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Abstract—In the horizontal semiconductor business model
where the designer’s intellectual property (IP) is transparent to

foundry and to other entities on the production chain, integrated

circuits (ICs) overbuilding and IP piracy are prevalent problems.
Active metering is a suite of methods enabling the designers to

control their chips postfabrication. We provide a comprehensive

description of the first known active hardware metering method
and introduce new formal security proofs. The active metering

method uniquely and automatically locks each IC upon manufac-

turing, such that the IP rights owner is the only entity that can

provide the specific key to unlock or otherwise control each chip.

The IC control mechanism exploits: 1) the functional description

of the design, and 2) unique and unclonable IC identifiers. The

locks are embedded by modifying the structure of the hardware

computation model, in the form of a finite state machine (FSM).

We show that for each IC hiding the locking states within the

modified FSM structure can be constructed as an instance of a

general output multipoint function that can be provably efficiently

obfuscated. The hidden locks within the FSM may also be used

for remote enabling and disabling of chips by the IP rights owner

during the IC’s normal operation. An automatic synthesis method

for low overhead hardware implementation is devised. Attacks

and countermeasures are addressed. Experimental evaluations

demonstrate the low overhead of the method. Proof-of-concept

implementation on the H.264 MPEG decoder automatically

synthesized on a Xilinix Virtex-5 field-programmable gate array

(FPGA) further shows the practicality, security, and the low

overhead of the new method.

Index Terms—Active hardware metering, anti-piracy, chip over-

building attack, chip protection, hardware obfuscation, integrated

circuit (IC) piracy protection, integrated circuit (IC) security and
trust, provably secure hardware metering, third-party intellectual

property (IP) protection.

I. INTRODUCTION

T HE escalating cost of updating and maintaining silicon

foundries has caused a major paradigm shift in the semi-

conductor business model. Many of the key design houses are

entirely fabless (i.e., without a fabrication plant), outsourcing

their fabrication to third-party providers. Several design com-

panies that have traditionally fabricated their designs inhouse,
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have either formed alliances to share the cost, or have moved

parts of their fabrication offshore to third-party providers.

In the earlier vertical market model, inhouse fabrication to-

gether with the clandestine nature of the packaged chips were

enough for protection of design intellectual property (IPs). In the

new business model, however, fabrication outsourcing requires

revealing the design IP to external entities, creating many op-

portunities for IP infringements. The problem is exacerbated by

contracting the offshore foundries to lower the labor and man-

ufacturing cost, since many such fabrication plants are in coun-

tries with malpractice of IP enforcement laws [1]. The Alliance

for Gray Market and Counterfeit Abatement has estimated that

about 10% of the leading edge technology products available on

themarket are counterfeits [2]. Several government and industry

task forces with members from the leading semiconductor com-

panies are actively working to address the important problem of

counterfeiting [3]–[5].

To enable tracking of the designer IPs and integrated circuits

(ICs), a suit of new security mechanisms and protocols called

hardware metering was introduced [6]–[9]. Metering enables

the designers to have postfabrication control over their designed

IPs by passively or actively monitoring or counting the number

of produced ICs, monitoring their properties and usages, and

by remote runtime enabling/disabling. The term hardware me-

tering was originally coined by Koushanfar, Qu, and Potkonjak

to refer to methods for unique functional identification of ICs

made by the same mask [6], [7]. Their metering methods were

the first that could be used for specific functional tagging of ICs,

or for monitoring and estimating the number of fake compo-

nents in case of piracy detection. Methods for unique identifica-

tion of chips based on process variations were available earlier,

but the hardware metering was the first to integrate the unique

chip identifiers into the IC’s functionality.

While passive methods for metering by postsilicon pro-

cessing or by adding programmable parts were proposed about

a decade ago, the first set of active methods for metering or

tracking ICs was more recently introduced [9]. Several subse-

quent metering methods have been proposed since [10]–[15].

For a comprehensive review and novel classification of me-

tering, we refer the interested readers to recent surveys on the

topic [16], [17].

In a typical hardware metering scenario, each chip is uniquely

and unclonably identified, for example by using a physical un-

clonable function (PUF) module [18]–[20]. A PUF typically ex-

tracts the unique delay or current variations on each chip to as-

sign a set of unclonable identifiers (IDs). To meter, the IDs are

linked to parts of the IC’s functional components, e.g., the com-

binational part or the sequential part of the computer circuitry.

This way, a part of the design functionality is uniquely tailored

to the unclonable properties (fingerprint) of the IC and is used
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to form a unique lock for each IC’s functionality [9]. Only the

designer who has the knowledge of the high level design would

be able to find the specific key to unlock each IC. Security of

the current active control methods is ensured by one of the two

approaches: 1) Expanding the finite state model of the func-

tional specification such that the added states and transitions are

hidden in high-level design and are only known to the designers

[9], [21]; or 2) employing a known cryptographic primitive such

as public key cryptography, secret sharing, or Advanced En-

cryption Standard (AES) [10]–[12]. The recent surveys on ac-

tive metering distinguishes between the two methods [16], [17].

The first set of methods based on introducing locks embedded

in the behavioral description of the design are called internal

active IC metering. The second set of methods based on em-

bedding locks within the design and interfacing (controlling) the

access by an external cryptography function are termed external

active IC metering.

This paper presents a detail description and comprehensive

analysis of the first known active metering method originally

introduced in [9] along with several new results. The locking

and controlling methods introduced in this paper are internal,

and sequentially designed. We emphasize that although com-

binational-only internal locks have been used in the context of

external active hardware metering [10]–[12], those locks are in-

terfaced with cryptographic hardware that is often sequentially

implemented. Therefore, the control method as a whole is a se-

quential design. Furthermore, the power/area overhead of the

cryptographic module interfaced with the combinational locks

is greater than the overhead of the internally embedded control

circuitry.

A novel aspect of this paper compared to previously pub-

lished active hardwaremeteringmethods, including [9], is intro-

ducing secure construction of the active metering by extending

the chip’s behavioral specification in the finite states domain.

We show that our construction of locks by finite state manip-

ulation and compilation during the hardware synthesis and in-

terfacing to a unique PUF state is an instance of an efficiently

obfuscatable program under the random oracle model. Even

though heuristic methods for finite state machine (FSM) ob-

fuscation were proposed earlier, e.g., [22] and [23], no prov-

able security for such a construction was available. The signifi-

cance of our construction and security proofs for the obfuscated

FSM goes beyond hardware metering and extends to the ear-

lier work in information hiding and obfuscation of sequential

circuits, e.g., [22] and [23]. The experimental evaluations pre-

sented in this paper are all new as they implement the novel lock

construction method. Our contributions are as follows.

1) We comprehensively present the first known method for

active IC metering and IC piracy prevention. The method

uniquely locks each manufactured IC at the foundry.

2) The locking structure is embedded during hardware syn-

thesis by FSM modifications. The locks are designed such

that the IC would not be functional without a proper chip-

specific passkey that can only be computed by the designer

(IP rights owner).

3) We show the analogy between the hardware synthesis

transformations and program compilation. We pose the

problem of extending the FSM for hiding the locks as an

instance of the classic program obfuscation problem.

