Provably Secure Ciphertext Policy ABE

Ling Cheung ${ }^{*}$
MIT CSAIL, Cambridge, MA, USA
Icheung@theory.csail.mit.edu

Calvin Newport ${ }^{\dagger}$
MIT CSAIL, Cambridge, MA, USA
cnewport@theory.csail.mit.edu

Abstract

In ciphertext policy attribute-based encryption (CP-ABE), every secret key is associated with a set of attributes, and every ciphertext is associated with an access structure on attributes. Decryption is enabled if and only if the user's attribute set satisfies the ciphertext access structure. This provides fine-grained access control on shared data in many practical settings, e.g., secure database and IP multicast.

In this paper, we study CP-ABE schemes in which access structures are AND gates on positive and negative attributes. Our basic scheme is proven to be chosen plaintext (CPA) secure under the decisional bilinear Diffie-Hellman (DBDH) assumption. We then apply the Canetti-HaleviKatz technique to obtain a chosen ciphertext (CCA) secure extension using one-time signatures. The security proof is a reduction to the DBDH assumption and the strong existential unforgeability of the signature primitive.

In addition, we introduce hierarchical attributes to optimize our basic scheme - reducing both ciphertext size and encryption/decryption time while maintaining CPA security. We conclude with a discussion of practical applications of CP-ABE.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]: Security and Protection

General Terms

Security, Theory

Keywords

Access Control, Attribute-Based Encryption, Public Key Cryptography

[^0][^1]
1. INTRODUCTION

In traditional public key crypto systems, the communication model is one-to-one, in the sense that any message encrypted using a particular public key can be decrypted only with the corresponding secret key. The same holds for identity-based encryption (IBE) [14], where user public keys can be arbitrary bit strings such as email addresses. In practice, however, many applications of encryption are natural examples of one-to-many communication. For instance, documents in a shared database are accessed by multiple users, and cable television programs are viewed by multiple subscribers.

One-to-many communication can be secured using one-toone public key cryptosystems in a straightforward manner. For example, a sender may encrypt data with a symmetric encryption key, and distribute this data key to every intended receiver using public key encryption. This general scheme is simple to implement, but inefficient in the number of encryption operations and in the size of ciphertexts (both linear in the total number of intended receivers). A better solution is broadcast encryption $[8,11,2]$, where a sender specifies a set of receivers (or revoked users) during encryption. Any intended receiver can decrypt using his secret key, while revoked users cannot-even if they collude.

Although broadcast encryption is efficient, it requires that receivers are represented individually. A sender must maintain a list of prospective receivers, as well as authorization information associated with each receiver. In order to derive a receiver set for a particular message, the sender queries his receiver database with some appropriate policy information.

In some application scenarios, it is desirable to be able to encrypt without exact knowledge of the set of intended receivers. For example, in a secure database of an intelligence agency, one may specify that a certain document can be accessed only by agents in the domestic surveillance program. In that situation, it is much more natural to encrypt to the single attribute "domestic spy", instead of an enumerative list of all domestic spies. (It is conceivable that the sender is not even authorized to obtain such a list.)

Attribute-Based Encryption. Attribute-based encryption (ABE) offers this desired ability to encrypt without exact knowledge of the receiver set. It enforce access policies, defined on attributes, within the encryption procedure. This idea was first introduced by Sahai and Waters (SW) as an application of their fuzzy IBE scheme [13], where both ciphertexts and secret keys are associated with sets of attributes. Decryption is enabled if and only if the cipher-
text and secret key attribute sets overlap by at least a fixed threshold value d.

Two variants of ABE were subsequently proposed. In the key policy variant (KP-ABE) of Goyal, Pandey, Sahai and Waters (GPSW) [10], every ciphertext is associated with a set of attributes, and every user secret key is associated with a threshold access structure on attributes. ${ }^{1}$ Decryption is enabled if and only if the ciphertext attribute set satisfies the access structure on the user secret key. In the ciphertext policy variant (CP-ABE) of Bethencourt, Sahai and Waters (BSW) [1], the situation is reversed: attributes are associated with user secret keys and access structures with ciphertexts.

To date, all existing ABE schemes involve some form of threshold secret sharing construction. In $[13,10]$, shares of a system master secret are embedded into user secret keys, while in [1] shares of the randomness in an encryption are embedded into ciphertext components. In this paper, we break from this tradition and consider AND-gates on positive and negative attributes as our access structures. In this simpler setting, we obtain efficient schemes that are provably secure under standard complexity assumptions. Since AND gates are sufficient in many application scenarios, our approach retains significant potential.

Our Contributions. We first present a CP-ABE scheme that is chosen plaintext (CPA) secure under the Decisional Bilinear Diffie-Hellman (DBDH) assumption. Access structures in this scheme are AND-gates on positive and negative attributes. We then apply the Canetti-Halevi-Katz technique to obtain a chosen ciphertext (CCA) secure extension, using one-time signatures. The security proof is a reduction to the DBDH assumption and the strong existential unforgeability of the signature primitive. Since strongly existentially unforgeable signatures can be constructed under the standard computational Diffie-Hellman (CDH) assumption [3], the security of our CCA scheme reduces to DBDH and CDH . To the best of our knowledge, this is the first formal CCA security proof for CP-ABE.

We observe that attributes can be arranged into logical hierarchies, which in turn can be used to improve the efficiency of our basic scheme. Essentially, a hierarchy allows us to use fewer group elements to represent all attributes in the system, thereby reducing the ciphertext size, the number of exponentiations in encryption and the number of pairings in decryption. This optimized scheme is proven to be CPA secure.

Finally, we note that policies in the form of disjunctive normal form formulas can be enforced by encrypting the same message to every AND gate in the formula. We discuss some subtleties in the security of this proposal, and leave the formal proof as important future work.

Related Work. As mentioned above, the concept of ABE was proposed in [13] and later extended in $[10,1]$. Both the fuzzy IBE scheme of [13] and the KP-ABE scheme of [10] are proven secure under the DBDH assumption. For the CPABE scheme of [1], there appears to be inherent difficulties in reducing security to a well-known complexity assumption.

[^2]Mostly likely, this is due to the way in which secret key components are "tied together" to avoid collusion attacks. Indeed, in this paper we use a different technique to bind secret key components and we are able to prove security based on DBDH . The trade-off inherent in our technique is that ciphertext size and encryption/decryption time grow linearly with n, the total number of attributes in the system. For small AND gates, the optimization of Section 5 brings the factor n down to $\log n$. In contrast, the ciphertext size and encryption/decryption time of the BSW scheme are linear in the size of the access tree, independent of n.

The authors of $[13,1]$ suggest that chosen ciphertext security can be achieved using the Fujisaki-Okamoto transformation [9] or the Canetti-Halevi-Katz (CHK) technique [4]. A more concrete outline is given in [10], using a large universe construction ${ }^{2}$ and delegation of user secret keys. In this paper, we implement CCA security without a large universe construction (and hence without the use of hash functions).

In [5], Chase answers an open problem posed in [13] and presents a scheme in which (disjoint sets of) attributes are assigned by multiple authorities. Our technique for binding together secret key components is similar to Chase's technique for "distributing" the system master secret among multiple attribute authorities. Chase also outlines a CPABE system in which access structures are monotone (i.e., no negation) conjunctive normal form formulas. That approach, however, is inefficient, as each authority corresponds to one clause in the conjunction and the same attribute appearing in different clauses must be duplicated at every relevant authority.

On the practical side, Pirreti et al. introduced a secure information management architecture based on ABE primitives [12]. The original SW scheme is implemented and optimized. It is also shown that complex policies can be implemented efficiently using constructions that are secure in the random oracle model.

Overview. Section 2 defines the CP-ABE primitive and the CPA security game. Section 3 presents the basic construction for AND gates and the CPA security proof. Section 4 introduces the CCA security game and our CCA secure scheme. A more efficient version of the basic scheme is presented in Section 5, and a heuristic is given in Section 6 for disjunctive normal form policies. Finally, two applications scenarios (selective data sharing and group key management) are described in Section 7, and concluding remarks follow in Section 8.

2. CIPHERTEXT POLICY ABE

Intuitively, an access structure on attributes is a rule W that returns either 0 or 1 given a set S of attributes. We say that S satisfies W (written $S \models W$) if and only if W answers 1 on S. As mentioned in Section 1, access structures may be Boolean expressions, threshold trees, etc.

A ciphertext policy attribute-based encryption ($C P-A B E$) system consists of four fundamental algorithms: Setup, Encrypt, KeyGen and Decrypt.

[^3]Setup. Setup takes as input a security parameter κ and returns a public key $P K$ and a master key $M K$. The public key is used for encryption. The master key, held by the central authority, is used to generate user secret keys.

KeyGen. KeyGen takes as input the master key $M K$ and a set $S \subseteq \mathcal{N}$ of attributes. It returns a secret key $S K$ associated with S.

Encrypt. Encrypt takes as input the public key PK, a message M and an access structure W. It returns a ciphertext $C T$ such that a secret key generated from attribute set S can be used decrypt $C T$ if and only if $S \models W$.

