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To effectively collaborate in Internet environments, it is critical to efficiently manage the
shared state of collaboration. However, the management of shared state is highly situa-
tional; different collaboration semantics require different measures tailored to their specific
needs. Hence, providing a general set of services that meet the management requirements
of varying collaboration situations is challenging. In this paper, we discuss our approach to
providing such services. The services are made flexible by allowing collaborators to choose
appropriate services based on the needs of their collaboration tools and specific character-
istics of their shared state. We present the shared state management services provided by
our Corona server that embodies our approach and report experience with its use.

Introduction

Computer-supported collaboration often requires sharing of certain application con-
text by geographically dispersed participants. The collaborators are able to work to-
gether over distance by making changes to a shared state and observing the changes
made by others.

The semantics of shared state is application-dependent. For example, in a group-
drawing tool, the shared state may be defined as the contents of the canvas. In a
window-sharing environment, such as the one supported by DistView [21], the shared
state includes the attributes of a shared window, e.g., the size of the window, and the
internal states of application-specific objects associated with the window.

On the other hand, CSCW system developers need application-independent ser-



vices for managing shared state and providing awareness information about its use.
Critical issues concerning the management of shared state by application-independent
services include: Awareness: In a computer-supported collaboration, a user may be un-
aware of the presence of other participants or their current status without explicit support
from the underlying system. Collaborationawareness information such as when users join/leave
a collaboration session, whether or not they are paying attention when connected (e.g. gone
out of the office for coffee), or when they are disconnected from a session due to network or
client failures plays an important role in managing shared state as it may dictate the interac-
tions of collaborators. Such awareness information should be available for ready access.

Synchronization: A shared state should be consistently synchronized for the entire du-
ration of a collaboration. Furthermore, collaborators should be allowed to access and modify
the shared state concurrently without disrupting each other’s work.

Predictable Performance for Late-comers: In synchronous collaboration, participants
may join an ongoing collaboration activity. A late-comer should be able to receive a con-
sistent state of collaboration in a “predictable” amount of time - independent of failures of
or speed of other clients in the system. Our experience with CSCW systems indicates that
users get impatient with a system if it takes them longer than “normal” to join a collaborative
session, say, because of failures of other clients or slow bandwidth to a client that might have
been selected by the system to transfer shared state. Users expect a “predictable” response
time (i.e., limited largely by their bandwidth to the network and the size of the state) for
state transfer when they join the system. Conversely, existing users do not want the joining
of late-comers to be intrusive or disruptive to their on-going work.

Persistence: A group activity may involve both synchronous and asynchronous collab-
oration. It is often the case that collaborators may not accomplish all their goals in a single
session; they may have to adjourn a session and reconvene at a later time. In such cases, it
may be necessary to save part or all of a shared state persistently to be retrieved for a later
session. Persistence is beneficial to both synchronous and asynchronous collaboration.

Time-stamping: Users may often want to know when an update to a shared state took
place. In the chat application of the UARC project, for instance, our users demanded that all
messages be time-stamped by a reliable service. Time-stamping can also be useful if users
want to know what has changed since the last time they participated in a long-term collab-
orative session. Hence, mechanisms should be provided to reliably time-stamp updates on
the shared state.

Interactive Responsiveness: Users expect collaborative applications to have similar re-
sponse times as single-user applications. The ability to collaborate should not disrupt the
fluidity of users’ interactions with their applications.

Client-Based Semantics: The interpretation of the semantics of a shared state should
be the responsibility of collaborating application processes. This allows shared states to be
scalable to a large number of collaborating processes, and processes of different applications
may work over the same shared state [19].

Robust Collaboration: A collaboration session should be robust. It should tolerate var-
ious failures of collaborators’ host machines and network connections and continue to sup-
port the work of non-faulty collaborators. In addressing the above issues, different col-
laborative applications require different approaches to managing shared state based
on their needs. For example, persistence may not be required in all collaborative
applications. Also, different users in the same collaborative application may have
different awareness needs. Nevertheless, it is highly desirable for the efficient de-



velopment and widespread use of computer-supported collaboration technology to
have a general set of shared state management services that adequately address all
the aforementioned issues. Such services should be flexible in that the subscribers to
the services are able to select only the services they need, with corresponding over-
heads.

