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The problem of systematically capturing and managing provenance for computational 
tasks has recently received significant attention because of its relevance to a wide range 
of domains and applications. The authors give an overview of important concepts related 
to provenance management, so that potential users can make informed decisions when 
selecting or designing a provenance solution.

T he Oxford English Dictionary defines 
provenance as “the source or origin 
of an object; its history and pedigree; 
a record of the ultimate derivation 

and passage of an item through its various own-
ers.” In scientific experiments, provenance helps 
us interpret and understand results: by examining 
the sequence of steps that led to a result, we can 
gain insights into the chain of reasoning used in 
its production, verify that the experiment was per-
formed according to acceptable procedures, iden-
tify the experiment’s inputs, and, in some cases, 
reproduce the result. Laboratory notebooks have 
been the traditional mechanism for maintaining 
such information, but because the volume of data 
manipulated in computational experiments has 
increased along with the complexity of analysis, 
manually capturing provenance and writing de-
tailed notes is no longer an option—in fact, it can 
have serious limitations. Scientists and engineers 
expend substantial effort and time managing data 
and recording provenance information just to an-

swer basic questions, such as, Who created this 
data product and when? Who modified it and 
when? What process created the data product? 
Did the same raw data lead to two data products?

The problem of systematically capturing and 
managing provenance for computational tasks is 
relevant to a wide range of domains and appli-
cations. Fortunately, this problem has received 
significant attention recently. Our goal with this 
survey article is to inform potential provenance 
technology users about different approaches and 
their trade-offs, thereby helping them make in-
formed decisions while selecting or developing a 
provenance solution. Two other surveys also touch 
on the issue of provenance for computational tasks: 
Bose and Frew1 provide a comprehensive over-
view that covers early work in the area as well as 
standards used in specific domains, and Simmhan 
and colleagues2 describe a taxonomy they devel-
oped to compare five systems. Our survey, in con-
trast, discusses fundamental issues in provenance 
management but isn’t intended for specialists. 
Specifically, we identify three major components 
of provenance management and discuss different 
approaches used in each of them. We also cover 
recent literature and the current state of the art. 
Although we can’t provide a comprehensive cov-
erage of all systems due to space limitations, we do 
review a representative set, including those sys-
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tems in wide use that illustrate different solutions. 
Applications that use provenance appear in other 
articles in this special issue. The problem of man-
aging fine-grained provenance recorded for items 
in a database is out of scope for this survey—a de-
tailed overview appears elsewhere3.

Provenance Management:  
An Overview
Before discussing the specific trade-offs among 
provenance systems and models, let’s examine the 
general aspects of provenance management. Spe-
cifically, let’s explore the methods for modeling 
computational tasks and the types of provenance 
information we can capture from these tasks. To 
illustrate these themes, we use a scenario that’s 
common in visualizing medical data—the cre-
ation of multiple visualizations of a volumetric 
computer tomography (CT) data set.

Modeling Computational Tasks
To allow reproducibility, we can represent compu-
tational tasks with a variety of mechanisms, includ-
ing computer programs, scripts, and workflows, or 

construct them interactively by using specialized 
tools (such as ParaView [www.paraview.org] for 
scientific visualization and GenePattern [www.
broad.mit.edu/cancer/software/genepattern] for 
biomedical research). Some complex computa-
tional tasks require weaving tools together, such 
as loosely coupled resources, specialized libraries, 
or Web services. To analyze a CT scan’s results, 
for example, we might need to preprocess data with 
different parameters, visualize each result, and then 
compare them. To ensure the reproducibility of the 
entire task, it’s beneficial to have a description that 
captures these steps and the parameter values used. 
One approach is to order computational processes 
and organize them into scripts; the session log in-
formation that some software tools expose can also 
help document and reproduce results. However, 
these approaches have shortcomings—specifically, 
the user is responsible for manually checking-in in-
cremental script changes or saving session log files. 
Moreover, the saved information often isn’t in an 
easily queried format.

