
Reasonable Highly Expressive Query Languages

Pierre Bourhis† and Markus Krötzsch‡ and Sebastian Rudolph‡
†CNRS CRIStAL UMR 9189 ‡Technische Universität Dresden, Germany
pierre.bourhis@inria.fr {markus.kroetzsch,sebastian.rudolph}@tu-dresden.de

Abstract
Expressive query languages are gaining relevance
in knowledge representation (KR), and new reason-
ing problems come to the fore. Especially query
containment is interesting in this context. The prob-
lem is known to be decidable for many expres-
sive query languages, but exact complexities are
often missing. We introduce a new query lan-
guage, guarded queries (GQ), which generalizes
most known languages where query containment is
decidable. GQs can be nested (more expressive), or
restricted to linear recursion (less expressive). Our
comprehensive analysis of the computational prop-
erties and expressiveness of (linear/nested) GQs
also yields insights on many previous languages.

1 Introduction
The significance of query languages in KR is twofold. On
the one hand, evaluating queries in the presence of a back-
ground ontology allows us to express more complex informa-
tion needs, leading to the notion of ontology-based query an-
swering. This topic has been studied for a wide range of on-
tology languages and many different query languages, includ-
ing conjunctive queries [Calvanese et al., 2007b; Eiter et al.,
2009] and (many variants of) regular path queries [Calvanese
et al., 2007a; 2009; Bienvenu et al., 2014]. On the other
hand, recursive queries can be used to “implement” reason-
ing, such that the query plays the role of a logical calculus that
computes subsumptions [Xiao et al., 2010; Krötzsch, 2011;
Bischoff et al., 2014].

In both application areas, we can see a tendency towards
more and more powerful recursive queries. Recent works in-
troduced several highly expressive query languages related
to applications in KR: Monadically Defined Queries (MQs)
[Rudolph and Krötzsch, 2013] and Monadic Disjunctive SNP
queries (coMMSNP) [Bienvenu et al., 2013]. Both can be
viewed as fragments of (disjunctive) Datalog.

The proliferation of query languages and their uses in KR
raises new questions. The complexity of ontology-based
query answering has been studied from its inception, whereas
the equally important question of relative expressiveness was
studied only recently [Bienvenu et al., 2013]. Another impor-
tant question is the problem of query containment, where we

LinMQ
LinMDlog

LinGQ
LinGDlog

LinMQk
LinMQ+

LinGQk
LinGQ+

MQ

GQ

MQk
MQ+

GQk
GQ+

LinDlog

Dlog

MDlog

GDlog

A
C

0

NP PH PSpace Exp
CQ
C2RPQ

N
L
o
g
Sp
a
c
e

PT
im

e
D

at
a

C
om

pl
ex

ity
of

Q
ue

ry
A

ns
w

er
in

g

Combined Complexity of Query Answering

Figure 1: Query languages and complexities; languages
higher up in the graph are more expressive

consider two queries Q1 and Q2, and ask if every answer to
Q1 is also an answer to Q2 over all possible inputs. Deciding
query containment is relevant for query rewriting algorithms,
where it needs to be checked if new queries are contained in
previous ones to ensure termination. Further relevant applica-
tions are query optimization (finding a simpler yet equivalent
query), and verification (checking that a query contains spe-
cific test cases). In addition, query containment has a range
of applications in databases, e.g., in information integration
and database integrity checking.

Although Datalog provides a useful framework for study-
ing many recursive query languages, it does, unfortunately,
not have a decidable query containment problem [Shmueli,
1987]. In contrast, the containment is known to be decid-
able for regular path queries, MQs, and coMMSNP queries.
In the latter two cases, however, no upper complexity bound
is known. Nevertheless, numerous results exist for various
smaller query languages. For the following overview, recall
that a predicate in a Datalog program is intensional (IDB) if
it occurs in some rule head, and extentional (EDB) otherwise.

Non-recursive Datalog and unions of conjunctive queries
A non-recursive Datalog program is equivalent to a (possi-
bly exponential) union of conjunctive queries (UCQ), and
thus expressible in first-order logic. Containment of Dat-
alog (Dlog) in UCQ is 2ExpTime-complete, while contain-
ment of Dlog by non-recursive Datalog is 3ExpTime-complete

