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Abstract Provenance network analytics is a novel data analytics approach that helps

infer properties of data, such as quality or importance, from their provenance. Instead

of analysing application data, which are typically domain-dependent, it analyses the

data’s provenance as represented using the World Wide Web Consortium’s domain-

agnostic PROV data model. Specifically, the approach proposes a number of network

metrics for provenance data and applies established machine learning techniques over

such metrics to build predictive models for some key properties of data. Applying

this method to the provenance of real-world data from three different applications,

we show that it can successfully identify the owners of provenance documents, assess

the quality of crowdsourced data, and identify instructions from chat messages in an

alternate-reality game with high levels of accuracy. By so doing, we demonstrate the

different ways the proposed provenance network metrics can be used in analysing

data, providing the foundation for provenance-based data analytics.
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1 Introduction

Provenance, a description of what influenced the generation of a piece of information

or data, has become an important topic in several communities since it exposes how

information flows in systems, providing the means to make them accountable and

helping users decide whether information is to be trusted (Moreau 2010). Provenance

has been recorded in an increasing number of applications, from legal notices,1 climate

science (Ma et al. 2014), medical applications,2 scientific workflows (Alper et al.

2013; Silva et al. 2011; Davidson et al. 2007; Altintas et al. 2006), computational

reproducibility (Chirigati et al. 2013), emergency response (Ramchurn et al. 2016),

and in the geospatial domain.3

As a provenance description ‘links’ artefacts with their influences, it can be

represented in a graph, called a provenance graph, whose nodes represent the arte-

facts/influences and whose edges their relations with one another. Studying such

graphs, e.g. by visualising them, can facilitate understanding of the provenance infor-

mation they contain. However, in a typical application, provenance graphs can quickly

become very large and complex; this makes it difficult to interpret their informa-

tion manually. For instance, as an indication, the 2014 edition of the United States’

National Climate Assessment report4 was published with full provenance information

linking its data and recommendations to 242 authors and over 500 distinct techni-

cal inputs (Tilmes et al. 2013). The scale is a few magnitudes larger with automated

applications. CollabMap (Ramchurn et al. 2013), an online crowd-sourcing platform,

recorded more than 5000 provenance graphs over 3 months running, many of which

contain 30–200 nodes, 50–700 edges. Scientific workflows (e.g. Wolstencroft et al.

2013; Silva et al. 2011; Gil et al. 2011; Bowers et al. 2008) being applied to peta-scale

problems, are also generating vast amount of provenance information. Such large

and complex graphs are overwhelming for manual interpretation or verification (of

data correctness, for instance). Therefore, an automated and principled way to analyse

provenance data of such scales and, more importantly, to understand what they convey

with respect to the data they describe, is much needed.

Against this background, in this paper, we propose provenance network analytics, a

novel data analytics approach that combines network analysis and established machine

learning techniques (Russell and Norvig 2010, Ch. 18) over provenance information

generated automatically from log and instrumentation of applications. It provides a

generic way to analyse provenance information with the aim of revealing real-word

characteristics of the data about which it describes. Our contributions to the state-of-

the-art are as follows:

1. First, we adapt a number of existing network metrics (Newman 2010) to suit

provenance graphs and define provenance-specific ones to summarise the topo-

1 https://www.thegazette.co.uk/.

2 https://www.hl7.org/fhir/provenance.html.

3 http://www.opengeospatial.org/projects/initiatives/ows-10.

4 The online version of the report, provided with its provenance, is available at http://nca2014.globalchange.

gov/.
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logical structure of provenance graphs. The provenance network metrics can be

computed in a generic manner from provenance records and are independent of

domain-specific information. Therefore, they provide the basis for analysing and/or

comparing provenance graphs quantitatively, even those from different applica-

tions.

2. Second, we make use of the provenance network metrics to construct predictive

models on provenance information based on known ground truths to relate prove-

nance information with properties of data, such as their quality or importance. Once

successfully trained for an application, those predictive models operate without

relying on domain-specific information. By so doing, we devise a novel analytics

method that analyses data using their provenance, not the data themselves. Thanks

to the generic nature of the proposed provenance network metrics, our approach

can be used to study data, via the means of their provenance graphs, in applications

where provenance information is recorded.

3. Finally, we report the successful application of the above method on the prove-

nance of real-world data from three different applications: identifying owners

of provenance documents, assessing the quality of crowd-generated data in Col-

labMap, and identifying instructions from chat messages in an alternate-reality

game. The applications were selected in part because they allow us to verify the

accuracy of the proposed analytics via known ground truths or via an alternative

method. In these applications, our analytic method achieved high levels of accu-

racy classifying data based on the provenance of such data. By so doing, we also

demonstrate how the provenance network analytics approach can be concretely

applied in specific contexts as a generic tool for data analytics.

The remainder of this paper is organised as follows. Section 2 introduces the prove-

nance network metrics that serve as the basis for the provenance network analytics

method presented in Sect. 3. Section 4 describes the evaluation methodology. In Sect. 5,

we report on how the method was used to correctly identify owners of provenance

graphs. Section 6 specialises the approach for quality assessment and demonstrates

how the quality of crowd-generated data is classified. Section 7 shows that the same

approach can help identify instructions from chat messages in the Radiation Response

Game (Fischer et al. 2014). We relate our approach to existing work in Sect. 8 and

conclude the paper with directions for future work in Sect. 9.

2 Provenance network metrics

In this work, we adopt the PROV data model (Moreau and Missier 2013) as the data

model for provenance in our analyses. PROV was standardised by the World Wide

Web Consortium to support for the interchange of provenance information on the Web.

It defines provenance as a “record that describes the people, institutions, entities, and

activities involved in producing, influencing, or delivering a piece of data or a thing”.

The core PROV concepts are shown in Fig. 1. Owing to space limitations, the complete

descriptions of those concepts could not be included here; the reader is encouraged to

refer to Moreau and Missier (2013) for their full formal definitions. In brief, provenance

records describe the generation and use of entities by some activities, which may be
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Fig. 1 The core PROV elements and relations. Adapted from Lebo et al. (2013)

influenced in some ways by agents. Such records can be packaged together into a

provenance document for the purpose of exchanging provenance information.

Since provenance information describes how various elements were related to,

or influenced by, one another, it can be viewed as a directed graph in which those

elements (i.e. entities, activities, agents) are represented as nodes, and the relations

between them (e.g. used, wasGeneratedBy, wasDerivedFrom) as directed edges. Such

a graph is called a provenance graph. Given that some provenance graphs can be very

large, the challenge is how to extract useful information and knowledge from complex

provenance graphs. In that respect, we turn to the established field of graph theory

for principled methods to analyse graphs. Specifically, we are interested in network

metrics that allow us to summarise the topological characteristics of a provenance

graph, such as its shape, its size, or how its nodes tend to connect to one another. Such

network metrics are generic and can be calculated on any graphs, including provenance

ones. They provide us a way to summarise provenance graphs into a set of generic

network features. As a result, they allow for the comparisons of provenance graphs,

even those from different domains or applications, without the need for the knowledge

required to interpret domain-specific information contained therein.