Recently, workflows and workflow-based sys-
tems have emerged as an alternative to these 
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import vtk

data = vtk.vtkStructuredPointsReader()
data.setFileName("../../../examples/data/head.120.vtk")

contour = vtk.vtkContourFilter()
contour.SetInput(0, data.GetOutput())
contour.SetValue(0, 67)

mapper = vtk.vtkPolyDataMapper()
mapper.SetInput(contour.GetOutput())
mapper.ScalarVisibilityOff()

actor = vtk.vtkActor()
actor.SetMapper(mapper)

cam = vtk.vtkCamera()
cam.SetViewUp(0,0,-1)
cam.SetPosition(745,-453,369)
cam.SetFocalPoint(135,135,150)
cam.ComputeViewPlaneNormal()

ren = vtk.vtkRenderer()
ren.AddActor(actor)
ren.SetActiveCamera(cam)
ren.ResetCamera()

renwin = vtk.vtkRenderWindow()
renwin.AddRenderer(ren)

style = vtk.vtkInteractorStyleTrackballCamera()
iren = vtk.vtkRenderWindowIneractor()
iren.SetRenderWindow(renwin)
iren.SetInteractorStyle(style)
iren.Initialize()
iren.Start()
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Figure 1. Different abstractions for a data flow. (a) A Python script containing a series of Visualization Toolkit (VTK) calls; (b) a 
workflow that produces the same result as the script; and (c) a simplified view of the workflow that hides some of its details.
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ad hoc types of approaches. Workflow systems 
provide well-defined languages for specifying 
complex tasks from simpler ones; they capture 
complex processes at various levels of detail and 
systematically record the provenance information 
necessary for automation, reproducibility, and 
result sharing. In fact, workflows are rapidly re-
placing primitive shell scripts, as evidenced by the 
release of Apple’s Mac OS X Automator, Micro-
soft’s Workflow Foundation, and Yahoo!’s Pipes.

Workflows have additional advantages over pro-
grams and scripts, such as providing a simple pro-
gramming model that allows a sequence of tasks 
to be composed by connecting one task’s outputs 
to the inputs of another. Workflow systems can 
also provide intuitive visual programming inter-
faces that are easier to use for users who don’t 
have substantial programming expertise. In ad-
dition, workflows have an explicit structure—we 

can view them as graphs, with nodes represent-
ing processes (or modules) and edges capturing 
the data flow between those processes (see Figure 
1). Having this explicit structure enables the in-
formation to be explored and queried. A program 
(or script) is to a workflow what an unstructured 
document is to a (structured) database.

Another important concept related to computa-
tional tasks is abstraction, which lets us split com-
plex tasks and represent them at different levels 
of granularity. As Figure 1 illustrates, we can use 
abstraction to create a simplified view of a work-
flow that hides some of its details. A researcher 
studying a CT scan data set, for example, might 
not know—or care about—the details of the Vi-
sualization Toolkit (VTK; www.kitware.com) li-
brary that created the visualizations. So, instead 
of displaying the four distinct modules that ren-
der the final image (Figure 1b), a user can abstract 
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Figure 2. Prospective and retrospective provenance. (a) The workflow on the left generates two data products: a histogram 
of a structured data set’s scalar values and an isosurface visualization of that data set. On the left, we see some of the 
retrospective provenance collected during a run along with user-defined provenance in the form of annotations, shown in 
green boxes. (b) We derived the data products on the left from the workflow excerpts on the right, both of which depend 
on the input data set head.120.vtk. 
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them into a single module with a more descriptive 
name such as “Display on Screen” (Figure 1c).

