
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/257948161

ProVeLines: A product-line of Verifiers for Software Product Lines

Conference Paper · August 2013

DOI: 10.1145/2499777.2499781

CITATIONS

61
READS

290

4 authors, including:

Some of the authors of this publication are also working on these related projects:

AutoML for Robust Neural Architectures View project

SPLE: Software Product Lines Engineering View project

Maxime Cordy

University of Luxembourg

105 PUBLICATIONS 1,106 CITATIONS

SEE PROFILE

Pierre Yves Schobbens

University of Namur

228 PUBLICATIONS 4,492 CITATIONS

SEE PROFILE

Patrick Heymans

University of Namur

208 PUBLICATIONS 6,465 CITATIONS

SEE PROFILE

All content following this page was uploaded by Pierre Yves Schobbens on 26 December 2013.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/257948161_ProVeLines_A_product-line_of_Verifiers_for_Software_Product_Lines?enrichId=rgreq-a43e6aa11f9e1f366bc9d73ab9547568-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzk0ODE2MTtBUzoxMDMzMTQwNDU4MDA0NjBAMTQwMTY0MzM5Njc5MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/257948161_ProVeLines_A_product-line_of_Verifiers_for_Software_Product_Lines?enrichId=rgreq-a43e6aa11f9e1f366bc9d73ab9547568-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzk0ODE2MTtBUzoxMDMzMTQwNDU4MDA0NjBAMTQwMTY0MzM5Njc5MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/AutoML-for-Robust-Neural-Architectures?enrichId=rgreq-a43e6aa11f9e1f366bc9d73ab9547568-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzk0ODE2MTtBUzoxMDMzMTQwNDU4MDA0NjBAMTQwMTY0MzM5Njc5MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/SPLE-Software-Product-Lines-Engineering?enrichId=rgreq-a43e6aa11f9e1f366bc9d73ab9547568-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzk0ODE2MTtBUzoxMDMzMTQwNDU4MDA0NjBAMTQwMTY0MzM5Njc5MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a43e6aa11f9e1f366bc9d73ab9547568-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzk0ODE2MTtBUzoxMDMzMTQwNDU4MDA0NjBAMTQwMTY0MzM5Njc5MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maxime-Cordy?enrichId=rgreq-a43e6aa11f9e1f366bc9d73ab9547568-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzk0ODE2MTtBUzoxMDMzMTQwNDU4MDA0NjBAMTQwMTY0MzM5Njc5MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maxime-Cordy?enrichId=rgreq-a43e6aa11f9e1f366bc9d73ab9547568-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzk0ODE2MTtBUzoxMDMzMTQwNDU4MDA0NjBAMTQwMTY0MzM5Njc5MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Luxembourg?enrichId=rgreq-a43e6aa11f9e1f366bc9d73ab9547568-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzk0ODE2MTtBUzoxMDMzMTQwNDU4MDA0NjBAMTQwMTY0MzM5Njc5MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maxime-Cordy?enrichId=rgreq-a43e6aa11f9e1f366bc9d73ab9547568-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzk0ODE2MTtBUzoxMDMzMTQwNDU4MDA0NjBAMTQwMTY0MzM5Njc5MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pierre-Yves-Schobbens?enrichId=rgreq-a43e6aa11f9e1f366bc9d73ab9547568-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzk0ODE2MTtBUzoxMDMzMTQwNDU4MDA0NjBAMTQwMTY0MzM5Njc5MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pierre-Yves-Schobbens?enrichId=rgreq-a43e6aa11f9e1f366bc9d73ab9547568-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzk0ODE2MTtBUzoxMDMzMTQwNDU4MDA0NjBAMTQwMTY0MzM5Njc5MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Namur-FUNDP?enrichId=rgreq-a43e6aa11f9e1f366bc9d73ab9547568-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzk0ODE2MTtBUzoxMDMzMTQwNDU4MDA0NjBAMTQwMTY0MzM5Njc5MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pierre-Yves-Schobbens?enrichId=rgreq-a43e6aa11f9e1f366bc9d73ab9547568-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzk0ODE2MTtBUzoxMDMzMTQwNDU4MDA0NjBAMTQwMTY0MzM5Njc5MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Patrick-Heymans?enrichId=rgreq-a43e6aa11f9e1f366bc9d73ab9547568-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzk0ODE2MTtBUzoxMDMzMTQwNDU4MDA0NjBAMTQwMTY0MzM5Njc5MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Patrick-Heymans?enrichId=rgreq-a43e6aa11f9e1f366bc9d73ab9547568-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzk0ODE2MTtBUzoxMDMzMTQwNDU4MDA0NjBAMTQwMTY0MzM5Njc5MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Namur-FUNDP?enrichId=rgreq-a43e6aa11f9e1f366bc9d73ab9547568-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzk0ODE2MTtBUzoxMDMzMTQwNDU4MDA0NjBAMTQwMTY0MzM5Njc5MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Patrick-Heymans?enrichId=rgreq-a43e6aa11f9e1f366bc9d73ab9547568-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzk0ODE2MTtBUzoxMDMzMTQwNDU4MDA0NjBAMTQwMTY0MzM5Njc5MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pierre-Yves-Schobbens?enrichId=rgreq-a43e6aa11f9e1f366bc9d73ab9547568-XXX&enrichSource=Y292ZXJQYWdlOzI1Nzk0ODE2MTtBUzoxMDMzMTQwNDU4MDA0NjBAMTQwMTY0MzM5Njc5MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