Decrypt. Decrypt takes as input a ciphertext $C T$ and a secret key $S K$. It returns the message M if S satisfies W, where S is the attribute set used to generate $S K$.

2.1 CPA Security Game for CP-ABE

A CP-ABE scheme is said to be secure against chosen plaintext attacks (CPA) if no probabilistic polynomial-time adversaries have non-negligible advantage in this game.
Init The adversary chooses the challenge access structure W and gives it to the challenger.
Setup The challenger runs the Setup algorithm and gives the adversary $P K$.
Phase 1 The adversary submits S for a KeyGen query. Provided $S \not \vDash W$, the challenger answers with a secret key $S K$ for S. This can be repeated adaptively.
Challenge The adversary submits two messages M_{0} and M_{1} of equal length. The challenger chooses $\mu \in\{0,1\}$ at random and encrypts M_{μ} to W. The resulting ciphertext $C T$ is given to the adversary.
Phase 2 Same as Phase 1.
Guess The adversary outputs a guess μ^{\prime} of μ.
Notice, collusion resistance follows from the fact the adversary may make multiple secret key queries both before and after selecting challenge plaintexts. We also point out that our CPA security game is weaker than that of [1], because the adversary must submit a challenge access structure before the setup phase. This is essential in our security proofs (cf. Sections 3 and 4), because the simulator uses information from the challenge access structure to set up public key elements. This weaker form is sometimes called selective $I D$ security. See the full version of this work for a discussion of the stronger variant called adaptive ID security, and its implications for our scheme [7].

3. BASIC CONSTRUCTION

For notational simplicity, let the set of attributes be $\mathcal{N}:=$ $\{1, \ldots, n\}$ for some natural number n. We refer to attributes i and their negations $\neg i$ as literals. In this section, we consider access structures that consist of a single AND gate whose inputs are literals. This is denoted $\bigwedge_{i \in I} \underline{i}$, where $I \subseteq \mathcal{N}$ and every \underline{i} is a literal (i.e., i or $\neg i$).

Setup. This algorithm selects:

- a bilinear group G of prime order p, with bilinear map $e: G \times G \rightarrow G_{1}$,
- random elements $y, t_{1}, \ldots, t_{3 n}$ in \mathbb{Z}_{p} and a random generator g of G.

	1	2	3	\cdots	n
Positive	T_{1}	T_{2}	T_{3}		T_{n}
Negative	T_{n+1}	T_{n+2}	T_{n+3}		$T_{2 n}$
Don't Care	$T_{2 n+1}$	$T_{2 n+2}$	$T_{2 n+3}$		$T_{3 n}$

Figure 1: Public Key Components

Let $Y:=e(g, g)^{y}$ and $T_{k}:=g^{t_{k}}$ for each $k \in\{1, \ldots, 3 n\}$. The public key is $P K:=\left\langle e, g, Y, T_{1}, \ldots, T_{3 n}\right\rangle$. The master secret key is $M K:=\left\langle y, t_{1}, \ldots, t_{3 n}\right\rangle$.

Intuitively, the public key elements T_{i}, T_{n+i} and $T_{2 n+i}$ correspond to the three types of occurrences of i : positive, negative and don't care. This is illustrated in Figure 1. Because of the technique we use to randomize secret key components, we must provide a don't care element for each attribute i not appearing in the AND gate. This should become clear after we introduce KeyGen and Decrypt.

Encrypt. Given a message $M \in G_{1}$ and an AND gate $W=$ $\bigwedge_{i \in I} \underline{i}$, the Encrypt algorithm first selects a random $s \in \mathbb{Z}_{p}$ and sets $\tilde{C}:=M \cdot Y^{s}$ and $\hat{C}:=g^{s}$. For each $i \in I$, let C_{i} be T_{i}^{s} if $\underline{i}=i$ and T_{n+i}^{s} if $\underline{i}=\neg i$. For each $i \in \mathcal{N} \backslash I$, let C_{i} be $T_{2 n+i}^{s}$. The ciphertext is $C T:=\left\langle W, \tilde{C}, \hat{C},\left\{C_{i} \mid i \in \mathcal{N}\right\}\right\rangle$.

In total, Encrypt performs $n+1$ exponentiations in G, one exponentiation in G_{1} and one multiplication in G_{1}. The ciphertext contains $n+1$ elements of G, one element of G_{1} and the description of W.

KeyGen. Let S denote the input attribute set. Every $i \notin S$ is implictly considered a negative attribute. First, KeyGen selects random r_{i} from \mathbb{Z}_{p} for every $i \in \mathcal{N}$ and sets $r:=\sum_{i=1}^{n} r_{i}$. Let \hat{D} be g^{y-r}. For each $i \in \mathcal{N}$, let D_{i} be $g^{\frac{r_{i}}{t_{i}}}$ if $i \in S$; otherwise, let it be $g^{\frac{r_{i}}{t_{n+i}}}$. Finally, let F_{i} be $g^{\frac{r_{i}}{t_{2 n}+i}}$ for every $i \in \mathcal{N}$. The secret key is defined as $S K:=\left\langle\hat{D},\left\{\left\langle D_{i}, F_{i}\right\rangle \mid i \in \mathcal{N}\right\}\right\rangle$.

Note that we use the equation $r=\sum_{i=1}^{n} r_{i}$ to bind together the D_{i} elements. (Similarly for the F_{i} elements.) This is a key difference between our scheme and the BSW scheme, and it is crucial in our reduction proof. The F_{i} elements are provided because every r_{i} must be recovered in order to decrypt. If i is a don't care for a particular encryption operation (i.e., i does not occur in the AND gate W), then F_{i} will be used for decryption, instead of D_{i}.

Decrypt. Suppose the input ciphertext is of the form $C T=$ $\left\langle W, \tilde{C}, \hat{C},\left\{C_{i} \mid i \in \mathcal{N}\right\}\right\rangle$, where $W=\bigwedge_{i \in I} \underline{i}$. Also, let S denote the attribute set used to generate the input secret key $S K=\left\langle\hat{D},\left\{\left\langle D_{i}, F_{i}\right\rangle \mid i \in \mathcal{N}\right\}\right\rangle$. For each $i \in I$, Decrypt computes the pairing $e\left(C_{i}, D_{i}\right)$. If $\underline{i}=i$ and $i \in S$, then

$$
e\left(C_{i}, D_{i}\right)=e\left(g^{t_{i} \cdot s}, g^{\frac{r_{i}}{t_{i}}}\right)=e(g, g)^{r_{i} \cdot s}
$$

Similarly, if $\underline{i}=\neg i$ and $i \notin S$, then

$$
e\left(C_{i}, D_{i}\right)=e\left(g^{t_{n+i} \cdot s}, g^{\frac{r_{i}}{t_{n+i}}}\right)=e(g, g)^{r_{i} \cdot s} .
$$

For each $i \notin I$, Decrypt computes the pairing

$$
e\left(C_{i}, F_{i}\right)=e\left(g^{t_{2 n+i} \cdot s}, g^{\frac{r_{i}}{t_{2 n}}}\right)=e(g, g)^{r_{i} \cdot s} .
$$

Decrypt finishes as follows: $M=\frac{\tilde{C}}{Y^{s}}=\frac{\tilde{C}}{e(g, g)^{y \cdot s}}$, where
$e(g, g)^{y \cdot s}=e\left(g^{s}, g^{y-r}\right) \cdot e(g, g)^{r \cdot s}=e(\hat{C}, \hat{D}) \cdot \prod_{i=1}^{n} e(g, g)^{r_{i} \cdot s}$.
In total, Decrypt performs $n+1$ pairings and n multiplications in G_{1}. There are no exponentiations. If $|I|$ is small, most of the work is done on don't care elements. In Section 5, we show that attributes can be arranged in a tree-based hierarchy, thereby reducing the overhead associated with don't care elements. The linear factor n in both ciphertext size and encryption/decryption time drops to $\log (n)$.

3.1 Discussions

We remark that the fuzzy IBE scheme of [13] can also be used to encrypt to AND gates with negation, by adding a new attribute " $\neg i$ " for every original attribute i. Since the threshold value d is a system-wide parameter in the SW scheme, default attributes must be added in order to encrypt to AND gates with fewer than d inputs. These default attributes play a similar role as our don't care elements. In comparison, our scheme treats negation and don't care in a more streamlined fashion. Moreover, our scheme does not involve any secret sharing construction, therefore no exponentiations are necessary in our decryption. In contrast, SW decryption requires d exponentiations in order to perform polynomial interpolation. Finally, the optimization of Section 5 is based on the equation $r=\sum_{i=1}^{n} r_{i}$ for secret keys. It is not clear how to optimize the SW scheme in a similar way, because SW secret keys are constructed from threshold secret sharing.

3.2 CPA Security Proof

We now reduce CPA security of our scheme to the decisional bilinear Diffie-Hellman (DBDH) assumption. This implies that breaking CPA security under our scheme is at least as difficult as breaking the DBDH assumption. The latter is generally considered a hard problem.

