within a neighborhood of x [39, 27]. Unfortunately, these
techniques do not immediately scale to large neural networks that are used in practice.

To mitigate this limitation of prior certifiable defenses, a number of papers [21, 22, 6] consider the
randomized smoothing approach, which transforms any classifier f (e.g., a neural network) into a
new smoothed classifier g that has certifiable ℓ2-norm robustness guarantees. This transformation
works as follows.

Let f be an arbitrary base classifier which maps inputs in R
d to classes in Y . Given an input x, the

smoothed classifier g(x) labels x as having class c which is the most likely to be returned by the base

classifier f when fed a noisy corruption x+ δ, where δ ∼ N (x, σ2I) is a vector sampled according
to an isotropic Gaussian distribution.

As shown in [6], one can derive certifiable robustness for such smoothed classifiers via the Neyman-
Pearson lemma. They demonstrate that for ℓ2 perturbations, randomized smoothing outperforms
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Table 1: Certified top-1 accuracy of our best ImageNet classifiers at various ℓ2 radii.

ℓ2 RADIUS (IMAGENET) 0.5 1.0 1.5 2.0 2.5 3.0 3.5

COHEN ET AL. [6] (%) 49 37 29 19 15 12 9
OURS (%) 56 45 38 28 26 20 17

Table 2: Certified top-1 accuracy of our best CIFAR-10 classifiers at various ℓ2 radii.

ℓ2 RADIUS (CIFAR-10) 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

COHEN ET AL. [6] (%) 61 43 32 22 17 13 10 7 4
OURS (%) 73 58 48 38 33 29 24 18 16
+ PRE-TRAINING (%) 80 62 52 38 34 30 25 19 16
+ SEMI-SUPERVISION (%) 80 63 52 40 34 29 25 19 17
+ BOTH(%) 81 63 52 37 33 29 25 18 16

other certifiably robust classifiers that have been previously proposed. It is scalable to networks with
any architecture and size, which makes it suitable for building robust real-world neural networks.

Our contributions In this paper, we employ adversarial training to substantially improve on the
previous certified robustness results3 of randomized smoothing [21, 22, 6]. We present, for the
first time, a direct attack for smoothed classifiers. We then demonstrate how to use this attack to
adversarially train smoothed models with not only boosted empirical robustness but also substantially
improved certifiable robustness using the certification method of Cohen et al. [6].

We demonstrate that our method outperforms all existing provably ℓ2-robust classifiers by a significant
margin on ImageNet and CIFAR-10, establishing the state-of-the-art for provable ℓ2-defenses. For
instance, our Resnet-50 ImageNet classifier achieves 56% provable top-1 accuracy (compared to
the best previous provable accuracy of 49%) under adversarial perturbations with ℓ2 norm less than
127/255. Similarly, our Resnet-110 CIFAR-10 smoothed classifier achieves up to 16% improvement
over previous state-of-the-art, and by combining our technique with pre-training [17] and semi-
supervised learning [5], we boost our results to up to 22% improvement over previous state-of-the-art.
Our main results are reported in Tables 1 and 2 for ImageNet and CIFAR-10. See Tables 16 and 17 in
Appendix G for the standard accuracies corresponding to these results.

Finally, we provide an alternative, but more concise, proof of the tight robustness guarantee of Cohen
et al. [6] by casting this as a nonlinear Lipschitz property of the smoothed classifier. See appendix A
for the complete proof.

2 Our techniques

Here we describe our techniques for adversarial attacks and training on smoothed classifiers. We first
require some background on randomized smoothing classifiers. For a more detailed description of
randomized smoothing, see Cohen et al. [6].

