
Provably Secure Ciphertext Policy ABE

Ling Cheung
∗

MIT CSAIL
lcheung@theory.csail.mit.edu

Calvin Newport
†

MIT CSAIL
cnewport@theory.csail.mit.edu

ABSTRACT
In ciphertext policy attribute-based encryption (CP-ABE),
every secret key is associated with a set of attributes, and
every ciphertext is associated with an access structure on
attributes. Decryption is enabled if and only if the user’s
attribute set satisfies the ciphertext access structure. This
provides fine-grained access control on shared data in many
practical settings, including secure databases and secure mul-
ticast.

In this paper, we study CP-ABE schemes in which ac-
cess structures are AND gates on positive and negative at-
tributes. Our basic scheme is proven to be chosen plaintext
(CPA) secure under the decisional bilinear Diffie-Hellman
(DBDH) assumption. We then apply the Canetti-Halevi-
Katz technique to obtain a chosen ciphertext (CCA) secure
extension using one-time signatures. The security proof is a
reduction to the DBDH assumption and the strong existen-
tial unforgeability of the signature primitive.

In addition, we introduce hierarchical attributes to opti-
mize our basic scheme—reducing both ciphertext size and
encryption/decryption time while maintaining CPA secu-
rity. Finally, we propose an extension in which access poli-
cies are arbitrary threshold trees, and we conclude with a
discussion of practical applications of CP-ABE.

1. INTRODUCTION
In traditional public key crypto systems, the communi-

cation model is one-to-one, in the sense that any message
encrypted using a particular public key can be decrypted
only with the corresponding secret key. The same holds
for identity-based encryption (IBE) [13], where user public
keys can be arbitrary bit strings such as email addresses. In
practice, however, many applications of encryption are natu-
ral examples of one-to-many communication. For instance,

∗Cheung was supported by NSF Award #CCR-0326277.
†Newport was supported by NSF Award #CCR-0121277
and USAF, AFRL Award #FA9550-04-1-0121.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

documents in a shared database are accessed by multiple
users, and cable television programs are viewed by multiple
subscribers.

One-to-many communication can be secured using one-to-
one public key cryptosystems in a straightforward manner.
For example, a sender may encrypt data with a symmet-
ric encryption key, and distribute this data key to every
intended receiver using public key encryption. This general
scheme is simple to implement, but inefficient in the number
of encryption operations and in the size of ciphertexts (both
linear in the total number of intended receivers). A better
solution is broadcast encryption [7, 10, 2], where a sender
specifies a set of receivers (or revoked users) during encryp-
tion. Any intended receiver can decrypt using his secret key,
while revoked users cannot—even if they collude.

Although broadcast encryption is efficient, it requires that
receivers are represented individually. A sender must main-
tain a list of prospective receivers, as well as authorization
information associated with each receiver. In order to derive
a receiver set for a particular message, the sender queries his
receiver database with some appropriate policy information.

In some application scenarios, it is desirable to be able to
encrypt without exact knowledge of the set of intended re-
ceivers. For example, in a secure database of an intelligence
agency, one may specify that a certain document can be ac-
cessed only by agents in the domestic surveillance program.
In that situation, it is much more natural to encrypt to the
single attribute “domestic spy”, instead of an enumerative
list of all domestic spies. (It is conceivable that the sender
is not even authorized to obtain such a list.)

Attribute-Based Encryption.Attribute-based encryption
(ABE) offers this desired ability to encrypt without exact
knowledge of the receiver set. It enforce access policies, de-
fined on attributes, within the encryption procedure. This
idea was first introduced by Sahai and Waters (SW) as an
application of their fuzzy IBE scheme [12], where both ci-
phertexts and secret keys are associated with sets of at-
tributes. Decryption is enabled if and only if the cipher-
text and secret key attribute sets overlap by at least a fixed
threshold value d.

Two variants of ABE were subsequently proposed. In the
key policy variant (KP-ABE) of Goyal, Pandey, Sahai and
Waters (GPSW) [9], every ciphertext is associated with a
set of attributes, and every user secret key is associated
with a threshold access structure on attributes1. Decryp-

1In [9], an access structure is a tree in which every internal
node is a threshold gate and every leaf is labeled by an

1



tion is enabled if and only if the ciphertext attribute set
satisfies the access structure on the user secret key. In the
ciphertext policy variant (CP-ABE) of Bethencourt, Sahai
and Waters (BSW) [1], the situation is reversed: attributes
are associated with user secret keys and access structures
with ciphertexts.

To date, all existing ABE schemes involve some form of
threshold secret sharing construction. In [12, 9], shares of
a system master secret are embedded into user secret keys,
while in [1] shares of the randomness in an encryption are
embedded into ciphertext components. In this paper, we
break from this tradition and consider AND-gates on positive
and negative attributes as our access structures. We show
that, by separating threshold secret sharing from the CP-
ABE primitive, we obtain simple and efficient schemes that
are provably secure under standard complexity assumptions.
Since AND gates are sufficient in many application scenar-
ios, our approach retains significant potential. Furthermore,
threshold access policies can be re-introduced in an inde-
pendent mechanism; namely, one can construct shares of a
message using a standard secret sharing scheme and then
encrypt each share independently using CP-ABE.

Our Contributions.We present a CP-ABE scheme that is
chosen plaintext (CPA) secure under the Decisional Bilin-
ear Diffie-Hellman (DBDH) assumption. Access structures
in this scheme are AND-gates on positive and negative at-
tributes. We then apply the Canetti-Halevi-Katz technique
to obtain a chosen ciphertext (CCA) secure extension, using
one-time signatures. The security proof is a reduction to the
DBDH assumption and the strong existential unforgeability
of the signature primitive. Since strongly existentially un-
forgeable signatures can be constructed under the standard
computational Diffie-Hellman (CDH) assumption [3], the se-
curity of our CCA scheme reduces to DBDH and CDH. To
our best knowledge, this is the first formal CCA security
proof for CP-ABE.

We observe that attributes can be arranged into logical
hierarchies, which in turn can be used to improve the effi-
ciency of our basic scheme. Essentially, a hierarchy allows us
to use fewer group elements to represent all attributes in the
system, thereby reducing the ciphertext size, the number of
exponentiations in encryption and the number of pairings
in decryption. This optimized scheme is proven to be CPA
secure.

Finally, we note that threshold access policies can be en-
forced by first performing secret sharing on the message,
and then encrypting the shares independently using our CP-
ABE scheme. As a special case, one can encrypt to any
disjunctive normal form (DNF) formula on attributes by en-
crypting the same message to every AND gate in the formula.
We discuss some subtleties in the security of this proposal,
and leave the formal proof as important future work.

Related Work.As mentioned above, the concept of ABE
was proposed in [12] and later extended in [9, 1]. Both the
fuzzy IBE scheme of [12] and the KP-ABE scheme of [9] are
proven secure under the DBDH assumption. For the CP-
ABE scheme of [1], there appears to be inherent difficulties
in reducing security to a well-known complexity assumption.
Mostly likely, this is due to the way in which secret key

attribute.

components are “tied together” to avoid collusion attacks.
Indeed, in this paper we usa a different technique to bind se-
cret key components and we are able to prove security based
on DBDH. The trade-off inherent in our technique is that ci-
phertext size and encrpytion/decryption time grow linearly
with n, the total number of attributes in the system. For
small AND gates, the optimization of Section 5 brings the
factor n down to log n. In contrast, the ciphertext size and
encryption/decryption time of the BSW scheme are linear
in the size of the access tree, independent of n.

The authors of [12, 1] suggest that chosen ciphertext se-
curity can be achieved using the Fujisaki-Okamoto transfor-
mation [8] or the Canetti-Halevi-Katz (CHK) technique [4].
A more concrete outline is given in [9], using a large universe
construction2 and delegation of user secret keys. In this pa-
per, we implement CCA security without a large universe
construction (and hence without the use of hash functions).