Different Forms of Provenance
We provided a high-level definition of provenance 
at the beginning of this article. When it comes 
to computational tasks, there are two forms of 
provenance: prospective and retrospective.4 Pro-
spective provenance captures a computational task’s 
specification (whether it’s a script or a workflow) 
and corresponds to the steps (or recipe) that must 
be followed to generate a data product or class 
of data products. Retrospective provenance cap-
tures the steps executed as well as information 
about the environment used to derive a specific 
data product—in other words, it’s a detailed log 
of a computational task’s execution. Retrospec-
tive provenance doesn’t depend on the presence 
of prospective provenance—for example, we can 
capture information such as which process ran, 
who ran it, and how long it took without having 
prior knowledge of the sequence of computational 
steps involved.

For our running example, Figure 2 illustrates 
prospective provenance captured as the defini-
tion of a workflow that produces two kinds of data 
products: a histogram and an isosurface visualiza-
tion. The retrospective provenance (the left side of 
Figure 2a) contains information for each module 
about input and output data, the executing user, 
and the execution start and end times.

An important component of provenance is in-
formation about causality—the process description 
(or sequence of steps) that, together with input data 
and parameters, led to the data product’s creation. 
We can infer causality from both prospective and 
retrospective provenance; Figure 2b illustrates the 
relationships in our running example. We can also 
represent causality as a graph in which nodes cor-
respond to processes and data products and edges 
correspond to either data or data-process dependen-
cies. Data-process dependencies (for example, the 
fact that the first workflow produced head-hist.
png) are useful for documenting the data genera-
tion process, but we can also use them to repro-
duce or validate a process. Data dependencies are 
likewise useful—for example, in the event that we 
learn the CT scanner used to generate head.120.
vtk is defective, we can examine the data depen-
dencies and discount the results that rely on it.

Another key component of provenance is user-
defined information—documentation that isn’t 
captured automatically but that records important 
decisions and notes. This data often comes in the 
form of annotations—as Figure 2a illustrates, users 

can add them at different levels of granularity and 
associate them with different components of both 
prospective and retrospective provenance (such as 
modules, data products, or execution log records).

Three Key Components
A provenance management solution consists of 
three main components: a capture mechanism, 
a representational model, and an infrastructure 
for storage, access, and queries. In this section, 
we examine different classes of solutions for each 
of these components and discuss the trade-offs 
among them. To illustrate the approaches, we use 
examples that highlight some of the capabilities of 
existing provenance-enabled tools.

Capture Mechanisms
A provenance capture mechanism needs access 
to a computational task’s relevant details, such as 
its steps, execution information, and user-speci-
fied annotations. This type of mechanism falls 
into three main classes: workflow-, process-, and 
operating system- (OS-) based. Workflow-based 
mechanisms are either attached to or integrated 
in a workflow system; process-based mechanisms 
require each service or process involved in a com-
putational task to document itself; and OS-based 
mechanisms need no modifications to existing 
scripts or programs; instead, they rely on the avail-
ability of specific functionality at the OS level.

A major advantage of workflow-based mecha-
nisms is that they’re usually tightly coupled with 
workflow systems, which enables a straightforward 
capture process through system APIs. Some early 
workflow systems (such as Taverna [http://taverna.
sourceforge.net] and Kepler [http://kepler-project.
org]) have been extended to capture provenance, 
but newer systems (such as VisTrails [www.vis-
trails.org]) support it from their initial design. 
Each service or tool in a process-based mechanism 
must be instrumented to capture provenance, with 
any information derived from autonomous pro-
cesses pieced together to provide documentation 
for complex tasks.5 OS-based mechanisms aren’t 
coupled with workflows or processes at all, and 
thus require postprocessing to extract relation-
ships between system calls and tasks.6,7

One advantage of OS-based mechanisms is that 
they don’t require modifications to existing pro-
cesses and are agnostic about how tasks are mod-
eled—they rely on the OS environment’s ability 
to transparently capture data and data-process 
dependencies at the kernel (via the filesystem in-
terface)7 or user levels (via the system call tracer).6 
In contrast, both workflow- and process-based ap-
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proaches require processes to be wrapped—in the 
former, so that the workflow engine can invoke 
them, and in the latter, so that instrumentation 
can capture and publish provenance information.