Definition 3.1 (DBDH). Let $e: G \times G \rightarrow G_{1}$ be an efficiently computable bilinear map, where G has prime order p. The decisional bilinear Diffie-Hellman assumption is said to hold in G if no probabilistic polynomial-time adversary is able to distinguish the tuples $\left\langle g, g^{a}, g^{b}, g^{c}, e(g, g)^{a b c}\right\rangle$ and $\left\langle g, g^{a}, g^{b}, g^{c}, e(g, g)^{z}\right\rangle$ with non-negligible advantage, where $a, b, c, z \in \mathbb{Z}_{p}$ and generator $g \in G$ are chosen independently and uniformly at random.

THEOREM 3.2. If a probabilistic polynomial-time adversary wins the CP-ABE game with non-negligible advantage, then we can construct a simulator that distinguishes a DBDH tuple from a random tuple with non-negligible advantage.

Proof. Suppose adversary $A d v$ can win the CP-ABE game with advantage ϵ. We construct a simulator Sim that can distinguish a DBDH tuple from a random tuple with advantage $\frac{\epsilon}{2}$. Let $e: G \times G \rightarrow G_{1}$ be an efficiently computable bilinear map, where G has prime order p. First the DBDH challenger selects at random: $a, b, c, z \in \mathbb{Z}_{p}, \nu \in\{0,1\}$ and generator $g \in G$. It defines Z to be $e(g, g)^{a b c}$ if $\nu=0$ and $e(g, g)^{z}$ otherwise. The challenger then gives the simulator $\langle g, A, B, C, Z\rangle=\left\langle g, g^{a}, g^{b}, g^{c}, Z\right\rangle$. The simulator Sim now plays the role of challenger in the CP-ABE game.

	$i \in I$		
	$\underline{i}=i$	$\underline{i}=\neg i$	$i \notin I$
T_{i}	$g^{\alpha_{i}}$	$B^{\alpha_{i}}$	$B^{\alpha_{i}}$
T_{n+i}	$B^{\beta_{i}}$	$g^{\beta_{i}}$	$B^{\beta_{i}}$
$T_{2 n+i}$	$B^{\gamma_{i}}$	$B^{\gamma_{i}}$	$g^{\gamma_{i}}$

Figure 2: Public Key in CPA Simulation

Init. During the init phase, Sim receives the challenge gate $W=\bigwedge_{i \in I} \underline{i}$ from adversary $A d v$.

Setup. To provide a public key to $A d v, \operatorname{Sim}$ sets Y to be $e(A, B)=e(g, g)^{a b}$. For each $i \in \mathcal{N}$, Sim chooses random $\alpha_{i}, \beta_{i}, \gamma_{i} \in \mathbb{Z}_{p}$ and constructs T_{i}, T_{n+i}, and $T_{2 n+i}$ as in Figure 2.

Phase 1. Adv submits a set $S \subseteq \mathcal{N}$ in a secret key query, where $S \not \vDash W$. There must exist $j \in I$ such that: either $j \in S$ and $\underline{j}=\neg j$, or $j \notin S$ and $\underline{j}=j$. Sim chooses such j. Without loss of generality, assume that $j \notin S$ and $j=j$.

For every $i \in \mathcal{N}$, Sim chooses r_{i}^{\prime} at random from \mathbb{Z}_{p}. It then sets $r_{j}:=a b+r_{j}^{\prime} \cdot b$ and, for every $i \neq j$, it sets $r_{i}:=r_{i}^{\prime} \cdot b$. Finally, it sets $r:=\sum_{i=1}^{n} r_{i}=a b+\sum_{i=1}^{n} r_{i}^{\prime} \cdot b$. The \hat{D} component of the secret key can be computed as $\prod_{i=1}^{n} \frac{1}{B_{i}^{r_{i}^{\prime}}}=g^{-\sum_{i=1}^{n} r_{i}^{\prime} \cdot b}=g^{a b-r}$.

Recall that $j \in I \backslash S$ and $\underline{j}=j$, therefore the D_{j} component can be computed as:

$$
D_{j}:=A^{\frac{1}{\beta_{j}}} \cdot g^{\frac{r_{j}^{\prime}}{\beta_{j}}}=g^{\frac{a b+r_{j}^{\prime} \cdot b}{b \cdot \beta_{j}}}=g^{\frac{r_{j}}{b \cdot \beta_{j}}} .
$$

For $i \neq j$, we have a few cases.
(1) $i \in S$.
(a) $i \in I \wedge \underline{i}=i . D_{i}:=B^{\frac{r_{i}^{\prime}}{\alpha_{i}}}=g^{\frac{r_{i}}{\alpha_{i}}}$.
(b) $(i \in I \wedge \underline{i}=\neg i) \vee i \notin I . D_{i}:=g^{\frac{r_{i}^{\prime}}{\alpha_{i}}}=g^{\frac{r_{i}}{b \cdot \alpha_{i}}}$.
(2) $i \notin S$.
(a) $(i \in I \wedge \underline{i}=i) \vee i \notin I . D_{i}:=g^{\frac{r_{i}^{\prime}}{\beta_{i}}}=g^{\frac{r_{i}}{b \cdot \beta_{i}}}$.
(b) $i \in I \wedge \underline{i}=\neg i . D_{i}:=B^{\frac{r_{i}^{\prime}}{\beta_{i}}}=g^{\frac{r_{i}}{\beta_{i}}}$.

The F_{i} components are computed similarly. First,

$$
F_{j}:=A^{\frac{1}{\gamma_{j}}} \cdot g^{\frac{r_{j}^{\prime}}{\gamma_{j}}}=g^{\frac{a b+r_{j}^{\prime} \cdot b}{b \cdot \gamma_{j}}}=g^{\frac{r_{j}}{b \cdot \gamma_{j}}} .
$$

For $i \neq j$, we have two cases.
(a) $i \in I . \quad F_{i}:=g^{\frac{r_{i}^{\prime}}{\gamma_{i}}}=g^{\frac{r_{i}}{b \cdot \gamma_{i}}}$.
(b) $i \notin I . F_{i}:=B^{\frac{r_{i}^{\prime}}{\gamma_{i}}}=g^{\frac{r_{i}}{\gamma_{i}}}$.

Challenge. Adv submits two messages M_{0} and M_{1} of equal length. Sim chooses $\mu \in\{0,1\}$ at random and sets $\tilde{C}:=$ $M_{\mu} \cdot Z$. Sim gives $A d v$ the following ciphertext $C T$.

$$
\begin{array}{r}
W, \tilde{C}, C,\left\{C^{\alpha_{i}} \mid i \in I \wedge \underline{i}=i\right\} \\
\left\{C^{\beta_{i}} \mid i \in I \wedge \underline{i}=\neg i\right\},\left\{C^{\gamma_{i}} \mid i \notin I\right\}
\end{array}
$$

Phase 2. Same as Phase 1.
Guess. Adv produces a guess μ^{\prime} of μ. If $\mu^{\prime}=\mu$, Sim answers "DBDH" in the DBDH game. Otherwise, Sim answers
"random". If $Z=e(g, g)^{a b c}$, then $C T$ is a valid ciphertext, in which case the advantage of $A d v$ is ϵ. Hence,

$$
\begin{aligned}
& \mathbf{P}\left[\text { Sim } \rightarrow \text { "DBDH" } \mid Z=e(g, g)^{a b c}\right] \\
= & \mathbf{P}\left[\mu^{\prime}=\mu \mid Z=e(g, g)^{a b c}\right]=\frac{1}{2}+\epsilon .
\end{aligned}
$$

If $Z=e(g, g)^{z}$, then \tilde{C} is completely random from the view of $A d v$. Therefore $\mu^{\prime} \neq \mu$ holds with probability exactly $\frac{1}{2}$, regardless of the distribution on μ^{\prime}. Hence,

$$
\begin{aligned}
& \mathbf{P}\left[\operatorname{Sim} \rightarrow \text { "random" } \mid Z=e(g, g)^{z}\right] \\
& \quad=\mathbf{P}\left[\mu^{\prime} \neq \mu \mid Z=e(g, g)^{z}\right]=\frac{1}{2} .
\end{aligned}
$$

It follows that Sim's advantage in the DBDH game is $\frac{\epsilon}{2}$.

4. CHOSEN CIPHERTEXT SECURITY

In [4], Canetti, Halevi and Katz gave a generic construction for CCA secure public key encryption, using CPA secure IBE and strongly existentially unforgeable signatures. The main idea is to associate one-time signature keys $\left\langle K_{v}, K_{s}\right\rangle$ with each encryption operation. The verification key K_{v} is viewed as an identity in the IBE scheme to which the message M is encrypted. The resulting ciphertext is then signed using the signing key K_{s}. This signature is sent along with the ciphertext and must be verified before decryption.

As it turns out, the same general technique can be applied to ABE schemes. In [10], Goyal et al. gave a CPA secure KP-ABE scheme and outlined an CCA secure extension, in which the message M is encrypted using an additional attribute corresponding to the bit-string representation of K_{v}. This extension relies on a large universe construction [13] (where arbitrary bit-string attributes can be added after initial setup) and a delegation mechanism for secret keys.

In this section, we also apply the CHK technique to obtain a CCA secure extension, but we do so without a large universe construction. Instead, we modify our setup algorithm to explicitly handle special "attributes" corresponding to bits in K_{v}. This incurs an additional overhead that is linear in the length of K_{v}.