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

IJCAI-15 Distinguished Paper, Honorary Mention

2826

[Chaudhuri and Vardi, 1997]. Some restrictions for decreas-
ing these complexities have been considered. Deciding if a
linear Datalog program (LinDlog, where rule bodies contain
at most one recursive predicate) is contained in a UCQ is
ExpSpace-complete; complexity further decreases to PSpace
when the linear Datalog program is monadic (LinMDlog, see
below) [Chaudhuri and Vardi, 1994; 1997].
Monadic Datalog A monadic Datalog (MDlog) program
is one with only unary IDB predicates. Containment be-
tween two MDlog programs is 2ExpTime-complete. The up-
per bound is well known since the 80’s [Cosmadakis et al.,
1988], while the lower bound has been established only re-
cently [Benedikt et al., 2012]. Moreover, the containment of
Dlog in MDlog is also decidable by a straightforward appli-
cation of [Courcelle, 1991, Theorem 5.5].1 So far, however,
tight bounds have not been known for this case.
Guarded Datalog Guarded Datalog (GDlog) requires that,
for each rule, the variables of the head should appear in a sin-
gle EDB atom in the rule body. Such (frontier-)guarded rules
have been known for a while [Calì et al., 2008; Baget et al.,
2011], but their first use as a query language is recent [Bárány
et al., 2012]. GDlog is a proper extension of MDlog, since
monadic rules can be rewritten into guarded rules [Bárány
et al., 2012]. Query containment for GDlog is 2ExpTime-
complete, as it corresponds to a satisfiability problem for
guarded negation fixed point logic [Bárány et al., 2011].
Navigational Queries Conjunctive two-way regular path
queries (C2RPQs) generalize conjunctive queries (CQs) by
regular expressions over binary predicates [Florescu et al.,
1998; Calvanese et al., 2003]. Variants of this idea are used
in the RDF query language SPARQL 1.1 and the XML query
language XPath. Roughly, C2RPQ is a conjunction of atoms
of the form xLy where L is a two-way regular expression.
A pair of nodes 〈n1, n2〉 is a valuation of the pair 〈x, y〉 if and
only if there exists a path between n1 and n2 matching L. Con-
tainment of such queries is ExpSpace-complete [Florescu et
al., 1998; Calvanese et al., 2003; Abiteboul and Vianu, 1999;
Deutsch and Tannen, 2002], while containment of Dlog in
C2RPQ is 2ExpTime-complete [Calvanese et al., 2005].
Fragments of Monadic Second-Order Logic More re-
cently, Monadically Defined Queries (MQs) and their nested
version (MQ+s) have been introduced as a proper gener-
alization of MDlog that also captures (unions of) C2RPQs
[Rudolph and Krötzsch, 2013]. MQs are expressible in both
Dlog and monadic second-order logic, but (in contrast to these
languages) feature a decidable query containment problem.
The most general recent query language for which contain-
ment is known to be decidable is coMMSNP [Bienvenu et
al., 2013], a fragment of monadic second-order logic moti-
vated by descriptive complexity. As opposed to the above
languages, coMMSNP is a non-deterministic query language,
closely related to disjunctive Datalog. A simple inspection of
the definitions shows that the deterministic (disjunction-free)
fragment, i.e., “Horn-coMMSNP”, agrees with MQ.

In this paper, we further extend the known recursive query
languages and at the same time settle all major questions re-

1We thank Michael Benedikt for this observation.

lated to the complexity of their query containment problems.
Figure 1 gives an overview of all languages we consider, to-
gether with their respective query-answering complexities.

The main new query language we consider is called
guarded queries (GQ), and is based on the use of frontier-
guarded Datalog rules. GQ can be viewed as an extension
of MQ, and is indeed inspired by a similar extension for
coMMSNP [Bienvenu et al., 2013]. GQ thus also generalizes
frontier-guarded Datalog. We further introduce the nested
and linear variant of GQ, and establish complexity results for
query answering in all cases.

We then turn towards query containment. We obtain tight
complexity bounds for (nested) GQs and many other query
languages, which are summarized in Table 1. To show the
upper bounds, we extend known automata-based approaches
by a number of new techniques. Lower bounds are obtained
by simulating space-bounded alternating Turing machines in
a way that allows for an exponential increase in space with
each nesting level. Finally, we also sketch how our results
transfer to the case of linear Datalog, where many complexi-
ties can be slightly reduced.

In summary, our results settle open problems for (nested)
MQs, painting a comprehensive and detailed picture of the
state of the art in Datalog query containment. Full proofs can
be found in an accompanying report [Bourhis et al., 2015].

2 Preliminaries
We consider a standard language of first-order predicate
logic, based on an infinite set C of constant symbols, an infi-
nite set P of predicate symbols, and an infinite set V of first-
order variables. Each predicate p ∈ P is associated with a nat-
ural number ar(p) called the arity of p. The list of predicates
and constants forms the language’s signature S = 〈P,C〉.
We generally assume S = 〈P,C〉 to be fixed, and only refer
to it explicitly if needed.
Formulae, Rules, and Queries A term is a variable x ∈ V
or a constant c ∈ C. We use symbols s, t to denote terms,
x, y, z, v,w to denote variables, a, b, c to denote constants. Ex-
pressions like t, x, c denote finite lists of such entities. We use
the standard predicate logic definitions of atom and formula,
using symbols ϕ, ψ for the latter.

Datalog queries are defined over an extended signature
with additional predicate symbols, called IDB predicates; all
other predicates are called EDB predicates. A Datalog rule is
a formula of the form ∀x, y.ϕ[x, y]→ ψ[x] where ϕ and ψ are
conjunctions of atoms, called the body and head of the rule,
respectively, and where ψ only contains IDB predicates. We
usually omit universal quantifiers when writing rules. Sets of
Datalog rules are denoted P,R,S. A set of Datalog rules is:
• monadic if all IDB predicates are of arity one;
• frontier-guarded if the body of every rule contains an

atom p(t) such that p is an EDB predicate and t contains
all variables that occur in the rule’s head;

• linear if each rule body has at most one IDB predicate.
A conjunctive query (CQ) is a formula Q[x] = ∃y.ψ[x, y]

where ψ[x, y] is a conjunction of atoms; a union of conjunc-
tive queries (UCQ) is a disjunction of such formulae. A Dat-

2827

alog query 〈P,Q〉 consists of a set of Datalog rules P and a
conjunctive query Q over IDB or EDB predicates (Q could
be expressed as a rule in Datalog, but not in all restrictions
of Datalog we consider). We write Dlog for the language of
Datalog queries. A monadic Datalog query is one where P
is monadic, and similarly for other restrictions. We use the
query languages MDlog (monadic), GDlog (frontier-guarded),
LinDlog (linear), and LinMDlog (linear, monadic).
Databases and Semantics We use the standard semantics
of first-order logic (FOL). A database instance I over a
signature S = 〈P,C〉 consists of a set ∆I called domain
and a function ·I that maps constants c ∈ C to domain el-
ements cI ∈ ∆I and predicate symbols p ∈ P to relations
pI ⊆ (∆I)ar(p), where pI is the extension of p.