In [5], Chase answers an open problem posed in [12] and
presents a scheme in which (disjoint sets of) attributes are
assigned by multiple authorities. Our technique for binding
together secret key components is similar to Chase’s tech-
nique for “distributing” the system master secret among
multiple attribute authorities. Chase also outlines a CP-
ABE system in which access structures are monotone (i.e.,
no negation) conjunctive normal form formulas. That ap-
proach, however, is inefficient, as each authority corresponds
to one clause in the conjunction and the same attribute ap-
pearing in different clauses must be duplicated at every rel-
evant authority.

On the practical side, Pirreti et al. introduced a secure
information management architecture based on ABE prim-
itives [11]. The original SW scheme is implemented and
optimized. It is also shown that complex policies can be
implemented efficiently using constructions that are secure
in the random oracle model.

Overview.Section 2 defines the CP-ABE primitive and the
CPA security game. Section 3 presents the basic construc-
tion for AND gates and the CPA security proof. Section 4
introduces the CCA security game and our CCA secure
scheme. A more efficient version of the basic scheme is pre-
sented in Section 5, and a heuristic is given in Section 6
for threshold access policies. Finally, two applications sce-
narios (selective data sharing and group key management)
are described in Section 7, and concluding remarks follow
in Section 8. In Appendix A, we consider a stronger notion
of security for CP-ABE called non-selective ID security and
prove the security of multiple encryptions.

2. CIPHERTEXT POLICY ABE
Intuitively, an access structure on attributes is a rule W

that returns either 0 or 1 given a set S of attributes. We say
that S satisfies W (written S |= W ) if and only W answers
1 on S. As mentioned in Section 1, access structures may
be Boolean expressions, threshold trees, etc.

A ciphertext policy attribute-based encryption (CP-ABE)
system consists of four fundamental algorithms: Setup, En-
crypt, KeyGen and Decrypt.

2In a large universe construction, any bit string can be used
as an attribute, provided each encryption involves no more
than a fixed number of attributes. Additional hashing and
exponentiation operations are required.

2



Setup.This algorithm takes as input the security parameter
κ and returns a public key PK and a master secret key MK .

KeyGen.This algorithm takes as input the the master key
MK , and a set S ⊆ N of attributes. It returns a secret key
SK associated with S.

Encrypt. This algorithm takes as input the public key PK ,
a message M and an access structure W . It returns a ci-
phertext CT with the property that a user with a secret key
generated from attribute set S can decrypt CT if and only
if S |= W .

Decrypt. This algorithm takes as input a ciphertext CT
and a secret key SK . It returns the message M if S satisfies
W , where S is the attribute set used to generate SK .

2.1 CPA Security Game for CP-ABE
A CP-ABE scheme is said to be secure against chosen

plaintext attacks (CPA) if no probabilistic polynomial-time
adversaries have non-negligible advantage in the following
game.

Init The adversary chooses the challenge access structure
W and gives it to the challenger.

Setup The challenger runs the Setup algorithm and gives
the adversary PK .

Phase 1 The adversary submits S for a KeyGen query. Pro-
vided that S 6|= W , the challenger answers with a se-
cret key SK for S. This can be repeated adaptively.

Challenge The adversary submits two messages M0 and M1

of equal length. The challenger chooses µ ∈ {0, 1} at
random and encrypts Mµ to W . The resulting cipher-
text CT is given to the adversary.

Phase 2 Same as Phase 1.

Guess The adversary outputs a guess µ′ of µ.

Notice, collusion resistance follows from the fact the ad-
versary may make multiple secret key queries both before
and after selecting challenge plaintexts. We also point out
that our CPA security game is weaker than that of [1], be-
cause the adversary must submit a challenge access struc-
ture before the setup phase. This is essential in our security
proofs (cf. Sections 3 and 4), because the simulator uses
information from the challenge access structure to set up
public key elements. This weaker form is sometimes called
selective ID security. See Appendix A for a discussion of the
stronger non-selective ID security variant, and its implica-
tions for our scheme.

3. BASIC CONSTRUCTION
For notational simplicity, let the set of attributes be N :=

{1, . . . , n} for some natural number n. We refer to attributes
i and their negations ¬i as literals. In this section, we con-
sider access structures that consist of a single AND gate
whose inputs are literals. This is denoted

V
i∈I i, where

I ⊆ N and every i is a literal (i.e., i or ¬i).

1 2 3 . . . n
Positive T1 T2 T3 Tn

Negative Tn+1 Tn+2 Tn+3 T2n

Don’t Care T2n+1 T2n+2 T2n+3 T3n

Figure 1: Public Key Components

Setup.This algorithm selects:
• a bilinear group G of prime order p, with bilinear map

e : G×G → G1,
• random elements y, t1, . . . , t3n in Zp and a random gen-

erator g of G.
Let Y := e(g, g)y and Ti := gti for each i ∈ {1, . . . , 3n}. The
public key is PK := 〈e, g, Y, T1, . . . , T3n〉. The master secret
key is MK := 〈y, t1, . . . , t3n〉.

Intuitively, the public key elements Ti, Tn+i and T2n+i

correspond to the three types of occurrences of i: positive,
negative and don’t care. This is illustrated in Figure 1.
Because of the technique we use to randomize secret key
components, we must provide a don’t care element for each
attribute i not appearing in the AND gate. This should
become clear after we introduce KeyGen and Decrypt.

Encrypt. Given a message M ∈ G1 and an AND gate W =V
i∈I i, the Encrypt algorithm first selects a random s ∈ Zp

and sets C̃ := M ·Y s and Ĉ := gs. For each i ∈ I, let Ci be
T s

i if i = i and T s
n+i if i = ¬i. For each i ∈ N \ I, let Ci be

T s
2n+i. The ciphertext is CT := 〈W, C̃, Ĉ, {Ci|i ∈ N}〉.
In total, Encrypt performs n + 1 exponentiations in G,

one exponentiation in G1 and one multiplication in G1. The
ciphertext contains n + 1 elements of G, one element of G1

and the description of W .

KeyGen.Let S denote the input attribute set. Every i 6∈ S
is implictly considered a negative attribute. First, Key-
Gen selects random ri from Zp for every i ∈ N and sets

r :=
Pn

i=1 ri. Let D̂ be gy−r. For each i ∈ N , let Di

be g
ri
ti if i ∈ S; otherwise, let it be g

ri
tn+i . Finally, let Fi

be g
ri

t2n+i for every i ∈ N . The secret key is defined as
SK := 〈D̂, {〈Di, Fi〉|i ∈ N}〉.

Note that we use the equation r =
Pn

i=1 ri to bind to-
gether the Di elements. (Similarly for the Fi elements.)
This is a key difference between our scheme and the BSW
scheme, and it is crucial in our reduction proof. The Fi el-
ements are provided because every ri must be recovered in
order to decrypt. If i is a don’t care for a particular encryp-
tion operation (i.e., i does not occur in the AND gate W ),
then Fi will be used for decryption, instead of Di.

Decrypt. Suppose the input ciphertext is of the form CT =

〈W, C̃, Ĉ, {Ci|i ∈ N}〉, where W =
V

i∈I i. Also, let S de-
note the attribute set used to generate the input secret key
SK = 〈D̂, {〈Di, Fi〉|i ∈ N}〉.

For each i ∈ I, Decrypt computes the pairing e(Ci, Di).
If i = i and i ∈ S, then

e(Ci, Di) = e(gti·s, g
ri
ti ) = e(g, g)ri·s.

3



Similarly, if i = ¬i and i 6∈ S, then

e(Ci, Di) = e(gtn+i·s, g
ri

tn+i ) = e(g, g)ri·s.

For each i 6∈ I, Decrypt computes the pairing

e(Ci, Fi) = e(gt2n+i·s, g
ri

t2n+i ) = e(g, g)ri·s.

Decrypt finishes as follows: M = C̃
Y s = C̃

e(g,g)y·s , where

e(g, g)y·s = e(gs, gy−r) · e(g, g)r·s = e(Ĉ, D̂) ·
nY

i=1

e(g, g)ri·s.

In total, Decrypt performs n + 1 pairings and n multipli-
cations in G1. There are no exponentiations. If |I| is small,
most of the work is done on don’t care elements. In Section 5,
we show that attributes can be arranged in a tree-based hi-
erarchy, thereby reducing the overhead associated with don’t
care elements. The linear factor n in both ciphertext size
and encryption/decryption time drops to log(n).