In the following sub-sections, we enumerate the network metrics we employ for

our analysis of provenance graphs and provide their formal definitions. Section 2.1

describes the generic network metrics which we adapted to work with provenance

graphs. We then define provenance-specific network metrics in Sect. 2.2 to take advan-

tage of provenance-specific information readily available in a provenance graph such

as the types of nodes and the relations between them.

2.1 Generic network metrics

A provenance graph is a directed graph G = (VG , EG), with vertex set VG and edge set

EG . Vertices in VG represent the PROV elements (i.e. entities, activities, and agents).

There is an edge e =
(

vi , v j

)

∈ EG if there is a PROV relation in the graph relating

vertex vi to v j , vi , v j ∈ VG , in that direction. In addition, we define a function type
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that gives the provenance types of all vertices and edges in a provenance graph as

follows:

ElementTypes = { Entity, Activity, Agent } (1)

RelationTypes = { Generation, Usage, Start, End, Derivation, Invalidation,

Communication, Attribution, Association, Delegation,

Membership, Alternate, Specialization, Influence}

(2)

type = (VG → ElementTypes) ∪ (EG → RelationTypes) (3)

In order to summarise the topological characteristics of a provenance graph, we

adopt common existing network metrics for this. Those metrics regard a provenance

graph as an ordinary directed graph and, therefore, disregard provenance-specific infor-

mation (which, however, will be later considered in Sect. 2.2). As a convention, the

metrics in this section are defined on an input graph G = (VG , EG) and for the sake

of brevity we omit G where it is unambiguous. The generic network metrics included

in our analyses are:

– Number of nodes n = |V |, which is also the number of provenance elements in

G.

– Number of edges e = |E |, which is also the number of provenance relations in G.

– Graph diameter dG is the longest distance in a graph G, where the distance between

two vertices u and v is defined as the length of the shortest path between them,

denoted by d (u, v). The graph diameter reflects how “spread out” the provenance

graph G is.

dG = max
u,v∈VG

d (u, v) (4)

Since nodes in provenance graphs are separated by directed edges, thereby pre-

venting some nodes from forming a path to certain others, strictly speaking, the

diameter of each graph is, in many cases, infinite. However, by temporarily assum-

ing the edges are undirected, we are able to calculate the diameter of a provenance

graph. Hence, let Gu = (V, Eu) be the undirected counterpart of G, i.e. whose

edges are the same as those in G but undirected: Eu = E ∪ {(v, u) | (u, v) ∈ E}.

The diameter of a provenance graph G is then defined as dGu . For the sake of

brevity, we simply use d to denote the graph diameter of Gu .

– Assortativity coefficient r : Assortativity, or assortative mixing, is the tendency for

vertices in networks to be connected to other vertices that are like them in some

way (Newman 2003). The assortativity coefficient is the Pearson correlation coef-

ficient r of degree between pairs of linked nodes. Positive values of r indicate a

correlation between nodes of similar degree, while negative values indicate rela-

tionships between nodes of different degree. r is defined as per Eq. 24 in Newman

(2003).

– Average clustering coefficient ACC: The local clustering coefficient cv of a vertex

in a graph quantifies how close its neighbours are to being a clique (complete

graph) (Watts and Strogatz 1998) and was introduced to determine whether a

graph is a small-world network:
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cv =
Γv

degv

(

degv −1
) (5)

where degv is the number of v’s neighbours and Γv is the number of edges between

the neighbours. The average cv of all vertices in G represents the extent of neigh-

bourhood clustering in G. In order to avoid biased assessment of the metric,

following Kaiser (2008), we exclude leaf and isolated nodes (i.e. degv � 1) in

our calculation:

ACC = C , where C =
{

cv|v ∈ V ∧ degv > 1
}

(6)

– Degree distribution: For many real-world graphs, the degree distribution follows

a ‘power law’ such that the number of vertices Nk with degree k is given by

Nk ∝ k−α , where α > 0 is usually called the power-law exponent. We examine

the degree distribution of an entire provenance graph to determine whether the

distribution fits a power law as per the method of Clauset et al. (2009) and, if so,

the degree-distribution power-law exponent (DPE). For provenance graphs whose

degree distribution does not fit a power law and α is therefore undefined, we

manually set α = −1.

2.2 Provenance-specific network metrics

In contrast to an ordinary directed graph, a provenance graph contains additional

provenance type information on its the nodes and edges, as provided by the above type

function (Eq. 1). In this section, we extend generic network metrics to characterise

provenance graphs while taking provenance types into account, and by so doing, define

a set of provenance-specific network metrics:

– Numbers of entities ne, activities na, and agents nag in a provenance graph.

– Maximum finite distance (MFD): Since provenance relations represent a form of

influence (Moreau and Missier 2013), the length of the longest chain of influ-

ence in a provenance graph is a useful characteristic of the graph. It can be

viewed in the same vein as the graph diameter in the previous section but now

on the directed graph G. In more detail, given two vertex sets X, Y ⊂ V , let

L X→Y the set of all finite distances separating a vertex in X with another in Y :

L X→Y = {d (u, v) |u ∈ X ∧ v ∈ Y ∧ d (u, v) �= ∞}. The MFD between X and

Y in G, denoted as mfdX→Y , is defined as follows:

mfdX→Y =

{

−1 if L X→Y = ∅

max L X→Y otherwise
(7)

As the kind of influence between different types of provenance elements is quite

different, it is interesting to know the MFD between one node type and another.

Considering only the distances between entities, for example, the MFD would

reflect how far a piece of data was derived from, or somehow influenced by,

another; while considering only the distances between agents might reveal how

far delegation between them went. Since there are three different node types in

123



714 T. D. Huynh et al.

a provenance graph, we define nine different MFD metrics, one for each pair of

node types: mfdts→te , ts, te ∈ {e, a, ag}, where e, a, and ag are our shorthand

notation to denote V ’s subsets whose elements are Entity, Activity, and Agent,

respectively.

– MFD of derivations (mfdder): Since Derivation is the only influence relation

in PROV that has a strict time ordering (Cheney et al. 2013), we calculate

additionally the MFD over this relation to examine the longest chain of deriva-

tions in a provenance graph. For this, we consider Gder = (V, Eder), where

Eder = {e|e ∈ E ∧ type(e) = Derivation}, i.e. the sub-graph that contains only

Derivation relations from G.

mfdder =

{

−1 if Eder = ∅

max
{

dGder
(u, v)|u, v ∈ V ∧ dGder

(u, v) �= ∞
}

otherwise
(8)

where mfdder is set to −1 if there is no derivation relation in the graph.

– Average clustering coefficients by node type (ACCt ): This is a variation of the

ACC metric (6); it is calculated from the local clustering coefficients of vertices

of a given node type t ∈ {e, a, ag}:

ACCt = C t , where Ct =
{

cv|v ∈ V ∧ type (v) = t ∧ degv > 1
}

(9)

As there are three different provenance node types, there are also three provenance-

specific ACC metrics: ACCe, ACCa, and ACCag.