Because workflow systems have access to work-
flow definitions and control their execution, they 
can capture both prospective and retrospective 
provenance. OS- and process-based mechanisms 
only capture retrospective provenance: they must 
reconstruct causal relationships through prov-
enance queries. The ES3 system (http://eil.bren.
ucsb.edu), for example, monitors the interactions 
between arbitrary applications and their environ-
ments (via arguments, file I/O, system, and calls), 
and then uses this information to assemble a prov-
enance graph to describe what actually happened 
during execution.6

In fact, by capturing provenance at the OS level, 
we can record detailed information about all system 
calls and files touched during a task’s execution. 
This forms a superset of the information captured 
in workflow- and process-based systems, whose 
granularity is determined by the wrapping provid-
ed for individual processes. Consider, for example, 
a command-line tool integrated in a workflow sys-
tem that creates and depends on temporary files not 
explicitly defined in its wrapper. The causal depen-
dencies the workflow system captures won’t include 
the temporary files, but we can capture these de-
pendencies at the OS level. However, because even 
simple tasks can lead to a large number of low-level 
calls, the amount of provenance that OS-based ap-
proaches record can be prohibitive, making it hard 
to query and reason about the information.7

Provenance Models
Researchers have proposed several provenance 
models in the literature.9,10,12 All these models 
support some form of retrospective provenance, 
and most of those that workflow systems use pro-
vide the means to capture prospective provenance. 
Many of the models also support annotations.

Although these models differ in several ways, 
including their use of structures and storage strat-
egies, they all share an essential type of informa-
tion: process and data dependencies. In fact, a 
recent exercise to explore interoperability issues 
among provenance models showed that it’s possible 
to integrate information that conform to different 
provenance models (http://twiki.ipaw.info/bin/
view/Challenge/SecondProvenanceChallenge).

Despite a base commonality, provenance mod-
els tend to vary according to domain and user 
needs. Even though most models strive to store 
general concepts, specific use cases often influ-
ence model design—for example, Taverna was de-
veloped to support the creation and management 
of workflows in the bioinformatics domain, and 
therefore provides an infrastructure that includes 
support for ontologies available in this domain. 
VisTrails was designed to support exploratory 
tasks in which workflows are iteratively refined, 
and thus uses a model that treats workflow speci-
fications as first-class data products and captures 
the provenance of workflow evolution.

Because the provenance information a model 
must represent varies both by type and specificity, 
it’s advantageous to structure a model as a set of 
layers to enable a normalized, configurable repre-
sentation. The ability to represent provenance at 
different levels of abstraction also leads to simpler 
queries and more intuitive results. Consider the 
REDUX system,16 which uses the layered model 
depicted in Figure 3. The first layer corresponds to 
an abstract description of a workflow, in which each 
module corresponds to a class of activities. This ab-
stract description is bound to specific services and 
data sets defined in the second layer—for example, 
in the workflow shown in Figure 1, the abstract 
activity extract isosurface is bound to a call 
to the vtkContourFilter—a specific implemen-
tation of isosurface extraction provided by VTK. 
The third layer captures information about input 
data and parameters supplied at runtime, and the 
fourth layer captures operational details, such as 
the workflow execution’s start and end time.

Structuring provenance information into mul-
tiple layers leads to a normalized representation 
that avoids the storage of redundant information. 
Some models, for example, store a workflow’s 
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Figure 3. Layered provenance models. For REDUX,  the first layer 
corresponds to an abstract description, the second layer describes the 
binding of specific services and data to the abstract description, the 
third layer captures runtime inputs and parameters, and the final layer 
captures operational data. Other models use layers in different ways. 
The top-layer in VisTrails captures provenance of workflow evolution, 
and Pegasus uses an additional layer to represent the workflow 
execution plan over grid resources.
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specification once for all of its executions;12,16 in 
models with a single layer, such as Kepler’s, the 
specification of a workflow instance must be saved 
to the provenance model every time the workflow 
is executed along with any runtime information.17 
This not only incurs high storage overheads but 
also negatively impacts query performance.