Fig. 1. Global flow of the novel IC activation approach.

4) We demonstrate a construction of the locks within FSM as

an instance of a general output multipoint function family.

This family is known to be effectively obfuscatable in the

random oracle model. Therefore, the locks can be effi-

ciently hidden.

5) Automatic low-overhead implementation of secure me-

tering lock structure during synthesis is demonstrated

by obfuscatable topology construction, secure passkey

selection, and iterative synthesis.

6) Potential attacks and security of the presented method

against each attack are discussed.

7) Experimental evaluations and the overhead of the new

hardware metering construction is demonstrated on stan-

dard benchmark circuits.

8) Proof-of-concept implementation of the active hardware

metering for an H.264 MPEG decoder on field-pro-

grammable gate array (FPGA) is done and the overhead

is reported. To the best of our knowledge, this is the first

hardware implementation of any known active hardware

metering methods clearly showing applicability and prac-

ticality of our method.

The remainder of this paper is organized in the following

way. Section II introduces the global flow. The necessary back-

ground is outlined in Section III. The related literature is sur-

veyed in Section IV. Details of the active hardware metering

method is presented in Section V, where secure hiding of the

locks within the FSM structure is discussed. We also briefly

mention a number of potential applications of active metering.

Section VI discusses the details of the automatic synthesis and

implementation. Attacks and countermeasures are discussed in

Section VII. Experimental evaluations and hardware implemen-

tation are presented in Section VIII. We conclude in Section IX.

II. FLOW

Fig. 1 shows the global flow of the first known active hard-

ware metering approach as described in [9]. Similar flows were

later adopted for both internal and external active ICs metering.

There are typically twomain entities involved: 1) a design house

(a.k.a., designer) that holds the IP rights for the manufactured

ICs, and 2) a foundry (a.k.a., fab) that manufactures the designed

ICs.

The steps of the flow are as follows. The designer uses the

high level design description to form the design’s behavioral

model in the FSM format. Next, the FSM is modified so that

the extra locking structure composed of additional states and

transitions is integrated within the FSM. The term boosted

finite state machine (BFSM) is used to refer to the modified

FSM. The subsequent design phases (e.g., RTL, synthesis,

mapping, layout, and pin placement) take their routine courses.



KOUSHANFAR: PROVABLY SECURE ACTIVE IC METERING TECHNIQUES FOR PIRACY AVOIDANCE 53

The foundry would receive the OASIS files (or GDS-II) and

other required information for fabricating the chips, and also

the test vectors. The test vectors include the challenge set

(input) to be applied to the PUF unit on each IC [20]. The

design house typically pays the foundry an up-front cost for a

mask to be lithographed from the submitted OASIS files and

for the required number of defect-free ICs to be fabricated.

Building a mask is a costly and complex process, involving

multiple fine steps that should be closely controlled [24], [25].

Once the foundry lithographs a mask, multiple ICs could be

fabricated from this mask. Because of the specific PUF re-

sponses integrated within the locks on the chips, each IC would

be uniquely locked (nonfunctional) upon fabrication. During

a startup test phase, the fab inputs the challenge vectors to the

chips that would run through the scan chains. The states stored

in the chip FFs (a.k.a., power-up state or the startup state)

would be scanned at this point. The scanned FF values are sent

back to the design house (IP rights owner) who has the full

specifications of the hidden states. The design house is the only

entity who could compute the unlocking sequence for each

locked chip. This paper introduces provably secure BFSM con-

struction methods so the transitions from each power-up state to

the original reset state can be efficiently hidden. Additionally,

the designer often computes the error correcting code (ECC) to

adjust for any further changes to the startup state because of the

noise or other sources of physical uncertainty. The ECC is very

important since a few of the PUF response bits may be unstable

and altered at a later time because of noise, environmental

conditions (e.g., temperature), or circuit instability [26]. The

key and the ECC would then be sent back to the fab.

The nonvolatile on-chip memories would be used to store

the power-up test vectors (PUF challenges), the unlocking se-

quence (passkeys), and the relevant ECC bits on each perti-

nent activated IC. From this point on, every time the IC starts

up, it would automatically read the passkey and ECCs and use

them for traversing the chip to a working state. As it can be

easily seen, active metering is nicely integrated within the reg-

ular phases of the hardware design, synthesis, and tape-out flow.

The only added phase is the key exchange protocol for unique

activation of each IC. The common functional and structural

tests would be done on the unlocked ICs.

We note that if a defect or a fault affects the states and se-

quences traversed during the startup state or the traversal from

the locked startup state to the functional state, the IC cannot be

unlocked and would be defective.

III. BACKGROUND AND ASSUMPTIONS

We introduce a number of general terms and concepts that are

used throughout the paper. More specific definitions would be

described as necessary.

Physical unclonable function. PUFs are an emerging prim-

itive for many device level security and privacy protocols [18],

[19], [27]. PUF is a physical function that provides a mapping

from its inputs to outputs based on the unique fluctuations in

the unclonable device material properties. The PUF input is

typically called a challenge and the PUF output is commonly

called a response. To ensure security, the mapping should be

such that the responses can be rapidly evaluated, but they are

hard to model, characterize, or reproduce. PUFs have been clas-

sified to a few categories, including weak PUFs and strong PUFs

[20]. A weak PUF (also called a physically obfuscated key) can

only generate a very limited (fixed) number of independent out-

puts. It can be used for generation of secret keys and is secure as

long as the adversary does not have a way to read out the chal-

lenge/response pairs for the structure. In contrast, a strong PUF

has many possible challenge/response pairs and can be used in

applications other than secret key generation such as authenti-

cation and integrity checking.

Note that even though our described metering scenario in-

cludes a type of PUF, our technique is independent of the hard-

ware ID extraction method. Many proposed structures for PUF

can be used for ID generation. For example, a weak PUF can

be used, or a strong PUF can be used for making a weak PUF

[20]. As long as we can extract a set of unclonable digital iden-

tifiers (fingerprints) from the device based on its physical dis-

orders, our method is secure. The only assumption made about

the PUF is that with a very high probability it produces a unique

random number on each device, and that responses are reason-

ably stable. The PUF should also be hard to tamper/remove.

Design description. We consider the case where the sequen-

tial design represents a fully synchronous flow. The descrip-

tion of the design input/output functionality is publicly avail-

able. We assume that the functional description is fully fixed,

and the I/O behavior is fully specified. Our metering technique

is applicable when the IP is available in structural HDL de-

scription, or in form of a netlist that may or may not be tech-

nology dependent. Thus, it can protect both firmware and hard-

ware [28]. During the IC design flow, the designer maps the cir-

cuit behavioral description to a specific technology provided by

the target foundry. Several logic-level optimizations (including

timing closure, power optimizations, and synthesis transforma-

tions) are applied by the designer. Very often, a designed IP is

integrated within a larger circuit or a system-on-a-chip.

Finite state machine. Digital sequential circuits are com-

monly modeled by a finite set of states, transitions between the

states, and actions that can be abstracted by a FSM computa-

tional model. A deterministic FSM is often formally defined by

a tuple FSM where

is a finite set of input symbols;

is a finite set of output symbols;

denotes a finite set of states;

is the FSM “reset” state;

is transition function on and

;

is output function on and

.