2.3 Summary

Combining the generic and provenance-specific network metrics (see Table 1 for a

summary), for a given provenance graph G, its provenance network metrics P (G) are

represented in a vector containing twenty-two elements:

Table 1 Glossary of provenance network metrics

Metric name Symbol Variants Number of metrics

Number of elements n and nt t ∈ {e, a, ag} 4

Number of relations e 1

Graph diameter d 1

Assortativity coefficient r 1

Average clustering coefficients ACC and ACCt t ∈ {e, a, ag} 4

Degree-distribution power-law exponent α 1

Maximum finite distance mfdts→te ts , te ∈ {e, a, ag} 9

Maximum finite distance of derivations mfdder 1
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P (G) = 〈 n, ne, na, nag, e, d,

r, ACC, ACCe, ACCa, ACCag, α,

mfde→e, mfde→a, mfde→ag, mfda→e, mfda→a, mfda→ag,

mfdag→e, mfdag→a, mfdag→ag, mfdder 〉

(10)

In the next section, the above provenance network metrics serve as the basis for

analysing provenance graphs to infer properties of the data they describe.

3 Provenance network analytics

The provenance network metrics defined in Sect. 2 can help us summarise a prove-

nance graph’s topological characteristics and allow for the quantitative comparison of

provenance graphs. The metrics can tell us a graph with n = 4, e = 3, and d = 3 (i.e.

a linear graph), for example, has a much different shape compared to a graph with

n = 4, e = 3, and d = 2 (i.e. a star graph). However, without the ability to relate

those values to domain-specific interpretation, say, the former is the result of a valid

run while the latter is not, the network metrics alone would not help us to gain useful

information contained in such graphs.

In this respect, we propose to apply existing supervised learning methods (see

e.g. Russell and Norvig 2010, Ch. 18) to provenance graphs, using their network

metrics as the features to predict some domain-specific characteristics of the data

or events described by the graphs. The method requires a set of labelled training

data, i.e. provenance graphs for which their classifications are known. The network

metrics of those are then used as examples to train a predictive model for the interested

classification. In essence, such a model predicts the label of a whole provenance graph

from its network metrics. If it can be shown that the model has a high predictive power

given the training data, it can later be used for classifying unseen provenance graphs

from the same domain. In more detail, the approach consists of three main phases:

– Design The purpose of this phase is to define the classification problem and to

curate the required training data.

1. Define the classification labels: This step formalises the classification problem

into a discrete set of labels L. Given a piece of data x from the application

domain, the classification problem becomes that of predicting the label of x :

lx ∈ L. For example, if we want to determine whether an application run is

valid or not, we could have L = {valid, invalid}; if we want to assess the

quality of a data entity, we could have L = {good, bad, uncertain}.

2. Define the input provenance graph: Since we aim to use the provenance net-

work metrics as inputs for a predictive model, we need to have the provenance

graph of x to produce the metrics. As a provenance graph can record prove-

nance of multiple entities, spanning from a few relations to the full history

of an application run, choosing an appropriate extent of the input provenance

graph Gx of x such that it sufficiently covers x’s related history to be consid-

ered but not too broad, is a key decision. If the chosen provenance graph is

too small, it may not include relevant relations that could determine the label

of x ; on the contrary, a too broad provenance graph, would have redundant
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information (i.e. noise) that could confuse a learning algorithm. Some knowl-

edge of the application domain is useful for this step. In the above example of

application-run validity, for instance, one might choose the whole provenance

graph recorded from one run as the input, while a much smaller graph covering

the generation and usages of a data entity might be more appropriate for the

assessment of its quality. Concrete examples of this step are later provided in

Sects. 5, 6, and 7, with the last showing how this step can be automated.

3. Curate training data: As this method relies on supervised learning techniques,

a curated set of labelled training data S = {(x, lx )|lx ∈ L} is required (i.e. lx

is defined for all x in S).

– Training Having defined the label set L, defined the input provenance graph Gx

for all x to be classified, and curated the training data set S, we build the predictive

model which is, in essence, a function that maps P (Gx ) (Eq. 10) to L:

1. Choose a supervised learning algorithm5 that suits L and the given data set.

2. Calculate the network metrics for the provenance graphs of the labelled data

and transform them into feature vectors with classification labels suitable as

inputs to the chosen learning algorithm: I = {(P (Gx ) , lx ) |(x, lx ) ∈ S}.

3. Assess the accuracy of the learning algorithm on the input labelled data I .

4. If the accuracy in obtained in Step 3 is sufficiently high,6 build the classifier

for L from I with the chosen learning algorithm and proceed to the Prediction

phase.

– Prediction Use the classifier from the Training phase to predict the labels of unseen

data from their provenance.

4 Empirical evaluation

As a tool for data analytics, the provenance network analytics method aims to discover

correlations between provenance information and properties of the data it describes.

In order to demonstrate the approach, we apply the method to the provenance of real-

world data from three different applications and report its performance in the following

sections. Before doing that, however, we first describe the common methodology for

evaluating the method.

Learning algorithm We use the CART (Breiman et al. 1984) algorithm to train

decision tree classifiers (specifically the Scikit-learn implementation by Pedregosa

et al. 2011). Empirically, we find decision tree classifiers perform sufficiently well

and were fast, although not always producing the highest accuracy. For the three

selected applications, other learning algorithms we tested could only marginally

improve classification accuracy while incurring significant increases in computing

cost, in many cases several magnitudes higher, compared to that of the decision

tree classifier (see the Extra 1 experiment in the online Supplementary Materials

5 Since the field of supervised learning is broad and it is not the focus of this paper, the reader is suggested to

refer to Russell and Norvig (2010) and Marsland (2014) for an overview of the available learning algorithms

and their suitability for a specific dataset.

6 The required level of accuracy depends on the intended application of the predictive model.
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for more details). In addition, a decision tree classifier is able to explain its clas-

sification with decision rules, which may provide useful clues to understand the

correlation between an application’s provenance data and the interested data prop-

erties.

Balancing learning data To avoid producing biased classifiers, for datasets

whose samples are unbalanced, we balance the input dataset I using the SMOTE

method (Chawla et al. 2011), which oversamples the minority samples such that each

label has roughly the same number of samples in I .

Assessing accuracy In order to benefit from all the available labelled data, which

are small in some cases, we use 10-fold cross-validation (Kohavi 1995). In particular,

with I randomly split into 10 equal subsets, we perform 10 rounds of learning; on each

round a 1
10

subset is held out as the test set and the remaining are used as training data.

To further minimise the potential chance impact of random data splitting, we repeat the

above cross-validation procedure 100 times, hence collecting 1000 accuracy scores

in each experiment. We report the mean accuracy score alongside its 95% confidence

interval in parentheses, for example, 98.13% (± 0.01%).