ProVeLines

A Product Line of Verifiers for Software Product Lines

Maxime Cordy∗

PReCISE Research Center
University of Namur, Belgium
mcr@info.fundp.ac.be

Andreas Classen
PReCISE Research Center

University of Namur, Belgium
acs@info.fundp.ac.be

Patrick Heymans
PReCISE Research Center,

University of Namur, Belgium.
phe@info.fundp.ac.be

Pierre-Yves Schobbens
PReCISE Research Center,

University of Namur, Belgium.
pys@info.fundp.ac.be

Axel Legay
INRIA Rennes, France
axel.legay@inria.fr

ABSTRACT
Software Product Lines (SPLs) are families of similar soft-
ware products built from a common set of features. As the
number of products of an SPL is potentially exponential in
the number of its features, the model checking problem is
harder than for single software. A practical way to face
this exponential blow-up is to reuse common behaviour be-
tween products. We previously introduced Featured Tran-
sition Systems (FTS), a mathematical model that serves as
a basis for efficient SPL model checking techniques. In this
paper, we present ProVeLines, a product line of verifiers
for SPLs that incorporates the results of over three years of
research on formal verification of SPLs. Being itself a prod-
uct line, our tool is flexible and extensible, and offers a wide
range of solutions for SPL modelling and verification.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model checking

General Terms
Theory, Verification

Keywords
Software Product Lines, Model Checking, Tool, Features

1. INTRODUCTION
Variability has become ubiquitous in today’s systems, be

it in the form of configuration options or extensible architec-
tures. By mastering variability, developers can adapt their
system to new or changing requirements without having to

∗FNRS Research Fellow

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC 2013 workshops, Aug 26-30 2013, Tokyo, Japan
Copyright 2013 ACM 978-1-4503-2325-3/13/08 ...$15.00.

develop entirely new applications. Software Product Line
engineering (SPLE) is a software development paradigm that
focuses on the development of a family of similar software
products (also called“variants”). In SPLs, variability is com-
monly represented in terms of features, i.e., units of differ-
ence between products that appear natural to stakeholders
and technicians alike. The products of an SPL are therefore
defined by the set of their features. Interdependencies be-
tween features (e.g., exclusion) are commonly captured in
a Feature Model (FM) [19], which specifies which combina-
tions of features are valid.

SPLE promotes systematic reuse through all the develop-
ment stages, which leads to significant economies of scale
and reduced time to market. These benefits, however, come
at the cost of a new source of complexity: variability has to
be managed throughout the software lifecycle. This poses
a new range of theoretical and practical problems. In par-
ticular, quality assurance for SPLs is harder than for single
systems because engineers have to provide solid evidence
that all the products they build satisfy intended properties.

Model checking is an established automated technique for
verifying system behaviour. To verify a product line, one can
apply single-system model checking to each software variant.
However, the number of products in an SPL is potentially
exponential in the number of features. This enumerative
approach is thus impractical in industrial SPLs, where hun-
dreds of variants are built. Therefore, there is a need for
novel techniques that can exploit the commonalities between
the products to reduce the verification effort.

