
20	 This article has been peer-reviewed.� Computing in Science & Engineering

C o m p u t a t i o n a l
P r o v e n a n c e

Provenance for
Computational Tasks: A Survey

Juliana Freire, David Koop, Emanuele Santos,
and Cláudio T. Silva
University of Utah

The problem of systematically capturing and managing provenance for computational
tasks has recently received significant attention because of its relevance to a wide range
of domains and applications. The authors give an overview of important concepts related
to provenance management, so that potential users can make informed decisions when
selecting or designing a provenance solution.

T he Oxford English Dictionary defines
provenance as “the source or origin
of an object; its history and pedigree;
a record of the ultimate derivation

and passage of an item through its various own-
ers.” In scientific experiments, provenance helps
us interpret and understand results: by examining
the sequence of steps that led to a result, we can
gain insights into the chain of reasoning used in
its production, verify that the experiment was per-
formed according to acceptable procedures, iden-
tify the experiment’s inputs, and, in some cases,
reproduce the result. Laboratory notebooks have
been the traditional mechanism for maintaining
such information, but because the volume of data
manipulated in computational experiments has
increased along with the complexity of analysis,
manually capturing provenance and writing de-
tailed notes is no longer an option—in fact, it can
have serious limitations. Scientists and engineers
expend substantial effort and time managing data
and recording provenance information just to an-

swer basic questions, such as, Who created this
data product and when? Who modified it and
when? What process created the data product?
Did the same raw data lead to two data products?

The problem of systematically capturing and
managing provenance for computational tasks is
relevant to a wide range of domains and appli-
cations. Fortunately, this problem has received
significant attention recently. Our goal with this
survey article is to inform potential provenance
technology users about different approaches and
their trade-offs, thereby helping them make in-
formed decisions while selecting or developing a
provenance solution. Two other surveys also touch
on the issue of provenance for computational tasks:
Bose and Frew1 provide a comprehensive over-
view that covers early work in the area as well as
standards used in specific domains, and Simmhan
and colleagues2 describe a taxonomy they devel-
oped to compare five systems. Our survey, in con-
trast, discusses fundamental issues in provenance
management but isn’t intended for specialists.
Specifically, we identify three major components
of provenance management and discuss different
approaches used in each of them. We also cover
recent literature and the current state of the art.
Although we can’t provide a comprehensive cov-
erage of all systems due to space limitations, we do
review a representative set, including those sys-

1521-9615/08/$25.00 © 2008 IEEE

Copublished by the IEEE CS and the AIP

May/June 2008 � 21

tems in wide use that illustrate different solutions.
Applications that use provenance appear in other
articles in this special issue. The problem of man-
aging fine-grained provenance recorded for items
in a database is out of scope for this survey—a de-
tailed overview appears elsewhere3.

Provenance Management:
An Overview
Before discussing the specific trade-offs among
provenance systems and models, let’s examine the
general aspects of provenance management. Spe-
cifically, let’s explore the methods for modeling
computational tasks and the types of provenance
information we can capture from these tasks. To
illustrate these themes, we use a scenario that’s
common in visualizing medical data—the cre-
ation of multiple visualizations of a volumetric
computer tomography (CT) data set.

Modeling Computational Tasks
To allow reproducibility, we can represent compu-
tational tasks with a variety of mechanisms, includ-
ing computer programs, scripts, and workflows, or

construct them interactively by using specialized
tools (such as ParaView [www.paraview.org] for
scientific visualization and GenePattern [www.
broad.mit.edu/cancer/software/genepattern] for
biomedical research). Some complex computa-
tional tasks require weaving tools together, such
as loosely coupled resources, specialized libraries,
or Web services. To analyze a CT scan’s results,
for example, we might need to preprocess data with
different parameters, visualize each result, and then
compare them. To ensure the reproducibility of the
entire task, it’s beneficial to have a description that
captures these steps and the parameter values used.
One approach is to order computational processes
and organize them into scripts; the session log in-
formation that some software tools expose can also
help document and reproduce results. However,
these approaches have shortcomings—specifically,
the user is responsible for manually checking-in in-
cremental script changes or saving session log files.
Moreover, the saved information often isn’t in an
easily queried format.

Recently, workflows and workflow-based sys-
tems have emerged as an alternative to these

(b)

(a)

(c)

Read File

Extract
Isosurface

Display on
Screen

import vtk

data = vtk.vtkStructuredPointsReader()
data.setFileName("../../../examples/data/head.120.vtk")

contour = vtk.vtkContourFilter()
contour.SetInput(0, data.GetOutput())
contour.SetValue(0, 67)

mapper = vtk.vtkPolyDataMapper()
mapper.SetInput(contour.GetOutput())
mapper.ScalarVisibilityOff()

actor = vtk.vtkActor()
actor.SetMapper(mapper)

cam = vtk.vtkCamera()
cam.SetViewUp(0,0,-1)
cam.SetPosition(745,-453,369)
cam.SetFocalPoint(135,135,150)
cam.ComputeViewPlaneNormal()