In addition to the accuracy of classifiers, we also evaluate the following.

Relevance of metrics From each round of learning in the cross-validation proce-

dure, the trained classifier automatically calculates the relevance of each input feature

(i.e. each of the 22 network metrics in Eq. 10) given the training data. In practice,

this information will help us selectively reduce the number of metrics to be con-

sidered within a specific application (if required). We report the three most relevant

network metrics for each application, i.e. those with the highest average relevance

values.

Generic versus provenance-specific metrics We repeat the above process (i.e. the

Training phase and evaluation) in two further experiments—one using only the generic

network metrics (Sect. 2.1) and the other only the provenance-specific network met-

rics (Sect. 2.2). Comparing the mean accuracy scores from the two experiments will

help understand whether the network metrics based on provenance types bring added

benefits to the classification application being discussed.

In the following sections, we report the exercise of provenance network analytics

to build provenance-based classifiers for three different applications: identifying the

owner of provenance documents on ProvStore (Huynh and Moreau 2015) (Sect. 5),

assessing the quality of crowdsourced data in CollabMap (Sect. 6), and identifying

instructions from chat messages in the Radiation Response Game (Sect. 7). In each

application, since the Prediction phase, in which a classifier is run on unseen data,

is straight-forward, we will not discuss it but will focus on the Design and Training

phases of the method, which are to be followed by an evaluation as outlined above.

The datasets and code to produce the results and figures in the following sections are

provided with this article in the Supplementary Materials (see “Appendix A” for more

details).
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5 Application 1: Identifying owner of provenance documents

As the PROV data model provides a vocabulary for provenance information, it is likely

that each provenance producer has its own “style” of writing provenance using the

vocabulary. For example, a user or an application may produce provenance graphs with

chains of derivations that can be long or short, with or without attributions to agents,

etc. Such individual styles will manifest in different topological characteristics of the

resulting graphs and, hence, differences in the graphs’ provenance network metrics.

Our hypothesis is that the metrics could be used to identify the user or the application

that produced a provenance graph. In order to verify this, we analyse the provenance

network metrics of provenance documents deposited by the public at ProvStore, which

is a public repository for provenance documents where a user can sign up for an account

and store their provenance online for sharing or visualisation purposes (Huynh and

Moreau 2015). We apply the provenance network analytics method of Sect. 3 on those

provenance documents to check how well it is able identify the documents’ owners,

here used as a proxy for the application that generated the provenance. Note that

those provenance graphs typically do not contain any information about the users who

uploaded the graphs to ProvStore, so it is not possible to identify such users simply

from querying the graphs.

5.1 Design phase

Graph labels We define the label set L = {u1, u2, . . . , un}, where lx = ui if the

provenance document x belongs to user ui and n is the total number of users.

Input graphs Since we want to identify the owner of a provenance graph based on its

characteristics, we use the whole graph as the input graph, i.e. X = x .

Training data In order to upload a provenance document to ProvStore, the document’s

owner needs to register for a user account there. As a result, the owner of each document

on ProvStore is known and, hence, a curated labelled data set containing all those

documents is readily available. Since each user owns a different number of documents,

in order to ensure that there are sufficient samples to represent a user’s provenance

documents the Training phase, we limit our experiment to users who have at least 20

documents. There are fourteen such users (the authors were excluded to avoid bias),

who we named u1, u2, . . . , u14; hence, there are 14 labels in L. Their numbers of

documents range between 21 and 6,745, with the total number of documents in the

data set is 13,870.

5.2 Training phase

As described in Sect. 4, we train a single decision tree classifier to identify the owner of

a given provenance document from the dataset. The tenfold cross validation shows that

the classifier can identify owners of provenance documents on ProvStore with a mean

accuracy of 98.13% (± 0.01%), compared to the baseline of 7.14% from selecting a

random label from 14. This result strongly supports our hypothesis that the provenance
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Fig. 2 The 3-depth decision tree for identifying owners of ProvStore documents

network metrics represents the “signature” of provenance graphs, reflecting how the

user or application that produces them models and records provenance information.

5.3 Discussion

The above result confirms the predictive power of provenance network metrics in

analysing and identifying provenance graphs. The classifier itself, however, is of

limited utility since we already knew the owners of all documents on ProvStore.

Having said that, this is not necessary the case in applications where provenance

data come from multiple, potentially unreliable, sources. In such cases, the prove-

nance network analytics method could potentially help identify strange or suspicious

provenance traces for further investigation, akin to graph-based anomaly detec-

tion techniques (Akoglu et al. 2015). For instance, as provenance traces reflect the

behaviour of an actor, the method can detect behaviours that are significantly different

from the typical, which might represent an intrusion in cyber security contexts.

After the Training phase, a decision tree classifier is able to explain its classification

rules in the form of a decision tree. As an example, the decision tree for identifying

document owners above is shown in Fig. 2, whose depth, however, was limited to

three to fit the paper. From the decision tree, it is apparent that the most influential

metrics selected by the algorithm are provenance-specific ones. The most important

metrics, in this case, is mfdder; the tree splits the documents on ProvStore into two

subsets: ones without derivation relation (i.e. mfdder = −1, see Eq. 8) and ones with at

least one derivation (the right branch). The tree shows the next most important metrics

to distinguish provenance documents in this dataset are mfde→e and ACCag. From

such information, we can see that half of the selected ProvStore users did not record

derivations in their provenance at all. We can also learn that, for example, provenance

documents uploaded by user u2 contains no derivation, has 4 or fewer PROV entities,

and the distances between those entities, if any, are less than 2. In addition, knowing

which metrics are most relevant within an application or a dataset, one can make
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informed decision on which features that can safely be ignored (to save computation

cost) in an automated manner, e.g. as per the method by Kohavi and John (1997).

In order to confirm that provenance type information indeed contributes into the

above classification performance as suggested by the decision tree in Fig. 2, we repeat

the exercise, training a decision tree with the same dataset, but this time with only the

six generic network metrics (i.e. n, e, d, r , ACC, α) and later only the provenance-

specific metrics. Compared to the first experiment, which makes use of all the available

network metrics, using only the generic metrics achieves a lower accuracy at 92.32%

(± 0.02%), while using only the provenance-specific metrics produces a similar accu-

racy at 98.11% (± 0.01%). These results suggest that provenance type information, as

captured by the provenance-specific network metrics, indeed helps with identifying

the originator of a provenance graph, and ignoring such information will result in

a lower performance. Nevertheless, even with only six generic network metrics, the

trained classifier still achieves a very high level of accuracy (92.32%). Therefore, we

believe that characterising provenance information by their network metrics is a very

promising approach, which can be effective even with a small set of metrics. In the

next section, we develop this approach further to assess the usage of crowd-generated

data to infer about their quality, using only their provenance information.