Given a database instance I and a formula ϕ[x] with free
variables x = 〈x1, . . . , xm〉, the extension of ϕ[x] is the subset
of (∆I)m containing all those tuples 〈δ1, . . . , δm〉 for which
I, {xi 7→ δi | 1 ≤ i ≤ m} |= ϕ[x]. We denote this by
〈δ1, . . . , δm〉 ∈ ϕI or by I |= ϕ(δ1, . . . , δm); a similar nota-
tion is used for all other types of query languages. Two for-
mulae ϕ[x] and ψ[x] are called equivalent if their extensions
coincide for every database instance I.

The set of answers of a UCQ Q[x] over I is its extension.
A Datalog program P is satisfied by database instance I′ over
the extended signature of EDB and IDB predicates, if all rules
of P are satisfied by I′ in the usual sense. The set of answers
of a Datalog query 〈P,Q〉 over I is the intersection of the
extensions of Q over all extended database instances I′ that
satisfy P and agree with I on constants and EDB predicates.
Datalog can also be defined as the least fixpoint of the infla-
tionary evaluation of Q on I [Abiteboul et al., 1994].

We do not require database instances to have a finite do-
main, since all of our results are valid in either case. This
is due to the fact that every entailment of a Datalog program
has a finite witness, and that all of our query languages are
positive, i.e., that their answers are preserved under homo-
morphisms of database instances.

An important reasoning task on queries is to determine if a
query contains another. In particular, a Datalog query 〈P,Q〉
is contained in a Datalog query 〈P′,Q′〉, denoted 〈P,Q〉 v
〈P′,Q′〉, iff for each database instance I over the signature
of EDB predicates and constants, the set of answers of 〈P,Q〉
over I is included in the set of answers of 〈P′,Q′〉 over I.

3 Guarded Queries
Rudolph and Krötzsch [2013] introduced monadically de-
fined queries (MQs2) as a generalization of conjunctive two-
way regular path queries (C2RPQs) and monadic Datalog
(MDlog) for which query containment is still decidable. The
idea underlying this approach is that candidate query answers
are checked by evaluating a monadic Datalog program, i.e., in
contrast to the usual evaluation of Datalog queries, we start
with a “guessed” answer that is the input to a Datalog pro-
gram. To implement this, the candidate answer is represented
by special constants λ that the Datalog program can refer to.
This mechanism was called flag & check, since the special
constants act as flags to indicate the answer to be checked.

2Here we shorten the original acronym MODEQ to MQ.

Example 1. A query that computes the transitive closure over
a relation p can be defined as follows.

p(λ1, y)→ U(y)
U(y) ∧ p(y, z)→ U(z)

U(λ2)→ hit

One defines the answer of the query to contain all pairs
〈δ1, δ2〉 for which the rules entail hit when interpreting λ1 as
δ1 and λ2 as δ2.

The original approach used monadic Datalog for its close
relationship to monadic second-order logic, which was the
basis for showing decidability of query containment. In this
work, however, we develop new techniques for showing the
decidability (and exact complexity) of this problem directly.
It is therefore suggestive to consider other types of Datalog
programs for the “check” part. The next definition introduces
the general approach for arbitrary Datalog programs, and de-
fines interesting fragments by imposing further restrictions.

Definition 1. Consider a signature S . An FCP (“flag &
check program”) of arity m is a set of Datalog rules P with
k ≥ 0 IDB predicates U1, . . . , Uk that may use the additional
constant symbols λ1, . . . , λm < S and an additional nullary
predicate symbol hit. An FCQ (“flag & check query”) P is
of the form ∃y.P(z), where P is an FCP of arity |z| and all
variables in y occur in z. The variables x that occur in z but
not in y are the free variables of P.

Let I be a database instance over S . The extension PI of
P is the set of all tuples 〈δ1, . . . , δm〉 ∈ (∆I)m such that every
database instance I′ that extends I to the signature of P and
that satisfies 〈λI

′

1 , . . . , λ
I′

m 〉 = 〈δ1, . . . , δm〉 also entails hit. The
semantics of FCQs is defined in the obvious way based on the
extension of FCPs.

A GQ is an FCQ ∃y.P(z) such that P is frontier-guarded.
Similarly, we define MQ (monadic), LinMQ (linear, monadic),
and LinGQ (linear, frontier-guarded) queries.

In contrast to Rudolph and Krötzsch [2013], we do not de-
fine monadic queries as conjunctive queries of FCPs, but we
merely allow existential quantification to project some of the
FCP variables. Proposition 1 below shows that this does not
reduce expressiveness.