ren = vtk.vtkRenderer()
ren.AddActor(actor)
ren.SetActiveCamera(cam)
ren.ResetCamera()

renwin = vtk.vtkRenderWindow()
renwin.AddRenderer(ren)

style = vtk.vtkInteractorStyleTrackballCamera()
iren = vtk.vtkRenderWindowIneractor()
iren.SetRenderWindow(renwin)
iren.SetInteractorStyle(style)
iren.Initialize()
iren.Start()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

vtkStructuredPointsReader

vtkCountourFilter

vtkDataSetMapper

vtkActor

vtkRenderer

vtkCamera

VTKCell

Figure 1. Different abstractions for a data flow. (a) A Python script containing a series of Visualization Toolkit (VTK) calls; (b) a
workflow that produces the same result as the script; and (c) a simplified view of the workflow that hides some of its details.

22� Computing in Science & Engineering

ad hoc types of approaches. Workflow systems
provide well-defined languages for specifying
complex tasks from simpler ones; they capture
complex processes at various levels of detail and
systematically record the provenance information
necessary for automation, reproducibility, and
result sharing. In fact, workflows are rapidly re-
placing primitive shell scripts, as evidenced by the
release of Apple’s Mac OS X Automator, Micro-
soft’s Workflow Foundation, and Yahoo!’s Pipes.

Workflows have additional advantages over pro-
grams and scripts, such as providing a simple pro-
gramming model that allows a sequence of tasks
to be composed by connecting one task’s outputs
to the inputs of another. Workflow systems can
also provide intuitive visual programming inter-
faces that are easier to use for users who don’t
have substantial programming expertise. In ad-
dition, workflows have an explicit structure—we

can view them as graphs, with nodes represent-
ing processes (or modules) and edges capturing
the data flow between those processes (see Figure
1). Having this explicit structure enables the in-
formation to be explored and queried. A program
(or script) is to a workflow what an unstructured
document is to a (structured) database.

Another important concept related to computa-
tional tasks is abstraction, which lets us split com-
plex tasks and represent them at different levels
of granularity. As Figure 1 illustrates, we can use
abstraction to create a simplified view of a work-
flow that hides some of its details. A researcher
studying a CT scan data set, for example, might
not know—or care about—the details of the Vi-
sualization Toolkit (VTK; www.kitware.com) li-
brary that created the visualizations. So, instead
of displaying the four distinct modules that ren-
der the final image (Figure 1b), a user can abstract

vtkStructuredPointsReader
Input: data/head.120.vtk
Output: preader
Start: 2006-08-19
 13:02:45
End: 2006-08-19
 13:03:22
User: juliana

vtkStructuredPointsReader

vtkCountourFilter

vtkDataSetMapper

vtkActorvtkCamera

VTKCell

vtkRenderer

head.120.vtk

MplPlot
Input: preader
Output: plot
Start: 2006-08-19
 13:04:25
End: 2006-08-19
 13:05:12
User: juliana

Execution 143: Unable
to �nd input �le

head-hist.png head-iso.png

head.120.vtk

derived by

depends
 on

depends on

derived by

head-iso.png

MplPlot

MplFigure

FileSink

vtkStructuredPointsReader

vtkStructurePointsReader

vtkCountourFilter

vtkDataSetMapper

vtkActorvtkCamera

VTKCell

vtkRenderer

MplPlot

MplFigure

MplFigureCell
Module:
extract
isosurface

(b)(a)

Work�ow:
Generates
visualization
of head from
visible human
project

Visualization: Isosurface
 showing bone

head-hist.png

Figure 2. Prospective and retrospective provenance. (a) The workflow on the left generates two data products: a histogram
of a structured data set’s scalar values and an isosurface visualization of that data set. On the left, we see some of the
retrospective provenance collected during a run along with user-defined provenance in the form of annotations, shown in
green boxes. (b) We derived the data products on the left from the workflow excerpts on the right, both of which depend
on the input data set head.120.vtk.

May/June 2008 � 23

them into a single module with a more descriptive
name such as “Display on Screen” (Figure 1c).

Different Forms of Provenance
We provided a high-level definition of provenance
at the beginning of this article. When it comes
to computational tasks, there are two forms of
provenance: prospective and retrospective.4 Pro-
spective provenance captures a computational task’s
specification (whether it’s a script or a workflow)
and corresponds to the steps (or recipe) that must
be followed to generate a data product or class
of data products. Retrospective provenance cap-
tures the steps executed as well as information
about the environment used to derive a specific
data product—in other words, it’s a detailed log
of a computational task’s execution. Retrospec-
tive provenance doesn’t depend on the presence
of prospective provenance—for example, we can
capture information such as which process ran,
who ran it, and how long it took without having
prior knowledge of the sequence of computational
steps involved.

For our running example, Figure 2 illustrates
prospective provenance captured as the defini-
tion of a workflow that produces two kinds of data
products: a histogram and an isosurface visualiza-
tion. The retrospective provenance (the left side of
Figure 2a) contains information for each module
about input and output data, the executing user,
and the execution start and end times.