6 Application 2: Assessing the usage of crowdsourced data

The provenance of a piece of data tells us the history that led to its creation. Analysing

its provenance may help ascertain the data’s origin and that its production process was

appropriate. It is, however, more challenging to infer about the data’s quality or signifi-

cance from its history without knowing the quality, reliability, or trustworthiness of the

data’s originator(s). Thus, instead of examining the data’s historical provenance, we

propose an alternative approach that examines the data’s “forward provenance”—the

records of how the data is used following its creation (also captured in an application’s

provenance traces). In this section, we apply the provenance network analytics on such

“forward provenance” of crowdsourced data from CollabMap (Ramchurn et al. 2013)

to analyse their usage and, ultimately, their quality.

CollabMap is a crowdsourcing platform for constructing evacuation maps for urban

areas. These maps need to contain evacuation routes connecting building exits to the

road network, while avoiding physical obstacles such as walls or fences, which existing

maps do not provide. The application crowdsources the drawing of such evacuation

routes from the public by providing them with two sources of information from Google

Maps: aerial imagery and ground-level panoramic views. It allows inexperienced users

to perform tasks without them needing expertise other than drawing lines on a photo

and does not rely on having experts verify the tasks in order to generate meaningful

results. The task of identifying routes for a building was broken into different micro-

tasks performed by different contributors: building identification (outline a building),

building verification (vote for the building’s validity), route identification (draw an

evacuation route), route verification (vote for validity of routes), and completion ver-

ification (vote on the completeness of the current route set). This allows individual
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Fig. 3 A PROV graph from CollabMap

contributors to rate and correct each other’s contributions (i.e. buildings, routes, and

route sets). They were, however, not allowed to verify their own work to avoid biases.

In order to support auditing the quality of its data, the provenance of crowd activities

in CollabMap was fully recorded: the data entities that were shown to users in each

micro-task, the new entities generated therein, and their inter-relationships (see Fig. 3

for a small example with two micro-tasks). In 2012, CollabMap was deployed to

help map the area around the Fawley Oil refinery in the United Kingdom. It generated

descriptions for 5,175 buildings, 4,997 routes, and 4,710 route sets. In this application,

we apply the provenance network analytics method to construct three classifiers in

order to assess the quality of CollabMap data from their provenance, one for each type

of data.

6.1 Design phase

Graph labels The main aim of assessing the quality of CollabMap data is to determine

which of them are sufficiently trustworthy to be included in the final evacuation map.

For a data entity x , we wanted to know whether x can be trusted to be correct (lx =

trusted) or we are unsure about its quality (lx = uncertain). Thus, we define the label

set L = {trusted, uncertain}.

Input graphs Whereas Application 1 had provenance graphs deposited separately

and, hence, discretely split, CollabMap ran continuously and generated data whose

provenance is interwoven with one another’s. As a result, a CollabMap provenance

graph contains the provenance of many data entities. As mentioned above, we propose

to analyse the usage of a piece of data to infer its significance; for a given data entity
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x , we extract the provenance graph that contains all the activities and entities that

were influenced by x . The intuition of the approach is similar to that of evaluating a

publication from its citations. A highly cited academic paper, for example, is generally

considered of high value thanks to its citations, or in other words, the relations it has

with other papers. Such relations show how many times the paper was used in the

generation of, or had an influence on, later papers.

Since a relation in PROV, i.e. an edge in our provenance graphs, represents some

form of influence between its source and its target (Moreau and Missier 2013), if there

exists a path in a provenance graph G from node vi to node v0, denoted as vi
∗
−→ v0,

then vi was, in some way, potentially influenced by v0. In other words, we consider

here the transitive (potential) influence of v0. It is possible to extract a sub-graph

DG,x = (VG,x , EG,x ) from graph G containing only the nodes that were directly or

indirectly influenced by a particular node x , as follows:

VG,x =
{

v ∈ V |v
∗

→ x
}

∪ {x} (11)

EG,x =
{

e ∈ E |∃vs, vt ∈ VG,x (e = (vs, vt ))
}

(12)

We call DG,x the dependency graph of x extracted from the provenance graph G,

or the transitive closure of x’s potential influence in G; VG,x and EG,x are its vertex

set and edge set, respectively. Hence, it is now possible to analyse the influence of

x in G by examining the dependency graph DG,x , which records how x was used in

the application. Our hypothesis is that studying the dependency graph of x will reveal

properties of x such as its value or quality. Hence, in CollabMap, we use the dependency

graph of x as the input provenance graph in our quality analysis: X = DG,x .

Training data For the Training phase, we need to have a curated set of labelled training

data. With the large amount of data generated in CollabMap, it was impractical to

have them checked by experts. Collabmap instead relied on its participants to verify

each other’s work: buildings, evacuation routes, and route sets were cross-checked

by the participants multiple times. The validity of buildings, routes, and route sets

was ascertained by giving those entities either positive or negative votes. From the

votes recorded, following the TRAVOS trust model (Teacy et al. 2006), we define the

trustworthiness of an entity x based on the beta family of probability density functions

as follows:

τ (x) =
α

α + β
(13)

where τ (x) is the trust value of x (the mean of the beta distribution defined by the

hyper-parameters α and β) with α = p + 1 and β = n + 1; p and n are the numbers

of positive and negative votes of x , respectively. Using the trust value 0 < τ(x) < 1,

the label lx for any data entity x in CollabMap can now be assigned as follows:

lx =

{

trusted if τ (a) � 0.75

uncertain otherwise
(14)

where 0.75 is the threshold we chose to select data that were highly trusted by Col-

labMap’s participants. Before proceeding to the Training phase, we calculated the
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Table 2 CollabMap data quality classification results

Data type Trusted Uncertain Accuracy (%) 95% confidence interval

Building 4,491 684 90.03 ±0.06%

Route 3,908 1,089 96.98 ±0.04%

Route Set 3,019 1,691 95.70 ±0.05%

trust values of all buildings, routes, and route sets and assign them with corresponding

labels as specified by Eq. 14.

6.2 Training phase

We followed the methodology in Sect. 4, using decision tree classifiers and the same

training and evaluation process. In this application, we trained three classifiers to

classify the quality of buildings, routes, and route sets, one for each CollabMap data

type. The accuracy of the classifiers is presented in Table 2 with the 95% confidence

intervals and the number of samples available for each data type. The results show

that the classifiers trained on the provenance network metrics of dependency graphs

predict the trust labels for buildings, routes and route sets in the test sets with a high

level of accuracy: 90% for buildings, 97% for routes, and 96% and route sets.

6.3 Discussion

With such high accuracy levels achieved by the classifiers, it is important to note

that our method did not rely on any domain-specific information from CollabMap

but only on generic, domain-independent provenance network metrics. The strong

correlation between the provenance network metrics and data quality in CollabMap

discovered by the classifiers suggests that analysing network metrics of provenance

graphs is a promising approach to making sense of the (real-world) activities and

data they describe, such as classifying crowd-generated data into trust categories as

in this case. The use of provenance network analytics in applications like CollabMap

could potentially reduce significantly the number of required verification tasks (which

incur a cost in resources and/or time). In such cases, only a much smaller set of

verification tasks would need to be carried out to generate enough training data for

building the quality classifiers as shown above. While the provenance of a piece of data

is traditionally examined to study its history, the successful application of provenance

network analytics over “forward provenance” to analyse data’s usage and significance

in CollabMap shows that this can be an alternative useful approach for provenance

analytics.