To combat this exponential blow-up, we proposed Fea-
tured Transition Systems (FTS) [11], a variability-aware ex-
tension of transition systems that represents the behaviour
of all the products in a single compact model. We de-
signed efficient algorithms to verify FTS against properties
expressed in Linear Temporal Logic (LTL) [9]. Those exploit
the variability information captured in the FTS to verify
common behaviour across several products only once, which
significantly reduces verification time. We implemented our
algorithms in SNIP, an SPL model checker we developed
from scratch [8].

Driven by recent advances in single-system verification as
well as by practical needs of SPL engineers, we recently ex-
tended FTS and its associated theory in various directions.
We designed algorithms to check equivalence between SPL

141

behavioural models [12]. We extended our model checking
algorithms to verify real-time SPLs [13]. Most recently, we
introduced an approach to cope with multi-features – fea-
tures that may appear several times in a product (e.g., pro-
cessing units which number is variable from one product to
another and which can be configured independently) – and
numeric features (e.g., maximum number of users) [14].

A solution to implement all these results is to extend
SNIP. Unfortunately, there exist no unique data structure
to represent and manipulate efficiently all the required con-
structs. Instead, these constructs have to be encoded into
separate data structures which manipulation increases the
overall verification time. It thus appears more efficient to
design, for each subset of these constructs, a new variant of
the tool that manipulates only the required data structures.
These variants share many commonalities in source code,
architecture, specification language, and algorithms. More-
over, new variants will be developed to implement future
FTS-based approaches. The need for managing all the ex-
isting and future variants motivated us to re-engineer SNIP
as a product line named ProVeLines and of which SNIP
is but one of the products. The tool variants are built from
the same code base by pruning code and setting compila-
tion options. ProVeLines is the first SPL model checking
toolset to provide all the aforementioned functionalities. It
is open-source and freely available on our website.1

2. THEORETICAL FOUNDATIONS
Model checking is an automated technique for verifying

system behaviour. The two ingredients of this verification
method are (1) an executable behavioural model of the sys-
tem, typically a transition system, and (2) a property ex-
pressed in temporal logic. A model-checking procedure con-
sists in systematically exploring every execution path of the
model and checking whether each of them satisfies the prop-
erty [3]. If that is not the case then the model checker returns
a example of execution path that violates the property.

The model-checking problem for SPLs is harder than for
single systems, as one has to identify which variants do not
satisfy an intended property. An immediate solution is to
model each product as a distinct transition system, and
to verify each of them with a single-system model checker.
This enumerative approach checks a given execution path as
many times as the number of products that can exhibit it.
This is clearly suboptimal and goes against the principles of
SPLE, which promotes systematic reuse.

As an alternative, we proposed an approach based on Fea-
tured Transition Systems (FTS). FTS are an extension of
transition systems where transitions are labelled with fea-
ture expressions, i.e. propositional formulae over the fea-
tures. A feature expression encodes the set of products able
to execute the associated transition. The transition system
modelling a particular product is obtained by removing the
transitions that this product cannot execute. An FTS is thus
a compact behavioural model of a set of products.

An excerpt of FTS is shown in Figure 1. It depicts the be-
haviour of a motor. The motor is initially in state running

and remains therein as long as there is no danger. When
danger occurs, the motor should stop. However, the system
cannot detect danger without feature Alarm. It thus can
stop iff this feature is enabled (see transition [Alarm]danger

1http://info.fundp.ac.be/fts/provelines

running stopped

[￢Alarm] danger

[Alarm] danger

safe

safe

danger

Figure 1: An example of FTS

from running to stopped). Otherwise, it remains in state
running (see self-transition [¬Alarm]danger on running).

In past work [11, 10, 12, 13, 9], we proposed efficient al-
gorithms to verify FTS. While exploring an execution path,
our algorithms keep track of the set of products able to ex-
ecute it. These are those that satisfy the conjunction of the
feature expressions labelling the executed transitions. By
doing so, the algorithms check an execution path only
once, regardless of how many products can execute
it . This set of products can be empty, for instance when
the feature expression of a transition is the negation of the
feature expression of another transition. In our example,
this happens if [¬Alarm]danger and [Alarm]danger are
triggered consecutively. To avoid exploring such paths, our
algorithms check the satisfiability of the feature expression
that characterizes the execution path. Evaluations carried
out in our previous papers tend to show that our FTS-based
algorithms outperform the enumerative approaches.