In and definitions, is the state and is the input. To

represent the transitions and output functions of the FSM, we

use the state transition graph (STG) with nodes corresponding

to states and edges defining the transition conditions based on

the current state and the edge inputs. Throughout the paper, we

use the terms STG and FSM interchangeably.
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Assumptions. The hardware metering objective is to protect

the ICs so they cannot be pirated or overbuilt by the foundry.

There are a number of realistic assumptions that we make about

the potential adversary (foundry). First, the foundry has access

to layout (e.g., OASIS or GDS-II files) and the netlist but does

not have access to FSM because: 1) the layout files, the netlist,

and the test vectors are sufficient for fabricating the chip and a

high level behavioral description is not needed, and 2) the details

of the FSM behavioral description is a key part of the designer’s

IP and trade secret that maintains their revenue in the competi-

tive semiconductor market. Second, a significant design modifi-

cation would impact power, yield, and most importantly, timing.

In such scenarios, redoing timing, physical design, verification,

and debugging would require an effort equivalent to designing

a new IC and a new mask. Therefore, the attack cost and com-

plexity does not justify its benefits. Third, the scan chains are

available and it is possible to scan and readout the FF values

storing the FSM states on each chip. Fourth, the designer’s ob-

jective is to protect her/his design from piracy and other re-

lated tampering. The designer’s objective is not to protect the

overall functionality. For example, while designing an H.264

media player, the different submodules are known at the pro-

tocol level and at the block level. However, the specific details

of a design are to be protected by the design house (so it cannot

be readily reproduced) for competitive advantage reasons.

IV. RELATED WORK

We survey the related literature along the lines of ongoing

efforts for counterfeit detection, unique circuit identification and

PUFs, passive and active metering, hiding secret in FSM, and

provable obfuscation (hiding information) for programs.

Counterfeiting has been identified as a major challenge by

several major U.S. design companies. The Semiconductor

Industry Association (SIA) has formed an anti-counterfeiting

task-force (ACTF) with experts from 17 of its 95 member com-

panies [29]. The main goal of ACTF is to support actions and

countermeasures against counterfeiting and IP violations with

both government and private agencies. Several methods, tools,

and guidelines are being developed to reduce counterfeiting.

Currently, ACTF is collaborating with SEMI (an industry as-

sociation and standard generating body for the semiconductor

manufacturing supply chain) for developing standards for the

authentication service providers in the supply chain. Another

key international organization in this domain is the Alliance for

Gray Market and Counterfeit Abatement (AGMA) [4].

The first passive hardware metering approach by integrating

the uniqueness into the functional description was introduced

about a decade ago [6], [7]. The idea was to assign a unique

signature to each IC’s functionality by integrating a small flex-

ible part to the ASIC. Each IC would be unique with a different

control mechanism dictated by the various schedules that were

all implementing the same design. The flexible part could be an

added programmable component, or it might be a function of

unclonable IC variations. One possible advantage of having a

part of the chip programmable is that the designer could retain

a part of the schematic as a design secret. However, there are

at least two limitations to this approach. One has to do with the

overhead and cost of augmenting programmable components on

a typical ASIC technology because of the additional mask layer

requirements. The other one is related to reproducibility. For ex-

ample, even if a part of the schematic is retained secret during

fabrication, the foundry can overbuild the unprogrammed cir-

cuits. Getting hold of even one reproducible postprogrammed

circuit instance would be enough for overbuilding attacks.

This paper presents, complements, and advances the first-

known active metering method in [9]. Compared to the earlier

work, a suit of new concepts, analyses, security guarantees, im-

plementation methods, and results are demonstrated. Another

possible FSM-based metering is based on integrating a few new

states, but manipulating the transitions and adding an exponen-

tial number of transitions in the circuit [21]. Because of the dif-

ferences in the FSM manipulation method and the continuous

checking provided by the multiple distributed locks and paths,

there is very little overlap between this paper and the work in

[21]. For example, our method only affects the activation and

disabling phases and does not incur a significant timing over-

head during the circuits regular functionality.

A number of subsequent work in active locking and un-

locking of ICs included using asymmetric cryptography and

secret sharing [10]–[12]. Those methods are useful for larger

chip sets, since it is well known that public key cryptography

(PKC) has a high overhead on small chips and in embedded

systems [30]. The overhead is much larger than the FSM-based

protection presented in this paper. Note that the PKC is usually

implemented using sequential circuits. Thus, even though it is

possible to only lock the combinational part of the circuit to be

protected, the combinational locks need to be integrated with a

sequential cipher, resulting in an overall sequential behavior.

Oliveira was the first to use FSM for hiding a secret water-

mark in a sequential circuit [28]. The watermarking was per-

formed by manipulating the STG to exhibit a chosen state tran-

sition that was extremely rare in a nonwatermarked circuit. Si-

multaneously, the watermark did not change the circuit’s func-

tionality. Yuan and Qu have pursued the idea of hiding infor-

mation in the FSM with the goal of minimizing the overhead in

concealed data [22]. To achieve this, the hidden information is

embedded within the “don’t care” states. The FSM is manipu-

lated post state minimization using the knowledge of maximum

set of redundant specification. While we also utilize the con-

cept of hiding data in FSM, our approach is drastically different

than watermarking or information hiding. We add an exponen-

tial number of states to the FSM to create a secure multipoint

function with a generalized output.

It is also worth emphasizing the differences between IC wa-

termarking as a proof of design authorship and ICmetering.Wa-

termarking is radically different since it embeds a unique signa-

ture in each IP, unlike metering that assigns a specific signa-

ture to each IC. The authorship of an IP can be then proved in

legal settings if needed. A watermark cannot track or monitor,

passively or actively, the number of copies that were fabricated

from one mask. We refer the readers interested in watermarking

to key papers and books in this area, including [22], [28], and

[31]–[34].

There are multiple new concepts and enhancements in this

paper compared to [9] including: 1) new construction of BFSM

according to the provable obfuscation of multipoint function



KOUSHANFAR: PROVABLY SECURE ACTIVE IC METERING TECHNIQUES FOR PIRACY AVOIDANCE 55

Fig. 2. PUF response is fed to the FFs storing the states of the BFSM. The
original states are shown in dark, and the added states are demonstrated in white
color on the STG that represents the BFSM.

with a generalized output, for secure concealing of the locks

within the original design; 2) comprehensive discussion of the

security of the new provably secure construction and providing

countermeasures against a new possible set of attacks; 3) new

experimental evaluations that yield a different overhead result

because of the new provable obfuscation; and 4) results and

proof-of-concept low overhead implementation of the new

secure methods on state-of-the-art H.264 MPEG decoder on

Virtex-5 Xilinx FPGA.

V. SECURE ACTIVE HARDWAREMETERINGMETHODOLOGY

During the IC design flow, a designer devises the behavioral

specification in an FSM format. At this stage, the FSM will be

modified to include multiple added states and transitions. This

modified FSM is called the BFSM. The initial power-up state of

the BFSM is determined by the PUF and is unique for each IC.