Relevance of metrics As with the previous application, we also calculated the rele-

vance of the network metrics after the Training phase. Although they were all generated

from the same application, the most relevant metrics for their classification are quite

varied: r , ACC, na for buildings; ACC, d, mfdder for routes; and r , ACCe, e for
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Fig. 4 The accuracy of quality classifiers for CollabMap buildings, routes, and route sets learned from

generic and/or provenance-specific network metrics. Combining all the available metrics achieved the best

classification accuracy

route sets. Such differences are understandable given that buildings, routes, and route

sets were used differently to create new data in CollabMap. Although the decision

trees and the most relevant metrics above do not explicitly account for the connec-

tions between the features (i.e. the network metrics) and the prediction categories

(i.e. the trust labels), they provide us with some starting points to help identify such

connections in a later investigation.

Generic versus provenance-specific metrics We retrained the three classifiers first

using only the generic network metrics and later using only the provenance-specific

metrics. The results (provided in Fig. 4) show that the classifiers trained only on the

generic network metrics performed better than those trained only on the provenance-

specific metrics in classifying buildings and routes but not route sets. However, the

highest accuracy in this application were achieved by making use of the full set of

provenance network metrics across the three data types.

7 Application 3: Identifying instruction messages

In the previous application, we introduce a method to extract the dependency graph

of an entity of interest from a bigger provenance graphs to analyse its usage after

creation. In this section, we show how the method can be further optimised to achieve

the highest classification performance, in this case, inferring the significance of a

chat message in the Radiation Response Game (RRG) (Fischer et al. 2014) from its

“forward provenance”.

RRG is a location-based, mixed-reality game that simulates a disaster-response

scenario in order to study team coordination. In this game, several spatially distributed

targets (victims, animals, fuel, and resources) need to be recovered and moved to a

safe place. Assisted by a headquarters, field responders (i.e. medics, fire-fighters,

transporters, and soldiers) coordinate and form teams to move as many targets to safe
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Fig. 5 Part of a PROV graph generated from a RRG capturing changes in one game activity

places as possible. Each field responder communicates with the headquarters and the

others via a smart phone app. The app also tracks the actions taken by responders such

as picking up, moving, and dropping off a target, in addition to their locations. In order

to assist the analysis of team coordination in a RRG, we record what happened in a

game in a provenance graph which contains the following information:

– Agents: the field responders participating in the game and the headquarters.

– Entities: the targets and the messages communicated in the game.

– Activities: sending a message, picking up, transporting, and dropping off a target.

A small example of a RRG provenance graph is provided in Fig. 5, which shows one

game activity in whichAnimal121was picked up by two field responders, generating

a new provenance entity, PickedUpAnimal121.1, which is its new version with

the updated status. A RRG provenance graph describes all the activities in a RRG,

and, hence, is a large graph,7 covering the evolution of the whole game and how its

players and targets changed over time.

Since RRG was designed to study team coordination, the communications among

participants are of particular interest as they can reveal when teams are formed and

what led to their formation. Therefore, in addition to automatically tracked game logs,

each participant’s voice communication is also recorded by individual recorders and

their actions captured by video cameras. In a typical RRG game, there are eight to ten

audio streams (one per responder), and four video cameras capturing the actions of the

headquarters and the field responders over 30 min. Hence, post-hoc analysis of these

audio and video recordings to learn about when and how team coordination happened

7 The RRG provenance graph used later in this section has 1,682 nodes and 4,184 edges.
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requires significant human efforts. In practice, Fischer et al. (2014) relied on the chat

messages as a source to identify when teaming decisions were made and where to focus

their investigation in the audio and/or video recordings. In order to do so, they first

manually classified the chat messages into a number of different categories, the most

interesting being that of directives as their study aims to determine whether, when, and

why an instruction is followed or rejected (Fischer et al. 2014). Our intuition is that

such instruction messages, either followed or rejected, would lead to various activities

by the game’s participants following the moment the messages were received. For

example, the participants could do as they were instructed, or they could send back

more messages either to reject the instruction or to request further information. Since

a RRG provenance graph also captures those activities, we believe that analysing the

“forward provenance” of a chat message can help identify its role in the game. Hence,

in what follows, we seek to apply the provenance network analytics method to identify

instruction messages from their dependency (provenance) graphs.

7.1 Design phase

Graph labels For each message in a RRG, Fischer et al. (2014) classified them into

one of the six categories: directives, assertives, expressives, declarations, commis-

sives, and requests. Directives in RRG are typically instructions from the headquarters

allocating tasks to the responder teams on the ground and are the targets for the clas-

sifier. Therefore, we label a message with directive, if it is one, or other, otherwise:

L = {directive, other}.

Input graphs The dependency graph of a chat message in a RRG graph captures the

activities that followed the message and, intuitively, is a suitable candidate to analyse

to categorise a message. However, since a RRG graph evolves linearly along the time-

line of a RRG, the size of such a dependency graph varies greatly depending on when

in a game the message was sent; messages sent at the beginning of a game have

significantly more (potential) dependants than those sent later in the game. In order

to assess the immediate “impact” of a message, we limit the dependency graph of a

message x to at most k edges away from the message in a RRG provenance graph. We

called such dependency graph Dk
G,x = (V k

G,x , Ek
G,x ) such that:

V k
G,x =

{

v ∈ V |v
k

→ x
}

∪ {x} (15)

Ek
G,x =

{

e ∈ E |∃vs, vt ∈ V k
G,x (e = (vs, vt ))

}

(16)

where v
k

→ x is true if there exists a path in G from v to x whose length is at most k.

For a given k and a message x , we define the input graph X = Dk
G,x .

Training data We recorded a single provenance graph for the RRG game reported by

Fischer et al. (2014), where there were 69 messages sent, 32 of which were categorised

as directives. The dataset for this application is, hence, relatively balanced between the

two labels (46 vs 54%); hence, no data re-balancing was carried out. For the training,

each directive message is labelled as directive, while the rest as other.
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Fig. 6 The accuracy of the instruction message classifiers (of various dependency depth k) trained only

on generic metrics, provenance-specific metrics, and both. The highest accuracy levels (marked by the

horizontal line), 85%, were achieved with: k = 11 (combined/generic/provenance), k = 13 (generic), and

k = 15 (combined). The accuracy level decreases with k > 15

7.2 Training phase

We carried out the training phase for this application in a similar manner as in the two

previous applications. The main difference is that dependency graphs of messages

are parameterised by k, the depth of the dependency graphs to be analysed. In order

to determine the optimal value of k for this application, we have the training carried

out with different values of k from 1 to 18.8 The cross validation procedure then

informs us the value of k that yields the best classification performance for our intended

application. At the same time, this provides us with an insight into how far the “impact”

of a message could be in the whole RRG provenance graph. Thus, for each k ∈ [1, 18],

we extracted Dk
G,x for each message, and calculated the provenance network metrics

for it. We then proceed with the training of a classifier to predict the label of a message

x from its dependency graph. The mean accuracy of the classifier at each value of k

and the confidence interval are plotted in Fig. 6.