Although all our algorithms are based on the above prin-
ciples, they still differ in various ways. We first designed an
algorithm to verify an FTS against properties expressed in
Linear Temporal Logic (LTL) [3]. We introduce the basic
procedure in [11] and we present optimizations in [9]. Rather
than properties verification, we focus in [12] on checking be-
havioural inclusion and equivalence between products mod-
elled in two FTS. This approach is based on F-simulation,
a variability-aware extension of simulation relation [3]. F-
simulation allows one to compare an abstract (smaller) FTS
with respect to the original FTS. Again, this verification
problem is more complicated than its single-system coun-
terpart since we have to identify which products have their
behaviour preserved by abstraction. In [13], we tackle the
model-checking problem for real-time SPLs. The main re-
sults of this paper is the definition of featured timed au-
tomata – a formalism that enriches FTS with real-time in-
formation – and an algorithm to check such models against
real-time properties. Recently, we extended our formalisms
to support multi-features and numeric features [14]. Al-
though this extension does not change the core verification
procedure, it increases the complexity of feature expressions,
and thereby the verification time.

3. OVERVIEW OF PROVELINES
ProVeLines is the realization of all our model-checking

approaches into a unified implementation. To better cope
with variability and facilitate extensibility, we re-engineered
the architecture of SNIP. Figure 2 shows the new architec-
ture of ProVeLines. Any ProVeLines variant requires at
least two artefacts from the user: an FM and an fPromela
model. For the former, we use TVL [7, 14], one of the latest
incarnations of FMs, due to some of its advantages: high
expressiveness, formal semantics and tool support. The FM

142

Parser
Semantic

engine

Feature
handler

Feature
solver

Veri!er

fPromela model

TVL model

program graph

valid products

feature formulae

fe
at

ur
e

fo
rm

ul
ae

FTS

good products: ...
bad products: ...

Sat?

Yes/No

typedef features {
! bool Nice
};

features f;

chan mail = [1] of { mtype };

mtype = { nothing, flowers, bomb };

active proctype sender() {
! if! :: f.Nice -> ms;
! ! :: else -> maimb;
! fi;
}

active proctype receiver() {
! mtype package = nothing;
! mail?package;
! assert(package != bomb);
}

VendingMachine
v

Tea
t

FreeDrinks
f

CancelPurchase
c

Soda
s

Beverages
b

Figure 2: Architecture of ProVeLines

allows us to limit the verification to the valid products
only ; the checker will ignore execution paths that no valid
products can execute. fPromela is a feature-oriented exten-
sion of Promela [18], which we defined as a high-level lan-
guage on top of FTS . An fPromela model thus describes
the behaviour of all the products defined by the FM [8, 14].
An overview of fPromela constructs is provided in Appendix.

The fPromela model is parsed by the Parser component,
which builds a program graph [3] where transitions are an-
notated with feature expressions. Feature expressions are
built by the Feature handler, i.e. a set of wrappers to
data structures to represent propositional formulae (e.g. bi-
nary decision diagrams [5], abstract syntax tree). The parser
transmits the program graph to the Semantic engine, which
constructs on the fly the FTS corresponding to the program
graph. The semantic engine gives the FTS as input to Veri-

fier which triggers the verification. Meanwhile, the feature
handler communicates with a TVL tool to extract a formula
encoding the set of valid products. The formula is sent to
Feature solver. The role of the latter is to prevent the ex-
ploration of execution paths that are available to none of the
valid products. Once the verification is complete, the veri-
fier summarizes the results and displays a concise formula
representing the products that contain errors.

Developing ProVeLines as an SPL allows us to tailor
our tool to the specific needs of the user . Indeed, many
of its features augment the capabilities of the tool but in-
crease the verification time. In a specific variant, the un-
needed features should thus be removed. We organize the
features of ProVeLines in an FM shown in Figure 3. Vari-
ability within ProVeLines originates from four factors: the
System, the Property, the supported types of Features, and
the Data Structure. Altogether, ProVeLines consists of
16 unique products, including SNIP.

ProVeLines can check purely Discrete and Real-Time

models. To support the latter, modifications are required
in the parser (to handle timed statements in fPromela, see
Appendix), the semantic engine (to encode timed statement
into real-time data structures), and the verifier (to make the
verification aware of real-time, that is, to consider featured
timed automata instead of FTS). ProVeLines can perform
three types of computations: Reachability, F-Simulation,
and LTL checking. Optionally, one may check Stutter F-
simulation instead of standard F-simulation. When real-
time models are considered, ProVeLines is limited to reach-
ability. Accordingly, feature Real-time cannot coexist with
features LTL and Simulation. All the verification algorithms
are implemented as part of the verifier.