In this paper, we present our approach to managing shared state. Our approach is
realized in a set of shared state management services provided by our Corona server
that we have implemented as part of the UARC project’s Collaboratory Builder’s
Environment [14]. The server supports both synchronous and asynchronous collab-
oration over the World Wide Web, where collaborating clients may be dynamically
downloaded over the Internet. In an earlier paper [10], we discussed communication
requirements supported by the Corona server and the scalability aspects of commu-
nication for different kinds of groups. In this paper, we focus on the management of
shared state by the Corona server to address the above issues.

The remainder of the paper is organized as follows. We first discuss the motiva-
tion for our work. We then provide a detailed discussion of our approach. This dis-
cussion defines basic concepts fundamental to our shared state management services
and describes each service in detail. We then report on the implementation status as
well as some usage examples of Corona. We conclude the paper by comparing our
work with existing systems and by outlining our future plans.

Motivation

Our work on the management of shared state in computer-supported collaboration
has its origin in an NSF-sponsored project, called the Upper Atmospheric Research
Collaboratory or UARC [8]. The UARC project focuses on the creation of an exper-
imental testbed for wide-area scientific collaboratory work. This testbed is imple-
mented as a large object-oriented distributed system on the Internet and provides a
collaboratory environment in which a geographically dispersed community of space
scientists perform real-time experiments at a remote facility in Greenland without
having to leave their home institutions. This community of space scientists has ex-
tensively used the UARC system over the last three years and has expressed a high
degree of satisfaction with its mechanisms for remote collaboration. Figure 1 shows
a snapshot of various UARC collaboration tools that enable space scientists to re-
motely conduct their science.

Consider two collaboration tools: the multi-party chat box for exchanging textual
message and graphical images and a shared windows facility for viewing instrument
data. These two collaboration tools have very different requirements for managing
shared state. The chat box allows scientists to exchange textual messages and graph-
ical images within the editing area of the chat box. All the messages are shown in
the display area of the chat box. Made possible by our DistView toolkit [21], the
shared viewer facility allows the selective sharing of the data display windows of
instrument data viewers. In order to share a window, a scientist first exports the win-
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dow to a public repository. The exported window may subsequently be imported
by any scientist who is interested in collaborating with the exporter of the window.
Henceforth, the shared window provides the collaborating scientists with a synchro-
nized view of the data being displayed and ensures that its physical appearance on
the screen, e.g. its size, remains synchronized throughout collaboration.

The above two collaboration tools demand different strategies for managing shared
state. The shared state of the chat box is defined to be the list of messages exchanged
between participants. The shared state of a viewer includes the range of data being
displayed in the shared window, the graphical display of the data itself, the settings
of the display, and all of the graphical attributes associated with the window. In or-
der to maintain the synchrony of its shared state, the chat box only needs to append
each new message to its queue of exchanged messages; it does not have to re-send
previously exchanged messages when updating its state with a new message.

In contrast, when a participant resizes a shared window, all instances of the win-
dow have to be resized. Likewise, when a scientist changes the display mode for
the data being displayed in the window, the other replicas of the window have to
reflect the setting change by overwriting their respective internal variables with the
new value. Hence, keeping shared windows synchronized requires replacing part of
its shared state with new values.

Another distinction concerns the degree of synchronization. The scientists are
not very concerned about the total order of messages shown in the display area of
the chat box, especially when the messages are timestamped. Instead, they want to
interact with each other without delay by being able to exchange messages as freely
as possible. When sharing a window, however, concurrent updates on the shared
window should be serialized. Otherwise, the shared state of the window seen by



different scientists may be inconsistent. For example, the shared window may be of
different sizes, or the instrument data displayed in the window may be in different
modes for collaborating scientists.

Over the years, the design of the UARC system has evolved through several gen-
erations. The current design is an applet-based architecture implemented in Java.
It takes advantage of the widespread use of the World Wide Web and the platform-
independence of Java applets. A key component of the UARC system is the Corona
server. The server embodies our approach to shared state management; it is powerful
and flexible enough to meet the varying shared state management needs of UARC
applications as well as general collaboration environments.