The results show that the classifier correctly identified directive messages on an

average three out of four times for k ≥ 3. It performed slightly worse at k = 2 and did

no better than the base line at k = 1, suggesting that little or no useful network infor-

mation was contained in such shallow dependency graphs. The exploration procedure

discovers that k = 11 yields the top performance at 85.13% (±0.79%).

7.3 Discussion

In this application, we show how dependency graphs can be parameterised by their

maximum depth (k) to help extract relevant input graphs for network analytics (in

applications whose provenance graphs are too large and encompassing). The optimal

value of k can be discovered in an automated manner by trialling different values

8 The accuracy level declines with k > 15 and, thus, we stop the exploration at k = 18.
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and checking the classifier’s performance with each value as shown earlier. Although

the message classifier’s accuracy is not as high as in the previous two applications,

this level of accuracy (i.e. 85%) is sufficiently high for it to be useful as an automated

analytic tool for the RRG study. It could assist post-hoc analysis of future RRG studies

by labelling instructions from chat messages based on their provenance, significantly

reducing manual efforts in classifying them as it has hitherto been done. Since our

analytics method does not rely on the domain data but only on the provenance of

activities in an RRG game, it can certainly be applied in other studies where similar

provenance is captured. In those cases, the method can help identify points of interest in

a study for further investigations, saving time and efforts of researchers going through

voice and video recordings. In scenarios where instructions are already identified

(e.g. tasks allocation, military orders), the result from this application suggests that

analysing the “forward provenance” of such instructions could help determine their

compliance with a predictive model.

Relevance of metrics As with the previous applications, we examine the relevance

of the network metrics; however, given the numerous configurations of k, we only give

a summary of the results here. The detailed results are available in the Supplementary

Material. Across various values of k, we found that the most influential metrics was

the number of edges e, followed by the number of entities ne and mfde→a . This is

compatible with our earlier intuition that a directive message generally would generate

more game activities, manifesting in more entities and provenance relations (i.e. edges)

in the message’s dependency graphs.

Generic versus provenance-specific metrics Comparing the accuracy of classifiers

trained only on the generic network metrics and that of those trained only on the

provenance-specific metrics across the 18 values of k, the result is mixed. As shown

in Fig. 6, both perform similarly in 7 cases, using provenance-specific metrics out-

performs using only generic metrics in 7 cases, and in the remaining 4 cases, the

reverse is true. It is difficult to draw a clear-cut conclusion from this. However, the

result indicates that the provenance-specific metrics still plays a significant role in

this application. Finally, both types of network metrics perform equally well in with

k = 11, delivering the top accuracy for this application.

8 Related work

Our work is conducted within the context of the descriptive analysis of network graph

characteristics (Kolaczyk 2009). It has been shown that when studying a complex

system such as a long-term crowdsourcing application or any program giving rise to

a large amount of data (provenance or otherwise), various questions of interest can be

rephrased usefully as questions regarding some aspect of the structure or characteris-

tics of the corresponding network graph (Brandes and Erlebach 2005). For example,

particular notions of the importance of individual system elements may be captured

by measurements related to the corresponding vertices in the network. Indeed, Vaz

de Melo et al. (2012) provide a compelling example of why the inputs to a predic-

tive algorithm should sometimes be based on network topology (such as those related
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to changes in the relationships among sports players and coaches) rather than node

attributes (namely a player’s performance statistics).

The field is continually evolving, and graphs can be viewed in a growing number

of ways; provenance data itself can be interpreted as collaboration networks (Altintas

et al. 2010) or otherwise. Recently, Margo and Smogor (2010) examined a provenance

graph based on components of a file-store, to show that provenance and other meta-

data can successfully predict semantic attributes: in particular, they predicted file

extensions in a file-history graph. (As in earlier sections, ‘predict’ refers not to the

temporal sense of the word, but to the re-inferring of removed data.) Although their

particular choice of attribute to predict “has few applications”, the study functioned as

a useful proof of concept. The authors employed the C4.5 decision tree algorithm on

their provenance graph, with the network structure and artefact attributes as input; the

levels of accuracy achieved were comparable to our own, even though in the present

work we examine provenance graphs of a different topology and size. The authors

recognised that further exploration of the feature space over provenance graphs was

called for; among other things, our methodology extends the types of features used in

such analyses.

Related to our work in categorising provenance graphs, Cheah and Plale (2012)

proposed a method to check for “structural flaws” in provenance graphs from workflow

execution in order to detect anomalies. A component of the method relies on counting

the number of nodes and edges from a set of provenance graphs to identify graphs that

have too few or too many nodes/edges compared to their quantiles computed from

the whole population. This approach, however, is only effective in the cases where

provenance graphs are recorded from a workflow that is consistent in its outputs.

Our approach, instead, employs machine learning techniques to reveal subtler and

more complex correlations between such metrics and data properties. Moreover, it

makes use of many more network metrics and also takes into account provenance

type information. In order to cope with the potential complexity of provenance graphs

(containing both structural information and node/edge provenance attributes), instead

of directly analysing their network topology (like we did in this work), Chen et al.

(2014) proposed partitioning provenance graphs into subsets of vertices according

to their temporal ordering. Scalar features (e.g. vertex type, the number of nodes in

the subset, the average number of characters in node names) can then be collected

for each subset of a provenance graph to represent the graph in tasks such as graph

clustering, graph classifying, and rule mining. The key difference here is that the

number of features can vary greatly depending how many subsets a provenance graph

is partitioned into according to the Logical P algorithm by the same authors (Chen

et al. 2014). Therefore, the aforementioned data mining tasks can only be performed

with graphs having the same number of subsets (i.e. the same number of features).

Our provenance network metrics, on the contrary, are calculated on whole provenance

graphs, and, hence, provide the same number of features regardless of graph size. In

addition, the Logical P algorithm was designed to work with the Open Provenance

Model (Moreau et al. 2011) while our method was based on the later PROV Data

Model (Moreau and Missier 2013) standardised by the World Wide Web Consortium.

Given that not all PROV relations have temporal constraints associated with them, the

Logical P algorithm may not work with certain PROV graphs.
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Similar to our data quality assessment in Application 2 (Sect. 6), Ceolin et al. (2014)

sought to assess trustworthiness of crowdsourced data using provenance information.

They relied, however, on node attributes (such as timestamps and typing speeds)

rather than the network topology, in a different application area to ours (annotation of

museum collections), achieving accuracies of approximately 80%. CrowdTruth (Inel

et al. 2014) is another crowdsourcing annotation application that sought to derive the

quality crowdsourced data from a set of metrics on disagreements within the collected

data. This work derived the metrics from the actual content of the data, not from

analysing the relationships between them as per our method.