In addition to Boolean features, ProVeLines supports
Multi-Features and Numeric Features. As features have
to be declared in the fPromela model, the support for non-
Boolean features requires modifications to the parser. The
feature handler and solver have to be modified as well since
the data structures that encode feature expressions depend
on the types of considered features. Variability related to
system types, algorithms, and features is implemented in
the form of preprocessor directives, e.g., #ifdef.

ProVeLines provides three data structures to represent
feature expressions and check their satisfiability. For Boolean
features, ProVeLines can use either Binary Decision Dia-
grams (BDD) [5] (implemented in the CuDD2 library) or for-
mulae in Conjunctive Normal Form (CNF) checked by Min-
iSat [16]. At this time, our case studies tend to show that
BDDs are more efficient than CNFs but further empirical
studies are needed to confirm this observation. To han-
dle numeric features, we developed a wrapper to Microsoft’s
Z3 [15]. In Z3, formulae are encoded in native data struc-
tures called Abstract Syntax Trees (AST). ProVeLines uses
them to encode feature expressions and calls Z3’s algorithms
to check their satisfiability. The choice of a data structure is
applied via compilation options. To encode real-time, Pro-
VeLines relies on UPPAAL’s implementation of Difference
Bound Matrices (DBM) [4] combined with feature informa-
tion. Observe that SNIP is the variant with features Dis-
crete, LTL, Reachability, and BDD.

4. RELATED WORK
There exist tools similar to ProVeLines. In our earlier

work, we developed an extension of NuSMV [6] that can
verify SPLs modelled in the fSMV language [20]. This tool
uses the fully symbolic FTS algorithm [10], whereas Pro-
VeLines implement semi-symbolic FTS algorithms where
states are represented explicitly rather than symbolically.

Other tools for SPL verification were developed in the
past years. Asirelli et al. [2] enriched modal transition sys-
tems (i.e., transition systems with mandatory and optional
transitions) with a logic able to link behaviour to features.
This logic allows them to derive the transition system cor-
responding to a particular product. They implemented a
model checker that applies an enumerative approach to ver-
ify each product [23].

Post and Sinz [21] proposed another approach based on
a technique called lifting. It consists in incorporating vari-
ability information about the verifiable model. A similar
approach is followed by SPLVerifier [1], in which features
are modelled as separate and composable units. Both ap-
proaches use a single-system model checker to detect viola-
tions. Thereby, the verification stops once a violating prod-
uct is found. It thus cannot compute the products that
satisfy the property.

5. CONCLUSION
ProVeLines is a product line of model checkers for SPLs.

We designed its architecture in a way that makes it exten-
sible. It will serve as a basis for the implementation of fu-
ture FTS-based verification methods. In particular, we will
broaden the portfolio of our checking algorithms, enabling
the verification of stochastic and hybrid SPLs. The major
challenge in these new approaches is to define efficient data

2http://vlsi.colorado.edu/~fabio/CUDD/

143

Legend:
a a

= And = Or = Opt.

ProVeLines

System Property Features Data
Structure

LTLSimulationReachability

Stutter

Real-TimeDiscrete Numeric
Features

Multi-
features Dense-timeFeature

Expression

DBMASTCNFBDD

a
= Xor

Z3

Cross-cutting constraints
Real-Time => Reachability ⋀ ¬ Simulation ⋀ ¬ LTL
Real-Time <=> Dense-time
Discrete => Reachability ⋀ Simulation ⋀ LTL
Numeric Features => AST

Figure 3: Features of ProVeLines

structures to represent and manipulate quantitative data.
We will also explore alternatives to our search-based algo-
rithms, such as compositional reasoning and distributed al-
gorithms. To increase the efficiency of our algorithms, we
will not only lift classic optimizations (e.g., partial-order re-
duction) to FTS, but also design SPL-specific optimizations.
Finally, to make our approach accessible to engineers, we
will link ProVeLines to other high-level languages. Among
those, we will study graphical representations combined with
variability [22, 17].

6. REFERENCES
[1] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and

D. Beyer. Feature-interaction detection using
feature-aware verification. In ASE’11, pages 372–375.
IEEE, 2011.

[2] P. Asirelli, M. H. ter Beek, A. Fantechi, and S. Gnesi.
Formal description of variability in product families.
In SPLC’11, pages 130–139. Springer-Verlag, 2011.