2.1 Background on randomized smoothing

Consider a classifier f from R
d to classes Y . Randomized smoothing is a method that constructs a

new, smoothed classifier g from the base classifier f . The smoothed classifier g assigns to a query
point x the class which is most likely to be returned by the base classifier f under isotropic Gaussian
noise perturbation of x, i.e.,

g(x) = argmax
c∈Y

P(f(x+ δ) = c) where δ ∼ N (0, σ2I) . (1)

The noise level σ2 is a hyperparameter of the smoothed classifier g which controls a robust-
ness/accuracy tradeoff. Equivalently, this means that g(x) returns the class c whose decision region

{x′ ∈ R
d : f(x′) = c} has the largest measure under the distribution N (x, σ2I). Cohen et al. [6]

3Note that we do not provide a new certification method incorporating adversarial training; the improvements
that we get are due to the higher quality of our base classifiers as a result of adversarial training.
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recently presented a tight robustness guarantee for the smoothed classifier g and gave Monte Carlo
algorithms for certifying the robustness of g around x or predicting the class of x using g, that succeed
with high probability.

Robustness guarantee for smoothed classifiers The robustness guarantee presented by [6] uses
the Neyman-Pearson lemma, and is as follows: suppose that when the base classifier f classifies
N (x, σ2I), the class cA is returned with probability pA = P(f(x+ δ) = cA), and the “runner-up”
class cB is returned with probability pB = maxc 6=cA P(f(x+ δ) = c). The smoothed classifier g is
robust around x within the radius

R =
σ

2

(

Φ−1(pA)− Φ−1(pB)
)

, (2)

where Φ−1 is the inverse of the standard Gaussian CDF. It is not clear how to compute pA and pB
exactly (if f is given by a deep neural network for example). Monte Carlo sampling is used to
estimate some pA and pB for which pA ≤ pA and pB ≥ pB with arbitrarily high probability over the

samples. The result of (2) still holds if we replace pA with pA and pB with pB .

This guarantee can in fact be obtained alternatively by explicitly computing the Lipschitz constant of
the smoothed classifier, as we do in Appendix A.

2.2 SMOOTHADV: Attacking smoothed classifiers

We now describe our attack against smoothed classifiers. To do so, it will first be useful to describe
smoothed classifiers in a more general setting. Specifically, we consider a generalization of (1) to soft

classifiers, namely, functions F : Rd → P (Y), where P (Y) is the set of probability distributions over
Y . Neural networks typically learn such soft classifiers, then use the argmax of the soft classifier as the
final hard classifier. Given a soft classifier F , its associated smoothed soft classifier G : Rn → P (Y)
is defined as

G(x) =
(

F ∗ N (0, σ2I)
)

(x) = E
δ∼N (0,σ2I)

[F (x+ δ)] . (3)

Let f(x) and F (x) denote the hard and soft classifiers learned by the neural network, respectively,
and let g and G denote the associated smoothed hard and smoothed soft classifiers. Directly finding
adversarial examples for the smoothed hard classifier g is a somewhat ill-behaved problem because
of the argmax, so we instead propose to find adversarial examples for the smoothed soft classifier
G. Empirically we found that doing so will also find good adversarial examples for the smoothed
hard classifier. More concretely, given a labeled data point (x, y), we wish to find a point x̂ which
maximizes the loss of G in an ℓ2 ball around x for some choice of loss function. As is canonical in
the literature, we focus on the cross entropy loss ℓCE. Thus, given a labeled data point (x, y) our
(ideal) adversarial perturbation is given by the formula:

x̂ = argmax
‖x′−x‖2≤ǫ

ℓCE(G(x′), y)

= argmax
‖x′−x‖2≤ǫ

(

− log E
δ∼N (0,σ2I)

[

(F (x′ + δ))y

]

)

. (S)

We will refer to (S) as the SMOOTHADV objective. The SMOOTHADV objective is highly non-convex,
so as is common in the literature, we will optimize it via projected gradient descent (PGD), and
variants thereof. It is hard to find exact gradients for (S), so in practice we must use some estimator
based on random Gaussian samples. There are a number of different natural estimators for the
derivative of the objective function in (S), and the choice of estimator can dramatically change the
performance of the attack. For more details, see Section 3.