4.1 Strong Existential Unforgeability

A signature scheme consists of three algorithms: SigKeyGen, Sign and Verify. SigKeyGen is a probabilistic algorithm that outputs a signing-verification key pair $\left\langle K_{s}, K_{v}\right\rangle$. Sign is a probabilistic algorithm that produces a signature σ from K_{s} and a message M. Finally, Verify is a deterministic algorithm that maps $\left\langle M, \sigma, K_{v}\right\rangle$ to a bit. The signature σ is said to be valid for M and K_{v} if Verify returns 1.

A signature scheme is said to be strongly existentially unforgeable (SEU) under adaptive chosen message attacks if no probabilistic polynomial-time adversary has non-negligible success probability in the following game.

Setup. The challenger runs SigKeyGen to obtain $\left\langle K_{s}, K_{v}\right\rangle$ and gives the adversary K_{v}.

Signature Queries. The adversary submits message M. The challenger runs Sign with K_{s} and responds with signature σ. This may be repeated adaptively.

Output. The adversary outputs a pair $\left\langle M^{*}, \sigma^{*}\right\rangle$. If Verify returns 1 on $\left\langle M^{*}, \sigma^{*}, K_{v}\right\rangle$ and $\left\langle M^{*}, \sigma^{*}\right\rangle$ is not among the
pairs generated during the query phase, then the adversary wins the game.

4.2 CCA Secure CP-ABE Scheme

We now use strongly existentially unforgeable signatures to achieve CCA security. Assume that K_{v} is a bit string of length m, and we write $K_{v, i}$ for the i-th bit in K_{v}. Intuitively, we expand the set of attributes to include the m bits of K_{v}. These new attributes must be handled differently than normal attributes in \mathcal{N}, because every user must be able to decrypt regardless of the particular choice of K_{v}.

Let \mathcal{M} denote $\{1, \ldots, m\}$. The four algorithms of CPABE are as follows.

Setup. As before, Setup selects G, G_{1}, e, g and y, t_{1}, \ldots, $t_{3 n}$, and sets $Y:=e(g, g)^{y}$ and $T_{k}:=g^{t_{k}}$ for each $k \in$ $\{1, \ldots, 3 n\}$. In addition, Setup selects random $u_{1}, \ldots, u_{2 m}$ in \mathbb{Z}_{p} and defines $U_{k}:=g^{u_{k}}$ for each $k \in\{1, \ldots, 2 m\}$. The public key is $P K:=\left\langle e, g, Y, T_{1}, \ldots, T_{3 n}, U_{1}, \ldots, U_{2 m}\right\rangle$. The master secret key is $M K:=\left\langle y, t_{1}, \ldots, t_{3 n}, u_{1}, \ldots, u_{2 m}\right\rangle$.

Encrypt. To encrypt a message $M \in G_{1}$ to an AND gate $W=\bigwedge_{i \in I} \underline{i}$, a key pair $\left\langle K_{v}, K_{s}\right\rangle$ is first obtained by running SigKeyGen. Then Encrypt selects a random $s \in \mathbb{Z}_{p}$ and sets $\left\langle\tilde{C}, \hat{C}, C_{1}, \ldots, C_{n}\right\rangle$ as before. For each $i \in \mathcal{M}$, let E_{i} be U_{i}^{s} if $K_{v, i}=0$ and U_{m+i}^{s} otherwise.

Now Encrypt runs Sign with K_{s} to obtain a signature σ on $\left\langle W, \tilde{C}, \hat{C},\left\{C_{i} \mid i \in \mathcal{N}\right\},\left\{E_{i} \mid i \in \mathcal{M}\right\}\right\rangle$. The ciphertext is $C T:=\left\langle W, \tilde{C}, \hat{C},\left\{C_{i} \mid i \in \mathcal{N}\right\},\left\{E_{i} \mid i \in \mathcal{M}\right\}, \sigma, K_{v}\right\rangle$.

KeyGen. As before, KeyGen selects random $r_{i} \in \mathbb{Z}_{p}$ and define $\left\langle D_{i}, F_{i}\right\rangle$ for every $i \in \mathcal{N}$. In addition, it selects random w_{i} for every $i \in \mathcal{M}$. Define $r:=\sum_{i=1}^{n} r_{i}+\sum_{w_{i=1}}^{m} w_{i}$ and let \hat{D} be g^{y-r}. For every $i \in \mathcal{M}$, let G_{i}^{0} be $g^{\frac{w_{i}}{u_{i}}}$ and G_{i}^{1} be $g^{\frac{w_{i}}{u_{m+i}}}$. The secret key is $S K:=\left\langle\hat{D},\left\{\left\langle D_{i}, F_{i}\right\rangle \mid i \in\right.\right.$ $\left.\mathcal{N}\},\left\{\left\langle G_{i}^{0}, G_{i}^{1}\right\rangle \mid i \in \mathcal{M}\right\}\right\rangle$.

Decrypt. Given a ciphertext $\left\langle W, \tilde{C}, \hat{C},\left\{C_{i} \mid i \in \mathcal{N}\right\},\left\{E_{i} \mid i \in\right.\right.$ $\left.\mathcal{M}\}, \sigma, K_{v}\right\rangle$, Decrypt first runs the Verify algorithm on σ, K_{v} and $\left\langle W, \tilde{C}, \hat{C},\left\{C_{i} \mid i \in \mathcal{N}\right\},\left\{E_{i} \mid i \in \mathcal{M}\right\}\right\rangle$. If σ is valid, it proceeds with decryption; otherwise it returns default \perp.

Suppose the secret key is defined over an attribute set S and is of the form $\left\langle\hat{D},\left\{\left\langle D_{i}, F_{i}\right\rangle \mid i \in \mathcal{N}\right\},\left\{\left\langle G_{i}^{0}, G_{i}^{1}\right\rangle \mid i \in \mathcal{M}\right\}\right\rangle$. As before, Decrypt computes the pairing $e\left(C_{i}, D_{i}\right)$ for each $i \in I$ and the pairing $e\left(C_{i}, F_{i}\right)$ for each $i \in \mathcal{N} \backslash I$. This recovers $e(g, g)^{r_{i} \cdot s}$ for every $i \in \mathcal{N}$, provided $S \models W$.

For each $i \in \mathcal{M}$, Decrypt computes $e\left(E_{i}, G_{i}^{0}\right)$ if $K_{v, i}=0$:

$$
e\left(E_{i}, G_{i}^{0}\right)=e\left(g^{u_{i} \cdot s}, g^{\frac{w_{i}}{u_{i}}}\right)=e(g, g)^{w_{i} \cdot s} .
$$

Similarly, if $K_{v, i}=1$, it computes $e(g, g)^{w_{i} \cdot s}$ as $e\left(E_{i}, G_{i}^{1}\right)$. Then M is recovered as before: $M=\frac{\tilde{C}}{Y^{s}}=\frac{\tilde{C}}{e(\hat{C}, \hat{D}) \cdot e(g, g)^{r \cdot s}}$, where

$$
e(g, g)^{r \cdot s}=\prod_{i=1}^{n} e(g, g)^{r_{i} \cdot s} \cdot \prod_{i=1}^{m} e(g, g)^{w_{i} \cdot s} .
$$

4.3 CCA Security Proof

CCA security for $\mathrm{CP}-\mathrm{ABE}$ is defined as the statement that all probabilistic polynomial-time adversaries have at most negligible advantage in the following game.
Init and Setup Same as CPA security game.

Phase 1 The adversary makes, adaptively, any combination of secret key and decryption queries.
Secret Key Query The adversary submits a set S of attributes. The challenger returns a secret key $S K$ for S, provided $S \not \vDash W$.
Decryption Query The adversary submits a ciphertext $C T$ encrypted to W. The adversary loses the game if $C T$ is not a valid ciphertext; otherwise, the challenger returns the plaintext M.
Challenge Same as CPA security game.
Phase 2 Same as Phase 1, except that $C T^{*}$ may not be submitted for decryption.
Guess The adversary outputs a guess μ^{\prime} of μ.
We reduce CCA security of our scheme to the SEU assumption on signatures and the DBDH assumption. As with CPA, this implies breaking CCA security is at least as hard as breaking the SEU or DBDH assumptions.

Theorem 4.1. Assume the signature scheme is strongly existentially unforgeable. If a probabilistic polynomial-time adversary wins the CCA security game with non-negligible advantage, then we can construct a simulator that distinguishes, with non-negligible advantage, a DBDH tuple from a random tuple.

Proof. Suppose adversary $A d v$ can win the CCA game with non-negligible advantage ϵ. We construct a simulator Sim as follows.

First, Sim receives $\langle g, A, B, C, Z\rangle$ from the DBDH challenger and runs SigKeyGen to obtain $\left\langle K_{s}^{*}, K_{v}^{*}\right\rangle$. Then Sim plays the role of challenger in the CCA game.