We generally consider monadic Datalog as a special case
of frontier-guarded Datalog. Monadic Datalog rules do not
have to be frontier-guarded. A direct way to obtain a suitable
guard is to assume that there is a unary domain predicate that
contains all (relevant) elements of the domain of the database
instance. However, it already suffices to require safety of Dat-
alog rules, i.e., that the variable in the head of a rule must
also occur in the body. Then every element that is inferred
to belong to an IDB relation must also occur in some EDB
relation. We can therefore add single EDB guard atoms to
each rule in all possible ways without modifying the seman-
tics. This is a polynomial operation, since all variables in the
guards are fresh, other than the single head variable that we
want to guard. We therefore find, in particular, that GQ cap-
tures the expressiveness of MQ. The converse is not true, as
the following example illustrates.

2828

Example 2. The following 4-ary LinGQ generalizes Exam-
ple 1 by checking for the existence of two parallel p-chains
of arbitrary length, where each pair of elements along the
chains is connected by a relation q, like the steps of a ladder.

q(λ1, λ2)→ Uq(λ1, λ2)
Uq(x, y) ∧ p(x, x′) ∧ p(y, y′), q(x′, y′)→ Uq(x′, y′)

Uq(λ3, λ4)→ hit

One might assume that the following MQ is equivalent:

q(λ1, λ2)→ U1(λ1)
q(λ1, λ2)→ U2(λ2)

U1(x) ∧ U2(y) ∧ p(x, x′) ∧ p(y, y′), q(x′, y′)→ U1(x′)
U1(x) ∧ U2(y) ∧ p(x, x′) ∧ p(y, y′), q(x′, y′)→ U2(y′)

U1(λ3) ∧ U2(λ4)→ hit

However, the latter query also matches structures that are
not ladders. For example, the following database yields the
answer 〈a, b, c, d〉, although there is no corresponding lad-
der structure: {q(a, b), p(a, c), p(b, e), q(c, e), p(a, e′), p(b, d),
q(e′, d)}. One can extend the MQ to avoid this case, but any
such fix is “local” in the sense that a sufficiently large ladder-
like structure can trick the query.

Rudolph and Krötzsch [2013] showed that monadically
defined queries can be expressed both in Datalog and in
monadic second-order logic. While we lose the connection
to monadic second-order logic with GQs, the expressibility in
Datalog remains. The encoding is based on the intuition that
the choice of the candidate answers for λ “contextualizes”
the inferences of the Datalog program. To express this with-
out special constants, we can store this context information in
predicates of suitably increased arity.

Example 3. The 4-ary LinGQ of Example 2 can be expressed
with the following Datalog query. For brevity, let y be the
variable list 〈y1, y2, y3, y4〉, which provides the context for the
IDB facts we derive.

q(y1, y2)→ U+
q (y1, y2, y)

Uq(x, y, y) ∧ p(x, x′) ∧ p(y, y′), q(x′, y′)→ U+
q (x′, y′, y)

Uq(y3, y4, y)→ goal(y)

This result is obtained by a straightforward extension of the
translation algorithm for MQs [Rudolph and Krötzsch, 2013],
which may not produce the most concise representation. Also
note that the first rule in this program is not safe, since y3
and y4 occur in the head but not in the body. According to
the semantics we defined, such variables can be bound to any
element in the active domain of the given database instance
(i.e., they behave as if bound by a unary domain predicate).

This observation justifies that we consider MQs, GQs, etc.
as Datalog fragments. It is worth noting that the translation
does not change the number of IDB predicates in the body
of rules, and thus preserves linearity. The relation to (lin-
ear) Datalog also yields some complexity results for query
answering; we will discuss these at the end of the next sec-
tion, after introducing nested variants our query languages.

4 Nested Queries
Every query language gives rise to a nested language, where
we allow the use of nested queries as if they were predicates.
Sometimes, this does not lead to a new query language (like
for CQ and Dlog), but often it affects complexities and/or
expressiveness. It has been shown that both are increased
when moving from MQs to their nested variants [Rudolph and
Krötzsch, 2013]. We will see that nesting also has strong ef-
fects on the complexity of query containment.
Definition 2. We define k-nested FCPs inductively. A 1-
nested FCP is an FCP. A k+1-nested FCP is an FCP that may
use k-nested FCPs of arity m instead of predicate symbols of
arity m in rule bodies. The semantics of nested FCPs is im-
mediate based on the extension of FCPs. A k-nested FCQ P
is of the form ∃y.P(z), where P is a k-nested FCP of arity |z|
and all variables in y occur in z.

A k-nested GQ query is a k-nested frontier-guarded FCQ.
For the definition of frontier-guarded, we still require EDB
predicates in guards: subqueries cannot be guards. The lan-
guage of k-nested GQ queries is denoted GQk; the language
of arbitrarily nested GQ queries is denoted GQ+.

Similarly, we define languages MQk and MQ+ (monadic),
LinMQk and LinMQ+ (linear, monadic), and LinGQk and
LinGQ+ (linear, frontier-guarded).

Note that nested queries can use the same additional sym-
bols (predicates and constants); this does not lead to any se-
mantic interactions, however, as the interpretation of the spe-
cial symbols is “private” to each query. To simplify notation,
we assume that distinct (sub)queries always contain distinct
special symbols. The relationships of the query languages we
introduced here are summarized in Figure 1, where upwards
links denote increased expressiveness. An interesting obser-
vation that is represented in this figure is that linear Datalog
is closed under nesting:
Theorem 3. LinDlog = LinDlog+.