We note that (S) should not be confused with the similar-looking objective

x̂wrong = argmax
‖x′−x‖2≤ǫ

(

E
δ∼N (0,σ2I)

[ℓCE(F (x′ + δ), y)]

)

= argmax
‖x′−x‖2≤ǫ

(

E
δ∼N (0,σ2I)

[

− log (F (x′ + δ))y

]

)

, (4)

as suggested in section G.3 of [6]. There is a subtle, but very important, distinction between (S) and
(4). Conceptually, solving (4) corresponds to finding an adversarial example of F that is robust to
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Gaussian noise. In contrast, (S) is directly attacking the smoothed model i.e. trying to find adversarial
examples that decrease the probability of correct classification of the smoothed soft classifier G.
From this point of view, (S) is the right optimization problem that should be used to find adversarial
examples of G. This distinction turns out to be crucial in practice: empirically, Cohen et al. [6] found
attacks based on (4) not to be effective.

Interestingly, for a large class of classifiers, including neural networks, one can alternatively derive the
objective (S) from an optimization perspective, by attempting to directly find adversarial examples to
the smoothed hard classifier that the neural network provides. While they ultimately yield the same
objective, this perspective may also be enlightening, and so we include it in Appendix B.

2.3 Adversarial training using SMOOTHADV

We now wish to use our new attack to boost the adversarial robustness of smoothed classifiers. We do
so using the well-studied adversarial training framework [20, 25]. In adversarial training, given a
current set of model weights wt and a labeled data point (xt, yt), one finds an adversarial perturbation
x̂t of xt for the current model wt, and then takes a gradient step for the model parameters, evaluated
at the point (x̂t, yt). Intuitively, this encourages the network to learn to minimize the worst-case loss
over a neighborhood around the input.

At a high level, we propose to instead do adversarial training using an adversarial example for the
smoothed classifier. We combine this with the approach suggested in Cohen et al. [6], and train at
Gaussian perturbations of this adversarial example. That is, given current set of weights wt and
a labeled data point (xt, yt), we find x̂t as a solution to (S), and then take a gradient step for wt

based at gaussian perturbations of x̂t. In contrast to standard adversarial training, we are training the
base classifier so that its associated smoothed classifier minimizes worst-case loss in a neighborhood
around the current point. For more details of our implementation, see Section 3.2. We emphasize that
although we are training using adversarial examples for the smoothed soft classifier, in the end we
certify the robustness of the smoothed hard classifier we obtain after training.

We make two important observations about our method. First, adversarial training is an empirical
defense, and typically offers no provable guarantees. However, we demonstrate that by combining
our formulation of adversarial training with randomized smoothing, we are able to substantially boost
the certifiable robust accuracy of our smoothed classifiers. Thus, while adversarial training using
SMOOTHADV is still ultimately a heuristic, and offers no provable robustness by itself, the smoothed
classifier that we obtain using this heuristic has strong certifiable guarantees.

Second, we found empirically that to obtain strong certifiable numbers using randomized smoothing,
it is insufficient to use standard adversarial training on the base classifier. While such adversarial
training does indeed offer good empirical robust accuracy, the resulting classifier is not optimized for
randomized smoothing. In contrast, our method specifically finds base classifiers whose smoothed
counterparts are robust. As a result, the certifiable numbers for standard adversarial training are
noticeably worse than those obtained using our method. See Appendix C.1 for an in-depth comparison.

3 Implementing SMOOTHADV via first order methods

As mentioned above, it is difficult to optimize the SMOOTHADV objective, so we will approximate it
via first order methods. We focus on two such methods: the well-studied projected gradient descent
(PGD) method [20, 25], and the recently proposed decoupled direction and norm (DDN) method [29]
which achieves ℓ2 robust accuracy competitive with PGD on CIFAR-10.