[3] C. Baier and J.-P. Katoen. Principles of Model
Checking. MIT Press, 2007.

[4] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson,
and W. Yi. UPPAAL in 1995. In TACAS’96, pages
431–434. Springer-Verlag, 1996.

[5] R. E. Bryant. Symbolic boolean manipulation with
ordered binary-decision diagrams. ACM Computing
Surveys, 24(3):293–318, Sept. 1992.

[6] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and
A. Tacchella. NuSMV Version 2: An OpenSource Tool
for Symbolic Model Checking. In CAV ’02, volume
2404 of LNCS. Springer, July 2002.

[7] A. Classen, Q. Boucher, and P. Heymans. A text-based
approach to feature modelling: Syntax and semantics
of TVL. SCP, 76:1130–1143, December 2011.

[8] A. Classen, M. Cordy, P. Heymans, A. Legay, and
P.-Y. Schobbens. Model checking software product
lines with SNIP. STTT, 14(5):589–612, 2012.

[9] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans,
A. Legay, and J.-F. cois Raskin. Featured transition
systems: Foundations for verifying variability-intensive
systems and their application to LTL model checking.
Transactions on Software Engineering (in press), 2013.

[10] A. Classen, P. Heymans, P.-Y. Schobbens, and
A. Legay. Symbolic model checking of software

product lines. In ICSE’11, pages 321–330. ACM, 2011.

[11] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay,
and J.-F. Raskin. Model checking lots of systems:
efficient verification of temporal properties in software
product lines. In ICSE’10, pages 335–344. ACM, 2010.

[12] M. Cordy, A. Classen, G. Perrouin, P. Heymans, P.-Y.
Schobbens, and A. Legay. Simulation-based
abstractions for software product-line model checking.
In ICSE’12, pages 672–682. IEEE, 2012.

[13] M. Cordy, P. Heymans, P.-Y. Schobbens, and
A. Legay. Behavioural modelling and verification of
real-time software product lines. In SPLC’12. ACM,
2012.

[14] M. Cordy, P.-Y. Schobbens, P. Heymans, and
A. Legay. Beyond boolean product-line model
checking: Dealing with feature attributes and
multi-features. In ICSE’13, pages 472–481. IEEE,
2013.

[15] L. De Moura and N. Bjørner. Z3: an efficient SMT
solver. In TACAS’08, pages 337–340. Springer-Verlag,
2008.

[16] N. Eén and N. Sörensson. An extensible sat-solver. In
SAT’03, pages 502–518. Springer, 2003.

[17] J. Greenyer, A. M. Sharifloo, M. Cordy, and
P. Heymans. Efficient consistency checking of
scenario-based product line specifications. In RE ’12,
pages 161–170, 2012.

[18] G. J. Holzmann. The SPIN Model Checker: Primer
and Reference Manual. Addison-Wesley, 2004.

[19] K. Kang, S. Cohen, J. Hess, W. Novak, and
S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical Report
CMU/SEI-90-TR-21, 1990.

[20] M. Plath and M. Ryan. Feature integration using a
feature construct. SCP, 41(1):53–84, 2001.

[21] H. Post and C. Sinz. Configuration lifting: Verification
meets software configuration. In ASE’08, pages
347–350. IEEE CS, 2008.

[22] P. Shaker, J. M. Atlee, and S. Wang. A
feature-oriented requirements modelling language. In
RE ’12, pages 151–160, 2012.

[23] M. H. ter Beek, F. Mazzanti, and A. Sulova. Vmc: A
tool for product variability analysis. In FM ’12, pages
450–454, 2012.

144

APPENDIX: Roadmap of the Demonstration
The demonstration begins with a quick reminder of the the-
oretical foundations on which ProVeLines is built. The
content of this presentation is similar to Section 2. Next,
we propose a gentle introduction to fPromela, its various
constructs, and the functionalities of ProVeLines. Each
particular construct is illustrated through small examples
and is linked to ProVeLines’s features that support it.