A. Designing a BFSM

We first demonstrate the BFSM modification and active me-

tering mechanisms using a small example. We then discuss pa-

rameter selection for ensuring the randomness and uniqueness

of each activated IC. Comprehensive details of the parameter

selection for a secure BFSM construction are discussed in later

subsections.

On the small example in Fig. 2, the original FSM states are

shown in dark color on the right side of the figure. The BFSM

includes the original FSM, along with a number of added states

that are shown in white. Assume that the original FSM has

states. Therefore, it can be implemented using FFs.

Now assume that we add to the number of states in FSM to

build a BFSM with states that can be implemented

by FFs. Observe that for a linear growth

in the number of FFs denoted by , the number of

states exponentially increases.

On the left side of Fig. 2, there is a PUF unit that generates

random bits based on the unclonable process variations of the

silicon unique to each chip. A fixed challenge is applied to the

chip upon power up. The PUF response is fed to the FFs that

implement the BFSM. Since there are

FFs in the BFSM, one would need response bits from the

PUF for a proper operation.

As can be seen in Fig. 2, upon the IC’s power up, the ini-

tial values of the design’s FFs (i.e., power-up state) is deter-

mined by the unique response from the PUF on each chip. The

PUF challenges are determined by fixed test vectors given by

the designer. For a secure PUF design, the probability of the re-

sponse should be uniformly distributed over the possible range

of values [35]. The number of added FFs can be set such that

the value . In other words, the value is set by

the designer such that for a uniform probability of selecting the

state, the probability of selecting a state in the original FSM is

extremely low. We will leverage more on this point in Section

V-B.

Because there are exponentially large numbers of added

states, there is a high probability that the unique PUF response

on each chip sets the initial power-up state to one of the added

states. Note that unless the design is in one of the original

states, it would be nonfunctional. Therefore, the random FF

states driven by the PUF response would place the design in

a nonfunctional state. One would need to provide inputs to

the FSM so it can transition from this nonfunctional initial

power-up state to the functional reset state of the original FSM

shown by double circle on the example.

For the IP rights owners with access to the BFSM state tran-

sition graph, finding the set of inputs for traversing from the

initial power-up state to the reset-state (shown by double circle

on the figure) is easy. All that is needed is to form a path on

the graph and use the input values corresponding to the path

transitions (from the STG description) so the chip transitions to

the reset state. However, there is only one combination from an

exponentially large number of possibilities for the input corre-

sponding to each edge transition. Thus, it would be extremely

hard for anybody without access to the BFSM edge transition

keys to find the exact inputs that cause traversal to the original

reset states. The access to the full BFSM structure and the tran-

sition function on its edges is what defines the designer’s secret.

The passkey for unlocking the chip is the sequence of inputs that

can traverse the BFSM states (describing the control component

of the chip) from the initial random power-up state to the reset

state. Note that although the initial power-up state is random,

the assumption is that for a given PUF input (challenge), the re-

sponse remains constant over time for one chip.

A set of passkeys required for traversal from the

power-up state to the reset state is shown in Fig. 2. This locking

and unlocking mechanism provides a way for the designer to ac-

tively control (meter) the number of unlocked functional (acti-

vated) ICs from one blueprint (mask), and hence the name active

hardware metering. In Section V-C, we will describe a number

of other important applications of this active control method.

While constructing the BFSM for hardware metering pur-

poses, a number of requirements must be satisfied. The first set

of requirements has to do with the probability of randomly pow-

ering-up in a state that was not in the original FSM. Let us as-

sume that by design, we require this probability to be lower than

a given value . This low probability is satisfied by the following

two conditions:

1) The value should be selected such that the proba-

bility of not powering-up in an added state is smaller

than :

(1)

2) The value should be selected so that the probability

of two ICs having the same startup states is extremely

low. Assume that we need to have distinct ICs each
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with a unique startup state. Fortunately, for a linear in-

crease in the number of FFs, we obtain an exponential in-

crease in the number of states. The unclonable response

from the PUF is used to set each IC in a unique random

state. To achieve completely random and independent

states, one can employ the Birthday paradox to calcu-

late this probability and to set it to low values. Consider

the probability that no two ICs out of

a group of will have matching startups out of

equally possible states. Assume . Start with an

arbitrary chip’s startup. The probability that the second

chip’s startup is different is . Similarly, the

probability that the third IC’s startup is different from

the first two is . . The same

computation can be extended through the th startup.

More formally

(2)

For a large value of , the formula can be asymptotically

approximated [36]

(3)

This equation yields the approximate closed formula

(4)

Another set of important requirements has to do with the

BFSM edge traversal and state reachability. For an STG with

the initial reset state (denoted by ), we call this graph reset

state reachable if and only if for each and every state in STG

there is at least one sequence of inputs of arbi-

trary cardinality such that it can be applied to the pertinent state,

and the final transition destination (after applying the input se-

quence) is the reset state. From this definition, it is clear that the

desired BFSM needs to be reset-state reachable.

B. Secure BFSM Construction

In this subsection, we show that our construction of finite

state manipulation, compilation by hardware synthesis, and in-

terfacing to the unique IDs coming from the PUF comprise an

instance of an efficiently obfuscatable program.

1) Circuit Compilation and Obfuscation for Metering: Let

us go through the steps of hardware design and synthesis flow.

The designer starts at a functional description level that can

be demonstrated by an FSM, whose states and transitions are

known. Given the FSM model, for each input, the designer

would be able to compute the corresponding output. The spec-

ifications are typically implemented in a hardware description

Fig. 3. Active hardware metering as a program obfuscation.

language (HDL) format, e.g., VHDL, or Verilog. The reg-

ister-transfer level (RTL) description of this HDL format along

with the technology libraries and design constraints are then

input to the hardware synthesis tool. The output of the synthesis

tool may be either in the form of a netlist with boolean gate

types, or might be mapped to a specific library. The remaining

steps of the design process use the resultant netlist.

Fig. 3 demonstrates a black box model of the metering syn-

thesis flow from the high level computational model (modeled

by an FSM) to the lower level netlist. In effect, hardware syn-

thesis is a compiler. Recall that a compiler provides a transfor-

mation from a source programwritten in a higher level computer

language (source language) into another lower level computer

language (target language). Here, the input source program is

the description of the circuit behavior in finite state automata

domain, and the target program is the circuit description in the

netlist domain.

The FSM-based hardware metering attempts at hiding infor-

mation in a source program by modifying the FSM. The modi-

fications add multiple states to the STG, where the modified ex-

panded state-space is used for hiding the power-up state. The

objective is to hide information such that the concealed data

cannot be extracted from the target program presented in a lower

level netlist. The two programs have (almost) the same func-

tionality from the input/output program perspective. In effect,

the objective of this type of active hardware metering is to build

a program obfuscation that would conceal the secret passkey in-

formation (shown by on Fig. 2) so the hidden state and its

corresponding traversal cannot be retrieved from the netlist. In-

formally speaking, an obfuscator is a compiler that transforms

a program (e.g., a Boolean circuit) into an obfuscated program

(also a circuit), such that the obfuscated program has the same

input/output relationships as the original program, but is other-

wise obscure (unintelligible).