Init. Sim receives the challenge gate $W=\bigwedge_{i \in I} \underline{i}$ from $A d v$.
Setup. To provide a public key $P K$ to $A d v, \operatorname{Sim}$ sets $Y=$ $e(g, g)^{a b}=e(A, B)$. For each $i \in \mathcal{N}$, Sim chooses random $\alpha_{i}, \beta_{i}, \gamma_{i} \in \mathbb{Z}_{p}$ and defines $t_{i}, t_{n+i}, t_{2 n+i}$ as in the CPA proof. For each $i \in \mathcal{M}$, Sim chooses random $\eta_{i}, \xi_{i} \in \mathbb{Z}_{p}$. There are two cases.
(1) $K_{v, i}^{*}=0$. Then $u_{i}:=\eta_{i}$ and $u_{m+i}:=b \cdot \xi_{i}$.
(1) $K_{v, i}^{*}=1$. Then $u_{i}:=b \cdot \eta_{i}$ and $u_{m+i}:=\xi_{i}$.

Recall that every public key component T_{i} can be computed by raising either g or B to the appropriate exponent. The same holds for every U_{i}.

Phase 1: Secret Key Query. Adv submits $S \subseteq \mathcal{N}$ such that $S \not \vDash W$. As in the CPA proof, choose a witness j. Without loss of generality, assume that $j \notin S$ and $\underline{j}=j$.

For every $i \in \mathcal{N}$, Sim chooses $r_{i}^{\prime} \in \mathbb{Z}_{p}$ at random and define r_{i} as in the CPA proof. In addition, Sim chooses $w_{i}^{\prime} \in$ \mathbb{Z}_{p} at random and sets $w_{i}:=w_{i}^{\prime} \cdot b$ for every $i \in \mathcal{M}$. Finally, let $r:=\sum_{i=1}^{n} r_{i}+\sum_{i=1}^{m} w_{i}=a b+\sum_{i=1}^{n} r_{i}^{\prime} \cdot b+\sum_{i=1}^{m} w_{i}^{\prime} \cdot b$.

The \hat{D} component of $S K$ is set to be

$$
\prod_{i=1}^{n} \frac{1}{B^{r_{i}^{\prime}}} \cdot \prod_{i=1}^{m} \frac{1}{B^{w_{i}^{\prime}}}=g^{-\sum_{i=1}^{n} r_{i}^{\prime} \cdot b-\sum_{i=1}^{m} w_{i}^{\prime} \cdot b}=g^{a b-r}
$$

For $i \in \mathcal{N}$, the D_{i} and F_{i} components are computed exactly as in the CPA proof. For $i \in \mathcal{M}$, we have two cases.

- $K_{v, i}^{*}=0 . G_{i}^{0}:=B^{\frac{w_{i}^{\prime}}{\eta_{i}}}=g^{\frac{w_{i}}{\eta_{i}}}$ and $G_{i}^{1}:=g^{\frac{w_{i}^{\prime}}{\xi_{i}}}=g^{\frac{w_{i}}{b \cdot \xi_{i}}}$.
- $K_{v, i}^{*}=1 . G_{i}^{0}:=g^{\frac{w_{i}^{\prime}}{\eta_{i}}}=g^{\frac{w_{i}}{b \cdot \eta_{i}}}$ and $G_{i}^{1}:=B^{\frac{w_{i}^{\prime}}{\xi_{i}}}=g^{\frac{w_{i}}{\xi_{i}}}$.

Phase 1: Decryption Query. Adv submits a ciphertext $\left\langle T, \tilde{C}, \hat{C},\left\{C_{i} \mid i \in \mathcal{N}\right\},\left\{E_{i} \mid i \in \mathcal{M}\right\}, \sigma, K_{v}\right\rangle$. Sim verifies the signature σ using K_{v}. If σ is invalid, Sim aborts the DBDH simulation and we call this an abort event. Otherwise, Sim checks if $K_{v}=K_{v}^{*}$. If so, we call it a forge event and Sim gives a random answer in the DBDH simulation (either "DBDH" or "random"). If $K_{v} \neq K_{v}^{*}$, then Sim fixes $j \in \mathcal{M}$ such that $K_{v, j} \neq K_{v, j}^{*}$. Without loss of generality, assume $K_{v, j}=1$ and $K_{v, j}^{*}=0$.

Let S be the set of attributes defined as follows: for each $i \in \mathcal{N}$, we place $i \in S$ if and only if $i \in I$ and $\underline{i}=i$. Note that S satisfies W. Now Sim produces a partial secret key for S, which contains enough components to decrypt $C T$.

For every $i \in \mathcal{N}$, Sim chooses r_{i}^{\prime} at random from \mathbb{Z}_{p} and sets $r_{i}:=r_{i}^{\prime} \cdot b$. For every $i \in \mathcal{M}$, Sim also chooses w_{i}^{\prime} at random from \mathbb{Z}_{p}. For $i \neq j$, set $w_{i}:=w_{i}^{\prime} \cdot b$. Set $w_{j}:=$ $a b+w_{j}^{\prime} \cdot b$. Finally, let $r:=\sum_{i=1}^{n} r_{i}+\sum_{i=1}^{m} w_{i}=a b+$ $\sum_{i=1}^{n} r_{i}^{\prime} \cdot b+\sum_{i=1}^{m} w_{i}^{\prime} \cdot b$.

Notice, the $a b$ exponent is "hidden" at the j-th bit of the signature verification key (where K_{v} and K_{v}^{*} differ). In contrast, to answer the secret key query, $a b$ is hidden at an attribute that witnesses the mismatch between S and W.

As in the secret key query, \hat{D} is set to be:

$$
\prod_{i=1}^{n} \frac{1}{B^{r_{i}^{\prime}}} \cdot \prod_{i=1}^{m} \frac{1}{B^{w_{i}^{\prime}}}=g^{-\sum_{i=1}^{n} r_{i}^{\prime} \cdot b-\sum_{i=1}^{m} w_{i}^{\prime} \cdot b}=g^{a b-r}
$$

For each $i \in \mathcal{N}, D_{i}$ is computed as follows.

- $i \in I \wedge \underline{i}=i . D_{i}:=B^{\frac{r_{i}^{\prime}}{\alpha_{i}}}=g^{\frac{r_{i}}{\alpha_{i}}}$.
- $i \in I \wedge \underline{i}=\neg i . D_{i}:=B^{\frac{r_{i}^{\prime}}{\beta_{i}}}=g^{\frac{r_{i}}{\beta_{i}}}$.
- $i \notin I . D_{i}:=g^{\frac{r_{i}^{\prime}}{\beta_{i}}}=g^{\frac{r_{i}}{b \cdot \beta_{i}}}$.

For the F_{i} components, we have two cases.

- $i \in I . F_{i}:=g^{\frac{r_{i}^{\prime}}{\gamma_{i}}}=g^{\frac{r_{i}}{b \gamma_{i}}}$.
- $i \notin I . F_{i}:=B^{\frac{r_{i}^{\prime}}{\gamma_{i}}}=g^{\frac{r_{i}}{\gamma_{i}}}$.

For each $i \in \mathcal{M}$ with $i \neq j$, we have two cases.

- $K_{v, i}^{*}=0 . G_{i}^{0}:=B^{\frac{w_{i}^{\prime}}{\eta_{i}}}=g^{\frac{w_{i}}{\eta_{i}}}$ and $G_{i}^{1}:=g^{\frac{w_{i}^{\prime}}{\xi_{i}}}=g^{\frac{w_{i}}{b \cdot \xi_{i}}}$.
- $K_{v, i}^{*}=1 . G_{i}^{0}:=g^{\frac{w_{i}^{\prime}}{\eta_{i}}}=g^{\frac{w_{i}}{b_{i}}}$ and $G_{i}^{1}:=B^{\frac{w_{i}^{\prime}}{\xi_{i}}}=g^{\frac{w_{i}}{\xi_{i}}}$.

Now consider j. By assumption we have $K_{v, j}^{*}=0$, therefore $G_{j}^{0}=g^{\frac{w_{j}}{\eta_{j}}}=g^{\frac{a b+w_{j}^{\prime} \cdot b}{\eta_{j}}}$. This is the only component in the secret key that Sim cannot produce, because it contains the exponent $a b$. However, since $K_{v, j}=1, G_{j}^{0}$ is not necessary for the decryption of $C T$. Sim can in fact produce G_{j}^{1} as $A^{\frac{1}{\xi_{j}}} \cdot g^{\frac{w_{j}^{\prime}}{\xi_{j}}}=g^{\frac{a b+w_{j}^{\prime} \cdot b}{b \cdot \xi_{j}}}=g^{\frac{w_{j}}{b \cdot \xi_{j}}}$. Finally, Sim decrypts using this partial secret key and gives M to $A d v$.

Challenge. Adv submits two messages M_{0} and M_{1}. Sim chooses $\mu \in\{0,1\}$ at random and sets $\tilde{C}:=M_{\mu} \cdot Z$. Then Sim signs the following using $K_{s}: T, \tilde{C}, C,\left\{C^{\alpha_{i}} \mid i \in I, \underline{i}=i\right\}$, $\left\{C^{\beta_{i}} \mid i \in I, \underline{i}=\neg i\right\},\left\{C^{\gamma_{i}} \mid i \in \mathcal{N} \backslash I\right\},\left\{C^{\eta_{i}} \mid i \in \mathcal{M}, \bar{K}_{v, i}^{*}=\right.$ $0\},\left\{C^{\xi_{i}} \mid i \in \mathcal{M}, K_{v, i}^{*}=1\right\}$. These are given to the adversary, along with the signature σ and the verification key K_{v}^{*}.