Corona Shared State Model

Ellis, et al. define the shared state of applications in computer-supported collabora-
tion as “...a set of objects where the objects and the actions performed on the objects
are visible to a set of users” [7]. It follows that the management of a shared state may
be defined as the management of actions, i.e. accesses and updates, on the objects
that constitute the shared state.

We require each object in a shared state to have an identifier to distinguish the
object from the others in the same shared state. The object should also be able to
write its internal state to a stream as well as set its state upon receipt from a stream.
The latter requirement is commonplace in object-oriented applications that utilize
persistent objects. The identifiers for objects in a shared state may be automatically
generated by a support system and may not incur extra programming efforts. For ex-
ample, the object instances of the DistViewObject class in our DistView toolkit [21]
are automatically assigned such identifiers by the DistView runtime system.

Corona Server Overview

In this section, we describe the basic approach of the Corona server to shared state
management. We begin the discussion by defining the concept of group.

Group

The basic unit of collaboration in the Corona server is a group. A group is defined to
be a set of application processes, termed members. A group may be characterized as
stateful or stateless. A stateful group is associated with a shared state; the members
of the group collaborate with each other by collectively accessing and modifying
the shared state of the group. To participate, an application process has to join the
group first. Once a member leaves the group, it no longer receives any update no-
tifications on the shared state. A stateless group has no shared state and is used for
group administrative tasks such as dissemination of group membership notifications.
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Figure 2. Overview of the Corona Server. Circles represent clients, dotted lines depict groups, and
different shapes represent different shared states. Clients may belong to different groups; Client D
belongs to both Group G3 and G4 etc. All the groups are stateful.

Figure 2 illustrates the group concept.
Groups may also be characterized as persistent and temporal. A persistent group

exists even when it has no members; if it is stateful, the shared state of the group also
persists. A temporal group ceases to exist when it has no members; if it is stateful,
its shared state is also lost.

Note that our notion of group is distinct from the concept of a group of users who
may be engaged in various collaboration activities. It may be viewed that our group
represents a particular collaboration activity that a set of users is presently partici-
pating in.

Group State Management

The server manages a set of groups. A group is created by a qualified client sending
a request to the server 1. The client specifies the name of the new group and whether
or not the group is stateful.

If a group is stateful, the client may also send the initial state of the group to the
server. The server represents the shared state of a stateful group as a table indexed by
object identifiers. Each table entry is a byte stream representation of the state of each
object in the shared state. The server keeps the shared state table up-to-date as the
group members update the shared state. When a new member joins the group, the
server transfers the contents of the table to the new member. By default, a stateful
group is persistent whereas a stateless group is temporal. The server allows groups
to dynamically change their persistence status as needed.

Note that the shared state of a stateful group specifies what is shared but does
not dictate how the shared state is actually used. Instead, the interpretation of the

1The server works in conjunction with our session manager as presented in [14], and the session
manager determines who may have a privilege to create groups.



semantics of the shared state is left to collaborating processes. This is important be-
cause we want our shared state management services to be applicable to a wide range
of collaboration situations. The lack of knowledge of the semantics of a particular
shared state frees us from having to deal with its behaviors in a specific situation.
Patterson, et al. describe this property as client-based semantics [19].

The Corona server takes a centralized approach to providing administrative ser-
vices for maintaining shared state. A different approach would be to replicate man-
agement responsibilities among collaborating clients [3, 11, 13]. In theory, such a
replicated approach offers advantages over a centralized counterpart, especially in
the issue of fault tolerance. However, in practice, a replicated approach would not be
suitable in a wide-area, heterogeneous collaboration environment such as the World
Wide Web. For example, maintaining the synchrony of replicated data among all
the keepers of the data would be very expensive in such an unreliable environment.
Further, clients may run on hosts of unpredictable processing resources and network
connectivity. Hence, it would be unreasonable to expect clients to always perform
shared state management tasks reliably.