Another kind of nesting that does not add expressiveness
is the nesting of FCQs in UCQs. Indeed, it turns out that
(nested) FCQs can internalize arbitrary conjunctions and dis-
junctions of FCQs (of the same nesting level). This even
holds when restricting to linear rules.
Proposition 1. Let P be a positive query, i.e., a Boolean ex-
pression of disjunctions and conjunctions, of LinMQk queries
with k ≥ 1. Then there is a LinMQk query P′ of size poly-
nomial in P that is equivalent to P. Analogous results hold
when replacing LinMQk by MQk, GQk, or LinMQk queries.

Query answering for MQs has been shown to be NP-
complete (combined complexity) and P-complete (data com-
plexity). For MQ+, the combined complexity increases to
PSpace while the data complexity remains the same. These
results can be extended to GQs. We also note the complexity
for frontier-guarded Datalog, for which we are not aware of
any published result.
Theorem 4. The combined complexity of evaluating GQ
queries over a database instance is NP-complete. The same
holds for GDlog queries. The combined complexity of evalu-
ating GQ+ queries is PSpace-complete. The data complexity
is P-complete for GDlog, GQ, and GQ+.

2829

The lower bounds in the previous case follow from know
results for MQs. Particularly, the hardness proof for nested
MQs also shows that queries of a fixed nesting level can
encode the validity problem for quantified boolean formu-
lae with a certain number of quantifier alternations; this ex-
plains why we show the combined complexity of MQk to be
in the Polynomial Hierarchy in Figure 1. A modification of
this hardness proof of Rudolph and Krötzsch [2013] yields
the same results for the combined complexities in the linear
cases; matching upper bounds follow from Theorem 4.
Theorem 5. The combined complexity of evaluating LinMQ,
LinGDlog, or LinGQ queries over a database instance is NP-
complete. The combined complexity of evaluating LinMQ+ or
LinGQ+ queries is PSpace-complete. The data complexity is
NLogSpace-complete for all of these query languages.

5 Complexity of Query Containment
In this section, we first discuss an automata-based way to de-
cide query containment, yielding upper complexity bounds.

We first recall a general technique of reducing query con-
tainment to the containment problem for (tree) automata
[Chaudhuri and Vardi, 1997]. In spite of several extensions
we need for λ-terms and nesting, our proofs still follow the
same basic approach. An introduction to tree automata is in-
cluded in the report [Bourhis et al., 2015].

A common way to describe the answers of a Dlog query
P = 〈P, p〉 is to consider its expansion trees. Intuitively
speaking, the goal atom p(x) can be rewritten by applying
rules of P in a backward-chaining manner until all IDB predi-
cates have been eliminated, resulting in a CQ. The answers of
P coincide with the (infinite) union of answers to the CQs
obtained in this fashion. The rewriting itself gives rise to
a tree structure, where each node is labeled by the instance
of the rule that was used in the rewriting, and the leaves are
instances of rules that contain only EDB predicates in their
body. The set of all expansion trees provides a regular de-
scription of P that we exploit to decide containment.

To formalize this approach, we describe the set of all ex-
pansion trees as a tree language, i.e., as a set of trees with
node labels from a finite alphabet. The number of possible
labels of nodes in expansion trees is unbounded, since rules
are instantiated using fresh variables. To obtain a finite alpha-
bet of labels, one limits the number of variables and thus the
overall number of possible rule instantiations [Chaudhuri and
Vardi, 1997]. The set of proof trees obtained in this way is
a regular tree language that can be described by an automa-
ton AP. In order to use AP to decide containment of P by
another query P′, we construct an automaton APvP′ that ac-
cepts all proof trees of P that are “matched” by P′. Indeed,
every proof tree induces a witness, i.e., a minimal matching
database instance, and one can check whether or not P′ can
produce the same query answer on this instance. If this is the
case for all proof trees of P, then containment is shown.

Our first result provides the upper bound for deciding con-
tainment of GQ queries. In fact, the result extends to arbitrary
Dlog queries on the left-hand side.
Theorem 6. Containment of Dlog queries in GQ queries can
be decided in 3ExpTime.

The proof of this result requires a number of new tech-
niques on top of the established methods. We are looking for
an automaton APvP′ that accepts proof trees of P where the
underlying witness is also accepted by P′. As a first step, we
construct an automaton AP,ρ that verifies that a single rule ρ
of P′ can be applied in a specific way to derive one specific
conclusion. Since proof trees reuse variables to obtain a finite
alphabet, the conclusion of the rule is an atom p(v) referring
to variables v that are ambiguous if we do not know exactly
which place in the tree we are referring to. Therefore the in-
put of AP,ρ is a proof tree of P with two kinds of additional
information added to the labels: (a) the interpretation of the λ
constants that is used, and (b) the expected conclusion of the
rule. AP,ρ is a top-down tree automaton of exponential size.