2) Secure Program Obfuscation: Let us discuss obfuscation

in a more formal setting and outline the positive results on this

subject. Under a random oracle model,1 a function family can

be obfuscated when there is an algorithm that takes an input

in form of a Turing machine (i.e., a program, a circuit) com-

puting and outputs another Turing machine (circuit)

such that the obfuscating requirements are satisfied [37]. If the

requirements are assured, is an obfuscator for , and the ob-

fuscation of the program is shown by . is called efficient

if its computations are done in polynomial time, and then

is said to be efficiently obfuscatable. Before we formally out-

line the requirements, let us define a number of notations. The

notation specifies the feasibility parameter that is associated

with one family of functions that we obfuscate; the size of

1In cryptography, a random oracle is a mathematical abstraction used in
proofs when no implementable function (except for an oracle) could provide
the properties required.
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is polynomial in . The family is the union of the

families .

a) Approximate functionality. There is a negligible function

such that and , we would have

b) Polynomial slowdown. There is a polynomial such that

, and for the Turing machine if

spends time steps to compute on the input ,

would spend time steps at most.

c) Virtual black box. For a probabilistic polynomial time

Turing machine , there is another probabilistic poly-

nomial time Turing machine and a small negligible

function denoted by such that we have

,

where the probabilities are over and randomness.

The work in [37] was the first to start a formal theoretical

study of obfuscation. In particular, they showed a negative result

for the possibility of having a generic obfuscator for all function

classes by demonstrating a family of functions that could not be

obfuscated. Thereafter, several theoretical studies and results for

obfuscation have emerged [38], [39]. The work in [39] provided

the first positive results for provable obfuscation of the family

of point functions in the random oracle model.

The simplest example for a point function is a program that

requires a password to login and operate. The password is typi-

cally hidden in the program and should be obfuscated such that

nobody else with access to the program would be able to extract

the password as long as it cannot be guessed. Password hiding

can be modeled as an obfuscation of a point function under the

random oracle model. More formally, a point function is

defined as a function such that for all inputs , the function

if the input is equal to the specific access key (pass-

word) . The function would not do anything otherwise.

Reference [39] has demonstrated a point function satis-

fies the three properties specified for an efficiently obfuscat-

able function. This result was further extended to the family

of multipoint functions that have a general output. The func-

tion on the domain is

a -point function and has a general output of length iff

where

otherwise.

(5)

This latter proof is given by showing that the multipoint func-

tion can be self-decomposed to several smaller point functions.

The generalized output multipoint function is a program with

passwords with a string output of length (generalizing a

single binary output case).

3) Provable Obfuscation of the Locks Within the BFSM:

In this subsection, we show that a secure construction for

the BFSM used in metering can be modeled as a multipoint

function with a general output and thus can be efficiently obfus-

cated. The hardware metering approach introduced in [9] adds

exponentially many states to the FSM such that the probability

of powering up in one of the added states is extremely high.

Because of the unique chip identifiers coming from the PUF,

each chip would power-up in one of the added states. An added

state is nonfunctional with a very high probability so the chip

would be locked. The designer would be the only entity who

can provide the unique set of unlocking inputs for transiting

between the specific power-up state and the original “reset”

state for each chip. In the remainder of the paper, we use the

term passkey to refer to the set of inputs corresponding to each

traversed edge during unlocking. Let us more formally define

the problem.

INPUT: Given an original sequential specification of a circuit

in form of an FSM , and given a compiler

that transforms this functional specification to a netlist.

OBJECTIVE: Construct a modified FSM denoted by

BFSM such that

transitions from a state to one of original FSM states

would require “strong” passkeys for transiting the edges.

A passkey sequence of length denoted by

applied to the state would result in a sequence of transitions

before it gets to reset state . By strong passkeys, we mean

they are random and long such that they cannot be guessed

by the brute force attack. Without the loss of generality,

let us assume that each edge passkey length is fixed to the

value . The reached state then would be

. The corresponding output

would be .

METHODOLOGY: To address the above problem, we

demonstrate a BFSM construction such that the addition of

states and transitions to the original graph is an instance of a

general output multipoint function that is efficiently obfuscat-

able. Using this result, we devise a strong passkey mechanism

to build a secure hardware metering.

To show the obfuscatable BFSM construction, we form a

set of extra state-transition relations that are added to the orig-

inal FSM. The addition is such that for reaching the states in

the original FSM from each potential power-up state ,

one has to traverse one or more of the added states or transi-

tions. Let us add a number of transitions to each state

such that each has at most outgoing transitions denoted

by . The upper bound on the number

of transitions from one added state is set such that there is a

sequence of transitions to traverse from each added state to

one of the states in the original FSM (our implicit assumption

is that the “reset” state is reachable from all the states in the

FSM). In other words, such that

, where

maybe either (transition on the original state machine) or

(transition on the added state machine).

Assume that the BFSM is at the state and the user

inputs a vector of inputs . Let us first define a func-

tion as follows:

if

otherwise.
(6)

Consider the family of functions over the set of all

that can be defined for the BFSM with parameters and and
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the transition functions . Our interest is in cases where there is

a polynomial number of traversed edges in terms of the param-

eters and . We notice that there are exponentially many pos-

sible valid sequences of input transitions that can traverse from

the initial power-up state to one of the original states. Therefore,

the function cannot be immediately shown to be obfus-

catable by directly using the theoretical results for obfuscating

general output multipoint functions.

Instead of discussing the functions on the gen-

eral BFSM structure, we decompose the transition path to

state-to-state transition edges. Each state can be represented

by its incident transition functions denoted by

for traversal to the “neighboring states.” The neighboring

states, denoted by are those reachable by applying a single

passkey, i.e., , . For each

state there is a unique passkey from (recall

that is the valid passkey length for the BFSM graph). Define

the function as follows:

if

otherwise.

The obfuscation of consists of obfuscation of ,

which is a multipoint function with at most points where

the output is not and hence can be efficiently obfuscated.

Informally, this is an efficient obfuscation since the adversary

(with a high probability) cannot guess a set of randomly se-

lected keys that would result in a valid transition. Reference

[39] has shown that a composition of obfuscatable functions is

also efficiently obfuscatable under the random oracle model.

Therefore, we conclude that is also efficiently obfuscat-

able since it can be written as a composition of obfuscatable

functions.

More importantly, it was demonstrated that for such functions

that can be written by decompositions, exploring parts of the

passkeys for transitions on the composite structure (in our case

BFSM) would not reveal the remainder of passkeys, as long as

the two passkey sets are not correlated and do not include all the

same compositional unit (in our case the same state) [38], [39].

Therefore, as long as the traversal paths from the power-up state

to the original set of states for a locked IC are at least different

in one state from a previously unlocked IC, obfuscation of a

multipoint function remains secure.