Although many models provide storage for 
workflow specification and execution informa-
tion, the layers differ across systems. For systems 
that schedule scientific workflow execution on 
the grid (such as Pegasus11), it’s important to save 
scheduling information as well as execution prov-
enance. To support higher-level semantic queries, 
it might be useful to add additional layers of ap-
plication-specific metadata and ontologies, such as 
in Taverna.18 VisTrails includes an additional layer 
that records information about workflow evolu-
tion.12 In addition to causality information that 
relates tasks to data products, it keeps track of how 
these tasks evolve over time—in effect, a trail of 
the workflow refinement process. The VisTrails 
change-based provenance model records informa-
tion about modifications to a task, akin to a data-
base transaction log. For workflows, such changes 
include a module’s addition or deletion, the addi-
tion of a connection between modules, and param-
eter value modifications. One major benefit of this 
approach is that it’s concise and uses substantially 
less space than the alternative, which stores mul-
tiple versions of a task specification. It also leads to 
an interface (see Figure 4) that presents a workflow 
evolution’s history as a tree, letting scientists re-
turn to previous versions intuitively. 

Storing, Accessing, and Querying Provenance
Several approaches exist for capturing and model-
ing provenance, but only recently has the problem 
of storing, accessing, and querying started to re-
ceive attention. Researchers have used a wide va-
riety of data models and storage systems, ranging 
from specialized Semantic Web languages and 
XML dialects stored as files to tuples stored in 
relational database tables. One of the advantages 
of filesystem storage is that users don’t need ad-
ditional infrastructure to store provenance infor-
mation. On the other hand, a relational database 
provides centralized, efficient storage that a group 
of users can share.

Infrastructure for effectively and efficiently 
querying provenance data is a necessary compo-
nent of a provenance management system, es-
pecially when large volumes of information are 
captured. When an OS-based approach such as 
Provenance-Aware Storage Systems (PASS) cap-

tures very fine-grained provenance,7 for example, 
the volume of information can be overwhelming, 
making it difficult to explore. One of the queries 
in the First Provenance Challenge asked for the 
process used to generate a specific data product, 
and PASS returned more than 5 Mbytes of data 
(http://twiki.ipaw.info/bin/view/Challenge/
FirstProvenanceChallenge). In contrast, REDUX 
returned a single tuple consisting of a few bytes 
for the same query.

Provenance overload can also be a problem for 
some workflow-based systems. Because a work-
flow’s execution can take multiple steps and run 
several times, the amount of information stored for 
a single workflow can be very large. Biton and col-
leagues proposed a solution that uses abstractions 
through the creation of user views.19 The user indi-
cates which modules in the workflow specification 
are relevant, and the system presents the prove-
nance information according to these preferences. 
Of course, this approach works best in workflow 
systems that support abstractions (such as Vis-
Trails, Taverna, and Kepler), but the ability to cre-
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ate views of provenance data would benefit OS- and 
process-based provenance models as well.

The ability to query a computational task’s prov-
enance also enables knowledge reuse. By querying 
a set of tasks and their provenance, users can not 
only identify suitable tasks and reuse them, but 
also compare and understand differences between 
different tasks. Provenance information is often 
associated with data products (such as images or 
graphs), so this data helps users pose structured 
queries over unstructured data as well.

A common feature across many approaches to 
querying provenance is that their solutions are 
closely tied to the storage models used. Hence, they 
require users to write queries in languages such as 
SQL,16 Prolog,20 and SPARQL.10,11 Although such 
general languages are useful to those already famil-
iar with their syntax, they weren’t designed specifi-
cally for provenance, which means simple queries 
can be awkward and complex to write. Figure 5 
compares three representations of a single query in 
the First Provenance Challenge that asked for tasks 

using a specific module (Align Warp) with given 
parameters executed on a Monday. The VisTrails 
approach uses a language specifically designed to 
query workflows and their provenance, whereas 
REDUX and myGrid use native languages for 
their storage choices. Because the VisTrails lan-
guage abstracts details about physical storage, it 
leads to much more concise queries.