We want to combine many automata of the form AP,ρ to
verify complete derivations of P′ rather than single rule ap-
plications. In this case, we cannot add information about the
expected conclusion p(v) to the tree, since there are unbound-
edly many conclusions during one run. Instead, we encode
the conclusion by considering auomtata A+

P,ρ,v that can start
their run not just from the root, but from some node within the
tree where all variables v occur with the same meaning as in
the conclusion p(v) (this is a single node due to guardedness).
Starting in the middle of the tree makes it necessary to con-
sider both nodes below and above the current position, and
A+

P,ρ,v thus needs to be an alternating 2-way tree automaton.
An automaton A+

PvP′ that verifies a complete derivation of
P′ on a proof tree of P is obtained by “concatenating” au-
tomata of the form A+

P,ρ,v. A+
PvP′ is an alternating 2-way au-

tomaton that is exponential in size. The trees accepted by
A+

PvP′ still need to contain information about the interpreta-
tion of λ-constants. Using a well-known construction, we ob-
tain an exponentially larger (1-way) top-down tree automaton
A′PvP′ that accepts the same trees. This automaton of dou-
ble exponential size can finally be changed into the automa-
tonAPvP′ that does not require λ-annotations—a polynomial
transformation. We finish with a doubly-exponential automa-
ton APvP′ . Checking containment in AP is an exponential
process, leading to the claimed 3ExpTime result.

We can modify this proof to obtain another interesting re-
sult for the case of frontier-guarded Datalog. If P is a GDlog
query, which does not use any special constants λ, we can
directly construct a complement tree automaton ĀPvP′ that
is only doubly exponential [Cosmadakis et al., 1988, Theo-
rem A.1]. Containment can then be checked by checking the
non-emptiness of AP ∩ ĀPvP′ , which is possible in polyno-
mial time, leading to a 2ExpTime algorithm.
Theorem 7. Containment of Dlog queries in GDlog queries
can be decided in 2ExpTime.

This generalizes an earlier result of Cosmadakis et al.
[1988] for monadic Datalog, using another, direct proof.

To lift our results to nested queries, we further extend the
ideas developed in the non-nested case. Nested queries are
similar to IDB predicates whose validity we need to check
using automata. To do this, we first construct alternating
two-way tree automata A+

P,Q,θ that verify a match of query
Q on a tree that is annotated with the expected values of the
λ-constants. To remove the need for this annotation when ver-

2830

UCQ,LinMDlog, MDlog, LinMQk, MQk, LinMQ+,MQ+,
LinGDlog, GDlog LinGQk GQk LinGQ+,GQ+ Dlog

LinMQ PSpace-h kExpSpace-h
[Chaudhuri and Vardi, 1994] [Bourhis et al., 2015] (k + 1)ExpSpace-c Nonelementary Undecidable

ExpSpace (k + 1)ExpSpace [Bourhis et al., 2015] [Bourhis et al., 2015] [Abiteboul et al., 1994]
[Bourhis et al., 2015] [Bourhis et al., 2015]

LinGDlog,
LinMQn (n ≥ 2), ExpSpace-c (k + 1)ExpSpace-c (k + 1)ExpSpace-c Nonelementary Undecidable
LinMQ+, LinGQ+, [Bourhis et al., 2015] [Bourhis et al., 2015] [Bourhis et al., 2015] [Bourhis et al., 2015] [Abiteboul et al., 1994]
LinGQn, LinDlog
MDlog, GDlog, 2ExpTime-c
MQn, GQn, [Benedikt et al., 2012], (k + 2)ExpTime-c (k + 2)ExpTime-c Nonelementary Undecidable
MQ+, GQ+, [Chaudhuri and Vardi, 1997]\ [Th.9]\[Th.8] [Th.9]\[Th.8] [Th.9] [Shmueli, 1987]
Dlog [Cosmadakis et al., 1988], [Th.7]

Table 1: Summary of the known complexities of query containment for several Datalog fragments; sources for each claim are
shown in square brackets, using \ to separate sources for lower and upper complexity bounds, respectively

ifying subqueries as part of a longer run, we can again trans-
form A+

P,Q,θ into a tree automaton (exponential), and project
away the λ-annotations (polynomial). The resulting automa-
ton AP,Q is analogous to the above tree automaton AP,ρ. The
rest of the proof uses similar constructions as before. The ex-
ponential transformation fromA+

P,Q,θ toAP,Q is the reason for
the exponential complexity increase in each nesting level.
Theorem 8. Containment of Dlog queries in GQk queries can
be decided in (k + 2)ExpTime.

To obtain matching lower bounds, we provide direct en-
codings of Alternating Turing Machines (ATMs) with a fixed
space bound. In the context of query containment, this is
done by defining a pair of queries P1 and P2 such that P1
matches all structures that encode a sequence (or tree) of (un-
related) Turing machine configurations, while P2 matches all
such structures that do not correctly encode a run of the given
TM (i.e., P2 detects encoding errors). Then any structure that
is matched by P1 but not by P2 encodes a terminating ATM
run, such that the ATM halts iff P1 is not contained in P2.