3.1 Discussions
We remark that the fuzzy IBE scheme of [12] can also

be used to encrypt to AND gates with negation, by adding
a new attribute “¬i” for every original attribute i. Since
the threshold value d is a system-wide parameter in the SW
scheme, default attributes must be added in order to en-
crypt to AND gates with fewer than d inputs. These default
attributes play a similar role as our don’t care elements. In
comparison, our scheme treats negation and don’t care in
a more streamlined fashion. More importantly, our scheme
does not involve any secret sharing construction, therefore
no exponentiations are necessary in our decryption. In con-
trast, SW decryption requires d exponentiations in order to
perform polynomial interpolation. Finally, the optimization
of Section 5 relies on the equation r =

Pn
i=1 ri for secret

keys. It is not clear how to optimize the SW scheme in a
similar way, because SW secret keys are constructed from
threshold secret sharing.

3.2 CPA Security Proof
We now reduce CPA security of our scheme to the deci-

sional bilinear Diffie-Hellamn (DBDH) assumption.

Definition 3.1 (DBDH). Let e : G × G → G1 be an
efficiently computable bilinear map, where G has prime or-
der p. The challenger chooses at random a, b, c, z ∈ Zp and
generator g ∈ G. No probabilistic polynomial-time adver-
sary is able to distinguish the tuples 〈g, ga, gb, gc, e(g, g)abc〉
and 〈g, ga, gb, gc, e(g, g)z〉 with non-negligible advantage.

Theorem 3.2. If a probabilistic polynomial-time adver-
sary can win the CP-ABE game with non-negligible advan-
tage, then we can construct a simulator that can distinguish
a DBDH tuple from a random tuple with non-negligible ad-
vantage.

Proof. Suppose adversary Adv can win the CP-ABE
game with advantage ε. We construct a simulator Sim that
can distinguish a DBDH tuple from a random tuple with ad-
vantage ε

2
. Let e : G×G → G1 be an efficiently computable

bilinear map, where G has prime order p. First the DBDH
challenger selects at random: a, b, c, z ∈ Zp, ν ∈ {0, 1} and
generator g ∈ G. It defines Z to be e(g, g)abc if ν = 0 and
e(g, g)z otherwise. The challenger then gives the simulator

i ∈ I
i = i i = ¬i i 6∈ I

Ti gαi Bαi Bαi

Tn+i Bβi gβi Bβi

T2n+i Bγi Bγi gγi

Figure 2: Public Key in CPA Simulation

〈g, A, B, C, Z〉 = 〈g, ga, gb, gc, Z〉. The simulator Sim now
plays the role of challenger in the CP-ABE game.

Init. During the init phase, Sim receives the challenge gate
W =

V
i∈I i from adversary Adv .

Setup.To provide a public key PK to Adv , Sim sets Y to
be e(A, B) = e(g, g)ab. For each i ∈ N , Sim chooses random
αi, βi, γi ∈ Zp. It now constructs Ti, Tn+i, and T2n+i as in
Figure 2.

Phase 1.Adv submits a set S ⊆ N in a secret key query,
where S 6|= W . There must exist j ∈ I such that: either
j ∈ S and j = ¬j, or j 6∈ S and j = j. Sim chooses such j.
Without loss of generality, assume that j 6∈ S and j = j.

For every i ∈ N , Sim chooses r′i at random from Zp.
It then sets rj := ab + r′j · b and, for every i 6= j, it sets
ri := r′i · b. Finally, it sets r :=

Pn
i=1 ri = ab +

Pn
i=1 r′i · b.

The D̂ component of the secret key can be computed asQn
i=1

1

B
r′

i
= g−

Pn
i=1 r′

i·b = gab−r.

Recall that j ∈ I \ S and j = j, therefore the Dj compo-
nent can be computed as:

Dj := A
1

βj · g
r′

j
βj = g

ab+r′
j ·b

b·βj = g
rj

b·βj .

For i 6= j, we have a few cases.
(1) i ∈ S.

(a) i ∈ I ∧ i = i. Di := B
r′

i
αi = g

ri
αi .

(b) (i ∈ I ∧ i = ¬i) ∨ i 6∈ I. Di := g
r′

i
αi = g

ri
b·αi .

(2) i 6∈ S.

(a) (i ∈ I ∧ i = i) ∨ i 6∈ I. Di := g
r′

i
βi = g

ri
b·βi .

(b) i ∈ I ∧ i = ¬i. Di := B
r′

i
βi = g

ri
βi .

The Fi components are computed similarly. First,

Fj := A
1

γj · g
r′

j
γj = g

ab+r′
j ·b

b·γj = g
rj

b·γj .

For i 6= j, we have two cases.

(a) i ∈ I. Fi := g
r′

i
γi = g

ri
b·γi .

(b) i 6∈ I. Fi := B
r′

i
γi = g

ri
γi .

Challenge.Adv submits two messages M0 and M1 of equal

length. Sim chooses µ ∈ {0, 1} at random and sets C̃ :=
Mµ · Z. Sim gives Adv the following ciphertext CT .

〈W, C̃, C, {Cαi |i ∈ I∧i = i}, {Cβi |i ∈ I∧i = ¬i}, {Cγi |i 6∈ I}〉

Phase 2.Same as Phase 1.

4



Guess.Adv produces a guess µ′ of µ. If µ′ = µ, Sim an-
swers “DBDH” in the DBDH game. Otherwise, Sim answers
“random”.

If Z = gabc, then CT is a valid ciphertext, in which case
the advantage of Adv is ε.

P[Sim → “DBDH”|Z = gabc] = P[µ′ = µ|Z = gabc] =
1

2
+ε.

If Z = gz, then C̃ is completely random from the view of
Adv . Therefore µ′ 6= µ holds with probability exactly 1

2
,

regardless of the distribution on µ′.

P[Sim → “random”|Z = gz] = P[µ′ 6= µ|Z = gz] =
1

2
.

Thus Sim’s advantage in the DBDH game is ε
2
.

4. CHOSEN CIPHERTEXT SECURITY
In [4], Canetti, Halevi and Katz gave a generic construc-

tion for CCA secure public key encryption, using CPA secure
IBE and strongly existentially unforgeable signatures. The
main idea is to associate one-time signature keys 〈Kv, Ks〉
with each encryption operation. The verification key Kv is
viewed as an identity in the IBE scheme to which the mes-
sage M is encrypted. The resulting ciphertext is then signed
using the signing key Ks. This signature is sent along with
the ciphertext and must be verified before decryption.

As it turns out, the same general technique can be applied
to ABE schemes. In [9], Goyal et al. gave a CPA secure
KP-ABE scheme and outlined an CCA secure extension, in
which the message M is encrypted using an additional at-
tribute corresponding to the bit-string representation of Kv.
This extension relies on a large universe construction [12]
(where arbitrary bit-string attributes can be added after ini-
tial setup) and a delegation mechanism for secret keys.

In this section, we also apply the CHK technique to obtain
a CCA secure extension, but we do so without a large uni-
verse construction. Instead, we modify our setup algorithm
to explicitly handle special “attributes” corresponding to
bits in Kv. This incurs an additional overhead that is linear
in the length of Kv.

4.1 Strong Existential Unforgeability
A signature scheme consists of three algorithms: SigKey-

Gen, Sign and Verify. SigKeyGen is a probabilistic algo-
rithm that outputs a signing-verification key pair 〈Ks, Kv〉.
Sign is a probabilistic algorithm that produces a signature σ
from Ks and a message M . Finally, Verify is a deterministic
algorithm that maps 〈M, σ, Kv〉 to a bit. The signature σ is
said to be valid for M and Kv if Verify returns 1.

A signature scheme is said to be strongly existentially un-
forgeable (SEU) under adaptive chosen message attacks if no
probabilistic polynomial-time adversary has non-negligible
success probability in the following game.

Setup.The challenger runs SigKeyGen to obtain 〈Ks, Kv〉
and gives the adversary Kv.