Phase 2. Same as Phase 1.
Guess. Adv produces a guess μ^{\prime} of μ. If $\mu^{\prime}=\mu$, Sim answers "DBDH" in the DBDH simulation. Otherwise, Sim answers "random".

First, we observe that abort occurs only if $A d v$ loses in the CCA game by submitting an invalid ciphertext. If $Z=$ $e(g, g)^{a b c}$, Adv receives a valid ciphertext during the challenge phase. If in addition forge does not occur, Sim has the same advantage as $A d v$.

$$
\begin{aligned}
& \mathbf{P}\left[\text { Sim } \rightarrow \text { "DBDH" } \mid Z=e(g, g)^{a b c}\right] \\
& =\mathbf{P}\left[\mu^{\prime}=\mu \mid Z=e(g, g)^{a b c}\right]-\mathbf{P}\left[\text { forge, } \mu^{\prime}=\mu \mid Z=e(g, g)^{a b c}\right] \\
& \quad+\mathbf{P}\left[\text { forge, } \operatorname{Sim} \rightarrow \text { "DBDH" } \mid Z=e(g, g)^{a b c}\right] \\
& \geq \mathbf{P}\left[\mu^{\prime}=\mu \mid Z=e(g, g)^{a b c}\right]-\mathbf{P}\left[\text { forge } \mid Z=e(g, g)^{a b c}\right] \\
& =\frac{1}{2}+\epsilon-\mathbf{P}\left[\text { forge } \mid Z=e(g, g)^{a b c}\right]
\end{aligned}
$$

If $Z=e(g, g)^{z}$, then \tilde{C} is completely random from the view of the adversary. In that case, $\mu^{\prime} \neq \mu$ holds with probability exactly $\frac{1}{2}$.

$$
\begin{aligned}
& \mathbf{P}\left[\text { Sim } \rightarrow \text { "random" } \mid Z=e(g, g)^{z}\right] \\
& =\mathbf{P}\left[\mu^{\prime} \neq \mu \mid Z=e(g, g)^{z}\right]-\mathbf{P}\left[\text { forge }, \mu^{\prime} \neq \mu \mid Z=e(g, g)^{z}\right] \\
& \quad+\mathbf{P}\left[\text { forge }, \operatorname{Sim} \rightarrow \text { "random" } \mid Z=e(g, g)^{z}\right] \\
& \geq \mathbf{P}\left[\mu^{\prime} \neq \mu \mid Z=e(g, g)^{z}\right]-\mathbf{P}\left[\text { forge } \mid Z=e(g, g)^{z}\right] \\
& = \\
& \frac{1}{2}-\mathbf{P}\left[\text { forge } \mid Z=e(g, g)^{z}\right]
\end{aligned}
$$

Putting the two pieces together, we know that Sim's advantage is at least $\frac{\epsilon}{2}-\mathbf{P}[$ forge $]$. It remains to prove that \mathbf{P} [forge] is negligible. To do so, we construct Sim' that can win the SEU game with probability at least \mathbf{P} [forge].

Instead of running SigKeyGen to obtain $\left\langle K_{v}^{*}, K^{*} s\right\rangle$, Sim $^{\prime}$ obtains K_{v}^{*} from the SEU challenger. Then Sim ${ }^{\prime}$ proceeds as Sim. During the challenge phase of the CCA game, Sim ${ }^{\prime}$ obtains the signature σ from the SEU challenger (whereas Sim obtains σ by running Sign). If forge occurs, Sim $^{\prime}$ submits the forgery to the SEU challenger and wins. Note that Sim' makes at most one signature query. Thus Sim $^{\prime}$ wins the SEU game with probability at least $\mathbf{P}[f \mathrm{forge}]$. By the SEU assumption, \mathbf{P} [forge] must be negligible.

5. HIERARCHICAL ATTRIBUTES

Recall the basic structure of our CP-ABE schemes. During KeyGen, we associate a random exponent r_{i} to each $i \in \mathcal{N}$. These exponents are "tied together" using the group element $g^{y-r}=g^{y-\sum_{i=1}^{n} r_{i}}$, where y is a system master secret. During decryption, the proper matching of attributes allows us to recover $e(g, g)^{r_{i} \cdot s}$ for every attribute i, including those that do not appear in the AND gate $W=\bigwedge_{i \in I} \underline{i}$. This allows us to recover $e(g, g)^{r \cdot s}$ and subsequently $e(g, g)^{y \cdot s}$.

Clearly, the complexity of encryption/decryption is linear in n, because we must handle every r_{i} in order to recover r. The same holds for ciphertext size. This is unsatisfactory for small AND gates: if the number of literals appearing in W is small, then most of our work involves don't care elements.

In this section, we show that don't care elements can be handled more efficiently. The main idea is to arrange attributes into a logical hierarchy, such that a single don't care can replace all of those represented in a subtree. This is illustrated in Figure 3, where the system in question has $n=8$ attributes.

In this example, we augment the public key with randomly chosen group elements $T_{[1 . .2]}, \ldots, T_{[7 . .8]}, T_{[1 . .4]}, T_{[5 . .8]}, T_{[1 . .8]}$. If, for example, the encryptor cares only about attributes 1 and 4, then he provides three don't care elements in the

Figure 3: Public Key Elements for Attribute Tree.
ciphertext: $T_{2 n+2}^{s}, T_{2 n+3}^{s}$ and $T_{[5 . .8]}^{s}$. In contrast, he would have to provide six don't care elements under the original scheme: $T_{2 n+2}^{s}, T_{2 n+3}^{s}, T_{2 n+5}^{s}, T_{2 n+6}^{s}, T_{2 n+7}^{s}, T_{2 n+8}^{s}$.

Essentially, the hierarchy allows us to cover the complement of I with fewer group elements. This reduces not only the ciphertext size, but also the number of exponentiations in encryption and the number of pairings in decryption. For small AND gates, these costs are brought down from n to $\log (n)$. For large AND gates, the costs will be dominated by operations on attributes that actually appear in the AND gate. In the worst case, every other attribute is included in the AND gate, requiring $\frac{|I|}{2}$ matching don't care elements.

The price we pay for this optimization is an increase of roughly n group elements in public/secret key size and an increase of roughly n exponentiations in Setup and KeyGen. Given the storage capacity of modern devices, the larger key size is typically not an issue. The added computations are also not prohibitive, because both Setup and KeyGen are one-time operations whose costs are amortized over the system lifetime.

We now describe in detail the optimized scheme.
Setup. Setup defines a binary tree with one leaf for each attribute $i \in \mathcal{N}$. Assume that attributes are assigned to leaves in ascending order from left to right. Each non-leaf x is associated with the integer range $[i . . j]$, where i is the leftmost leaf descended from x and j is the rightmost leaf descended from x. We call this structure the attribute tree.

In addition to the public key elements described in Section 3, Setup generates one public key element for every non-leaf node in the attribute tree. ${ }^{3}$ This is done as follows: for each internal node $x=[i . . j]$, Setup chooses $t_{x} \in \mathbb{Z}_{p}$ at random and defines $T_{x}:=g^{t_{x}}$.

Since there are roughly n internal nodes in the attribute tree, the number of group elements in the public key grows from $3 n+1$ to roughly $4 n$, and the same is true for the number of exponentiations performed by Setup.

KeyGen. In addition to the secret key elements described in Section 3, KeyGen generates one secret key element for every non-leaf node in the attribute tree. Specifically, for each non-leaf node $x=[i . . j]$, KeyGen defines $r_{x}:=\sum_{k=i}^{j} r_{k}$ and $F_{x}:=g^{\frac{r_{x}}{t_{x}}}$. (Recall that KeyGen chooses random exponent r_{i} for every attribute i.)

[^4]The number of group elements in the secret key grows from $2 n+1$ to roughly $3 n$, and the same is true for the number of exponentiations performed by KeyGen.

Encrypt. Given message M and AND gate $W=\bigwedge_{i \in I} \underline{i}$, Encrypt selects a random $s \in \mathbb{Z}_{p}$ and defines \tilde{C} and \hat{C} as in Section 3. To construct the C_{i} components, Encrypt runs the following recursive procedure (called Traverse) on the root of the access tree. For simplicity of presentation, assume that n is a power of 2 .

Traverse returns either 1 or 0 on a given internal node in the access tree. Let the current node be x_{0} and let x_{1} and x_{2} denote its children. We have two cases.

- x_{1} and x_{2} are leaves. Let i and $i+1$ be the attributes associate with x_{1} and x_{2}, respectively.
$-i \in I$ or $i+1 \in I$. Define C_{i} and C_{i+1} as in Section 3 and include them in the ciphertext. Return 1.
- Neither i nor $i+1$ is in I. Return 0 .
- x_{1} and x_{2} are internal nodes. Run Traverse on both.
- If Traverse returns 1 on both x_{1} and x_{2}, return 1 .
- If Traverse returns 0 on both x_{1} and x_{2}, return 0 .
- Otherwise, assume without loss of generality that Traverse returns 0 on x_{1} and 1 on x_{2}. Define $C_{x_{1}}:=T_{x_{1}}^{S}$ and include it in the ciphertext. Return 1.
Finally, Encrypt adds to the ciphertext the necessary indexing information, linking each C_{x} to the node x.