To obtain hardness results for arbitrary towers of exponen-
tial functions, all of our constructions use existing queries to
construct larger queries. For example, a query SameCell[x, y]
is defined to match the cells in neighboring configurations
that are located at the same position of the ATM tape. This
query becomes more and more complex (and more and more
nested) as we go to exponentially larger tapes, but the con-
struction of the queries needed for the next level always fol-
lows the same pattern. In spite of this efficient presentation,
the complete ATM encoding requires significant space, and
we must refer to the technical report for the details.
Theorem 9. Deciding containment of MDlog queries in MQk

queries is hard for (k + 2)ExpTime.
Note that the statement includes the 3ExpTime-hardness for

containment of MQs as a special case.
A range of further results can be obtained by considering

linear Datalog instead of Datalog in the role of the contained
query. This tends to reduce complexity since one can focus on
linear derivations, which can be described by word automata
instead of tree automata. Accordingly, many ExpTime prob-
lems are reduced to PSpace, and all previous complexities for
(k + 2)ExpTime translate into results for (k + 1)ExpSpace ac-
cordingly. Our ATM constructions are replaced by regular

TM constructions, and we obtain tight bounds in most cases.
The only exception is containment of LinMQ in LinMQk,
where our lower bounds are one exponential below the up-
per bounds. The exact complexity remains open.

6 Conclusions
We have studied the most expressive fragments of Datalog
for which query containment is known to be decidable, and
we provided exact complexities for query answering and con-
tainment in most cases. Our results are summarized in Ta-
ble 1. While containment tends to be nonelementary for
nested queries, we have identified tight exponential complex-
ity hierarchies depending on nesting depth. Our results settle
several open problems for known query languages: the com-
plexity of query containment for MQ and MQ+, the complex-
ity of query containment of Dlog in GDlog, and the expressiv-
ity of nested LinDlog.

Moreover, we have introduced new query languages based
on frontier-guarded Datalog, showing that most complexities
are unaffected by this extension.

A few small questions remain open. First, our results are
not tight for linear MQs. This case is closely related to con-
junctive regular path queries, and inspiration might be drawn
from recent results in this field [Reutter, 2013]. Another ques-
tion is about the role of constants, which we use heavily in
some of our hardness proofs. For the case of (linear) monadic
Datalog without constants, we conjecture that containment
complexities are reduced by one exponential each.

Promising directions for future research include the study
of practical containment algorithms, since our automata-
based techniques do not lend themselves to implementation
yet. Another interesting topic is the search for suitable queries
that contain a given query. A special case of this is the bound-
edness problem, where we try to find a UCQ that contains
a given Datalog program. This can be addressed by similar
automata-based constructions [Cosmadakis et al., 1988]. Be-
sides boundedness, one can also ask more general questions
of rewritability, e.g., whether some Datalog program can be
expressed in monadic Datalog or in a regular path query.
Acknowledgements Pierre Bourhis was partially supported
by the INRIA North European associate team Integrating
Linked Data. Markus Krötzsch was supported by the DFG
in Emmy Noether grant “DIAMOND” (KR 4381/1-1).

2831

References
[Abiteboul and Vianu, 1999] Serge Abiteboul and Victor Vianu.

Regular path queries with constraints. J. Comput. Syst. Sci.,
58(3):428–452, 1999.

[Abiteboul et al., 1994] Serge Abiteboul, Richard Hull, and Victor
Vianu. Foundations of Databases. Addison Wesley, 1994.

[Baget et al., 2011] Jean-François Baget, Michel Leclère, Marie-
Laure Mugnier, and Eric Salvat. On rules with existential vari-
ables: Walking the decidability line. Artificial Intelligence,
175(9–10):1620–1654, 2011.

[Bárány et al., 2011] Vince Bárány, Balder ten Cate, and Luc
Segoufin. Guarded negation. In Luca Aceto, Monika Henzinger,
and Jiri Sgall, editors, ICALP (2), volume 6756 of LNCS, pages
356–367. Springer, 2011.

[Bárány et al., 2012] Vince Bárány, Balder ten Cate, and Martin
Otto. Queries with guarded negation. PVLDB, 5(11):1328–1339,
2012.

[Benedikt et al., 2012] Michael Benedikt, Pierre Bourhis, and
Pierre Senellart. Monadic datalog containment. In Proc. 39th Int.
Coll. on Automata, Languages, and Programming (ICALP’12),
pages 79–91, 2012.

[Bienvenu et al., 2013] Meghyn Bienvenu, Balder ten Cate, Carsten
Lutz, and Frank Wolter. Ontology-based data access: A study
through disjunctive datalog, CSP, and MMSNP. In Richard
Hull and Wenfei Fan, editors, Proc. 32nd Symp. on Principles
of Database Systems (PODS’13), pages 213–224. ACM, 2013.

[Bienvenu et al., 2014] Meghyn Bienvenu, Diego Calvanese, Mag-
dalena Ortiz, and Mantas Simkus. Nested regular path queries
in description logics. In Chitta Baral, Giuseppe De Giacomo,
and Thomas Eiter, editors, Proc. 14th Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR’14). AAAI Press,
2014.

[Bischoff et al., 2014] Stefan Bischoff, Markus Krötzsch, Axel
Polleres, and Sebastian Rudolph. Schema-agnostic query rewrit-
ing for SPARQL 1.1. In Peter Mika, Tania Tudorache, Abra-
ham Bernstein, Chris Welty, Craig A. Knoblock, Denny Vran-
dečić, Paul T. Groth, Natasha F. Noy, Krzysztof Janowicz, and
Carole A. Goble, editors, Proc. 13th Int. Semantic Web Conf.
(ISWC’14), volume 8796 of LNCS, pages 584–600. Springer,
2014.