Signature Queries.The adversary submits message M .
The challenger runs Sign with Ks and responds with sig-
nature σ. This may be repeated adaptively.

Output. The adversary outputs a pair 〈M∗, σ∗〉. The ad-
versary wins if 〈M∗, σ∗〉 is not among the pairs generated

during the query phase and Verify returns 1 on 〈M∗, σ∗, Kv〉.

4.2 CCA Secure CP-ABE Scheme
We now use strongly existentially unforgeable signatures

to achieve CCA security. Assume that Kv is a bit string of
length m, and we write Kv,i for the i-th bit in Kv. Intu-
itively, we expand the set of attributes to include the m bits
of Kv. These new attributes must be handled differently
than normal attributes in N , because every user must be
able to decrypt regardless of the particular choice of Kv.

Let M denote {1, . . . , m}. The four algorithms of CP-
ABE are as follows.

Setup.As before, Setup selects G, G1, e, g and y, t1, . . ., t3n,
and sets Y := e(g, g)y and Ti := gti for each i ∈ {1, . . . , 3n}.
In addition, Setup selects random u1, . . . , u2m in Zp and
defines Ui := gui for each i ∈ {1, . . . , 2m}. The public key
is defined as

PK := 〈e, g, Y, T1, . . . , T3n, U1, . . . , U2m〉.

The master secret key is MK := 〈y, t1, . . . , t3n, u1, . . . , u2m〉.

Encrypt. To encrypt a message M ∈ G1 to an AND gate
W =

V
i∈I i, a key pair 〈Kv, Ks〉 is first obtained by running

SigKeyGen. Then Encrypt selects a random s ∈ Zp and sets

〈C̃, Ĉ, C1, . . . , Cn〉 as before. For each i ∈ M, let Ei be Us
i

if Kv,i = 0 and Us
m+i otherwise.

Now Encrypt runs Sign with signing key Ks to obtain a
signature σ on 〈W, C̃, Ĉ, {Ci|i ∈ N}, {Ei|i ∈ M}〉. The

final ciphertext is CT := 〈W, C̃, Ĉ, {Ci|i ∈ N}, {Ei|i ∈
M}, σ, Kv〉.

KeyGen.As before, KeyGen selects random ri ∈ Zp and
define 〈Di, Fi〉 for every i ∈ N . In addition, it selects ran-
dom wi for every i ∈ M. Define r :=

Pn
i=1 ri +

Pm
i=1 wi

and let D̂ be gy−r. For every i ∈ M, let G0
i be g

wi
ui and

G1
i be g

wi
um+i . The secret key is SK := 〈D̂, {〈Di, Fi〉|i ∈

N}, {〈G0
i , G

1
i 〉|i ∈M}〉.

Decrypt. Given a ciphertext 〈W, C̃, Ĉ, {Ci|i ∈ N}, {Ei|i ∈
M}, σ, Kv〉, Decrypt first runs the Verify algorithm on σ, Kv

and 〈W, C̃, Ĉ, {Ci|i ∈ N}, {Ei|i ∈M}〉. If σ is valid, then it
proceeds with decryption; otherwise it returns default value
⊥.

Suppose the secret key is defined over an attribute set S
and is of the form 〈D̂, {〈Di, Fi〉|i ∈ N}, {〈G0

i , G
1
i 〉|i ∈ M}〉.

As before, Decrypt computes the pairing e(Ci, Di) for each
i ∈ I and the pairing e(Ci, Fi) for each i ∈ N \ I. This
recovers e(g, g)ri·s for every i ∈ N , provided S |= W .

For each i ∈M, Decrypt computes e(Ei, G
0
i ) if Kv,i = 0:

e(Ei, G
0
i ) = e(gui·s, g

wi
ui ) = e(g, g)wi·s.

Similarly, if Kv,i = 1, it computes e(g, g)wi·s as e(Ei, G
1
i ).

Then M is recovered as before: M = C̃
Y s , where Y s =

e(Ĉ, D̂) · e(g, g)r·s and

e(g, g)r·s =

nY
i=1

e(g, g)ri·s ·
mY

i=1

e(g, g)wi·s.

4.3 CCA Security Proof

5



CCA security for CP-ABE is defined as the statement
that all probabilistic polynomial-time adversaries have at
most negligible advantage in the following game.

Init and Setup Same as CPA security game.

Phase 1 The adversary makes, adaptively, any combination
of secret key and decryption queries.

Secret Key Query The adversary submits a set S of at-
tributes. The challenger returns a secret key SK
for S, provided S 6|= W .

Decryption Query The adversary submits a ciphertext
CT encrypted to W . The adversary loses the
game if CT is not a valid ciphertext; otherwise,
the challenger returns the corresponding plaintext
M .

Challenge Same as CPA security game.

Phase 2 Same as Phase 1, with the additional constraint
that CT ∗ is not among the ciphertexts submitted for
decryption.

Guess The adversary outputs a guess µ′ of µ.

We reduce CCA security of our scheme to the SEU as-
sumption on signatures and the DBDH assumption.

Theorem 4.1. Assume the signature scheme is strongly
existentially unforgeable. If a probabilistic polynomial-time
adversary can win the CCA security game with non-negligible
advantage, then we can construct a simulator that can distin-
guish a DBDH tuple from a random tuple with non-negligible
advantage.

Proof. Suppose adversary Adv can win the CCA game
with non-negligible advantage ε. We construct a simulator
Sim as follows.

First, Sim receives 〈g, A, B, C, Z〉 from the DBDH chal-
lenger and runs SigKeyGen to obtain 〈K∗

s , K∗
v 〉. Then Sim

plays the role of challenger in the CCA game.

Init. Sim receives the challenge gate W =
V

i∈I i from Adv .

Setup.To provide a public key PK to Adv , Sim sets Y =
e(g, g)ab = e(A, B). For each i ∈ N , Sim chooses random
αi, βi, γi ∈ Zp and defines ti, tn+i, t2n+i as in the CPA proof.
For each i ∈M, Sim chooses random ηi, ξi ∈ Zp. There are
two cases.
(1) K∗

v,i = 0. Then ui := ηi and um+i := b · ξi.
(1) K∗

v,i = 1. Then ui := b · ηi and um+i := ξi.
Recall that every public key component Ti can be computed
by raising either g or B to the appropriate exponent. The
same holds for every Ui.

Phase 1: Secret Key Query.Adv submits S ⊆ N such
that S 6|= W . As in the CPA proof, choose a witness j.
Without loss of generality, assume that j 6∈ S and j = j.

For every i ∈ N , Sim chooses r′i ∈ Zp at random and
define ri as in the CPA proof. In addition, Sim chooses w′

i ∈
Zp at random and sets wi := w′

i · b for every i ∈M. Finally,
let r :=

Pn
i=1 ri +

Pm
i=1 wi = ab +

Pn
i=1 r′i · b +

Pm
i=1 w′

i · b.
The D̂ component of SK is set to be

nY
i=1

1

Br′
i

·
mY

i=1

1

Bw′
i

= g−
Pn

i=1 r′
i·b−

Pm
i=1 w′

i·b = gab−r.

For i ∈ N , the Di and Fi components are computed exactly
as in the CPA proof. For i ∈M, we have two cases.

• K∗
v,i = 0. G0

i := B
w′

i
ηi = g

wi
ηi and G1

i := g
w′

i
ξi = g

wi
b·ξi .

• K∗
v,i = 1. G0

i := g
w′

i
ηi = g

wi
b·ηi and G1

i := B
w′

i
ξi = g

wi
ξi .

Phase 1: Decryption Query.Adv submits a ciphertext

〈T, C̃, Ĉ, {Ci|i ∈ N}, {Ei|i ∈ M}, σ, Kv〉. Sim verifies the
signature σ using Kv. If σ is invalid, Sim aborts the DBDH
simulation and we call this an abort event. Otherwise, Sim
checks if Kv = K∗

v . If so, we call it a forge event and
Sim gives a random answer in the DBDH simulation (ei-
ther “DBDH” or “random”). If Kv 6= K∗

v , then Sim fixes
j ∈ M such that Kv,j 6= K∗

v,j . Without loss of generality,
assume Kv,j = 1 and K∗

v,j = 0.
Let S be the set of attributes defined as follows: for each

i ∈ N , we place i ∈ S if and only if i ∈ I and i = i. Note
that S satisfies W . Now Sim produces a partial secret key
for S, which contains enough components to decrypt CT .