An important component of provenance is in-
formation about causality—the process description
(or sequence of steps) that, together with input data
and parameters, led to the data product’s creation.
We can infer causality from both prospective and
retrospective provenance; Figure 2b illustrates the
relationships in our running example. We can also
represent causality as a graph in which nodes cor-
respond to processes and data products and edges
correspond to either data or data-process dependen-
cies. Data-process dependencies (for example, the
fact that the first workflow produced head-hist.
png) are useful for documenting the data genera-
tion process, but we can also use them to repro-
duce or validate a process. Data dependencies are
likewise useful—for example, in the event that we
learn the CT scanner used to generate head.120.
vtk is defective, we can examine the data depen-
dencies and discount the results that rely on it.

Another key component of provenance is user-
defined information—documentation that isn’t
captured automatically but that records important
decisions and notes. This data often comes in the
form of annotations—as Figure 2a illustrates, users

can add them at different levels of granularity and
associate them with different components of both
prospective and retrospective provenance (such as
modules, data products, or execution log records).

Three Key Components
A provenance management solution consists of
three main components: a capture mechanism,
a representational model, and an infrastructure
for storage, access, and queries. In this section,
we examine different classes of solutions for each
of these components and discuss the trade-offs
among them. To illustrate the approaches, we use
examples that highlight some of the capabilities of
existing provenance-enabled tools.

Capture Mechanisms
A provenance capture mechanism needs access
to a computational task’s relevant details, such as
its steps, execution information, and user-speci-
fied annotations. This type of mechanism falls
into three main classes: workflow-, process-, and
operating system- (OS-) based. Workflow-based
mechanisms are either attached to or integrated
in a workflow system; process-based mechanisms
require each service or process involved in a com-
putational task to document itself; and OS-based
mechanisms need no modifications to existing
scripts or programs; instead, they rely on the avail-
ability of specific functionality at the OS level.

A major advantage of workflow-based mecha-
nisms is that they’re usually tightly coupled with
workflow systems, which enables a straightforward
capture process through system APIs. Some early
workflow systems (such as Taverna [http://taverna.
sourceforge.net] and Kepler [http://kepler-project.
org]) have been extended to capture provenance,
but newer systems (such as VisTrails [www.vis-
trails.org]) support it from their initial design.
Each service or tool in a process-based mechanism
must be instrumented to capture provenance, with
any information derived from autonomous pro-
cesses pieced together to provide documentation
for complex tasks.5 OS-based mechanisms aren’t
coupled with workflows or processes at all, and
thus require postprocessing to extract relation-
ships between system calls and tasks.6,7

One advantage of OS-based mechanisms is that
they don’t require modifications to existing pro-
cesses and are agnostic about how tasks are mod-
eled—they rely on the OS environment’s ability
to transparently capture data and data-process
dependencies at the kernel (via the filesystem in-
terface)7 or user levels (via the system call tracer).6
In contrast, both workflow- and process-based ap-

24� Computing in Science & Engineering

proaches require processes to be wrapped—in the
former, so that the workflow engine can invoke
them, and in the latter, so that instrumentation
can capture and publish provenance information.

Because workflow systems have access to work-
flow definitions and control their execution, they
can capture both prospective and retrospective
provenance. OS- and process-based mechanisms
only capture retrospective provenance: they must
reconstruct causal relationships through prov-
enance queries. The ES3 system (http://eil.bren.
ucsb.edu), for example, monitors the interactions
between arbitrary applications and their environ-
ments (via arguments, file I/O, system, and calls),
and then uses this information to assemble a prov-
enance graph to describe what actually happened
during execution.6

In fact, by capturing provenance at the OS level,
we can record detailed information about all system
calls and files touched during a task’s execution.
This forms a superset of the information captured
in workflow- and process-based systems, whose
granularity is determined by the wrapping provid-
ed for individual processes. Consider, for example,
a command-line tool integrated in a workflow sys-
tem that creates and depends on temporary files not
explicitly defined in its wrapper. The causal depen-
dencies the workflow system captures won’t include
the temporary files, but we can capture these de-
pendencies at the OS level. However, because even
simple tasks can lead to a large number of low-level
calls, the amount of provenance that OS-based ap-
proaches record can be prohibitive, making it hard
to query and reason about the information.7

Provenance Models
Researchers have proposed several provenance
models in the literature.9,10,12 All these models
support some form of retrospective provenance,
and most of those that workflow systems use pro-
vide the means to capture prospective provenance.
Many of the models also support annotations.

Although these models differ in several ways,
including their use of structures and storage strat-
egies, they all share an essential type of informa-
tion: process and data dependencies. In fact, a
recent exercise to explore interoperability issues
among provenance models showed that it’s possible
to integrate information that conform to different
provenance models (http://twiki.ipaw.info/bin/
view/Challenge/SecondProvenanceChallenge).

Despite a base commonality, provenance mod-
els tend to vary according to domain and user
needs. Even though most models strive to store
general concepts, specific use cases often influ-
ence model design—for example, Taverna was de-
veloped to support the creation and management
of workflows in the bioinformatics domain, and
therefore provides an infrastructure that includes
support for ontologies available in this domain.
VisTrails was designed to support exploratory
tasks in which workflows are iteratively refined,
and thus uses a model that treats workflow speci-
fications as first-class data products and captures
the provenance of workflow evolution.