[Bourhis et al., 2015] Pierre Bourhis, Markus Krötzsch, and Sebas-
tian Rudolph. Reasonable highly expressive query languages:
Extended technical report. Available at https://ddll.inf.
tu-dresden.de/web/Techreport3020, 2015.

[Calì et al., 2008] Andrea Calì, Georg Gottlob, and Michael Kifer.
Taming the infinite chase: Query answering under expressive re-
lational constraints. In Gerhard Brewka and Jérôme Lang, edi-
tors, Proc. 11th Int. Conf. on Principles of Knowledge Represen-
tation and Reasoning (KR’08), pages 70–80. AAAI Press, 2008.

[Calvanese et al., 2003] Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, and Moshe Y. Vardi. Reasoning on regular
path queries. SIGMOD Record, 32(4):83–92, 2003.

[Calvanese et al., 2005] Diego Calvanese, Giuseppe De Giacomo,
and Moshe Y. Vardi. Decidable containment of recursive queries.
Theor. Comput. Sci., 336(1):33–56, 2005.

[Calvanese et al., 2007a] Diego Calvanese, Thomas Eiter, and
Magdalena Ortiz. Answering regular path queries in expressive
description logics: An automata-theoretic approach. In Proc.
22nd AAAI Conf. on Artificial Intelligence (AAAI’07), pages 391–
396. AAAI Press, 2007.

[Calvanese et al., 2007b] Diego Calvanese, Guiseppe De Giacomo,
Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati.
Tractable reasoning and efficient query answering in descrip-
tion logics: The DL-Lite family. J. of Automated Reasoning,
39(3):385–429, 2007.

[Calvanese et al., 2009] Diego Calvanese, Thomas Eiter, and Mag-
dalena Ortiz. Regular path queries in expressive description log-
ics with nominals. In Craig Boutilier, editor, Proc. 21st Int. Joint
Conf. on Artificial Intelligence (IJCAI’09), pages 714–720. IJ-
CAI, 2009.

[Chaudhuri and Vardi, 1994] Surajit Chaudhuri and Moshe Y.
Vardi. On the complexity of equivalence between recursive and
nonrecursive Datalog programs. In Proc. 13th Symp. on Princi-
ples of Database Systems (PODS’93), pages 107–116, 1994.

[Chaudhuri and Vardi, 1997] Surajit Chaudhuri and Moshe Y.
Vardi. On the equivalence of recursive and nonrecursive Data-
log programs. J. of Comput. Syst. Sci., 54(1):61–78, 1997.

[Cosmadakis et al., 1988] Stavros Cosmadakis, Haim Gaifman,
Paris Kanellakis, and Moshe Vardi. Decidable optimization
problems for database logic programs. In Proc. 20th Annual
ACM Symp. on Theory of Computing (STOC’88), pages 477–490.
ACM, 1988.

[Courcelle, 1991] Bruno Courcelle. Recursive queries and context-
free graph grammars. Theor. Comput. Sci., 78(1):217–244, 1991.

[Deutsch and Tannen, 2002] Alin Deutsch and Val Tannen. Op-
timization properties for classes of conjunctive regular path
queries. In Revised Papers from the 8th Int. Workshop on
Database Programming Languages (DBPL’01), pages 21–39.
Springer, 2002.

[Eiter et al., 2009] Thomas Eiter, Carsten Lutz, Magdalena Ortiz,
and Mantas Simkus. Query answering in description logics with
transitive roles. In Craig Boutilier, editor, Proc. 21st Int. Joint
Conf. on Artificial Intelligence (IJCAI’09), pages 759–764. IJ-
CAI, 2009.

[Florescu et al., 1998] Daniela Florescu, Alon Levy, and Dan Su-
ciu. Query containment for conjunctive queries with regular ex-
pressions. In Alberto O. Mendelzon and Jan Paredaens, editors,
Proc. 17th Symp. on Principles of Database Systems (PODS’98),
pages 139–148. ACM, 1998.

[Krötzsch, 2011] Markus Krötzsch. Efficient rule-based inferenc-
ing for OWL EL. In Toby Walsh, editor, Proc. 22nd Int. Joint
Conf. on Artificial Intelligence (IJCAI’11), pages 2668–2673.
AAAI Press/IJCAI, 2011.

[Reutter, 2013] Juan L. Reutter. Containment of nested regular ex-
pressions. CoRR, abs/1304.2637, 2013.

[Rudolph and Krötzsch, 2013] Sebastian Rudolph and Markus
Krötzsch. Flag & check: Data access with monadically defined
queries. In Richard Hull and Wenfei Fan, editors, Proc. 32nd
Symp. on Principles of Database Systems (PODS’13), pages
151–162. ACM, 2013.

[Shmueli, 1987] O. Shmueli. Decidability and expressiveness as-
pects of logic queries. In Proc. 6th Symp. on Principles of
Database Systems (PODS’87), pages 237–249. ACM, 1987.

[Xiao et al., 2010] Guohui Xiao, Stijn Heymans, and Thomas Eiter.
DReW: a reasoner for Datalog-rewritable description logics and
dl-programs. In Thomas Eiter, Adil El Ghali, Sergio Fernández,
Stijn Heymans, Thomas Krennwallner, and François Lévy, edi-
tors, Proc. 1st Int. Workshop on Business Models, Business Rules
and Ontologies (BuRO’10), pages 1–14. ONTORULE Project,
2010.

2832