For every i ∈ N , Sim chooses r′i at random from Zp and
sets ri := r′i · b. For every i ∈ M, Sim also chooses w′

i at
random from Zp. For i 6= j, set wi := w′

i · b. Set wj :=
ab + w′

j · b. Finally, let r :=
Pn

i=1 ri +
Pm

i=1 wi = ab +Pn
i=1 r′i · b +

Pm
i=1 w′

i · b.
As in the secret key query, D̂ is set to be:

nY
i=1

1

Br′
i

·
mY

i=1

1

Bw′
i

= g−
Pn

i=1 r′
i·b−

Pm
i=1 w′

i·b = gab−r.

Notice, we are “hide” the ab in the wj component as we
can no longer guarantee, as in the CPA proof, the existence
of an attribute in the AND gate that is not present in the
user’s attributes.

For each i ∈ N , Di is computed as follows.

• i ∈ I ∧ i = i. Di := B
r′

i
αi = g

ri
αi .

• i ∈ I ∧ i = ¬i. Di := B
r′

i
βi = g

ri
βi .

• i 6∈ I. Di := g
r′

i
βi = g

ri
b·βi .

For the Fi components, we have two cases.

• i ∈ I. Fi := g
r′

i
γi = g

ri
b·γi .

• i 6∈ I. Fi := B
r′

i
γi = g

ri
γi .

For each i ∈M with i 6= j, we have two cases.

• K∗
v,i = 0. G0

i := B
w′

i
ηi = g

wi
ηi and G1

i := g
w′

i
ξi = g

wi
b·ξi .

• K∗
v,i = 1. G0

i := g
w′

i
ηi = g

wi
b·ηi and G1

i := B
w′

i
ξi = g

wi
ξi .

Now consider j. By assumption we have K∗
v,j = 0, there-

fore G0
j = g

wj
ηj = g

ab+w′
j ·b

ηj . This is the only component in
the secret key that Sim cannot produce, because it contains
the exponent ab. However, since Kv,j = 1, G0

j is not nec-
essary for the decryption of CT . Sim can in fact produce

G1
j as A

1
ξj · g

w′
j

ξj = g

ab+w′
j ·b

b·ξj = g
wj

b·ξj . Finally, Sim decrypts
using this partial secret key and gives M to Adv .

Challenge.Adv submits two messages M0 and M1. Sim

chooses µ ∈ {0, 1} at random and sets C̃ := Mµ · Z. Then

Sim signs the following using Ks: T, C̃, C, {Cαi |i ∈ I, i = i},
{Cβi |i ∈ I, i = ¬i}, {Cγi |i ∈ N \ I}, {Cηi |i ∈ M, K∗

v,i =

0}, {Cξi |i ∈M, K∗
v,i = 1}. These are given to the adversary,

6



along with the signature σ and the verification key K∗
v .

Phase 2.Same as Phase 1.

Guess.Adv produces a guess µ′ of µ. If µ′ = µ, Sim an-
swers “DBDH” in the DBDH simulation. Otherwise, Sim
answers “random”.

First, we observe that abort occurs only if Adv loses in the
CCA game by submitting an invalid ciphertext. If Z = gabc,
Adv receives a valid ciphertext during the challenge phase. If
in addition forge does not occur, Sim has the same advantage
as Adv .

P[Sim → “DBDH”|Z = gabc]

= P[µ′ = µ|Z = gabc]−P[forge, µ′ = µ|Z = gabc]

+ P[forge,Sim → “DBDH”|Z = gabc]

≥ P[µ′ = µ|Z = gabc]−P[forge|Z = gabc]

=
1

2
+ ε−P[forge|Z = gabc]

If Z = gz, then C̃ is completely random from the view of
the adversary. In that case, µ′ 6= µ holds with probability
exactly 1

2
.

P[Sim → “random”|Z = gz]

= P[µ′ 6= µ|Z = gz]−P[forge, µ′ 6= µ|Z = gz]

+ P[forge,Sim → “random”|Z = gz]

≥ P[µ′ 6= µ|Z = gz]−P[forge|Z = gz]

=
1

2
−P[forge|Z = gz]

Putting the two pieces together, we know that Sim’s ad-
vantage is at least ε − P[forge]. It remains to prove that
P[forge] is negligible. To do so, we construct Sim ′ that can
win the SEU game with probability at least P[forge].

Instead of running SigKeyGen to obtain 〈K∗
v , K∗s〉, Sim ′

obtains K∗
v from the SEU challenger. Then Sim ′ proceeds

as Sim. During the challenge phase of the CCA game, Sim ′

obtains the signature σ from the SEU challenger (whereas
Sim obtains σ by running Sign). If forge occurs, Sim ′ sub-
mits the forgery to the SEU challenger and wins. Note that
Sim ′ makes at most one signature query. Thus Sim ′ wins
the SEU game with probability at least P[forge]. By the
SEU assumption, P[forge] must be negligible.

5. HIERARCHICAL ATTRIBUTES
Recall the basic structure of our CP-ABE schemes. Dur-

ing KeyGen, we associate a random exponent ri to each
i ∈ N . These exponents are “tied together” using the group
element gy−r = gy−

Pn
i=1 ri , where y is a system master se-

cret. During decryption, the proper matching of attributes
allows us to recover e(g, g)ri·s for every attribute i, including
those that do not appear in the AND gate W =

V
i∈I i. This

allows us to recover e(g, g)r·s and subsequently e(g, g)y·s.
Clearly, the complexity of encryption/decryption is linear

in n, because we must handle every ri in order to recover r.
The same holds for the ciphertext size. This is unsatisfac-
tory for small AND gates: if the number of literals appearing
in W is small, then most of our work involves don’t care el-
ements.

In this section, we show that don’t care elements can be

handled more efficiently. The main idea is to arrange at-
tributes into a logical hierarchy, such that a single don’t
care can replace all of those represented in a subtree. This
is illustrated in Figure 3, where the system in question has
n = 8 attributes.

T[1..8]

xxqqqqqqqq

&&MMMMMMMM

T[1..4]

����
��

�

��;
;;

;;
T[5..8]

����
��

�

��;
;;

;;

T[1..2]

����
��

��-
--

-
T[3..4]

����
��

��-
--

-
T[5..6]

����
��

��-
--

-
T[7..8]

����
��

��-
--

-

T2n+1 T2n+2 T2n+3 T2n+4 T2n+5 T2n+6 T2n+7 T2n+8

Figure 3: Public Key Elements for Attribute Tree.

In this example, we augment the public key with randomly
chosen group elements T[1..2], . . . , T[7..8], T[1..4], T[5..8], T[1..8].
If, for example, the encryptor cares only about attributes
1 and 4, then he provides three don’t care elements in the
ciphertext: T s

2n+2, T s
2n+3 and T s

[5..8]. In contrast, he would
have to provide six don’t care elements under the original
scheme: T s

2n+2, T s
2n+3, T s

2n+5, T
s
2n+6, T

s
2n+7, T

s
2n+8.

Essentially, the hierarchy allows us to cover the comple-
ment of I with fewer group elements. This reduces not only
the ciphertext size, but also the number of exponentiations
in encryption and the number of pairings in decryption. For
small AND gates, these costs are brought down from n to
log(n). For large AND gates, the costs will be dominated by
operations on attributes that actually appear in the AND
gate. In the worst case, every other attribute is included in

the AND gate, requiring |I|
2

matching don’t care elements.
The price we pay for this optimization is an increase of

roughly n group elements in public/secret key size and an
increase of roughly n exponentiations in Setup and KeyGen.

We now describe in detail the optimized scheme.

Setup.Setup defines a binary tree with one leaf for each
attribute i ∈ N . Assume that attributes are assigned to
leaves in ascending order from left to right. Each non-leaf
x is associated with the integer range [i..j], where i is the
leftmost leaf descended from x and j is the rightmost leaf
descended from x. We call this entire structure the attribute
tree.