Because the provenance information a model
must represent varies both by type and specificity,
it’s advantageous to structure a model as a set of
layers to enable a normalized, configurable repre-
sentation. The ability to represent provenance at
different levels of abstraction also leads to simpler
queries and more intuitive results. Consider the
REDUX system,16 which uses the layered model
depicted in Figure 3. The first layer corresponds to
an abstract description of a workflow, in which each
module corresponds to a class of activities. This ab-
stract description is bound to specific services and
data sets defined in the second layer—for example,
in the workflow shown in Figure 1, the abstract
activity extract isosurface is bound to a call
to the vtkContourFilter—a specific implemen-
tation of isosurface extraction provided by VTK.
The third layer captures information about input
data and parameters supplied at runtime, and the
fourth layer captures operational details, such as
the workflow execution’s start and end time.

Structuring provenance information into mul-
tiple layers leads to a normalized representation
that avoids the storage of redundant information.
Some models, for example, store a workflow’s

Workflow template

Execution log

Workflow instance

Executable workflow

Pegasus

Abstract workflow

Execution log

Service instantiation

Data instantiation

Redux

Workflow evolution

Execution log

Workflow instance

VisTrails

Figure 3. Layered provenance models. For REDUX, the first layer
corresponds to an abstract description, the second layer describes the
binding of specific services and data to the abstract description, the
third layer captures runtime inputs and parameters, and the final layer
captures operational data. Other models use layers in different ways.
The top-layer in VisTrails captures provenance of workflow evolution,
and Pegasus uses an additional layer to represent the workflow
execution plan over grid resources.

May/June 2008 � 25

specification once for all of its executions;12,16 in
models with a single layer, such as Kepler’s, the
specification of a workflow instance must be saved
to the provenance model every time the workflow
is executed along with any runtime information.17
This not only incurs high storage overheads but
also negatively impacts query performance.

Although many models provide storage for
workflow specification and execution informa-
tion, the layers differ across systems. For systems
that schedule scientific workflow execution on
the grid (such as Pegasus11), it’s important to save
scheduling information as well as execution prov-
enance. To support higher-level semantic queries,
it might be useful to add additional layers of ap-
plication-specific metadata and ontologies, such as
in Taverna.18 VisTrails includes an additional layer
that records information about workflow evolu-
tion.12 In addition to causality information that
relates tasks to data products, it keeps track of how
these tasks evolve over time—in effect, a trail of
the workflow refinement process. The VisTrails
change-based provenance model records informa-
tion about modifications to a task, akin to a data-
base transaction log. For workflows, such changes
include a module’s addition or deletion, the addi-
tion of a connection between modules, and param-
eter value modifications. One major benefit of this
approach is that it’s concise and uses substantially
less space than the alternative, which stores mul-
tiple versions of a task specification. It also leads to
an interface (see Figure 4) that presents a workflow
evolution’s history as a tree, letting scientists re-
turn to previous versions intuitively.

Storing, Accessing, and Querying Provenance
Several approaches exist for capturing and model-
ing provenance, but only recently has the problem
of storing, accessing, and querying started to re-
ceive attention. Researchers have used a wide va-
riety of data models and storage systems, ranging
from specialized Semantic Web languages and
XML dialects stored as files to tuples stored in
relational database tables. One of the advantages
of filesystem storage is that users don’t need ad-
ditional infrastructure to store provenance infor-
mation. On the other hand, a relational database
provides centralized, efficient storage that a group
of users can share.

Infrastructure for effectively and efficiently
querying provenance data is a necessary compo-
nent of a provenance management system, es-
pecially when large volumes of information are
captured. When an OS-based approach such as
Provenance-Aware Storage Systems (PASS) cap-

tures very fine-grained provenance,7 for example,
the volume of information can be overwhelming,
making it difficult to explore. One of the queries
in the First Provenance Challenge asked for the
process used to generate a specific data product,
and PASS returned more than 5 Mbytes of data
(http://twiki.ipaw.info/bin/view/Challenge/
FirstProvenanceChallenge). In contrast, REDUX
returned a single tuple consisting of a few bytes
for the same query.

Provenance overload can also be a problem for
some workflow-based systems. Because a work-
flow’s execution can take multiple steps and run
several times, the amount of information stored for
a single workflow can be very large. Biton and col-
leagues proposed a solution that uses abstractions
through the creation of user views.19 The user indi-
cates which modules in the workflow specification
are relevant, and the system presents the prove-
nance information according to these preferences.
Of course, this approach works best in workflow
systems that support abstractions (such as Vis-
Trails, Taverna, and Kepler), but the ability to cre-

Combined volume
rendering and isosurfacing

Volume rendering
with clipping plane

Volume rendering

Volume
Rendering

SW

Clipping
Plane
SW

Combined
Rendering

SW

Image
Slices
SW

Histogram

HistogramFile

Isosurface
script

Isosurface

Figure 4. Workflow evolution exploration interface. The tree’s
nodes correspond to workflows, and an edge between two nodes
corresponds to changes performed on the parent workflow to obtain
its child. Data products derived by the different workflows are shown
on the right.