C. Additional Considerations and Applications

So far, we have described the construction of a BFSM

such that the structure can be used for obfuscating the initial

power-up state. It is clear that to ensure randomness and pro-

tection of the scheme, it is desired to have an unbiased PUF that

can generate an output bit of 0 or 1 with completely equal prob-

abilities. The diversity of the power-up state is guaranteed if the

PUF output is completely random. The other important factor

to consider is stability of PUF responses and its vulnerability

Fig. 4. Example of a blackhole FSM that can be used for online controlling
and disabling the ICs. They can also provide a countermeasure against the brute
force attacks (Section VII).

to operational and temperature conditions. As we mentioned

earlier, to ensure robustness and full operability in the presence

of fluctuating operational and environmental conditions, we

use ECCs in conjunction with PUF responses. As long as the

PUF response is unclonable, the security of our method is not

based on keeping the PUF output secret (it is the passkeys

on the transition graph that are secret). Therefore, the ECC

syndromes would not reveal much beyond the PUF value. The

use of ECC for PUF is not new; several other works have used

ECC in conjunction with PUF to ensure its robustness. We refer

the readers to the related work in this domain for the studies

of added overhead and security of different ECC methods

[26]. Another important issue that we address is storage of the

passkeys. Once the passkey is given for unlocking one chip,

its value would be stored on NVM inside the chip along with

the ECC code. Therefore, every time the IC is powered up, it

automatically reads the passkeys to transition to the original

reset state.

An interesting and important observation is that the mecha-

nisms described in the previous section for hiding a number of

states within the FSM such that only the designer knows about

the traversal to/from those states could be used as a basis for a

suite of other security protocols. For example, this state hiding

can be used for remote authentication or identification by the

designer, online integrity checking, and real-time monitoring,

controlling, enabling, or disabling the chip [21]. An application

of the method for trusted integration of multiple IP cores was

demonstrated in [40].

An example structure for disabling the chip, in case of tamper

detection, is the creation of blackhole states. The blackholes are

states that cannot be exited regardless of the incident input se-

quence. Their design is very simple as shown in Fig. 4, where

the blackhole states do not have a route back to the original reset

state. A special case is the creation of trapdoor grayhole FSM.

Grayhole FSMs are designed in such a way that only a long se-

quence of input signals (known by the passkey transition holder)

can bring the control out of these states to the original func-

tional states of the design. A grayhole construction is similar to

a blackhole, with the exception of at least one-edge in the gray-

hole that can take the design back to its functional states.

VI. AUTOMATIC SYNTHESIS AND IMPLEMENTATION

In this section, we present the details of the implementation

of secure BFSM construction that was introduced in Section V.
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Fig. 5. Partition with states formed by random perturbations on a
ring counter to store connectivity. (a) Ring counter. (b) Reconnecting a state.
(c) Adding a few edges.

There is a need to devise a low overhead automatic construc-

tion for the high level specification. Since the conventional tools

are not optimized for synthesizing a relatively large state-space,

our solution for a low overhead implementation is careful se-

lection of the BFSM topology by presynthesis and then per-

forming automatic iterative synthesis. Our secure BFSM imple-

mentation method has three steps. The first step is BFSM graph

topology construction described in Section VI-A. Second, tran-

sition (edge) passkey assignment is outlined in Section VI-B.

Finally, Section VI-C presents the iterative synthesis method.

A. BFSM Graph Topology Construction

The BFSM inputs are termed Primary Inputs (PI) and its out-

puts are termed Primary Outputs (PO) since they are the same

as the PI and PO to the original design. The output at the PO

would be correct for an unlocked chip. This value would be in-

correct for a locked IC with a very high probability.

The number of states is increased to ensure randomness and

uniqueness of the startup state, as described in earlier equations.

For a BFSM with

added states, our method first uses a partition approach. A par-

titioning method was introduced in [9], where the low overhead

implementation of smaller partitioned FSMs are determined by

presynthesizing and evaluating various random configurations

of small FSMs (e.g., with or states). The partitions are

then combined by randomly added edges to form the added

state-space and transitions. We refer to the added edges and

logic for connecting and mixing the original FSM with the new

partitions by the term glue logic.

An example for a partition is shown in Fig. 5, where the steps

for construction of a partition STG with eight states is demon-

strated. A ring counter is used as the starting point, as shown in

Fig. 5(a). Next, a few states are randomly selected and recon-

nected. Say on Fig. 5(b), the state is reconnected, such that

still there will be a path from each state to every other state.

Finally, a few random transitions are added to STG. In the ex-

ample shown in Fig. 5(c), the states and are randomly re-

connected, and the edges

are randomly added. Therefore, the random perturbations on the

ring counter are organized such that the graph connectivity is

preserved. Note that our partitioning approach is more system-

atic and guided than [9] but it uses similar principles. The key

difference is because our secure constructionmethod constraints

the number of directed edges incident to one added state to be

, such that ensures the graph connectivity and multiplicity of

keys.

In our implementation, connectivity in each group is ensured

by construction, such that every state in the partitioned group of

states is reachable from every other state. Next, transitions are

added among the partitioned FSMs such that the reset state is

reachable from all other states. For checking the connectivity

of the added group of new states on a generic graph to the

original reset state, we devise an algorithm as follows: For a

state transition graph (STG) demonstrating the BFSM in graph

format, form a corresponding graph STG whose vertices are

a one-to-one mapping of the vertices in STG, but reverses the

direction of the edges. This may be a cyclic graph. Next, use a

spanning tree algorithm (e.g., Kruskal’s algorithm [41]) to ex-

tract a directed acyclic graph (DAG) rooted at the initial reset

state. If all nodes are reachable from the root node on this DAG

(can be checked by a breadth first search (BFS) on the graph),

then the connectivity condition is satisfied. Otherwise, more

edges between the unreachable states and the reachable states

are needed. For a graph with vertices and edges, the

complexity of the Kruskal algorithm is

and the complexity of the BFS is . Since

is typically larger than , the

overall complexity is on the order of .

Now, a natural question that may arise is that for traversing

to the original reset state, one has to pass one of its neighbors

so there could only be at most distinct passkeys which do not

share the states. As we mention in our attacks and countermea-

sures section, this attack would be effectively avoided as long as

there are enough added states and the passkeys for some parts of

the unlocking sequence are unique and hard to guess. Another

important class of attacks that we discuss is the capturing and

removal attacks.

B. Selecting and Computing the Transition Passkeys

Selecting strong passkeys is integral to the security of active

hardware metering. Generally speaking, a random passkey is a

vector of symbols of a certain length taken from a set of symbols

by a random selection process. Each symbol must be equally

likely to be selected. The strength of random passkeys depends

on the entropy of the underlying random number generator. In

our case, the selected passkeys can also serve a dual purpose:

the designer can use them as a proof of ownership in addition to

using them for unlocking.

For this reason, in order to generate the passkey (presynthesis

in software), we use the hash value of the designer generated

words that are signed by a private key (PrK) of a public key

cryptographic (PKC) system. Now, others with access to the

public key (PuK) of the same system can verify the ownership

of the designer upon unlocking. However, an eavesdropper who

can unlock the chip using a stolen BFSM structure would not be

able to claim ownership.