In addition to the public key elements described in Sec-
tion 3, Setup generates one public key element for every
non-leaf node in the attribute tree3. This is done as follows:
for each internal node x = [i..j], Setup chooses tx ∈ Zp at
random and defines Tx := gtx .

Since there are roughly n internal nodes in the attribute
tree, the number of group elements in the public key grows
from 3n + 1 to roughly 4n, and the same is true for the
number of exponentiations performed by Setup.

3The root node can be used to encrypt to every user who
has obtained a secret key from the key authority, regardless
of his attributes.

7



KeyGen.In addition to the secret key elements described in
Section 3, Setup generates one secret key element for every
non-leaf node in the attribute tree. Specifically, for each
non-leaf node x = [i..j], KeyGen defines rx :=

Pj
k=i rk and

Fx := g
rx
tx . (Recall that KeyGen chooses random exponent

ri for every attribute i.)
The number of group elements in the secret key grows

from 2n + 1 to roughly 3n, and the same is true for the
number of exponentiations performed by KeyGen.

Encrypt. Given message M and AND gate W =
V

i∈I i,

Encrypt selects a random s ∈ Zp and defines C̃ and Ĉ as in
Section 3. To construct the Ci components, Encrypt runs
the following recursive procedure (called Traverse) on the
root of the access tree. For simplicity of presentation, as-
sume that n is a power of 2.

Traverse returns either 1 or 0 on a given internal node in
the access tree. Let the current node be x0 and let x1 and
x2 denote its children. We have two cases.

• x1 and x2 are internal nodes. Run Traverse on both.
– If Traverse returns 1 on both x1 and x2, return 1.
– If Traverse returns 0 on both x1 and x2, return 0.
– Otherwise, assume without loss of generality that

Traverse returns 0 on x1 and 1 on x2. Define
Cx1 := T s

x1 and include it in the ciphertext. Re-
turn 1.

• x1 and x2 are leaves. Let i and i + 1 be the attributes
associate with x1 and x2, respectively.

– i ∈ I or i + 1 ∈ I. Define Ci and Ci+1 as in Sec-
tion 3 and include them in the ciphertext. Return
1.

– Neither i nor i + 1 is in I. Return 0.
Finally, Encrypt adds to the ciphertext the necessary in-

dexing information, linking each Cx to the node x.

Decrypt. Let x be a node such that Cx appears in the ci-
phertext.

• If x is a leaf representing i and i ∈ I, then Decrypt
pairs Cx with Di to obtain e(g, g)rx·s.

• Otherwise, Decrypt pairs Cx with Fx to get e(g, g)rx·s.
Then Decrypt computes e(g, g)r·s as

Q
x e(g, g)rx·s. This is

correct because rx is the sum of all ri’s in the subtree below
x in the attribute tree.

5.1 Discussions
We remark that binary trees are chosen simply for no-

tational convenience. Depending on the particular applica-
tion, attributes can be arranged into semantic categories (cf.
the selective data sharing example of Section 7). In general,
there is a trade-off between public/secret key size and ci-
phertext size: if we include more don’t care elements in the
system, corresponding to different subsets of N , we are more
likely to be able to represent the whole set N with fewer
group elements. However, encryption time will increase due
to the complexity of finding a minimal covering.

We also believe that a similar optimization can be ob-
tained for our CCA scheme. Details are left as future work.

5.2 CPA Security Proof
We modify the CPA proof of Section 3 to accommodate

the new changes. The following portions of the proof are
affected by the optimization.

Setup.For i ∈ N , Sim calculates the elements Ti, Tn+1

and T2n+i as in Section 3. Then it calculates Tx for non-
leaf node x = [i..j] in the attribute tree. First it chooses
δx at random from Zp. If there exists i′ ∈ [i..j] such that i′

appears in the challenge gate W , then Setup defines tx :=
b · δx. Otherwise, tx := δx. Then Tx is computed by raising
either B or g to δx.

Phase 1.Adv submits an attribute set S ⊆ N such that
S 6|= W . As in Section 3, Sim choose an appropriate j and

defines r′i, ri, D̂, Di and Fi for every i ∈ N .
Sim must also define Fx for each non-leaf node x = [i..i′]

in the attribute tree. We have three cases.
• No k ∈ [i..i′] appears W . In this case, Tx = gδx and

Fx = g
rx
δx , where rx =

Pi′

k=i rk. Since j appears in W ,
we know that j 6∈ [i..i′]. Therefore rk = b · r′k for every

k ∈ [i..i′] and Sim computes Fx as (
Qi′

k=i Br′
k )

1
δx .

• Some k ∈ [i..i′] appears W but j 6∈ [i..i′]. In this case,

Tx = gb·δx and Fx = g
rx

b·δx , where rx =
Pi′

k=i rk. Since
j 6∈ [i..i′], we know that rk = b · r′k for every k ∈ [i..i′].

Sim computes Fx as (
Qi′

k=i gr′
k )

1
δx .

• j ∈ [i..i′]. Since j appears in W , we know that Tx =

gb·δx and Fx = g
rx

b·δx , where rx =
Pi′

k=i rk. Since

j ∈ [i..i′], we have rx = ab+
Pi′

k=i b ·r′k. Sim computes

Fx as (A ·
Qi′

k=i gr′
k )

1
δx .

Challenge.Sim chooses random bit µ and defines C̃ as in
Section 3. Then it runs Traverse on the attribute tree. Let
the current node be x0 and let x1 and x2 denote its children.
We have three cases.

• x1 and x2 are internal nodes, and Cx1 is included in
the ciphertext. Using the definition of Traverse, it is
easy to check that no attribute i in the subtree below
x1 appears in W . Sim sets Cx1 := Cδx1 .

• x1 and x2 are internal nodes, and Cx2 is included in
the ciphertext. Similar to the previous case.

• x1 and x2 are leaves, and Ci and Ci+1 are included
in the ciphertext. Sim computes Ci as in Section 3.
More precisely, there are three cases.

– i ∈ I ∧ i = i. Compute Ci as Cαi .
– i ∈ I ∧ i = ¬i. Compute Ci as Cβi .
– i 6∈ I. Compute Ci as Cγi .

Similarly for Ci+1.
The rest of the proof proceeds as in Section 3.

6. THRESHOLD ACCESS TREES
Ideally, we would like the ability to encrypt to arbitrary

threshold access trees similar to those in [1]. Specifically,
consider the following definition of access trees4: each inter-
nal node in an access tree corresponds to a threshold gate,
while all leave nodes are AND gates. The basic scheme of
Section 3 can be extended naturally as follows. To encrypt,
the secret exponent s used to mask the message M (recall

the ciphertext component C̃ = M ·Y s) is placed at the root
node of the access tree. Based on the threshold gate at the
root, shares of s are constructed and placed on the root’s
children. This is repeated until all nodes in the tree are

4Access Trees are access structures that control the ability
to decrypt. They are not to be confused with attribute trees
of Section 5.

8



filled, including the leaves. Then the shares at the leaves
are used to produce ciphertext components as in the basic
scheme. We illustrate this procedure with an example.

s
mmmm

m
2-of-3

vvmmmmmmmmmmm

��

QQQQ
Q

((QQQQQQQQQQQ

s1
AND

����
��

��
�

�� ��7
77

77
77

s2
AND

����
��

��
�

�� ��7
77

77
77

s3
AND

����
��

��
�

�� ��7
77

77
77

1 2 3 2 3 4 3 4 5

Figure 4: Example of Threshold Access Tree.