However, even queries that use a language 
designed for provenance are likely to be too 
complicated for many users because provenance 
contains structural information represented as a 
graph. Thus, text-based query interfaces effec-
tively require a subgraph query to be encoded as 
text. The VisTrails query-by-example (QBE) in-
terface (see Figure 6) addresses this problem by 
letting users quickly construct expressive que-
ries using the same familiar interface they use 
to build workflow.21 The query’s results are also 
displayed visually.

Some provenance models use Semantic Web 
technology both to represent and query provenance 

VisTrails

REDUX

MyGrid

SELECT Execution.ExecutableWork�owId, Execution.ExecutionId, Event.EventId, ExecutableActivity.ExecutableActivityId
from Execution, Execution_Event, Event, ExecutableWork�ow_ExecutableActivity, ExecutableActivity, 
     ExecutableActivity_Property_Value, Value, EventType as ET
where Execution.ExecutionId=Execution_Event.ExecutionId 
and Execution_Event.EventId=Event.EventId 
and ExecutableActivity.ExecutableActivityId=ExecutableActivity_Property_Value.ExecutableActivityId 
and ExecutableActivity_Property_Value.ValueId=Value.ValueId and Value.Value=Cast('-m 12' as binary) 
and ((CONVERT(DECIMAL, Event.Timestamp)+0)%7)=0 and Execution_Event.ExecutableWork�ow_ExecutableActivityId=
    ExecutableWork�ow_ExecutableActivity.ExecutableWork�ow_ExecutableActivityId
and ExecutableWork�ow_ExecutableActivity.ExecutableWork�owId=Execution.ExecutableWork�owId
and ExecutableWork�ow_ExecutableActivity.ExecutableActivityId=ExecutableActivity.ExecutableActivityId
and Event.EventTypeId=ET.EventTypeId and ET.EventTypeName='Activity Start';

wf{*}: x where x.module='AlignWarp' and x.parameter('model')='12' 
         and (log{x}: y where y.dayOfWeek='Monday')

SELECT ?p
where (?p <http://www.mygrid.org.uk/provenance#startTime> ?time) and (?time > date)
using ns for <http://www.mygrid.org.uk/provenance#> xsd for <http://www.w3.org/2001/XMLSchema#>

SELECT ?p 
where <urn:lsid:www.mygrid.org.uk:experimentinstance:HXQOVQA2ZI0>
(?p <http://www.mygrid.org.uk/provenance#runsProcess> ?processname . 
?p <http://www.mygrid.org.uk/provenance#processInput> ?inputParameter .
?inputParameter <ont:model> <ontology:twelfthOrder>) 
using ns for <http://www.mygrid.org.uk/provenance#> ont for <http://www.mygrid.org.uk/ontology#>

Figure 5. Provenance query implemented by three different systems. REDUX uses SQL, VisTrails uses a language specialized 
for querying workflows and their provenance, and myGrid uses SPARQL.
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information.10,11,15,22 Semantic Web languages such 
as RDF and OWL provide a natural way to model 
provenance graphs and the ability to represent com-
plex knowledge, such as annotations and metadata. 
This technology has the potential to simplify in-
teroperability across different provenance models, 
but it’s an open issue whether this technology scales 
to handle large provenance stores.

Provenance-Enabled Systems
Now let’s review a selection of different prove-
nance-enabled systems. We don’t intend to provide 
a comprehensive guide to all existing systems—
rather, we aim to describe a representative subset. 
Table 1 summarizes the various systems’ features.