26� Computing in Science & Engineering

ate views of provenance data would benefit OS- and
process-based provenance models as well.

The ability to query a computational task’s prov-
enance also enables knowledge reuse. By querying
a set of tasks and their provenance, users can not
only identify suitable tasks and reuse them, but
also compare and understand differences between
different tasks. Provenance information is often
associated with data products (such as images or
graphs), so this data helps users pose structured
queries over unstructured data as well.

A common feature across many approaches to
querying provenance is that their solutions are
closely tied to the storage models used. Hence, they
require users to write queries in languages such as
SQL,16 Prolog,20 and SPARQL.10,11 Although such
general languages are useful to those already famil-
iar with their syntax, they weren’t designed specifi-
cally for provenance, which means simple queries
can be awkward and complex to write. Figure 5
compares three representations of a single query in
the First Provenance Challenge that asked for tasks

using a specific module (Align Warp) with given
parameters executed on a Monday. The VisTrails
approach uses a language specifically designed to
query workflows and their provenance, whereas
REDUX and myGrid use native languages for
their storage choices. Because the VisTrails lan-
guage abstracts details about physical storage, it
leads to much more concise queries.

However, even queries that use a language
designed for provenance are likely to be too
complicated for many users because provenance
contains structural information represented as a
graph. Thus, text-based query interfaces effec-
tively require a subgraph query to be encoded as
text. The VisTrails query-by-example (QBE) in-
terface (see Figure 6) addresses this problem by
letting users quickly construct expressive que-
ries using the same familiar interface they use
to build workflow.21 The query’s results are also
displayed visually.

Some provenance models use Semantic Web
technology both to represent and query provenance

VisTrails

REDUX

MyGrid

SELECT Execution.ExecutableWork�owId, Execution.ExecutionId, Event.EventId, ExecutableActivity.ExecutableActivityId
from Execution, Execution_Event, Event, ExecutableWork�ow_ExecutableActivity, ExecutableActivity,
 ExecutableActivity_Property_Value, Value, EventType as ET
where Execution.ExecutionId=Execution_Event.ExecutionId
and Execution_Event.EventId=Event.EventId
and ExecutableActivity.ExecutableActivityId=ExecutableActivity_Property_Value.ExecutableActivityId
and ExecutableActivity_Property_Value.ValueId=Value.ValueId and Value.Value=Cast('-m 12' as binary)
and ((CONVERT(DECIMAL, Event.Timestamp)+0)%7)=0 and Execution_Event.ExecutableWork�ow_ExecutableActivityId=
 ExecutableWork�ow_ExecutableActivity.ExecutableWork�ow_ExecutableActivityId
and ExecutableWork�ow_ExecutableActivity.ExecutableWork�owId=Execution.ExecutableWork�owId
and ExecutableWork�ow_ExecutableActivity.ExecutableActivityId=ExecutableActivity.ExecutableActivityId
and Event.EventTypeId=ET.EventTypeId and ET.EventTypeName='Activity Start';

wf{*}: x where x.module='AlignWarp' and x.parameter('model')='12'
 and (log{x}: y where y.dayOfWeek='Monday')

SELECT ?p
where (?p <http://www.mygrid.org.uk/provenance#startTime> ?time) and (?time > date)
using ns for <http://www.mygrid.org.uk/provenance#> xsd for <http://www.w3.org/2001/XMLSchema#>

SELECT ?p
where <urn:lsid:www.mygrid.org.uk:experimentinstance:HXQOVQA2ZI0>
(?p <http://www.mygrid.org.uk/provenance#runsProcess> ?processname .
?p <http://www.mygrid.org.uk/provenance#processInput> ?inputParameter .
?inputParameter <ont:model> <ontology:twelfthOrder>)
using ns for <http://www.mygrid.org.uk/provenance#> ont for <http://www.mygrid.org.uk/ontology#>

Figure 5. Provenance query implemented by three different systems. REDUX uses SQL, VisTrails uses a language specialized
for querying workflows and their provenance, and myGrid uses SPARQL.

May/June 2008 � 27

information.10,11,15,22 Semantic Web languages such
as RDF and OWL provide a natural way to model
provenance graphs and the ability to represent com-
plex knowledge, such as annotations and metadata.
This technology has the potential to simplify in-
teroperability across different provenance models,
but it’s an open issue whether this technology scales
to handle large provenance stores.

Provenance-Enabled Systems
Now let’s review a selection of different prove-
nance-enabled systems. We don’t intend to provide
a comprehensive guide to all existing systems—
rather, we aim to describe a representative subset.
Table 1 summarizes the various systems’ features.