The main task when implementing these methods is to, given a data point (x, y), compute the gradient
of the objective function in (S) with respect to x′. If we let J(x′) = ℓCE(G(x′), y) denote the
objective function in (S), we have

∇x′J(x′) = ∇x′

(

− log E
δ∼N (0,σ2I)

[F (x′ + δ)y]

)

. (5)

However, it is not clear how to evaluate (5) exactly, as it takes the form of a complicated high
dimensional integral. Therefore, we will use Monte Carlo approximations. We sample i.i.d. Gaussians
δ1, . . . , δm ∼ N (0, σ2I), and use the plug-in estimator for the expectation:

∇x′J(x′) ≈ ∇x′

(

− log

(

1

m

m
∑

i=1

F (x′ + δi)y

))

. (6)
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Pseudocode 1: SMOOTHADV-ersarial Training

function TRAINMINIBATCH((x(1), y(1)), (x(2), y(2)), . . . , (x(B), y(B)))
ATTACKER← (SMOOTHADVPGD or SMOOTHADVDDN)

Generate noise samples δ
(j)
i ∼ N (0, σ2I) for 1 ≤ i ≤ m, 1 ≤ j ≤ B

L← [] # List of adversarial examples for training
for 1 ≤ j ≤ B do

x̂(j) ← x(j) # Adversarial example
for 1 ≤ k ≤ T do

Update x̂(j) according to the k-th step of ATTACKER, where we use

the noise samples δ
(j)
1 , δ

(j)
2 , . . . , δ

(j)
m to estimate a gradient of the loss of the smoothed

model according to (6)
# We are reusing the same noise samples between different steps of the attack

end
Append ((x̂(j) + δ

(j)
1 , y(j)), (x̂(j) + δ

(j)
2 , y(j)), . . . , (x̂(j) + δ

(j)
m , y(j))) to L

# Again, we are reusing the same noise samples for the augmentation
end
Run backpropagation on L with an appropriate learning rate

It is not hard to see that if F is smooth, this estimator will converge to (5) as we take more samples. In
practice, if we take m samples, then to evaluate (6) on all m samples requires evaluating the network
m times. This becomes expensive for large m, especially if we want to plug this into the adversarial
training framework, which is already slow. Thus, when we use this for adversarial training, we
use mtrain ∈ {1, 2, 4, 8}. When we run this attack to evaluate the empirical adversarial accuracy
of our models, we use substantially larger choices of m, specifically, mtest ∈ {1, 4, 8, 16, 64, 128}.
Empirically we found that increasing m beyond 128 did not substantially improve performance.

While this estimator does converge to the true gradient given enough samples, note that it is not
an unbiased estimator for the gradient. Despite this, we found that using (6) performs very well in
practice. Indeed, using (6) yields our strongest empirical attacks, as well as our strongest certifiable
defenses when we use this attack in adversarial training. In the remainder of the paper, we let
SMOOTHADVPGD denote the PGD attack with gradient steps given by (6), and similarly we let
SMOOTHADVDDN denote the DDN attack with gradient steps given by (6).

3.1 An unbiased, gradient free method

We note that there is an alternative way to optimize (S) using first order methods. Notice that the
logarithm in (S) does not change the argmax, and so it suffices to find a minimizer of G(x′)y subject
to the ℓ2 constraint. We then observe that

∇x′(G(x′)y) = E
δ∼N (0,σ2I)

[∇x′F (x′ + δ)y]
(a)
= E

δ∼N (0,σ2I)

[

δ

σ2
· F (x′ + δ)y

]

. (7)

The equality (a) is known as Stein’s lemma [32], although we note that something similar can be
derived for more general distributions. There is a natural unbiased estimator for (7): sample i.i.d.

gaussians δ1, . . . , δm ∼ N (0, σ2I), and form the estimator ∇x′(G(x′)y) ≈ 1
m

∑m
i=1

δi
σ2 · F (x′ +

δi)y . This estimator has a number of nice properties. As mentioned previously, it is an unbiased
estimator for (7), in contrast to (6). It also requires no computations of the gradient of F ; if F is a
neural network, this saves both time and memory by not storing preactivations during the forward
pass. Finally, it is very general: the derivation of (7) actually holds even if F is a hard classifier
(or more precisely, the one-hot embedding of a hard classifier). In particular, this implies that this
technique can even be used to directly find adversarial examples of the smoothed hard classifier.