Our method provides a broader type of analysis than certain previous work on

hyperlink network analysis (Park 2003) in which the links between web pages were

studied to estimate the value of websites (e.g. their credibility) or to identify social

networks. In the former case, the previous work only counted the number of links and

did not investigate the network connections further than one link away (in contrast

with the size of dependency graphs in our analyses). In the latter, the focus was on

clustering similar nodes or detecting outliers, e.g. isolated nodes or those with few

links, not on predicting node attributes as in this work. Also relatedly, Varlamis and

Louta (2009) count network links in order to express trustworthiness, as an example

application of the principle described by Yu and Singh (2000) that propagation can

be considered one of the properties of trust (along with symmetry, transitivity, self-

reinforcement, etc.) However, Varlamis and Louta (2009) did not have voting data

available in order to assess the accuracy of their model in the way we could as in the

CollabMap application.

More generally speaking, graphs, as a generic and flexible data representation,

are ubiquitous in describing computation. Analysing graph data is, hence, an active

research topic of multiple communities in a variety of fields such as graph-based

semi-supervised learning (Subramanya and Talukdar 2014), graph mining (Aggarwal

and Wang 2010), and more. The latter includes frequent pattern mining (Cheng et al.

2014), graph clustering (Gaertler 2005), graph classification (Tsuda and Saigo 2010),

etc. Our work largely falls into the last area by providing a method for predicting the

label of a whole provenance graph, as opposed to predicting the label of a node in the

graph, also known as “label propagation” (Bengio et al. 2006). However, compared

to other graph classification techniques, our method makes use of network metrics

instead of graph kernels (Vishwanathan et al. 2010) or boosting (Saigo et al. 2009);

and the metrics were specifically constructed to work with PROV provenance graphs.

Such provenance network metrics have not been studied before and our work is the

first to propose employing them for characterising real-world properties of data in an

automated manner.

9 Conclusions

Characterising properties of data, such as their quality or importance, can be chal-

lenging, especially with those generated by human contributors (like crowdsourced

data or chat messages). It is usually a manual process that requires retrospection by

experts who understand well the concerned application domain; in some other cases,
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it instead relies on the opinions of the participants (e.g. via a voting-like mechanism).

In this work, we propose applying machine learning techniques on the network met-

rics of provenance graphs to explore and automate data characterisation. In particular,

we have presented a generic and principled data analytics method for analysing data

and applications based on their provenance graphs. Using this method, via the means

of off-the-shelf machine learning algorithms, it is now possible to explore and learn

about some properties of the data from their provenance in an automated manner. Since

the method employs common network analyses and machine learning techniques on

generic provenance graphs, it can be used in a wide range of applications where prove-

nance are captured (or can be generated from application data/logs). Indeed, we have

demonstrated the applicability of this method within three different applications: (1)

identifying the owners of provenance documents on ProvStore, (2) classifying the trust

labels for buildings, routes, and route sets drawn by crowd contributors in CollabMap,

and (3) identify instructions from chat messages in the RRG; all resulted with high

levels of accuracy. At the same time, we show how the method can be customised and

optimised to suit a particular application context. Particularly, the results of Applica-

tion 3 (Sect. 7) also led us to believe that the provenance network analytics method can

be a useful analytic tool for studying human activities or determining their compliance.

The twenty-two provenance network metrics we propose as features for analysing

provenance information (Sect. 2) were chosen as the starting points of our investigation

in this work. Although all of them were shown to contribute to the classification

performance in the selected applications, each classification problem may still work

well with a small subset of the metrics. Therefore, the relevance analysis is essential

to identify those and to reduce the computation cost for unnecessary metrics. We

plan to refine and develop further metrics from those twenty-two starting metrics. In

particular, we are interested in refining the provenance-specific metrics to take into

account the provenance semantics of Alternate and Specialization relations, which

convey a different kind of influence than the others.

While avoiding using domain-specific information allows the provenance network

metrics to be generically applied, we also appreciate the potential value of application-

specific data in improving classification performance. In addition, certain applications

may produce provenance graphs having the same topological characteristics, resulting

the same set of network metrics values, confusing predictive models based solely on

those. Therefore, in another future direction, we plan to extend our proposed met-

rics to utilise domain-specific information recorded in provenance information. We

expect such customised provenance network metrics, albeit no longer generic, will help

improve accuracy in analysing an application’s data and will work with provenance

graphs of highly similar topology.

In the three applications reported in this paper, we were able to collect the full

provenance information recorded by them. This may, however, not always be the

case. There can be applications where the provenance records available for analytics

are incomplete or corrupted, or parts of them might be intentionally hidden or trans-

formed to protect sensitive information (Cheney and Perera 2015; Danger et al. 2015;

Missier et al. 2015; Hussein et al. 2016). It is an open question how resilient a pre-

dictive model based on provenance network metrics performs against such variances

in the input provenance graphs. An extension of this work, thus, could be on studying
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models of imperfect provenance information and their effects on provenance network

analytics.

With an increasing number of applications continuously generating provenance,9

we can quickly get overwhelmed with torrents of provenance data requiring our atten-

tion. The provenance network analytics method presented here can potentially be

applied on provenance graph summaries, such as those produced by graph summari-

sation techniques (e.g. Moreau 2015; Riondato et al. 2016), as significantly smaller

proxies of the original provenance graphs, in order to lower computation costs. The

analyses can also be extended to study the provenance network metrics that charac-

terise the evolution of provenance graphs (like those introduced by Ebden et al. 2012),

which reflect the development of the tasks they represent. Such an extension could

help us to understand developing dynamic behaviours, and to allow for appropriate

on-the-fly interventions (in order to stop an undesirable behaviour from progressing,

for instance).

In a wider context, provenance graphs do not only describe the origin of data, but

they also reveal the interactions of agents in connected activities and how the activities

themselves unfolded at the same time. The provenance network metrics presented

in this work, therefore, could find useful applications in other areas in addition to

those presented here. Analysing the influence of agents in the provenance graph of

a collaborative task could identify the most valuable team member. Studying the

distances between the agents in the graph could reveal close collaboration or team

breakdown; or finding frequent patterns (Kuramochi and Karypis 2005; Yan et al.

2008) in provenance graphs may show how they usually work together. In addition,

focusing on the activities in a graph could help detect bottlenecks, important data,

and activities that were crucial to the outcome of a task. Given the generic nature of

network analysis techniques, the possibilities are highly promising and vast.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if changes were made.

A Supplementary Materials

In order to help reproduce the results shown in this paper, we publish the datasets and

the code used in the experiments reported above in the (electronic) Supplementary

Materials, whose README.md file provides the full descriptions of the datasets and

the code. In addition, the Supplementary Materials are also available online at https://

github.com/trungdong/datasets-provanalytics-dmkd, where future updates and errata

to the materials will be made.

9 See http://provenanceweek.org/2016/p3yl/programme.html for examples.
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