Workflow-Based Systems
Taverna is a workflow system used in the myGrid
project (www.mygrid.org.uk), whose goal is to le-
verage Semantic Web technologies and ontologies
available for bioinformatics to simplify data anal-
ysis processes. In Taverna, the workflow engine
is responsible for capturing provenance. It stores
any prospective provenance information as Scufl
specifications (an XML dialect) and retrospective
provenance as RDF triples in a MySQL database.

Karma (www.extreme.indiana.edu/karma) was
developed to support dynamic workflows in
weather forecasting simulations, where the ex-

ecution path can change rapidly due to external
events.14 Karma collects retrospective provenance
in the form of a workflow trace; it also explic-
itly models data products’ derivation history.
Although Karma is a workflow-based system, in-
dividual services that compose a workflow publish
their own provenance to minimize performance
overheads at the workflow-engine level (just as in
process-based capture). Karma records the pub-
lished provenance messages in a central database
server: this information is exchanged between
services and server as XML, but it’s translated
into relational tuples before final storage. Karma
also stores prospective provenance using the Busi-
ness Process Execution Language.

The Kepler workflow system stores prospective
provenance in the Modeling Markup Language
(MoML) format,1 which is an XML dialect for
representing workflows; it captures retrospective
provenance by using a variation of MoML that
omits irrelevant information, such as the coordi-
nates for workflow modules drawn on the screen.
Currently, it stores provenance in files; query sup-
port is under development.

Pegasus (http://pegasus.isi.edu) is a workflow-
mapping engine that, while taking into account
resource efficiency and dynamic availability, au-
tomatically maps high-level workflow specifica-
tions into executable plans that run on distributed

vtkClipPolyData

Volume
Rendering

SW

Clipping
Plane
SW

Isosurface
Script

Visual query Results

vtkStructurePointsReader

vtkCountourFilter

Visual query canvas

Volume
Rendering

SW

Clipping
Plane
SW

Isosurface
Script

Combined
Rendering

SW

Image
Slices
SW

Histogram

HistogramFile

Isosurface

vtkCamera

vtkInteractionHandler

vtkPlane

vtkColorTransferFunction

vtkRenderer

VTKCell

vtkVolumeRayCastMapper

vtkPolyDataMapper

vtkVolume

vtkVolumeProperty

vtkVolume

vtkImplicitPlaneWidget

vtkPiecewiseFunction

vtkActor

vtkProperty

vtkVolumeRayCastCompositeFunction

vtkClipPolyData vtkCamera

vtkInteractionHandler

vtkPlane

vtkColorTransferFunction

vtkRenderer

VTKCell

vtkVolumeRayCastMapper

vtkPolyDataMapper

vtkVolume

vtkVolumePropertyy

vtkVolume

vtkImplicitPlaneWidget

vtkPiecewiseFunction

vtkActor

vtkPropertyty

vtkVolumeRayCastCompositeFunction

vtkStructuredPointsReader

vtkCountourFilter

History view

Work�ow view

Figure 6. Querying provenance by example. We can specify a query visually in the same interface used to construct
workflows. Besides the structure defined by the set of modules and connections, we can also specify conditions for
parameter values.

28� Computing in Science & Engineering

infrastructures such as the TeraGrid.11 Although
Pegasus models prospective provenance using
OWL, it captures retrospective provenance by
using the Virtual Data System (VDS; a precursor
of Swift) and then stores it in a relational database.
Queries that span prospective and retrospective
provenance must combine two different query
languages: SPARQL and SQL.

REDUX extends the Windows Workflow
Foundation engine to transparently capture the
workflow execution trace. As discussed earlier,
it uses a layered provenance model to normalize
data and avoid redundancy. REDUX stores prov-
enance data (both prospective and retrospective)
in a relational database’s set of tables that can be
queried with SQL. The system can also return an
executable workflow as the result of a provenance
query (for example, a query that requests all the
steps used to derive a particular data product).

Swift (www.ci.uchicago.edu/swift) builds on
and includes technology previously distributed
as the GriPhyN VDS.23 The system combines
a scripting language (SwiftScript) with a power-
ful runtime system for the concise specification
and reliable execution of large, loosely coupled
computations. Swift specifies these computations
as scripts, which the runtime system translates
into an executable workflow. A launcher program
invokes the workflow’s tasks, monitors the exe-
cution process, and records provenance informa-
tion, including the executable name, arguments,
start time, duration, machine information, and
exit status. Similar to VDS, Swift captures the
relationships among data, programs, and com-

putations and uses this information for data and
program discovery as well as for workflow sched-
uling and optimization.

VisTrails is a workflow and provenance man-
agement system designed to support exploratory
computational tasks. An important goal of the
VisTrails project is to build intuitive interfaces
for users to query and reuse provenance infor-
mation. Besides its QBE interface (which is built
on top of its specialized provenance query lan-
guage), VisTrails provides a visual interface to
compare workflows side by side12 and a mecha-
nism for refining workflows by analogy—users
can modify workflows by example without hav-
ing to directly edit their definitions.21 VisTrails
internally represents prospective provenance as
Python objects that can be serialized into XML
and relations; it stores retrospective provenance
in a relational database.