Workflow-Based Systems
Taverna is a workflow system used in the myGrid 
project (www.mygrid.org.uk), whose goal is to le-
verage Semantic Web technologies and ontologies 
available for bioinformatics to simplify data anal-
ysis processes. In Taverna, the workflow engine 
is responsible for capturing provenance. It stores 
any prospective provenance information as Scufl 
specifications (an XML dialect) and retrospective 
provenance as RDF triples in a MySQL database.

Karma (www.extreme.indiana.edu/karma) was 
developed to support dynamic workflows in 
weather forecasting simulations, where the ex-

ecution path can change rapidly due to external 
events.14 Karma collects retrospective provenance 
in the form of a workflow trace; it also explic-
itly models data products’ derivation history. 
Although Karma is a workflow-based system, in-
dividual services that compose a workflow publish 
their own provenance to minimize performance 
overheads at the workflow-engine level (just as in 
process-based capture). Karma records the pub-
lished provenance messages in a central database 
server: this information is exchanged between 
services and server as XML, but it’s translated 
into relational tuples before final storage. Karma 
also stores prospective provenance using the Busi-
ness Process Execution Language.

The Kepler workflow system stores prospective 
provenance in the Modeling Markup Language 
(MoML) format,1 which is an XML dialect for 
representing workflows; it captures retrospective 
provenance by using a variation of MoML that 
omits irrelevant information, such as the coordi-
nates for workflow modules drawn on the screen. 
Currently, it stores provenance in files; query sup-
port is under development.

Pegasus (http://pegasus.isi.edu) is a workflow-
mapping engine that, while taking into account 
resource efficiency and dynamic availability, au-
tomatically maps high-level workflow specifica-
tions into executable plans that run on distributed 
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infrastructures such as the TeraGrid.11 Although 
Pegasus models prospective provenance using 
OWL, it captures retrospective provenance by 
using the Virtual Data System (VDS; a precursor 
of Swift) and then stores it in a relational database. 
Queries that span prospective and retrospective 
provenance must combine two different query 
languages: SPARQL and SQL.

REDUX extends the Windows Workflow 
Foundation engine to transparently capture the 
workflow execution trace. As discussed earlier, 
it uses a layered provenance model to normalize 
data and avoid redundancy. REDUX stores prov-
enance data (both prospective and retrospective) 
in a relational database’s set of tables that can be 
queried with SQL. The system can also return an 
executable workflow as the result of a provenance 
query (for example, a query that requests all the 
steps used to derive a particular data product).

Swift (www.ci.uchicago.edu/swift) builds on 
and includes technology previously distributed 
as the GriPhyN VDS.23 The system combines 
a scripting language (SwiftScript) with a power-
ful runtime system for the concise specification 
and reliable execution of large, loosely coupled 
computations. Swift specifies these computations 
as scripts, which the runtime system translates 
into an executable workflow. A launcher program 
invokes the workflow’s tasks, monitors the exe-
cution process, and records provenance informa-
tion, including the executable name, arguments, 
start time, duration, machine information, and 
exit status. Similar to VDS, Swift captures the 
relationships among data, programs, and com-

putations and uses this information for data and 
program discovery as well as for workflow sched-
uling and optimization.

VisTrails is a workflow and provenance man-
agement system designed to support exploratory 
computational tasks. An important goal of the 
VisTrails project is to build intuitive interfaces 
for users to query and reuse provenance infor-
mation. Besides its QBE interface (which is built 
on top of its specialized provenance query lan-
guage), VisTrails provides a visual interface to 
compare workflows side by side12 and a mecha-
nism for refining workflows by analogy—users 
can modify workflows by example without hav-
ing to directly edit their definitions.21 VisTrails 
internally represents prospective provenance as 
Python objects that can be serialized into XML 
and relations; it stores retrospective provenance 
in a relational database.