Introductory Examples
A first difference between fPromela and Promela is that the
former distinguishes features from normal variables. Fea-
tures are declared in a specific user-defined data structure
called features. In its most basic form, this data structure
contains only Boolean fields:

1// feature declaration
2typedef features {
3bool Foo;
4bool Bar
5};
6features f;

Then the user can use these variables to specify that state-
ment blocs are specific to some products. For example, the
following excerpt specifies that the process toto will incre-
ment variable i iff features Foo or Bar are enabled:

1// process declaration
2active proctype toto() {
3int i = 0;
4// guarded increment stmt
5gd :: f.Foo || f.Bar -> i++;
6:: else -> skip;
7dg;
8// test assertion
9assert(i == 1);
10}

ProVeLines can detect feature variables and automatically
translate them into feature expressions. This is the semantic
difference between fPromela and Promela. The latter con-
siders feature variables as normal variables, which impedes
the use of the efficient algorithms offered by FTS.

Once the user has built a TVL and an fPromela model, she
can trigger the verification of a property via ProVeLines
command-line interface (check our website for a complete
description of the command-line options). During the veri-
fication, ProVeLines will apply our efficient algorithms to
identify all the products that violate the property. These
products will appear in the form of a concise formula that
represents the combinations of features responsible for the
violation. E. g., ProVeLines can detect that the above
assertion is violated if none of the two features are enabled:

$./ provelines -check -exhaustive -fm features.tvl
model.pml

No never claim , checking only asserts and deadlocks ..
Assertion at line 17 violated [explored 5 states ,

re-explored 0].
- Products by which it is violated (as feature

expression):
(!Foo & !Bar)

Exhaustive search finished [explored 5 states ,
re-explored 0].

- One problem found covering the following products
(others are ok):
(!Foo & !Bar)

In addition to property checking, we can also verify whether
an abstraction of the above model preserves its behaviour.
For example, let us consider a variant of this model that

makes abstraction from feature Bar:

1active proctype toto() {
2int i = 0;
3gd :: f.Foo -> i++;
4:: else -> skip;
5dg;
6assert(i == 1);
7}

Then, we check for which products the abstract model simu-
lates (that is, includes the behaviour) of the original model:

$./ provelines -props p.prop -sim Orig.pml Abst.pml
Checking F-simulation ..
Simulation holds for the following products:

(!Foo & !Bar) | (Foo)

As before, ProVeLines reports a formula describing the re-
sult in terms of features. In our example, it turns out that
simulation does not hold iff feature Bar is present without
feature Foo. Indeed, in this case the original model incre-
ments variable i whereas the abstract model does not. We
can check the inverse question, that is, whether the original
model simulates the abstract model:

$./ provelines -props p.prop -sim Abst.pml Orig.pml
Checking F-simulation ..
Simulation holds for the following products:

(!Foo & !Bar) | (Foo)

We conclude that the two models are simulation-equivalent
for products that have either feature Foo or none of the two
features.

Most recently, we incorporated timed statements in fPro-
mela to specify that the system needs time to execute the
next action. Let us consider the following example:

1typedef features {
2bool FastStart;
3bool FastStop
4};
5features f;
6// clock declaration
7clock c;
8bool on = false ;
9active proctype toto() {
10off: on = false ;
11// timed statements
12gd :: f.FastStart ->
13while (c<7) wait;
14when (c>4) reset(c) goto on;
15:: else ->
16while (c<10) wait;
17when (c>7) reset(c) goto on;
18dg;
19
20on: ...
21}

We use real-time clocks to model that time elapses (see Line
7). Statement wait specifies that the process can delay its
next action as long as the value of a given clock remains in
a certain interval. Statement when specifies that the process
can trigger the next transition only when the value of a
given clock lies in a certain interval. For example, Lines
14–15 specify that when feature FastStart is enabled the
system needs between 4 and 7 time units to move from state
off to state on. When this feature is disabled, the delay
amounts to between 7 and 10 time units. We can check
timed fPromela models against timed reachability properties
such as “for which products can the system be turned on in
less than 5 time units”. As expected, ProVeLines finds out
that feature FastStart is required to satisfy the property:

$./ provelines -check -tctl ‘EF (<5) on’ -fm
features.tvl model.pml

145

Checking timed CTL property EF (<5) on..
Property violated
- Products by which it is violated (as feature

expression):
(! FastStart)

Another recent extension of fPromela is the support for
multi-features and numeric features. The former are de-
clared as array fields in the features data structure. For
instance, the following excerpt defines that Foo is a multi-
feature with at most two instances:

1typedef features {
2bool Foo [2];
3bool Bar
4};
5features f;

Each instance of a multi-features can be associated to a spe-
cific instance of a process. In the following, each instance of
process toto is associated to a distinct instance of Foo:

1active[card(foo)] proctype toto() {
2...
3}

The behaviour of each process can be different, as it de-
pends on the associated instance of Foo and its subfeatures.
To support numeric features, fPromela allows non-Boolean
fields to occur inside the features data structure:

1typedef features {
2someType Foo
3};
4typedef someType {
5bool is_in;
6int attribute
7};
8features f;

More precisely, a numeric feature is declared as a data struc-
ture which first field is Boolean and named is_in. Its value
encodes the presence or absence of the feature. The other
fields are numeric and contain the quantitative data of the
feature.