Despite these appealing features, in practice we find that this attack is quite weak. We speculate that
this is because the variance of the gradient estimator is too high. For this reason, in the empirical
evaluation we focus on attacks using (6), but we believe that investigating this attack in practice is an
interesting direction for future work. See Appendix C.6 for more details.

3.2 Implementing adversarial training for smoothed classifiers

We incorporate adversarial training into the approach of Cohen et al. [6] changing as few moving
parts as possible in order to enable a direct comparison. In particular, we use the same network
architectures, batch size, and learning rate schedule. For CIFAR-10, we change the number of epochs,
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Figure 1: Comparing our SMOOTHADV-ersarially trained CIFAR-10 classifiers vs Cohen et al. [6].
(Left) Upper envelopes of certified accuracies over all experiments. (Middle) Upper envelopes of
certified accuracies per σ. (Right) Certified accuracies of one representative model per σ. Details of
each model used to generate these plots and their certified accuracies are in Tables 7-15 in Appendix G.

but for ImageNet, we leave it the same. We discuss more of these specifics in Appendix D, and here
we describe how to perform adversarial training on a single mini-batch. The algorithm is shown in
Pseudocode 1, with the following parameters: B is the mini-batch size, m is the number of noise
samples used for gradient estimation in (6) as well as for Gaussian noise data augmentation, and T is
the number of steps of an attack4.

4 Experiments

We primarily compare with Cohen et al. [6] as it was shown to outperform all other scalable provable
ℓ2 defenses by a wide margin. As our experiments will demonstrate, our method consistently and
significantly outperforms Cohen et al. [6] even further, establishing the state-of-the-art for provable
ℓ2-defenses. We run experiments on ImageNet [8] and CIFAR-10 [19]. We use the same base
classifiers f as Cohen et al. [6]: a ResNet-50 [16] on ImageNet, and ResNet-110 on CIFAR-10.
Other than the choice of attack (SMOOTHADVPGD or SMOOTHADVDDN) for adversarial training,
our experiments are distinguished based on five main hyperparameters:

ǫ = maximum allowed ℓ2 perturbation of the input
T = number of steps of the attack
σ = std. of Gaussian noise data augmentation during training and certification

mtrain = number of noise samples used to estimate (6) during training
mtest = number of noise samples used to estimate (6) during evaluation

(♦)

Given a smoothed classifier g, we use the same prediction and certification algorithms, PREDICT and
CERTIFY, as [6]. Both algorithms sample base classifier predictions under Gaussian noise. PREDICT

outputs the majority vote if the vote count passes a binomial hypothesis test, and abstains otherwise.
CERTIFY certifies the majority vote is robust if the fraction of such votes is higher by a calculated
margin than the fraction of the next most popular votes, and abstains otherwise. For details of these
algorithms, we refer the reader to [6].

The certified accuracy at radius r is defined as the fraction of the test set which g classifies correctly
(without abstaining) and certifies robust at an ℓ2 radius r. Unless otherwise specified, we use the
same σ for certification as the one used for training the base classifier f . Note that g is a randomized
smoothing classifier, so this reported accuracy is approximate, but can get arbitrarily close to the
true certified accuracy as the number of samples of g increases (see [6] for more details). Similarly,
the empirical accuracy is defined as the fraction of the ℓ2 SMOOTHADV-ersarially attacked test set
which g classifies correctly (without abstaining). Both PREDICT and CERTIFY have a parameter α
defining the failure rate of these algorithms. Throughout the paper, we set α = 0.001 (similar to [6]),
which means there is at most a 0.1% chance that PREDICT does not return the most probable class
under the smoothed classifier g, or that CERTIFY falsely certifies a non-robust input.