Consider the access tree in Figure 4 and a CP-ABE in-
stance with five attributes {1, . . . , 5}. The threshold gate at
the root is 2-of-3, so we select a random degree-1 polyno-
mial p such that p(0) = s. For i = 1, 2, 3, we set si := p(i).
Then s can be recovered given any two of the values s1, s2

and s3. At the leaf level, we treat the AND gates as we do
in the basic scheme of Section 3. Take, for instance, the
leftmost AND gate. The ciphertext includes the following
group elements: 〈gs1 , T s1

1 , T s1
2 , T s1

3 , T s1
2·5+4, T

s1
2·5+5〉. This al-

lows any user with attributes 1, 2, 3 to recover e(g, g)r·s1 =Q5
i=1 e(g, g)ri·s1 . The other two AND gates are handled

in exactly the same way: 〈gs2 , T s2
2·5+1, T

s2
2 , T s2

3 , T s2
4 , T s2

2·5+5〉
and 〈gs3 , T s3

2·5+1, T
s3
2·5+2, T

s3
3 , T s3

4 , T s3
5 〉 are provided in the ci-

phertext. Thus, any user satisfying at least two of the three
AND gates can decrypt by recovering e(g, g)r·s.

Unfortunately, this extended scheme is insecure. The key
point is that s1, s2 and s3 are not independent random
values. Consider a user with attributes ¬1, 2, 3, 4,¬5. Only
the middle AND gate is satisfied by this attribute set, and
hence decryption should not be allowed. However, notice
that 5 is a don’t care in the first two AND gates. Therefore
the user can recover e(g, g)r5·s1 and e(g, g)r5·s2 . Since s1 and
s2 are two distinct points on the same degree-1 polynomial,
e(g, g)r5·s3 can be recovered using interpolation. Moreover,
the user has attributes 3 and 4, and attributes 1 and 2 are
don’t care’s in the last AND gate, therefore he can obtain
(legitimately) e(g, g)ri·s3 for i = 1, 2, 3, 4. Combining these
with e(g, g)r5·s3 from interpolation, the user can now recover
e(g, g)r·s3 , which in turns allows him to decrypt in violation
of the access policy.

To avoid such attacks, one can perform the secret shar-
ing procedure on the message M itself, as opposed to the
randomness s. In the example above, we obtain shares M1,
M2 and M3 of M . These shares are then encrypted using
independent random exponents s1, s2 and s3, respectively.
The attacker can no longer take advantage of don’t care’s
and polynomial interpolation.

While we have found no further attacks, a formal security
proof remains elusive. The difficulty seems to be that, in
the selective ID security game (cf. Section 2), the adversary
must commit to a challenge access structure before the game
starts. In the proposal above, multiple AND gates are used
to encrypt shares of the message M , therefore the simulator
in the reduction proof must choose one of the AND gates
and use it to obtain the public key. The chosen AND gate is
“good” if it corresponds to a non-negligible jump in success
probability in the subsequent hybrid argument. However, it

is unclear how the simulator can predict which AND gate is
good before the game starts.

In Appendix A, we consider non-selective ID security,
which strengthens selective ID security by allowing the ad-
versary to choose a challenge access structure in the Chal-
lenge phase. In that setting, we are able to prove the security
of multiple encryptions. Thus, we leave as important future
work to find non-selective ID security proofs for CP-ABE.

7. APPLICATIONS
As observed in [11], ABE has much potential in providing

data security in distributed environments, because it allows
complex access policies to be specified and enforced without
online interaction with trusted and/or centralized servers.
Many specific applications have been mentioned, including
audit log and targeted broadcast [9], distributed file systems
for medical data and online social networks [11]. In this
section, we outline two applications: selective data sharing
and group key management.

7.1 Selective Data Sharing
Consider a scenario in which a large corporation installs

a standing committee to investigate any reports of improper
conducts of employees. Members of this committee are drawn
from different departments and locations, and are given three
different clearance levels. Using a hierarchical CP-ABE in-
stance similar to that in Section 5, these attributes can be
categorized as in Figure 5.

Committee

ssggggggggggggg
�� ++VVVVVVVVVVVVV

Dept

}}zz
zz

�� !!CC
CC

Clr

{{www
www �� ##GGG

GGG
Loc

~~}}
}}

�� ��@
@@

@

Acc Pur HR 1 2 3 NY DC LA

Figure 5: Attributes By Category.

Suppose there is an investigation regarding an account-
ing officer in New York, and company policy says that no
committee member from the accounting department in New
York may take part in this investigation. To encrypt a memo
regarding this investigation, the content of the memo is first
encrypted with a symmetric data key. The data key is then
encrypted separately with the AND gates in Figures 6 and 7.
(We write “Att:∗” to indicate that we don’t care about the
attribute “Att”.) The two ciphertexts are placed in a header
that accompanies the encrypted memo. Anyone not belong-
ing to an accounting department can decrypt the first ci-
phertext, and anyone not working in New York can decrypt
the second. This enforces the desire access policy.

AND

tthhhhhhhhhhhhh

xxqqqqq
�� &&LLLLL

**VVVVVVVVVVVV

¬Acc Pur:∗ HR:∗ Clr:∗ Loc:∗

Figure 6: Excluding “Accounting”.

7.2 Group Key Management

9



AND

ttiiiiiiiiiiii

yysssss
�� %%KKKKK

**UUUUUUUUUUUU

Dept:∗ Clr:∗ ¬NY DC:∗ LA:∗

Figure 7: Excluding “New York”.

CP-ABE is well-suited for the problem of Group Key
Management (GKM) in the context of secure multicast. This
problem requires a Group Controller (GC) to maintain a
shared data encryption key, which is used to encrypt mul-
ticast traffic and is known only to current group members
(GMs). New GMs are given this data key through a secure
unicast channel at the time of joining. The real challenge
is membership revocation: excluding a subset of the GMs
from future communications. This action requires the dis-
tribution of a new data key to all remaining GMs, so that
revoked members no long have access to future multicast
messages.

It has been noted that CP-ABE can be used to solve the
GKM problem. The main idea is to define attributes in such
a way that any subset of users can be distinguished from the
rest using a combination of attributes. More precisely, each
GM is associated with a set of attributes and, for revocation,
the GC computes an access policy that is (i) satisfied by the
attribute sets of all remaining users and (ii) not satisfied by
the attribute set of any revoked user. Therefore, remaining
GMs can use their secret keys to recover the new data key,
while revoked GMs gain no information even if they collude.

In [6], for example, the authors realized this intuition by
constructing a collusion-resistant variant of the flat table
GKM scheme. Their construction uses the CP-ABE scheme
of [1] and associates log(N) attributes with each GM, where
N is the size of an ID space. Specifically, each attribute cor-
responds to one bit in the GM’s ID, and the GM receives a
CP-ABE secret key associated with his ID. For revocation,
the GC runs a Boolean function minimization algorithm to
obtain a sum of products expression that separates the re-
maining membership from revoked users. This expression
can be viewed as a threshold access tree, and CP-ABE is
used accordingly to distribute the new data key.

8. CONCLUSIONS AND FUTURE WORK
In this paper we present several related CP-ABE schemes.

The basic scheme allows an encryptor to use any AND gate
on positive and negative attributes as an access policy on the
ciphertext. This scheme is proven to be CPA secure under
the DBDH assumption. To obtain CCA security, we extend
the basic scheme with strongly existentially unforgeable one-
time signatures.

We also present a variant with substantially smaller ci-
phertexts and faster encryption/decryption operations. The
main idea is to form a hierarchy of attributes, so that fewer
group elements are needed to represent all attributes in the
system. This efficient variant is proven to be CPA secure.
We believe our CCA secure scheme can be optimized in a
similar way.

To allow arbitrary threshold trees as access structures,
we propose the combination of standard threshold secret
sharing and independent encryptions under our CP-ABE
schemes. The security of this proposal remains as an open

problem.

9. REFERENCES
[1] J. Bethencourt, A. Sahai, and B. Waters.

Ciphertext-policy attribute-based encryption. In
Proceedings of the 28th IEEE Symposium on Security
and Privacy (Oakland), 2007. To appear.

[2] D. Boneh, C. Gentry, and B. Waters. Collusion
resistant broadcast encryption with short ciphertexts
and private keys. Lecture Notes in Computer Science,
3621, 2005. Advances in Crytology – CRYPTO’05.

[3] D. Boneh, E. Shen, and B. Waters. Strongly
unforgeable signatures based on computational
diffie-hellman. In Proceedings of PKC’06, volume 3958
of LNCS, pages 229–240, 2006.