A rationale for centralizing administrative services for managing shared state is
that servers are designed to support multiple users and hence tend to be more reliable,
allocated more resources, and run in a more controlled environment than clients [19].
Clients usually support the work of a single user and typically are not trusted to be re-
liable. Furthermore, a centralized service provider such as the Corona server can be
made fault tolerant by having multiple replicas of the provider. There exist a number
of well-known replication strategies, including a primary-backup approach (passive
replication) [16] and a state machine approach (active replication) [1].

Further advantages of a centralized approach are that it provides a single point of
serialization and that it simplifies accommodation of latecomers [3, 19]. Further, the
detection and handling of faulty clients is easier with a centralized approach than a
replicated counterpart where all the clients would need to run a complex membership
protocol to account for faulty clients.

Corona Services

The Corona server provides the following set of services for its groups: group aware-
ness, state transfer, group multicast, lock management, and logging. Figure 3 graph-
ically represents the Corona services.

Group Awareness Service

The group awareness service of the Corona server maintains information on the mem-
bership of groups. When a new client joins a group, the server sends a join notifica-
tion to the other group members. Likewise, when a client leaves its group, the server
notifies the other group members of the client’s departure. The changes of member
attributes are also notified; for example, when a member changes his or her user-
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Figure 3. Corona Services. The arrows represent subsriptions to services. Group G1 is subscribing
to group awareness/membership, group multicast, and synchronization services. The dashed arrows
show that Group G3 is using the synchronization service differently from Group G1 and that Group
G2 is utilizing the group multicast service differently from Group G1.

name attribute, the change is broadcast to the other members. Furthermore, a mem-
ber may indicate to the other members its participation status as idle or active. An
idle member is unable or unavailable to participate in the group activities for some
reason, e.g. has to answer a phone call, whereas an active member can fully partici-
pate. The server sends participation status notifications for the benefit of the group;
the server does not distinguish idle members from active members. By default, a
new member is active.

In some collaborative environments, it may be necessary to differentiate users
based on the type of operations they can perform on the shared state. It may be de-
sirable to grant only certain users the privilege to update the shared state while others
are only allowed to view the changes on the shared state.

The Corona server supports the following member roles: principal, observer, and
membership-observer. Principals have update privilege on the group’s shared state.
Observers and membership-observers are casual members who may only view the
updates on the shared state or the changes on the group membership, respectively.
Hence, principals need a higher level of awareness of each other’s work and pres-
ence, and thus require a higher quality of service (QoS) from the server [10]. For
example, the server may have to ensure that a principal receives all of its notifica-
tions whereas it may notify observers without ensuring that all messages are reliably
delivered.

By default, a client is a principal member. A client may also specify its role when
it joins a group. Furthermore, the server allows group members to change their roles
on the fly in response to collaboration needs or system events.



Group Multicast Service

Clients use the group multicast service of the Corona server to broadcast updates on
a shared state; a client sends a message containing update information to the server,
and the server broadcasts the message to the members of a group to which the sender
belongs. Updates on a shared state may be characterized as either memoryless or
memoryful. An update contains some value that represents a change of state of an
object in the shared state. A memoryless update contains a value that replaces the
old state of the object. In contrast, the value in a memoryful update is added to the
existing state of the object. Hence, memoryful updates entail incremental changes to
the state of the object whereas memoryless updates require overwriting the existing
state of the object.

Memoryful updates are useful where the history of changes to the shared state is
important to collaboration. In a group-drawing session, for instance, it is undesir-
able to remove existing shapes whenever a new shape is drawn on the canvas. On
the other hand, memoryless updates are useful where the past history of changes is
irrelevant to collaboration. For example, to know the current size of a shared win-
dow does not mandate knowing the past sizes of the window.

A group multicast message for an update specifies the group name, the object
identifier to which the update applies, the byte stream encoding of the update value,
and a flag specifying whether the update is memoryful or memoryless. Upon receipt
of a memoryless update multicast, the server uses the object identifier to index into
the group’s state table and replaces the existing stream with the new update stream.
Upon receipt of a memoryful update multicast, the server simply appends the update
stream to the existing stream. The server then forwards the update message to group
members.