4.1 SMOOTHADV-ersarial training

To assess the effectiveness of our method, we learn a smoothed classifier g that is adversarial trained
using (S). Then we compute the certified accuracies5 over a range of ℓ2 radii r. Tables 1 and 2

4Note that we are reusing the same noise samples during every step of our attack as well as during augmenta-
tion. Intuitively, this helps to stabilize the attack process.

5Similar to Cohen et al. [6], we certified the full CIFAR-10 test set and a subsampled ImageNet test set of
500 samples.
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Figure 2: Comparing our SMOOTHADV-ersarially trained ImageNet classifiers vs Cohen et al. [6].
Subfigure captions are same as Fig. 1. Details of each model used to generate these plots and their
certified accuracies are in Table 6 in Appendix G.

Table 3: Certified ℓ∞ robustness at a radius of 2
255 on CIFAR-10. Note that our models and Carmon

et al. [5]’s give accuracies with high probability (W.H.P).

MODEL ℓ∞ ACC. AT 2/255 STANDARD ACC.

OURS (%) 68.2 (W.H.P) 86.2 (W.H.P)
CARMON ET AL. [5] (%) 63.8± 0.5 (W.H.P) 80.7± 0.3 (W.H.P)
WONG AND KOLTER [39] (SINGLE) (%) 53.9 68.3
WONG AND KOLTER [39] (ENSEMBLE) (%) 63.6 64.1
IBP [15] (%) 50.0 70.2

report the certified accuracies using our method compared to [6]. For all radii, we outperform the
certified accuracies of [6] by a significant margin on both ImageNet and CIFAR-10. These results are
elaborated below.

For CIFAR-10 Fig. 1(left) plots the upper envelope of the certified accuracies that we get by
choosing the best model for each radius over a grid of hyperparameters. This grid consists of
mtrain ∈ {1, 2, 4, 8}, σ ∈ {0.12, 0.25, 0.5, 1.0}, ǫ ∈ {0.25, 0.5, 1.0, 2.0} (see ♦ for explanation),
and one of the following attacks {SMOOTHADVPGD, SMOOTHADVDDN} with T ∈ {2, 4, 6, 8, 10}
steps. The certified accuracies of each model can be found in Tables 7-15 in Appendix G. These results
are compared to those of Cohen et al. [6] by plotting their reported certified accuracies. Fig. 1(left)
also plots the corresponding empirical accuracies using SMOOTHADVPGD with mtest = 128. Note
that our certified accuracies are higher than the empirical accuracies of Cohen et al. [6].

Fig. 1(middle) plots our vs [6]’s best models for varying noise level σ. Fig. 1(right) plots a represen-
tative model for each σ from our adversarially trained models. Observe that we outperform [6] in all
three plots.

For ImageNet The results are summarized in Fig. 2, which is similar to Fig. 1 for CIFAR-10, with
the difference being the set of smoothed models we certify. This set includes smoothed models
trained using mtrain = 1, σ ∈ {0.25, 0.5, 1.0}, ǫ ∈ {0.5, 1.0, 2.0, 4.0}, and one of the following
attacks {1-step SMOOTHADVPGD, 2-step SMOOTHADVDDN}. Again, our models outperform those
of Cohen et al. [6] overall and per σ as well. The certified accuracies of each model can be found in
Table 6 in Appendix G.

We point out, as mentioned by Cohen et al. [6], that σ controls a robustness/accuracy trade-off. When
σ is low, small radii can be certified with high accuracy, but large radii cannot be certified at all.
When σ is high, larger radii can be certified, but smaller radii are certified at a lower accuracy. This
can be observed in the middle and the right plots of Fig. 1 and 2.

Effect on clean accuracy Training smoothed classifers using SMOOTHADV as shown improves
upon the certified accuracy of Cohen et al. [6] for each σ, although this comes with the well-known
effect of adversarial training in decreasing the standard accuracy, so we sometimes see small drops in
the accuracy at r = 0, as observed in Fig. 1(right) and 2(right).