OS-Based Systems
PASS (www.eecs.harvard.edu/syrah/pass) op-
erates at the level of a shared storage system: it
automatically records information about which
programs are executed, their inputs, and any new
files created as output. The capture mechanism
consists of a set of Linux kernel modules that
transparently record provenance—it doesn’t re-
quire any changes to computational tasks. PASS
also constructs a provenance graph stored as a set
of tables in Berkeley DB. Users can pose prov-
enance queries using nq, a proprietary tool that
supports recursive searches over the provenance
graph. As discussed earlier, the fine granularity

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Workflow evolution Storage Query support

Available as open
source?

REDUX Workflow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Workflow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Workflow-based XML and relational Relational Yes RDBMS and files Visual query by example, specialized
language

Yes

Karma Workflow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Workflow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Workflow-based Scufl RDF Under development RDBMS SPARQL Yes

Pegasus Workflow-based OWL Relational No RDBMS SPARQL for metadata and workflow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes

May/June 2008 � 29

of PASS’s capture mechanism often leads to very
large volumes of provenance information; another
limitation of this approach is that it’s restricted to
local filesystems. It can’t, for example, track files
in a grid environment.

ES3’s goal is to extract provenance information
from arbitrary applications by monitoring their in-
teractions with the execution environment.6 These
interactions are logged to the ES3 database, which
stores the information as provenance graphs, rep-
resented in XML. ES3 currently supports a Linux
plugin, which uses system call tracing to capture
provenance. As in PASS, ES3 requires no changes
to the underlying processes, but provenance cap-
ture is restricted to applications that run on ES3-
supported environments.

Process-Based Systems
The Provenance-Aware Service Oriented Ar-
chitecture (PASOA) project (www.pasoa.org)
developed a provenance architecture that relies
on individual services to record their own prov-
enance.5 The system doesn’t model the notion of a
workflow—rather, it captures assertions produced
by services that reflect the relationships between
the represented services and data. The system
must infer the complete provenance of a task or
data product by combining these assertions and
recursively following the relationships they repre-
sent. The PASOA architecture distinguishes the
notion of process documentation—that is, the prove-
nance recorded specifically about a process—from
the notion of a data item’s provenance, which is de-
rived from the process documentation. The PA-

SOA project developed an open source software
package called PreServ that lets developers inte-
grate process documentation recording into their
applications. PreServ also supports multiple back
end storage systems, including files and relational
databases; users can pose provenance queries by
using its Java-based query API or XQuery.

P rovenance management is a new area,
but it is advancing rapidly. Researchers
are actively pursuing several directions
in this area, including the ability to in-

tegrate provenance derived from different systems
and enhanced analytical and visualization mech-
anisms for exploring provenance information.
Provenance research is also enabling several new
applications, such as science collaboratories, which
have the potential to change the way people do sci-
ence—sharing provenance information at a large
scale exposes researchers to techniques and tools
to which they wouldn’t otherwise have access. By
exploring provenance information in a collabora-
tory, scientists can learn by example, expedite their
scientific work, and potentially reduce their time
to insight. The “wisdom of the crowds,” in the
context of scientific exploration, can avoid duplica-
tion and encourage continuous, documented, and
reproducible scientific progress.24�

Acknowledgments
This work was partially supported by the US Nation-
al Science Foundation, the US Department of Energy,
and IBM faculty awards.

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective
provenance Workflow evolution Storage Query support

Available as open
source?

REDUX Workflow-based Relational Relational No Relational database management
system (RDBMS)

SQL No

Swift Workflow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Workflow-based XML and relational Relational Yes RDBMS and files Visual query by example, specialized
language

Yes

Karma Workflow- and
process-based

Business Process Execution
Language

XML No RDBMS Proprietary API Yes

Kepler Workflow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Workflow-based Scufl RDF Under development RDBMS SPARQL Yes

Pegasus Workflow-based OWL Relational No RDBMS SPARQL for metadata and workflow;
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes

30� Computing in Science & Engineering

References
R. Bose and J. Frew, “Lineage Retrieval for Scientific Data
Processing: A Survey,” ACM Computing Surveys, vol. 37, no.
1, 2005, pp. 1–28.

Y.L. Simmhan, B. Plale, and D. Gannon, “A Survey of Data
Provenance in E-Science,” SIGMOD Record, vol. 34, no. 3,
2005, pp. 31–36.

W.C. Tan, “Provenance in Databases: Past, Current, and Fu-
ture,” IEEE Data Eng. Bulletin, vol. 30, no. 4, 2007, pp. 3–12.

B. Clifford et al., “Tracking Provenance in a Virtual Data
Grid,” Concurrency and Computation: Practice and Experience,
vol. 20, no. 5, 2008, pp. 565–575.

P. Groth, The Origin of Data: Enabling the Determination of
Provenance in Multi-Institutional Scientific Systems through the
Documentation of Processes, PhD thesis, Univ. of Southamp-
ton, 2007.

J. Frew, D. Metzger, and P. Slaughter, “Automatic Capture
and Reconstruction of Computational Provenance,” Concur-
rency and Computation: Practice and Experience, vol. 20, no.
5, 2008, pp. 485–496.