The server provides two forms of group multicast: sender-inclusive or sender-
exclusive. Sender-inclusive multicast is used when the server needs to perform ad-
ditional operations on the message prior to delivering it to the clients, e.g. times-
tamping the messages of the chat box. With sender-exclusive multicast, the sender
applies the update locally and then sends the update to the server which then for-
wards the update to the remaining group members. We use the phrase multicast in-
stead of broadcast to highlight the fact that update messages may be sent to a subset
of the total membership based on the roles of the individual group members.

State Transfer Service

When a client joins a stateful group, the Corona server transfers the current shared
state of the group to the new member. A decision has to be made as to what of the
shared state should be transferred. Depending on the semantics of collaboration, the
new member may be sent only part of the shared state. For example, the shared state
of a shared window includes the states of all the user interface as well as application-
specific objects associated with the window. Depending on particular collaboration
needs, the importer of the window may be given the current states of both user in-
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Figure 4. Fast State Transfer in Corona. A new client C is joining Group G1. The numbers represent
the sequence of actions. C sends a join request to the server, the server transfers the current shared
state of G1 to C, and C acknowledges the receipt of the state.

terface and application-specific objects or of only the user interface objects. In the
latter case, the importer would be allowed either to access the application-specific
objects remotely or to only view others’ updates on the window.

The decision also depends on the type of updates required. For the part of the
shared state that requires memoryful updates, its current state as well as the accu-
mulated effects of the past updates on it should be transferred to a newcomer. How-
ever, for the part that requires memoryless updates, only the current state needs to
be transferred.

When a client joins a stateful group, the Corona server simply transfers the cur-
rent shared state of the group to the new member without disrupting the work of the
existing members. An authorized client such as a group creator may also specify to
the server which objects in the shared state to be transferred based on the roles of
new members.

State Synchronization Service

Ideally, the updates made by a user on the shared state should be instantaneously re-
flected on other collaborators. However, this may be impossible in practice due to
constraints such as network latency. Hence, users will inevitably experience some
inconsistencies in the shared state. Hence, the developers of synchronous collab-
oration systems often have to make design trade-offs between a desired degree of
synchronization of the shared state and the fluidity of work on the shared state the
end users are allowed to perform. The tighter synchronization implies that the users
would be more constrained in their work [9]. At one extreme, the users are allowed
to work as freely as they like as in a collaborative brainstorming session, and no syn-
chronization processing is performed on the shared state. At the other extreme, only
one user is allowed to make updates on the shared state while the others are forced
to wait. The right balance depends on the requirements of a specific collaboration



situation.
In order to provide a desired degree of synchronization and control concurrent

updates on the shared state of a group, the Corona server allows locks to be associ-
ated with the objects in a shared state. By default, no lock is assigned to the shared
state, allowing group members to work on the shared state concurrently. While this
approach may lead to chaos in general, it has been found to be more efficient and
useful in many practical collaborative scenarios [9]. For example, the design of the
chat box in the UARC client allows the scientists to exchange messages freely with-
out any concern for the total ordering on messages from distinct sources. Although
messages were sometimes received out of order, the scientists did not find it confus-
ing and often commented on the effectiveness of the chat box.

When concurrent access to shared state must be synchronized, the server allows
a lock to be assigned to a set of objects in the shared state. The size of a lock set
as well as its constituents are determined by group members based on collaboration
needs. An object may not belong to different lock sets. Regarding the usage of locks,
a client may acquire and hold onto a lock as long as the client actively updates the
objects in the lock set associated with the lock. An advantage of this lock-set based
scheme is that it allows a group to specify the degree of synchronization on the con-
current operations on the shared state. The flexibility stems from the fact that a lock
set may be of any desired size and that a group may have several lock sets. Since
a lock set is composed of object identifiers, not the objects themselves, the locks
can be managed by the server regardless of whether the shared state is centralized
or replicated.

This centralized approach not only simplifies the lock management but also frees
the group members from the administrative burden of lock management. Patterson,
et al. [19] and Nichols, et al. [17] also discuss the merits of such a centralized serial-
ization point for their lock management and concurrency control strategies, respec-
tively.