OS-Based Systems 
PASS (www.eecs.harvard.edu/syrah/pass) op-
erates at the level of a shared storage system: it 
automatically records information about which 
programs are executed, their inputs, and any new 
files created as output. The capture mechanism 
consists of a set of Linux kernel modules that 
transparently record provenance—it doesn’t re-
quire any changes to computational tasks. PASS 
also constructs a provenance graph stored as a set 
of tables in Berkeley DB. Users can pose prov-
enance queries using nq, a proprietary tool that 
supports recursive searches over the provenance 
graph. As discussed earlier, the fine granularity 

Table 1. Provenance-enabled systems.

System Capture mechanism Prospective provenance
Retrospective 
provenance Workflow evolution Storage Query support

Available as open 
source?

REDUX Workflow-based Relational Relational No Relational database management 
system (RDBMS)

SQL No

Swift Workflow-based SwiftScript Relational No RDBMS SQL Yes

VisTrails Workflow-based XML and relational Relational Yes RDBMS and files Visual query by example, specialized 
language

Yes

Karma Workflow- and 
process-based

Business Process Execution 
Language

XML No RDBMS Proprietary API Yes

Kepler Workflow-based MoML MoML variation Under development Files; RDBMS planned Under development Yes

Taverna Workflow-based Scufl RDF Under development RDBMS SPARQL Yes

Pegasus Workflow-based OWL Relational No RDBMS SPARQL for metadata and workflow; 
SQL for execution log

Yes

PASS OS-based N/A Relational No Berkeley DB nq (proprietary query tool) No

ES3 OS-based N/A XML No XML database XQuery No

PASOA/PreServ Process-based N/A XML No Filesystem, Berkeley DB XQuery, Java query API Yes



May/June 2008 � 29

of PASS’s capture mechanism often leads to very 
large volumes of provenance information; another 
limitation of this approach is that it’s restricted to 
local filesystems. It can’t, for example, track files 
in a grid environment.

ES3’s goal is to extract provenance information 
from arbitrary applications by monitoring their in-
teractions with the execution environment.6 These 
interactions are logged to the ES3 database, which 
stores the information as provenance graphs, rep-
resented in XML. ES3 currently supports a Linux 
plugin, which uses system call tracing to capture 
provenance. As in PASS, ES3 requires no changes 
to the underlying processes, but provenance cap-
ture is restricted to applications that run on ES3-
supported environments.

Process-Based Systems 
The Provenance-Aware Service Oriented Ar-
chitecture (PASOA) project (www.pasoa.org) 
developed a provenance architecture that relies 
on individual services to record their own prov-
enance.5 The system doesn’t model the notion of a 
workflow—rather, it captures assertions produced 
by services that reflect the relationships between 
the represented services and data. The system 
must infer the complete provenance of a task or 
data product by combining these assertions and 
recursively following the relationships they repre-
sent. The PASOA architecture distinguishes the 
notion of process documentation—that is, the prove-
nance recorded specifically about a process—from 
the notion of a data item’s provenance, which is de-
rived from the process documentation. The PA-

SOA project developed an open source software 
package called PreServ that lets developers inte-
grate process documentation recording into their 
applications. PreServ also supports multiple back 
end storage systems, including files and relational 
databases; users can pose provenance queries by 
using its Java-based query API or XQuery.

P rovenance management is a new area, 
but it is advancing rapidly. Researchers 
are actively pursuing several directions 
in this area, including the ability to in-

tegrate provenance derived from different systems 
and enhanced analytical and visualization mech-
anisms for exploring provenance information. 
Provenance research is also enabling several new 
applications, such as science collaboratories, which 
have the potential to change the way people do sci-
ence—sharing provenance information at a large 
scale exposes researchers to techniques and tools 
to which they wouldn’t otherwise have access. By 
exploring provenance information in a collabora-
tory, scientists can learn by example, expedite their 
scientific work, and potentially reduce their time 
to insight. The “wisdom of the crowds,” in the 
context of scientific exploration, can avoid duplica-
tion and encourage continuous, documented, and 
reproducible scientific progress.24�
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