After the presentation of the main constructs of fPromela,
we illustrate the use of ProVeLines on a practical example.

Minepump Case Study
We consider an SPL of minepump systems [11, 9]. Such a
system consists of a controller, a pump, a water sensor, a
methane sensor and a user. When activated, the controller
should switch on the pump when the water level is high,
but only if there is no methane in the mine. The model
is composed of several communicating processes. The demo
will focus on the following property: “There is never a situa-
tion in which the pump runs indefinitely even though there is
methane.”; in LTL: !<>[] (pumpOn && methane). Checking
this property with ProVeLines yields the following.

$./ provelines -check -exhaustive -nt
-ltl ’!<>[] (pumpOn && methane)’ minepump.pml

Checking LTL property !<>[] (pumpOn && methane).
Property violated [explored 469 states , re-explored 0]
- Products by which it is violated (as feature
expression):

(Start & Stop & MethaneQuery & MethaneAlarm & Low
& High)

[...]

Exhaustive search finished [explored 13199 states ,
re-explored 110745].
- 16 problems were found covering the following
products (others are ok):

(Start & High)

Note that we did not specify the feature model explicitly; in
this case, ProVeLines automatically looks for a file named
minepump.tvl. ProVeLines finds 16 violations and con-
cludes that all products with Start & High violate the prop-
erty. This is not what we expected, as the property is sup-
posed to be satisfied by all the products. Products without
Start or High will never even start the pump, which is why
they satisfy the property.

A look at the stack traces reveals a problem with the
property. Basically, the controller has a central loop, in
which it can receive three types of messages: user com-
mands, methane alarm messages, and water level readings.
The stack traces show in every case that the methane sen-
sor sends an alarm message to the controller. However, as
the choice of receiving one of the three messages is non-
deterministic, the controller might ignore the alarm message
indefinitely. In practice, such a behaviour is highly unlikely.
It is thus reasonable to assume that the controller will in-
finitely often accept a message of each type. This assump-
tion can be specified as the LTL formula: (([]<> readCom-

mand) && ([]<> readAlarm) && ([]<> readLevel)).

$./ provelines -check -exhaustive -nt -ltl
’([]<> read ..) -> (!<>[] pump..)’ minepump.pml

Checking LTL property ([]<> read ..) -> (!<>[] pump ..).
Property violated [explored 20674 states , re-explored
92326]
- Products by which it is violated (as feature
expression):

(Start & Stop & MethaneQuery & !MethaneAlarm & Low
& High)

[...]

Exhaustive search finished [explored 26380 states ,
re-explored 197637].
- 8 problems were found covering the following
products (others are ok):

(Start & !MethaneAlarm & High)

According to this result, feature MethaneAlarm is required
to satisfy the property. This corresponds to what we ex-
pected, as feature MethaneAlarm alerts the controller of
methane, leading it to shut off the pump.

Normally, the example property is not expected to hold
for products that do not have feature MethaneAlarm. It cor-
responds to a requirement implemented by the feature. We
should therefore check it only against products that have
the feature. This can be accomplished in ProVeLines us-
ing the -filter parameter. This parameter restricts the
verification to a subset of all products specified as a feature
expression (in TVL syntax). Limiting the previous check to
products with MethaneAlarm yields the following.

$./ provelines -check -exhaustive -nt
-filter ’MethaneAlarm ’
-ltl ’([]<> read ..) -> (!<>[] pump..)’ minepump.pml

Checking LTL property ([]<> read ..) -> (!<>[] pump ..).

Attention! Checks are only done for products
satisfying:

MethaneAlarm!

Property satisfied [explored 21201 states , re-explored
188589].

The property is indeed satisfied by all relevant products.
This concludes the demonstration.

146

View publication statsView publication stats

https://www.researchgate.net/publication/257948161