Logging Service

The logging facility of the Corona server consists of two complementary services:
(1) a checkpointing service for taking a snapshot of the current shared state of a group
periodically or on demand; (2) a record and replay service for logging group mul-
ticast messages containing update information on the shared state. Both facilities
allow a group’s shared state to be persistent and outlive the group itself. The first
approach is particularly useful when the group members may have to adjourn their
work to a later time. In the second approach, the server effectively records an incre-
mental change to the shared state. This allows the server to replay the updates at a
later time, detailing how the shared state has reached a particular state. The record
and replay capability [15] is especially useful for an end user who did not participate
in a collaboration activity to find out not only the results of the activity but also how
the results has been produced.



Implementation Status and Usage Examples

A prototype of the Corona server has been implemented as a multi-threaded Java
application, supporting down-loadable Java applet clients. The server has been suc-
cessfully tested and used in various UARC campaigns and project meetings, sup-
porting numerous collaborative science and on-line group discussions. In two recent
campaigns, approximately 40-50 participants (scientists and UARC developers) uti-
lized our tools to conduct science on atmospheric phenomena over a three day pe-
riod. The scientists were dispersed throughout North America and Europe, operating
on a variety of platforms, including Windows 95, Solaris, and HP-UX with connec-
tivity ranging from high-speed links to modems.

The initial development of the server has focused on its robustness and scalability;
the server should accommodate dynamic client joins, leaves, and failures and toler-
ate varying network connectivity conditions. Hence, the prototype provides only the
basic management services, including a group awareness service with limited role
support and a state transfer service without the selective state transfer support.

Table I provides a partial overview of the client application programming inter-
face to the Corona services. The Group Awareness/Membership interface allows
clients to create, initialize, join, and leave groups. The interface also allows clients
to pull awareness information such as group membership as needed. The group mul-
ticast interface allows clients to broadcast memoryful or memoryless updates on a
group’s shared state. The synchronization interface allows shared objects to be dy-
namically locked and unlocked.

The various collaborative tools discussed in Section are Java-based applets and
access the Corona services through the interfaces of Table I. As of the present im-
plementation, only the processes of the same tool form a group in the Corona server
although the server itself does not impose such a restriction.

The different collaboration semantics that these tools are designed to support re-
sult in different usages of the Corona services. For example, A chat group uses the
mcastUpdateIncludeSender() to broadcast messages so that when a new chat joins
the group, it is transfered all previously exchanged messages. Message are broad-
cast sender-inclusively so that messages are displayed with consistent timestamps.
The chat group does not utilize the synchronization service so that users may freely
exchange messages.

On the other hand, a shared windows group require a tighter synchronization of
its shared state. Conflicting updates on the display mode of the shared window, for
example, may result in confusion. Thus the shared windows group uses the synchro-
nization service to acquire locks on one or more shared objects before performing
updates. Further, it broadcasts updates through the mcastStateExcludeSender() in-
terface.



Group Aware-
ness/Membership

createGroup(gName,gType) creates a group of name gName of type gType
where type is stateful, stateless, ..

initGroup(gName,gState), initialize a stateful group gName with its shared
state gState

joinGroup(gName, aRole) join group gName with role, aRole
joinAck(gName) acknowledges the join completion of a member
leaveGroup(gName) leaves group gName
deleteGroup(gName) deletes group gName
changeRole(oldRole, newRole) changes the role of a member to newRole
getGroupNames() returns the names of groups currently present at

the server
getMembership(gName) returns the membership of group gName

Group Multicast mcastStateExcludeSender(gName,Oi

stateMsg)
multicasts new memoryless state message for ob-
ject Oi

mcastStateIncludeSender(gName,Oi

stateMsg)
multicasts new memoryless state message for ob-
ject Oi

mcastUpdateExcludeSender(gName,Oi,
stateMsg)

multicasts an memoryful state update change to
object Oi for group gName

mcastUpdateIncludeSender(gName, Oi,
stateMsg)

multicasts an incremental change to object Oi for
group gName

Synchronization acquireLock(gName, L) acquires a lock on an object whose id is in L

releaseLock(gName,L) releases a lock on an object whose id is in L

Table I. Corona client application interface for group awareness and multicast services. gState =
f(O1; S1); (O2; S2); :::; (On; Sn)g is the set of shared state object identifiers (Oi and their byte
stream state representations Si. L = fOi; Oj; :::g is a set of identifiers of objects for which an iden-
tifier is to acquired or released

Related Work

In its goals, Lotus’ NSTP [19] most closely resembles our Corona server. Both ad-
vocate centralized management of shared state and provide similar administrative
services in its support. The semantics of shared state is client-based in both systems
so that their services are generalized to a wide range of applications. Further, the
notion of Place in NSTP is synonymous with the group concept in Corona, and the
Things in a Place correspond to the objects in a shared state of a stateful group in
Corona.