Decrypt. Let x be a node such that C_{x} appears in the ciphertext.

- If x is a leaf representing i and $i \in I$, then Decrypt pairs C_{x} with D_{i} to obtain $e(g, g)^{r_{x} \cdot s}$.
- Otherwise, Decrypt pairs C_{x} with F_{x} to get $e(g, g)^{r_{x} \cdot s}$. Then Decrypt computes $e(g, g)^{r \cdot s}$ as $\prod_{x} e(g, g)^{r_{x} \cdot s}$. This is correct because r_{x} is the sum of all r_{i} 's in the subtree below x in the attribute tree.

5.1 Discussions

We remark that binary trees are chosen simply for notational convenience. Depending on the particular application, attributes can be arranged into semantic categories (cf. the selective data sharing example of Section 7). In general, there is a trade-off between public/secret key size and ciphertext size: if we include more don't care elements in the system, corresponding to different subsets of \mathcal{N}, we are more likely to be able to represent the whole set \mathcal{N} with fewer group elements. However, encryption time will increase due to the complexity of finding a minimal covering. This tradeoff may be valuable in low-bandwidth applications.

We also believe that a similar optimization can be obtained for our CCA scheme. Details are left as future work.

5.2 CPA Security Proof

We modify the CPA proof of Section 3 to accommodate the new changes. The following portions of the proof are affected by the optimization.

Setup. For $i \in \mathcal{N}$, Sim calculates the elements T_{i}, T_{n+1} and $T_{2 n+i}$ as in Section 3. Then it calculates T_{x} for non-leaf node $x=[i . . j]$ in the attribute tree. First it chooses δ_{x} at random from \mathbb{Z}_{p}. If there exists $i^{\prime} \in[i . . j]$ such that i^{\prime} appears in the challenge gate W, then Setup defines $t_{x}:=b \cdot \delta_{x}$. Otherwise,
$t_{x}:=\delta_{x}$. Then T_{x} is computed by raising either B or g to δ_{x}.

Phase 1. Adv submits an attribute set $S \subseteq \mathcal{N}$ such that $S \not \vDash W$. As in Section 3, Sim choose an appropriate j and defines $r_{i}^{\prime}, r_{i}, \hat{D}, D_{i}$ and F_{i} for every $i \in \mathcal{N}$.

Sim must also define F_{x} for each non-leaf node $x=\left[i . . i^{\prime}\right]$ in the attribute tree. We have three cases.

- No $k \in\left[i . . i^{\prime}\right]$ appears W. In this case, $T_{x}=g^{\delta_{x}}$ and $F_{x}=g^{\frac{r_{x}}{\delta_{x}}}$, where $r_{x}=\sum_{k=i}^{i^{\prime}} r_{k}$. Since j appears in W, we know that $j \notin\left[i . . i^{\prime}\right]$. Therefore $r_{k}=b \cdot r_{k}^{\prime}$ for every $k \in\left[i . . i^{\prime}\right]$ and Sim computes F_{x} as $\left(\prod_{k=i}^{i^{\prime}} B^{r_{k}^{\prime}}\right)^{\frac{1}{\delta_{x}}}$.
- Some $k \in\left[i . . i^{\prime}\right]$ appears W but $j \notin\left[i . . i^{\prime}\right]$. In this case, $T_{x}=g^{b \cdot \delta_{x}}$ and $F_{x}=g^{\frac{r_{x}}{b \cdot \delta_{x}}}$, where $r_{x}=\sum_{k=i}^{i^{\prime}} r_{k}$. Since $j \notin\left[i . . i^{\prime}\right]$, we know that $r_{k}=b \cdot r_{k}^{\prime}$ for every $k \in\left[i . . i^{\prime}\right]$. Sim computes F_{x} as $\left(\prod_{k=i}^{i^{\prime}} g^{r_{k}^{\prime}}\right)^{\frac{1}{\delta_{x}}}$.
- $j \in\left[i . . i^{\prime}\right]$. Since j appears in W, we know that $T_{x}=$ $g^{b \cdot \delta_{x}}$ and $F_{x}=g^{\frac{r_{x}}{b \cdot \delta x}}$, where $r_{x}=\sum_{k=i}^{i^{\prime}} r_{k}$. Since $j \in\left[i . . i^{\prime}\right]$, we have $r_{x}=a b+\sum_{k=i}^{i^{\prime}} b \cdot r_{k}^{\prime}$. Sim computes F_{x} as $\left(A \cdot \prod_{k=i}^{i^{\prime}} g^{r_{k}^{\prime}}\right)^{\frac{1}{\delta_{x}}}$.

Challenge. Sim chooses random bit μ and defines \tilde{C} as in Section 3. Then it runs Traverse on the attribute tree. Let the current node be x_{0} and let x_{1} and x_{2} denote its children. We have three cases.

- x_{1} and x_{2} are leaves, and C_{i} and C_{i+1} are included in the ciphertext. Sim computes C_{i} as in Section 3. More precisely, there are three cases.

$$
\begin{aligned}
& -i \in I \wedge \underline{i}=i . \text { Compute } C_{i} \text { as } C^{\alpha_{i}} . \\
& -i \in I \wedge \underline{i}=\neg i . \text { Compute } C_{i} \text { as } C^{\beta_{i}} . \\
& -i \notin I \text { Compute } C_{i} \text { as } C^{\gamma_{i}} .
\end{aligned}
$$

Similarly for C_{i+1}.

- x_{1} and x_{2} are internal nodes, and $C_{x_{1}}$ is included in the ciphertext. Using the definition of Traverse, it is easy to check that no attribute i in the subtree below x_{1} appears in W. Sim sets $C_{x_{1}}:=C^{\delta_{x_{1}}}$.
- x_{1} and x_{2} are internal nodes, and $C_{x_{2}}$ is included in the ciphertext. Similar to the previous case.
The rest of the proof proceeds as in Section 3.

6. THRESHOLD ACCESS TREES

Ideally, we would like the ability to encrypt to arbitrary threshold access trees similar to those in [1]. Specifically, consider the following definition of access trees ${ }^{4}$: each internal node in an access tree corresponds to a threshold gate, while all leaf nodes are AND gates. The basic scheme of Section 3 can be extended naturally as follows. To encrypt, the secret exponent s used to mask the message M (in the ciphertext component $\tilde{C}=M \cdot Y^{s}$) is placed at the root node of the access tree. Based on the threshold gate at the root, shares of s are constructed and placed on the root's children. This is repeated until all nodes in the tree are filled, including the leaves. Then the shares at the leaves are used to produce ciphertext components as in the basic scheme. We illustrate this procedure with an example.

Consider the access tree in Figure 4 and a CP-ABE instance with five attributes $\{1, \ldots, 5\}$. The threshold gate at

[^5]

Figure 4: Example of Threshold Access Tree.
the root is 2 -of- 3 , so we select a random degree- 1 polynomial p such that $p(0)=s$. For $i=1,2,3$, we set $s_{i}:=p(i)$. Then s can be recovered given any two of the values s_{1}, s_{2} and s_{3}. At the leaf level, we treat the AND gates as we do in the basic scheme of Section 3. Take, for instance, the leftmost AND gate. The ciphertext includes the following group elements: $\left\langle g^{s_{1}}, T_{1}^{s_{1}}, T_{2}^{s_{1}}, T_{3}^{s_{1}}, T_{2 \cdot 5+4}^{s_{1}}, T_{2 \cdot 5+5}^{s_{1}}\right\rangle$. This allows any user with attributes $1,2,3$ to recover $e(g, g)^{r \cdot s_{1}}=\prod_{i=1}^{5} e(g, g)^{r_{i} \cdot s_{1}}$. The other AND gates are represented similarly in the ciphertext, using the tuples $\left\langle g^{s_{2}}, T_{2.5+1}^{s_{2}}, T_{2}^{s_{2}}, T_{3}^{s_{2}}, T_{4}^{s_{2}}, T_{2 \cdot 5+5}^{s_{2}}\right\rangle$ and $\left\langle g^{s_{3}}, T_{2.5+1}^{s_{3}}, T_{2.5+2}^{s_{3}}, T_{3}^{s_{3}}, T_{4}^{s_{3}}, T_{5}^{s_{3}}\right\rangle$. Thus, any user satisfying at least two of the three AND gates can decrypt by recovering $e(g, g)^{r \cdot s}$.