ℓ2 to ℓ∞ certified defense Since the ℓ2 ball of radius
√
d contains the ℓ∞ unit ball in R

d, a model

robust against ℓ2 perturbation of radius r is also robust against ℓ∞ perturbation of norm r/
√
d.

Via this naive conversion, we find our ℓ2-robust models enjoy non-trivial ℓ∞ certified robustness.
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In Table 3, we report the best6 ℓ∞ certified accuracy that we get on CIFAR-10 at a radius of 2/255

(implied by the ℓ2 certified accuracy at a radius of 0.435 ≈ 2
√
3× 322/255). We exceed previous

state-of-the-art in certified ℓ∞ defenses by at least 3.9%. We obtain similar results for ImageNet
certified ℓ∞ defenses at a radius of 1/255 where we exceed the previous state-of-the-art by 8.2%;
details are in appendix F.

Additional experiments and observations We compare the effectiveness of smoothed classifiers
when they are trained SMOOTHADV-versarially vs. when their base classifier is trained via standard
adversarial training (we will refer to the latter as vanilla adversarial training). As expected, because
the training objective of SMOOTHADV-models aligns with the actual certification objective, those
models achieve noticeably more certified robustness over all radii compared to smoothed classifiers
resulting from vanilla adversarial training. We defer the results and details to Appendix C.1.

Furthermore, SMOOTHADV requires the evaluation of (6) as discussed in Section 3. We analyze
in Appendix C.2 how the number of Gaussian noise samples mtrain, used in (6) to find adversarial
examples, affects the robustness of the resulting smoothed models. As expected, we observe that
models trained with higher mtrain tend to have higher certified accuracies.

Finally, we analyze the effect of the maximum allowed ℓ2 perturbation ǫ used in SMOOTHADV on
the robustness of smoothed models in Appendix C.3. We observe that as ǫ increases, the certified
accuracies for small ℓ2 radii decrease, but those for large ℓ2 radii increase, which is expected.

4.2 More Data for Better Provable Robustness

We explore using more data to improve the robustness of smoothed classifiers. Specifically, we pursue
two ideas: 1) pre-training similar to [17], and 2) semi-supervised learning as in [5].

Pre-training Hendrycks et al. [17] recently showed that using pre-training can improve the adver-
sarial robustness of classifiers, and achieved state-of-the-art results for empirical l∞ defenses on
CIFAR-10 and CIFAR-100. We employ this within our framework; we pretrain smoothed classifiers
on ImageNet, then fine-tune them on CIFAR-10. Details can be found in Appendix E.1.

Semi-supervised learning Carmon et al. [5] recently showed that using unlabelled data can im-
prove the adversarial robustness as well. They employ a simple, yet effective, semi-supervised
learning technique called self-training to improve the robustness of CIFAR-10 classifiers. We employ
this idea in our framework and we train our CIFAR-10 smoothed classifiers via self-training using the
unlabelled dataset used in Carmon et al. [5]. Details can be found in Appendix E.2.

We further experiment with combining semi-supervised learning and pre-training, and the details are
in Appendix E.3. We observe consistent improvement in the certified robustness of our smoothed
models when we employ pre-training or semi-supervision. The results are summarized in Table 2.

4.3 Attacking trained models with SMOOTHADV

In this section, we assess the performance of our attack, particularly SMOOTHADVPGD, for finding
adversarial examples for the CIFAR-10 randomized smoothing models of Cohen et al. [6].

SMOOTHADVPGD requires the evaluation of (6) as discussed in Section 3. Here, we analyze how
sensitive our attack is to the number of samples mtest used in (6) for estimating the gradient of the
adversarial objective. Fig. 3 shows the empirical accuracies for various values of mtest. Lower
accuracies corresponds to stronger attack. SMOOTHADV with mtest = 1 sample performs worse
than the vanilla PGD attack on the base classifier, but as mtest increases, our attack becomes stronger,
decreasing the gap between certified and empirical accuracies. We did not observe any noticeable
improvement beyond mtest = 128. More details are in Appendix C.4.