However, NSTP and Corona differ in several aspects of their shared state man-
agement support. First, NSTP does not support the notion of incremental updates.
Each update on a Thing always overwrites the old value of the Thing. This limitation
would make the development of tools such as our chat box or draw applet difficult as
the updates on the shared states of these tools are fully incremental. One way to sim-
ulate an incremental update is to dynamically create and add a new Thing to a Place
for each update. However, this would entail a difficult problem of uniquely naming
new Things at runtime. Second, NSTP does not transfer shared states to clients; in-
stead, when a client enters a Place, it is only given the names of the Things in the
Place. Hence, clients always access shared objects remotely. This may significantly



degrade performance in user responsiveness in a highly interactive collaboration en-
vironment, especially over a wide area network. Finally, NSTP does not support any
notion of persistence in its Things or Places. On the other hand, the Corona server
does not support the Facade-like capabilities for viewing the shared states of groups
before actually joining the groups; users should obtain the names of groups to join
externally through our session manager [14].

Coast [22] and DistEdit [12] fully replicate their shared states as well as various
administrative components among client applications. As discussed earlier, a fully
replicated approach may not be suitable for collaboration over a unreliable, long-
haul collaboration environment such as the World Wide Web where clients may not
perform administrative tasks reliably.

Suite [5], Rendezvous [20], and Jupiter [17] take a centralized approach to man-
agement of shared state. In addition to managing shared states, the Suite, Rendezvous,
and Jupiter servers run application code. This may degrade the performance in user
responsiveness even in a local-area network. Corona is unique among systems that
take a centralized approach in that it provides the state transfer service, allowing
clients to interact with local copies of shared states. This allows for high perfor-
mance in user responsiveness, especially over a wide-area network.

The Corona server has provisions for both optimistic and pessimistic approaches
to synchronizing shared state. By default, the server does not associate any locks to
a group and allows the group members to freely interact with each other. This ap-
proach is synonymous in its intent with the optimistic synchronization approaches
taken by Grove [6], Jupiter, and Coast. The difference is that our approach does
not provide explicit conflict resolution mechanisms. However, the rollback or op-
eration transformation mechanisms employed by these systems are often expensive
and hard to generalize, respectively. We feel that locks are more efficient and sim-
pler to manage when concurrent updates to the shared state should be synchronized.
MMConf [3], DistEdit, and NSTP all use locks to control concurrent updates.

Many other systems provide administrative services similar in part to the ser-
vices provided by the Corona server. Both IRC [18] and Zephyr [4] provide central-
ized messaging and notification services, which are similar to our group awareness
and multicast services. However, neither of these systems has the concept of shared
state or role distinction among members and is not intended to support general syn-
chronous collaborative activities. As a transport layer subsystem, ISIS [2] supports
the notion of process groups, notification of membership changes, and group multi-
cast and may be used to build our group awareness and group notification services.
However, it also lacks the notion of shared state and does not provide guarantees on
delay when a client joins since the state transfer originates from another client.

Conclusions and Future Work

This paper presented our approach to providing flexible services for managing shared
state in computer-supported collaboration. We believe that both the efficient devel-



opment of collaborative applications and the widespread use of computer-supported
collaboration technology would be greatly benefited by such services. We have iden-
tified a set of general services fundamental to shared state management and discussed
different design choices possible for providing these services. The services are pro-
vided by our Corona server whose flexibility allows clients to choose what services
to receive and how the services are provided based on their particular shared state
management needs. An initial prototype of the server has shown the applicability of
our approach through the of development of several collaboration tools.

Our current research efforts are focusing on increasing the scalability and robust-
ness of the server and examining the issues involved in a distributed implementation
of the server.
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