Unfortunately, this extended scheme is insecure. The key point is that s_{1}, s_{2}, and s_{3} are not independent random values. Consider a user with attributes $\neg 1,2,3,4, \neg 5$. Only the middle AND gate is satisfied by this attribute set, and hence decryption should not be allowed. However, notice that 5 is a don't care in the first two AND gates. Therefore the user can recover $e(g, g)^{r_{5} \cdot s_{1}}$ and $e(g, g)^{r_{5} \cdot s_{2}}$. Since s_{1} and s_{2} are two distinct points on the same degree-1 polynomial, $e(g, g)^{r_{5} \cdot s_{3}}$ can be recovered using interpolation. Moreover, the user has attributes 3 and 4, and attributes 1 and 2 are don't care's in the last AND gate, therefore he can obtain (legitimately) $e(g, g)^{r_{i} \cdot s_{3}}$ for $i=1,2,3,4$. Combining these with $e(g, g)^{r_{5} \cdot s_{3}}$ from interpolation, the user can now recover $e(g, g)^{r \cdot s_{3}}$, which in turns allows him to decrypt in violation of the access policy.

To avoid such attacks, it seems necessary to have independent random exponents s_{1}, s_{2}, and s_{3}, so the attacker cannot take advantage of don't care's and polynomial interpolation. For example, one can perform the secret sharing procedure on the message M to obtain shares M_{1}, M_{2} and M_{3}, which are then encrypted to the three AND gates independently. This proposal, however, suffers from collusion attacks: if one user can recover M_{1} and another can recover M_{2}, then they can collude to recover M.

We note that collusion attacks of this type pose no threat when we restrict to disjunctive normal form (DNF) policies, although a formal security proof remains elusive. The difficulty seems to be that, in the selective ID security game (cf. Section 2), the adversary must commit to a challenge access structure before the game starts. If multiple AND gates are used, the simulator in the reduction proof must choose one of the AND gates and use it to obtain the public key. The chosen AND gate is "good" if it corresponds to a non-negligible jump in success probability in the subsequent hybrid argument. It is unclear how the simulator can predict which AND gate is good before the game starts.

A possible solution is to consider adaptive ID security,
which strengthens selective ID security by allowing the adversary to choose a challenge access structure in the Challenge phase. In that setting, we are able to prove the security of multiple encryptions [7]. Thus, we leave as important future work to find adaptive ID security proofs for CP-ABE.

7. APPLICATIONS

As observed in [12], ABE has much potential in providing data security in distributed environments, because it allows complex access policies to be specified and enforced without online interaction with trusted and/or centralized servers. In this section, we outline two applications: selective data sharing and group key management. Many other application scenarios have been mentioned, including audit log and targeted broadcast [10], distributed file systems for medical data and online social networks [12]. The areas of cryptographic file systems and content distribution are also of interest.

7.1 Selective Data Sharing

Consider a scenario in which a large corporation installs a standing committee to investigate any reports of improper conducts of employees. Members of this committee are drawn from different departments and locations, and are given three different clearance levels. Using a hierarchical CP-ABE instance similar to that in Section 5, these attributes can be categorized as in Figure 5.

Figure 5: Attributes By Category.
Suppose there is an investigation regarding an accounting officer in New York, and company policy says that no committee member from the accounting department in New York may take part in this investigation. To encrypt a memo regarding this investigation, the content of the memo is first encrypted with a symmetric data key. The data key is then encrypted separately with the AND gates in Figures 6 and 7. (We write "Att:*" to indicate that we don't care about the attribute "Att".) The two ciphertexts are placed in a header that accompanies the encrypted memo. Anyone not belonging to an accounting department can decrypt the first ciphertext, and anyone not working in New York can decrypt the second. This enforces the desire access policy.

Figure 6: Excluding "Accounting".

7.2 Group Key Management

CP-ABE is well-suited for the problem of Group Key Management (GKM) in the context of secure multicast. This

Figure 7: Excluding "New York".
problem requires a Group Controller (GC) to maintain a shared data encryption key, which is used to encrypt multicast traffic and is known only to current group members (GMs). New GMs are given this data key through a secure unicast channel at the time of joining. The main challenge is membership revocation: excluding a subset of the GMs from future communications. This action requires the distribution of a new data key to all remaining GMs, so that revoked members no long have access to future messages.

It has been noted that CP-ABE can be used to solve the GKM problem. The main idea is to define attributes in such a way that any subset of users can be distinguished from the rest using a combination of attributes. More precisely, each GM is associated with a set of attributes and, for revocation, the GC computes an access policy that is (i) satisfied by the attribute sets of all remaining users and (ii) not satisfied by the attribute set of any revoked user. Therefore, remaining GMs can use their secret keys to recover the new data key, while revoked GMs gain no information even if they collude.

In [6], for example, we realized this intuition by constructing a collusion-resistant variant of the flat table GKM scheme. This construction uses the CP-ABE scheme of [1] and associates $\log (N)$ attributes with each GM, where N is the size of an ID space. Specifically, each attribute corresponds to one bit in the GM's ID, and the GM receives a CP-ABE secret key associated with his ID. For revocation, the GC runs a Boolean function minimization algorithm to obtain a sum of products expression that separates revoked users from the remaining membership. This expression can be viewed as a threshold access tree, and CP-ABE is used accordingly to distribute the new data key.

8. CONCLUSIONS AND FUTURE WORK

In this paper we present several related CP-ABE schemes. The basic scheme allows an encryptor to use any AND gate on positive and negative attributes as an access policy on the ciphertext. This scheme is proven to be CPA secure under the DBDH assumption. To obtain CCA security, we extend the basic scheme with strongly existentially unforgeable onetime signatures.

We also present a variant with substantially smaller ciphertexts and faster encryption/decryption operations. The main idea is to form a hierarchy of attributes, so that fewer group elements are needed to represent all attributes in the system. This efficient variant is proven to be CPA secure. We believe our CCA secure scheme can be optimized in a similar way.

For disjunctive normal form policies, we propose the use of independent instances of CP-ABE encryption. The security of this proposal remains as an open problem, as we look for adaptive ID security proofs for CP-ABE.

Acknowledgments. We thank Ran Canetti, Ron Rivest, Eran Tromer, and Brent Waters for many helpful sugges-
tions. We also thank the anonymous referees for their comments.

9. REFERENCES

[1] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryption. In Proceedings of the 28th IEEE Symposium on Security and Privacy (Oakland), 2007.
[2] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with short ciphertexts and private keys. In Advances in Crytology CRYPTO 2005, volume 3621 of $L N C S, 2005$.
[3] D. Boneh, E. Shen, and B. Waters. Strongly unforgeable signatures based on computational Diffie-Hellman. In Proceedings of PKC 2006, volume 3958 of $L N C S$, pages 229-240, 2006.
[4] R. Canetti, S. Halevi, and J. Katz. Chosen ciphertext security from identity based encryption. In Advances in Cryptology - EUROCRYPT 2004, volume 3027 of LNCS, pages 207-222, 2004.
[5] M. Chase. Multi-authority attribute-based encryption. In Proceedings of the 4 th IACR Theory of Cryptography Conference (TCC 2007), 2007.
[6] L. Cheung, J. Cooley, R. Khazan, and C. Newport. Collusion-resistant group key management using attribute-based encryption. Cryptology ePrint Archive Report 2007/161, 2007. Presented at GOCP '07.
[7] L. Cheung and C. Newport. Provably secure ciphertext policy ABE. Cryptology ePrint Archive Report 2007/183, 2007. http://eprint.iacr.org/.
[8] A. Fiat and M. Noar. Broadcast encryption. In Advances in Cryptology - CRYPTO '93, volume 773 of $L N C S$, pages 480-491, 1993.
[9] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption schemes. In Advances in Cryptology - CRYTO '99, pages 537-554, 1999.
[10] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access control of encrypted data. In Proceedings of the 13th ACM conference on Computer and Communications Security (CCS 2006), pages 89-98, 2006.
[11] D. Naor, M. Naor, and J. Lotspiech. Recovation and tracing schemes for stateless receivers. In Advances in Cryptology - CRYPTO 2001, volume 2139 of LNCS, pages 41-62, 2001.
[12] M. Piretti, P. Traynor, P. McDaniel, and B. Waters. Secure atribute-based systems. In Proceedings of the 13th ACM conference on Computer and Communications Security (CCS 2006), 2006.
[13] A. Sahai and B. Waters. Fuzzy identity based encryption. In Advances in Cryptology EUROCRYPT 2005, volume 3494 of $L N C S$, pages 457-473, 2005.
[14] A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryptology CRYPTO '84, pages 47-53, 1985.

[^0]: * Cheung was supported by NSF Award \#CCR-0326277.
 ${ }^{\dagger}$ Newport was supported by NSF Award \#CCR-0121277 and USAF, AFRL Award \#FA9550-04-1-0121.

[^1]: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
 CCS'07, October 29-November 2, 2007, Alexandria, Virginia, USA.
 Copyright 2007 ACM 978-1-59593-703-2/07/0011 ...\$5.00.

[^2]: ${ }^{1}$ In [10], an access structure is a tree in which every internal node is a threshold gate and every leaf is labeled by an attribute.

[^3]: ${ }^{2}$ In a large universe construction, any bit string can be used as an attribute, provided each encryption involves no more than a fixed number of attributes. Additional hashing and exponentiation operations are required.

[^4]: ${ }^{3}$ The root node can be used to encrypt to every user in the system, regardless of his attributes.

[^5]: ${ }^{4}$ Access Trees are access structures that control the ability to decrypt. They are not to be confused with the attribute trees of Section 5.