While as discussed here, the success rate of the attack is affected by the number of Gaussian noise
samples mtest used by the attacker, it is also affected by the number of Gaussian noise samples n in
PREDICT used by the classifier. Indeed, as n increases, abstention due to low confidence becomes
more rare, increasing the prediction quality of the smoothed classifier. See a detailed analysis in
Appendix C.5.

6We report the model with the highest certified ℓ2 accuracy on CIFAR-10 at a radius of 0.435, amongst all
our models trained in this paper.
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Figure 3: Certified and empirical robust accuracy of Cohen et al. [6]’s models on CIFAR-10. For
each ℓ2 radius r, the certified/empirical accuracy is the maximum over randomized smoothing
models trained using σ ∈ {0.12, 0.25, 0.5, 1.0}. The empirical accuracies are found using 20 steps
of SMOOTHADVPGD. The closer an empirical curve is to the certified curve, the stronger the
corresponding attack is (the lower the better).

5 Related Work

Recently, many approaches (defenses) have been proposed to build adversarially robust classifiers,
and these approaches can be broadly divided into empirical defenses and certified defenses.

Empirical defenses are empirically robust to existing adversarial attacks, and the best empirical
defense so far is adversarial training [20, 25]. In this kind of defense, a neural network is trained to
minimize the worst-case loss over a neighborhood around the input. Although such defenses seem
powerful, nothing guarantees that a more powerful, not yet known, attack would not break them; the
most that can be said is that known attacks are unable to find adversarial examples around the data
points. In fact, most empirical defenses proposed in the literature were later “broken” by stronger
adversaries [4, 2, 35, 1]. To stop this arms race between defenders and attackers, a number of work
tried to focus on building certified defenses which enjoy formal robustness guarantees.

Certified defenses are provably robust to a specific class of adversarial perturbation, and can guaran-
tee that for any input x, the classifier’s prediction is constant within a neighborhood of x. These are
typically based on certification methods which are either exact (a.k.a “complete”) or conservative
(a.k.a “sound but incomplete”). Exact methods, usually based on Satisfiability Modulo Theories
solvers [18, 11] or mixed integer linear programming [34, 24, 12], are guaranteed to find an adversar-
ial example around a datapoint if it exists. Unfortunately, they are computationally inefficient and
difficult to scale up to large neural networks. Conservative methods are also guaranteed to detect an
adversarial example if exists, but they might mistakenly flag a safe data point as vulnerable to adversar-
ial examples. On the bright side, these methods are more scalable and efficient which makes some of
them useful for building certified defenses [39, 36, 37, 27, 28, 40, 10, 9, 7, 30, 13, 26, 31, 15, 38, 41].
However, none of them have yet been shown to scale to practical networks that are large and expres-
sive enough to perform well on ImageNet, for example. To scale up to practical networks, randomized
smoothing has been proposed as a probabilistically certified defense.

Randomized smoothing A randomized smoothing classifier is not itself a neural network, but
uses a neural network as its base for classification. Randomized smoothing was proposed by several
works [23, 3] as a heuristic defense without proving any guarantees. Lecuyer et al. [21] first proved
robustness guarantees for randomized smoothing classifier, utilizing inequalities from the differential
privacy literature. Subsequently, Li et al. [22] gave a stronger robustness guarantee using tools from
information theory. Recently, Cohen et al. [6] provided a tight robustness guarantee for randomized
smoothing and consequently achieved the state of the art in ℓ2-norm certified defense.

6 Conclusions

In this paper, we designed an adapted attack for smoothed classifiers, and we showed how this attack
can be used in an adversarial training setting to substantially improve the provable robustness of
smoothed classifiers. We demonstrated through extensive experimentation that our adversarially
trained smooth classifiers consistently outperforms all existing provably ℓ2-robust classifiers by
a significant margin on ImageNet and CIFAR-10, establishing the state of the art for provable
ℓ2-defenses.
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