[4] R. Canetti, S. Halevi, and J. Katz. Chosen ciphertext
security from identity based encryption. In Advances
in Cryptology – Eurocrypt, volume 3027 of LNCS,
pages 207–222, 2004.

[5] M. Chase. Multi-authority attribute-based encryption.
In Proceedings of the 4th IACR Theory of
Cryptography Conference (TCC’07), 2007.

[6] L. Cheung, J. Cooley, R. Khazan, and C. Newport.
Collusion-resistant group key management using
attribute-aased encryption. Cryptology ePrint Archive
Report 2007/161, 2007. http://eprint.iacr.org/.

[7] A. Fiat and M. Noar. Broadcast encryption. In
Proceedings of Crypto’93, volume 773 of LNCS, pages
480–491, 1993.

[8] E. Fujisaki and T. Okamoto. Secure integration of
asymmetric and symmetric encryption schemes. In
Proceedings of the 19th Annual International
Cryptology Conference on Advances in Cryptology,
pages 537–554, 1999.

[9] V. Goyal, O. Pandey, A. Sahai, and B. Waters.
Attribute-based encryption for fine-grained access
control of encrypted data. In Proceedings of the 13th
ACM conference on Computer and Communications
Security (CCS’06), pages 89–98, 2006.

[10] D. Naor, M. Naor, and J. Lotspiech. Recovation and
tracing schemes for stateless receivers. In Proceedings
of Crypto’01, volume 2139 of LNCS, pages 41–62,
2001.

[11] M. Piretti, P. Traynor, P. McDaniel, and B. Waters.
Secure atribute-based systems. In Proceedings of the
13th ACM conference on Computer and
Communications Security (CCS’06), 2006.

[12] A. Sahai and B. Waters. Fuzzy identity based
encryption. In Advances in Cryptology – Eurocrypt,
volume 3494 of LNCS, pages 457–473, 2005.

[13] A. Shamir. Identity-based cryptosystems and
signature schemes. In Proceedings of CRYPTO’84 on
Advances in Cryptology, pages 47–53, 1985.

APPENDIX

A. NON-SELECTIVE ID SECURITY
In Sections 2 and 6, we mentioned the distinction between

selective ID and non-selective ID security for CP-ABE. In
the former, the adversary must commit to a challenge access
structure before the game starts. In the latter, the adversary

10



specifies the challenge access structure during the Challenge
phase. This is formalized as follows.

A CP-ABE scheme is secure against non-selective ID cho-
sen plaintext attacks if no probabilistic polynomial-time ad-
versaries have non-negligible advantage in the following game.
(Call this Game 1.)

Setup The challenger runs the Setup algorithm and gives
the adversary PK .

Phase 1 The adversary submits S for a KeyGen query and
the challenger answers with a secret key SK for S. This
can be repeated adaptively.

Challenge The adversary submits two messages M0 and M1

of equal length, as well as a challenge access structure
W . Provided W is not satisfied by any attribute set
S submitted in Phase 1, the challenger chooses µ ∈
{0, 1} at random and encrypts Mµ to W . The resulting
ciphertext CT is given to the adversary.

Phase 2 Same as Phase 1, provided the attribute sets S do
not satisfy W .

Guess The adversary outputs a guess µ′ of µ.

Non-selective ID security is stronger because it requires
the simulator to set up the public key without knowledge of
the challenge access structure W . In particular, the simu-
lator strategies of Sections 3, 4, and 5 do not satisfy this
condition. So far, we do not know of a CP-ABE scheme
that is non-selective ID secure under a standard complexity
assumption. (Non-selective ID security is used in [1], but
the security proof there is not a reduction.)

Non-selective ID security is interesting because it allows
secure composition of multiple encryption instances. This is
formulated in terms of the following game. (Call this Game
L, where L is polynomial in the security parameter.)

Setup The challenger runs the Setup algorithm and gives
the adversary PK .

Phase 1 The adversary submits S for a KeyGen query and
the challenger answers with a secret key SK for S. This
can be repeated adaptively.

Challenge The adversary submits two sequence of messages
{M0

l |1 ≤ l ≤ L} and {M1
l |1 ≤ l ≤ L} such that

|M0
l | = |M1

l | for every l. The adversary also submits
a sequence of access structures {Wl|1 ≤ l ≤ L}. Pro-
vided none of the Wl’s are satisfied by any attribute S
submitted in Phase 1, the challenger chooses µ ∈ {0, 1}
at random and encrypts each Mµ

l to Wl. The resulting
L ciphertexts are given to the adversary.

Phase 2 Same as Phase 1, provided the attribute sets S do
not satisfy Wl for any l.

Guess The adversary outputs a guess µ′ of µ.

Theorem A.1. If there exists an adversary Adv that can
win Game L with non-negligible probability, then there exists
a simulator Sim that can win Game 1 with non-negligible
probability.

Proof. For each l ∈ {1, . . . , L}, we define Siml as fol-
lows. In Game 1, Siml plays the role of the adversary and,
in Game L, Siml plays the role of the challenger.

Setup.Siml receives the PK from the challenger in Game
1 and hand it to Adv in Game L.

Phase 1.If Adv submits S for secret key in Game L, Siml

forwards S to the challenger in Game 1 and relays the re-
sulting SK back to Adv .

Challenge.Suppose Adv submits {〈M0
l′ , M

1
l′ , Wl′〉|1 ≤ l′ ≤

L}, satisfying the necessary constraints. Siml submits the
triple 〈M0

l , M1
l , Wl〉 to the challenger in Game 1 and receives

ciphertext CT l. Note that Adv has not asked for a secret key
that can decrypt under Wl′ for any 1 ≤ l′ ≤ L. Therefore
Siml has not asked for a secret key that can decrypt under
Wl.

For every l′ ∈ {1, . . . , l−1}, Siml encrypts M1
l′ to Wl′ and

obtains CT l′ . For every l′ ∈ {l + 1, . . . , L}, Siml encrypts
M0

l′ to Wl′ and obtains CT l′ . Finally, Siml gives Adv the
ciphertexts 〈CT 1, . . . ,CTL〉.

Phase 2.Same as Phase 1.

Guess.Adv produces a guess µ′ in Game L and Siml for-
wards µ′ to the challenger in Game 1.

By assumption, Adv has non-negligible advantage ε in
Game L. If Game L is played by a challenger that chooses µ
at random and encrypts {Mµ

l |1 ≤ l ≤ L}, then the following
holds.

P[µ′ = 1, µ = 1]−P[µ′ = 1, µ = 0]

= P[µ′ = 1, µ = 1]− (
1

2
−P[µ′ = 0, µ = 0])

= P[µ′ = 1, µ = 1] + P[µ′ = 0, µ = 0]− 1

2

≥ ε

If Game L is played by Siml, then in the Challenge phase
Adv sees either of the following:
• random encryptions of the first l messages of {M1

l |1 ≤
l ≤ L} and the last L− l messages of {M0

l |1 ≤ l ≤ L};
• random encryptions of the first l−1 messages of {M1

l |1 ≤
l ≤ L} and the last L− l + 1 messages of {M0

l |1 ≤ l ≤
L}.

Everything else has the same distribution from the view of
Adv .

For 0 ≤ l ≤ L, let P 1
l denote the probability that Adv

guesses 1 when in fact

{M1
l′ |1 ≤ l′ ≤ l} ∪ {M0

l′ |l + 1 ≤ l′ ≤ L}

are encrypted. Note that P 1
0 = P[µ′ = 1, µ = 0] and P 1

L =
P[µ′ = 1, µ = 1], therefore P 1

L − P 1
0 ≥ ε. Then there must

be l ∈ {1, . . . , L} such that P 1
l − P 1

l−1 ≥ ε′, where ε′ is non-
negligible. For that particular l, Siml wins Game 1 with
advantage at least ε′.

As a corollary of Theorem A.1, it is secure to encrypt
the same message to multiple AND gates. This situation
occurs, for instance, in the selective data sharing example
of Section 7. Unfortunately, we have not been able to prove
that our CP-ABE schemes are non-selective ID secure.

11