The steps for selecting the transition passkeys for the edges

on the added graph are as follows. First, the IP rights owner

selects symbol strings and uses its own PrK to sign each of the

strings. The strings must be long enough to be resilient against

the brute force guessing attack. Next, a strong hash function

(e.g., SHA-2) is applied to the signed strings so a fixed length di-

gest message is obtained. Note that the edge transition passkeys



60 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 1, FEBRUARY 2012

are independent of the state encodings performed by the syn-

thesis software. Therefore, reading out the state values from

the FFs would not help in revealing the incident edge passkeys.

Note that since for each chip a new transition passkey has to be

found as a path on the BFSM, this computation needs to be ef-

ficient. To provide efficiency, binary decision diagrams (BDDs)

can be used to store the BFSM and computing the key pairs.

C. Iterative Automatic Synthesis

Once the BFSM is selected and the transition passkeys are

determined, the structure has to be synthesized. To perform the

synthesis, we first modify the original FSM adding extra control

inputs. These inputs represent the transitions from the BFSM

with the correct passkeys. Next we synthesize each partition of

the BFSM with an output representing the incident edge tran-

sitions. After synthesizing each component separately, we con-

nect the extra inputs of the original FSM to the outputs of the

partitioned FSMs and resynthesize the whole system. This way,

if the original design has FFs and the BFSM has FFs,

then and which implies is

much larger than .

VII. ATTACKS AND COUNTERMEASURES

In this section, we state the attacks identified on active hard-

ware metering and discuss how the newly proposed method is

secure against the proposed attacks.

1) Brute force attack. The adversary attempts at ran-

domly generating inputs to randomly traverse from the

power-up state until it reaches a state that was reached

on the previously unlocked ICs, or it reaches the reset

state.

— Under the construction of general-output multipoint

function, probability of finding the correct passkey

resulting in a valid edge transition is extremely low,

and therefore, this class of attacks would not be able

to break the security. Another effective countermea-

sure against the brute force attack is creation of black-

hole states as discussed in Section V-C. All what is

needed is to strategically place the blackhole states

and their adjacent edges such that the probability of

randomly entering them is high. To avoid the problem

of starting up in one of the blackhole states, one can

use the grayholes that can be exited by a long se-

quence of passkeys.

2) BFSM reverse-engineering. The adversary uses the

states revealed by unlocking each chip to gradually

build a BFSM model to enable finding the passkeys to

unlock the new ICs.

— Our construction method is secure against this attack

by the decomposition property (Section V-B) [39].

The way to ensure security is by finding paths that are

at least not intersecting on one edge. As an example,

for a 128-bit input, each passkey has possibili-

ties, so even finding the passkey string for one edge

is of exponential complexity.

3) PUF removal/tampering attack. The adversary re-

moves/tampers the PUF on a locked IC and instead

places a piece of SRAM that contains the PUF re-

sponses from a previously unlocked chip. Now, the

passkeys for unlocking the previous chip can be used

for unlocking a new IC.

— To protect against PUF removal, there are multiple

measures that can be taken. One such measure is to

use the time bound and single-cycle property of an

authentic integrated PUF device (a memory look up

takes more cycles) [27], [42]–[46]. The PUF signal

timing can be designed to be an integrated part of the

timing path of the main functional description. There-

fore, removing PUF would affect the circuit timing.

Recall that in our attack model, redoing the timing

closure is as hard as designing a chip from scratch and

is not a valid attack. Another measure is to add obfus-

cated states within the FSM for PUF checking. The

self-check signals from this test states would verify

the existence of the PUF during unlocking and while

the chip is in operation by testing for randomness (by

adding a randomness test modules) or by supplying

challenges such that the PUF response can be con-

tinuously checked or its timing is taken into account

[27], [42]–[46]. Also the prohibitive cost of mask/re-

timing should be considered when targeting removal

of an integrated PUF that is on the design’s timing

path.

4) State capture and replay attack(s). The adversary cap-

tures the states from a previously unlocked chip and

would try to force a new chip to power-up in a similar

state, or it forces the unlocked IC to start at the original

reset state.

— To overcome this attack, in addition to the power-up

states, also the traversal passkeys can be set to be

a function of PUF. Now, the passkeys for one chip

would not work on the next because of the unique-

ness of PUF responses. All that is needed is to have a

number of challenges (inputs) for the PUF and their

associated ECC for the corresponding traversals.

Since the responses from the PUF cannot be cloned

on another chip, we have safeguarded our method

against this attack. The PUF removal/tampering

attack was already discussed.

VIII. EXPERIMENTAL EVALUATIONS

In this section, we evaluate the new active hardware metering

using both simulations and hardware implementation.We report

the overhead in terms of area, power, and timing of the synthe-

sized circuits from the ISCAS benchmark suite. The hardware

overhead is evaluated on the H.264/MPEG-4 or Advance Video

Coding (AVC) decoder circuit, synthesized and implemented on

FPGA.

A. Evaluation Setup

The new hardware metering method (BFSM construction) is

implemented by modifying the inputs to the ABC synthesis tool

and by iterative calls to the tool. The BFSM modifications are

done using a combination of Matlab and C programming lan-

guages. The application of the method for modifying the ISCAS
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benchmarks in simulation is straightforward, directly following

the algorithm described in Section VI. To generate the input

transitions (as described in Section VI-B), we used the SHA-2

hashing algorithm.

For evaluating the H.264/MPEG-4 decoder on hardware, we

used a combination of the Xilinx ISE synthesis package and

our hardware metering implementation described above. The

benchmark in our study was in Verilog hardware description

language. To ensure operability with the ABC tool, we used the

Altera Quartus package to translate the Verilog descriptions to

the BLIF netlist format that is compatible with our BFSM con-

struction methodology. Similar to our earlier simulations, the

BFSM modifications are done in Matlab and C and the resyn-

thesis is performed via iterative calls to the ABC tool. The final

modified H.264/MPEG-4 decoder is then reconverted from the

BLIF netlist format to Verilog description that is in turn synthe-

sized on Xilinx FPGA by the ISE suite.

B. Benchmark Simulation Results

The FSM description is commonly used for realizing the con-

trol path of the circuitry. It is important to note that in modern

designs, the control path is only a small part of the overall struc-

ture ( 1%) [47]. Therefore, even doubling or tripling the con-

trol part would not have a significant impact on the overall de-

sign overhead in terms of area or power. The timing increase

would impact the design delay though. As we will see in our

evaluations, the timing overhead of our method is negligible

and it could be even further suppressed by alternative synthesis

methods.

The BFSM construction used in our simulations adds 20 flip

flops to the original design. As wementioned earlier, the number

of new states ought to be large. Let us assume that is the

number of FFs in the original design corresponding to

states, and is the number of FFs in the modified design

corresponding to states. It is clear that the

condition is satisfied. The length of the edge transi-

tion passkeys in our evaluations is set to 64 bits. An unlocking

sequence on one chip would find a path of at least eight edges

on the BFSM state transition graph. Therefore, the minimum

length of a passkey for a chip is 512 bits. This number could be

fixed, or could be any multiple of 64 bits.

The table in Fig. 6 demonstrates comprehensive perfor-

mance overhead evaluations on the ISCAS benchmark suite.