K.-K. Muniswamy-Reddy, D.A. Holland, and U.B.M.I. Seltzer,
“Provenance-Aware Storage Systems,” Proc. USENIX Conf.,
Usenix, 2006, pp. 43–56.

I. Altintas, O. Barney, and E. Jaeger-Frank, “Provenance Col-
lection Support in the Kepler Scientific Workflow System,”
Proc. Int’l Provenance and Annotation Workshop (IPAW), LNCS
4145, Springer, 2006, pp. 118–132.

S. Cohen, S.C. Boulakia, and S.B. Davidson, “Towards a
Model of Provenance and User Views in Scientific Work-
flows,” Data Integration in the Life Sciences, LNCS 4075,
Springer, 2006, pp. 264–279.

J. Golbeck and J. Hendler, “A Semantic Web Approach to
the Provenance Challenge,” Concurrency and Computation:
Practice and Experience, vol. 20, no. 5, 2008, pp. 431–439.

J. Kim et al., “Provenance Trails in the Wings/Pegasus Sys-
tem,” Concurrency and Computation: Practice and Experience,
vol. 20, no. 5, 2008, pp. 587–597.

J. Freire et al., “Managing Rapidly-Evolving Scientific
Workflows,” Proc. Int’l Provenance and Annotation Workshop
(IPAW), LNCS 4145, Springer, 2006, pp. 10–18.

S. Miles et al., “Extracting Causal Graphs from an Open
Provenance Data Model,” Concurrency and Computation:
Practice and Experience, vol. 20, no. 5, 2008, pp. 577–586.

Y.L. Simmhan et al., “Karma2: Provenance Management
for Data Driven Workflows,” to be published in Int’l J. Web
Services Research, vol. 5, no. 1, 2008.

 J. Zhao et al., “Mining Taverna’s Semantic Web of Prov-
enance,” Concurrency and Computation: Practice and Experi-
ence, vol. 20, no. 5, 2008, pp. 463–472.

R.S. Barga and L.A. Digiampietri, “Automatic Capture and
Efficient Storage of e-Science Experiment Provenance,”
Concurrency and Computation: Practice and Experience, vol.
20, no. 5, 2008, pp. 419–429.

B. Ludäscher et al., “From Computation Models to Models
of Provenance: The RWS Approach,” Concurrency and
Computation: Practice and Experience, vol. 20, no. 5, 2008,
pp. 507–518.

T. Oinn et al., “Taverna: Lessons in Creating a Workflow
Environment for the Life Sciences,” Concurrency and Com-
putation: Practice & Experience, vol. 18, no. 10, 2006, pp.
1067–1100.

O. Biton et al., “Querying and Managing Provenance
through User Views in Scientific Workflows,” to be published
in Proc. IEEE Int’l Conf. Data Eng., 2008.

S. Bowers, T. McPhillips, and B. Ludaescher, “Provenance in
Collection-Oriented Scientific Workflows,” Concurrency and
Computation: Practice and Experience, vol. 20, no. 5, 2008,

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

pp. 519–529.

C.E. Scheidegger et al., “Querying and Creating Visualiza-
tions by Analogy,” IEEE Trans. Visualization and Computer
Graphics, vol. 13, no. 6, 2007, pp. 1560–1567.

J. Futrelle and J. Myers, “Tracking Provenance Semantics
in Heterogeneous Execution Systems,” Concurrency and
Computation: Practice and Experience, vol. 20, no. 5, 2008,
pp. 555–564.

Y. Zhao et al., “Swift: Fast, Reliable, Loosely Coupled Parallel
Computation,” IEEE Int’l Workshop on Sci. Workflows (SWF),
IEEE CS Press, 2007, pp. 199–206.

J. Freire and C. Silva, “Towards Enabling Social Analysis of
Scientific Data,” CHI Social Data Analysis Workshop, 2008,
(to appear).

Juliana Freire is an assistant professor at the Univer-
sity of Utah. Her research interests include scientific
data management, Web information systems, and
information integration. Freire has a PhD in comput-
er science from SUNY at Stony Brook. She is a mem-
ber of the ACM and the IEEE. Contact her at Juliana@
cs.utah.edu.

David Koop is a research assistant and graduate stu-
dent at the University of Utah. His research interests
include scientific data management, visualization,
and visualization systems. He has an MS in comput-
er science from the University of Wisconsin-Madison.
Contact him at dakoop@cs.utah.edu.

Emanuele Santos is a research assistant and gradu-
ate student at the University of Utah. Her research
interests include scientific data management, visual-
ization, and comparative visualization. Santos has an
MS in computer science from the Federal University of
Ceara in Brazil. Contact her at esantos@cs.utah.edu.

Cláudio T. Silva is an associate professor at the
University of Utah. His research interests include
visualization, geometry processing, graphics, and
high-performance computing. Silva has a PhD in
computer science from SUNY at Stony Brook. He is
a member of the IEEE, the ACM, Eurographics, and
Sociedade Brasileira de Matematica. Contact him at
csilva@cs.utah.edu.

21.

22.

23.

24.