The first column denotes the benchmark circuit name (sorted

by the benchmark number order). The next three columns

(Columns 2–4) show the original design properties: the number

of primary inputs, the number of primary outputs, and the

number of flip flops postsynthesis. Columns 5–7 demonstrate

the design area (in terms of the number of gates in the ABC

tool) in the following order: the original postsynthesis area, the

added area post BFSM synthesis after applying our method,

and the ratio between the two former metrics (in %). The

original design’s power postsynthesis, the newly added power

post-BFSM synthesis after applying the hardware metering,

and the ratio between the two powers (in %) are reported in

Columns 8–10. The postsynthesis delay of the original design,

and the ratio between the added delay (post-BFSM construction

Fig. 6. Metering overhead on the benchmark suite.

and synthesis) to the original delay are shown in the last two

columns, respectively.

Let us start by analyzing the results for the area overhead. As

can be seen in Column 6, the added area by the BFSM seems

to be independent of the benchmark circuit size, with a stan-

dard deviation of 131 around its mean of 1395. Observe that the

circuits on the top of the table are the smaller ones in the bench-

mark set, with a limited number of inputs and outputs and FFs,

occupying a small area (in the original circuit synthesis). Given

this observation, it is natural that the overhead (%) is muchmore

significant on the smaller circuits compared to the larger ones.

The mean of the percentage overhead in the area is about 73%,

with a standard deviation of 67% indicating large fluctuations

among the circuits. Looking at the bottom half of the table that

includes the larger designs, the mean of the overhead (%) is set

at a much lower 13%, with still a relatively large standard de-

viation of 9%. Our results show that for most industrial designs

that are of larger complexity (making them worthwhile to pro-

tect), the area overhead for the BFSM construction is quite low,

especially since the control path is a small part of the overall

design.

Next, we analyze the reported results for the power (Columns

8–10). Note that the units for this report are the same units re-

ported by the ABC synthesis tool. We see that the added power

(Column 9) has a large variation that seems not to follow the

benchmark size. It has a standard deviation of 2650 around its

mean of 5655. For the small circuits in the suite that are shown in

the upper half of the table, the overhead ratio is very large, with a

mean of 205%, and standard deviation of 95%. The overhead

ratio is much lower for the larger circuits in the benchmark set

in the lower half of the table, with a mean of 14.5% and a stan-

dard deviation of 12%. Since the circuits in the benchmark set

are small compared to the industrial strength circuitry in design

and use today, it is safe to say that the power overhead of the

metering method is low, in particular since the control path by

itself is very small compared to the entire design.

Last but not least, we evaluate the impact of the BFSM con-

struction methodology on the circuit timing (Columns 11–12).

The unit for timing is the same unit reported by ABC. The ratio

of the added critical path delay overhead compared to the orig-

inal delay seems to be independent of the circuit size, with a

mean of 1% and standard deviation of 1.15%. Therefore, we

see that the overhead in the critical path delay introduced by

our method is rather low.
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Fig. 7. Metering overhead for H.264/MPEG4 on FPGA.

It is also worthwhile to compare the results reported in this

paper to the hardware metering methodology introduced in [9].

In comparison, the secure BFSM construction method intro-

duced in this work produces a visibly higher overhead. This is

because the latest methodology introduced in this paper follows

the theoretical guarantees described in the previous sections.

The heuristic-only solutions offered in [9] could not provide as

strong proof of security.

C. Hardware Implementation Overhead

The H.264/MPEG-4 Part 10 or Advanced Video Coding

(AVC) is a video compression standard. It is presently one

of the most used formats for recording, compressing, and

distributing high-definition videos. It is widely used in Blu-Ray

systems, youtube, iTunes, and other Internet video distribution

centers. Designing efficient H.264/MPEG-4 is both a big chal-

lenge and an opportunity, especially with the move towards

smart phones and other low-power portable systems with video

decoding capabilities. We selected the H.264/MPEG-4 for

our hardware implementation and evaluation purposes. The

original design was written in the Verilog hardware descrip-

tion language. The tool flow for synthesizing this design was

described earlier in this section. Note that we do not report the

overhead of implementing PUFs on the FPGA in this paper.

The overhead for implementing PUF on FPGA on Xilinx

boards is readily available in the contemporary literature [19],

[26], [27], [44], [48].

The table in Fig. 7 shows the design area after synthesis to

the FPGA in terms of the number of equivalent gates and the

number of occupied lookup tables (LUTs), along with the per-

centage overhead. The second column reports the number of

equivalent gates and the number of LUTs for the original de-

sign. The third column shows the overhead for a BFSM with 20

new FFs and a key length of 1024. It can be seen that the per-

centage of added equivalent gates is about 6.7%, and the per-

centage of added LUTs is about 13%. We also experimented

with two other cases with 40 and 64 added FFs, as shown on

the fifth and sixth columns, with key lengths of 2048 and 5120,

respectively. As we mentioned earlier, the key length is deter-

mined by the number of edge transitions required for unlocking

and the passkey on each edge. The passkey on each edge is set to

the number of inputs on the edge, bits. A key length of

1024 means that we require 16 edge transitions in our unlocking

sequence.

We see that with the increase in the number of added FFs,

the percentage overhead in terms of the number of equivalent

gates and the number of LUTs increases linearly. Since adding

to the number of FFs could yield exponentially stronger proofs

for security, our protection method is relatively low overhead

for very secure construction. As noted earlier, for MPEG4 de-

coding and many other date-intensive applications that are im-

plemented in hardware for efficiency reasons, the bottleneck is

in the data path optimization and not in the control path which

is a much smaller part of the overall design. Note that the earlier

work in hardware metering were only evaluated on benchmark

simulations. To the best of our knowledge, this paper presented

the first hardware implementation and overhead evaluation re-

sults for hardware metering.

IX. CONCLUSION

We have developed the first active hardware metering ap-

proach. The method uniquely locks each IC implementing the

design using unique chip identifiers coming from a physical un-

clonable function (PUF). The designer (IP rights owner) who

has access to the full state encoding of the design is the only en-

tity who can provide the passkeys for unlocking the chip. The

unique identifiers are integrated within the states of the design’s

FSM. The FSM is boosted—in away that does not alter the func-

tionality of the original design—to include many added states.

In this paper, the first set of provable security guarantees for

active hardware metering was demonstrated. We devised a new

construction for active hardware metering by modifying the be-

havioral description of the design in the FSM domain such that

the modifications form an instance of a general-output multi-

point function that was shown to be efficiently obfuscatable.

The hardware synthesis that takes the behavioral-level speci-

fication and transforms it to a netlist must be an obfuscating

compiler for the metering to be secure so the passkeys cannot be

guessed or attacked. The theoretical results on obfuscating the

family of point functions were exploited to ensure security of the

new construction in the random oracle model. Automated syn-

thesis methods for integration of the new secure metering con-

struction was derived. We discussed the attacks and presented

safeguards. The efficiency and practicality of the methods were

demonstrated by experimental evaluations on sequential bench-

marks and by proof-of-concept hardware metering implemen-

tation on a H.264 MPEG decoder on Xilinx Virtex-5 FPGA.
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