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ABSTRACT 

Developing countries are facing increasing challenges to make urban mobility sustainable and to 

tackle the continuously growing air pollution and congestion caused by the rapid increase in car 

ownership. As part of a broad strategy to achieve sustainable urban mobility, bike-sharing services 

could contribute to car usage decrease, especially for short-distance trips. However, most of the 

developing countries have limited quantified evidence regarding the factors affecting bike-sharing 

choice and this hinders policy makers from effectively promoting bike-sharing usage. The case 

study city is Taiyuan, which operates one of the most in demand bike-sharing schemes in China. 

This research investigates the factors affecting mode choice behavior with a focus on bike-sharing, 

and explores the effectiveness of different policy options aiming at increasing bike-sharing 

ridership. Nested logit and mixed nested logit models are developed using both stated preference 

and revealed preference data. Policy effectiveness is studied by examining modal split changes. 

The results reveal the significant negative impact of air pollution on bike-sharing choice. 

Nevertheless, improving air quality is found to be less effective in promoting bike-sharing 

ridership than improving bike-sharing service itself (e.g. through access time saving, travel cost 

saving); although it is more effective in suppressing private car usage. 

 

Keywords: Bike-sharing; Mode choice; Air pollution; Mixed nested logit; Demand elasticity; 

SP/RP data 
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1. INTRODUCTION 
Developing countries are facing increasing challenges to tackle the continuously growing 

air pollution and congestion caused by the rapid increase in car ownership. As part of a broad 

strategy to achieve sustainable urban mobility, bike-sharing services can help to reduce car usage, 

especially for short-distance trips. Research outcomes have shown that the benefits of bike-sharing 

are numerous; avoiding parking and maintenance troubles with private bikes, offering more 

convenient connection to public transport, reducing travel time and costs especially in city centers, 

improving body health, and opening up opportunities for more social and leisure experiences 

(DeMaio and Gifford, 2004; Jäppinen et al., 2013; Ricci, 2015). 

Following the success in Europe and North America (DeMaio, 2009; Shaheen et al., 2010), 

bike-sharing schemes have been introduced in many cities in developing countries as well. 

However, although there are many mode choice studies for developed countries there is a lack of 

knowledge in the factors affecting bike-sharing choice in developing countries. This gap has 

significantly hindered policy making to effectively promote bike-sharing usage. More importantly, 

findings from developed countries may not be directly applied to developing countries as culture 

and local/geographical characteristics are significantly different (Maurer, 2012; Faghih-Imani et 

al., 2015; Kamargianni, 2015). 

This research addresses the aforementioned gap by investigating the factors affecting mode 

choice behavior in heaviliy air-polluted cities in developing countries, while focusing on 

bike-sharing. It also explores the effectiveness of different policy options aiming at increasing 

bike-sharing ridership. Particular focus is placed on the impact of air pollution on mode choice, 

since such an effect has rarely been captured when the scope was largely limited to developed 

countries. Air pollution may play an important role in affecting mode choice behavior in 

developing countries, which usually have more severe air pollution levels over prolonged periods 

of time. Specifically, this study tests if an increase in air pollution level would depress the 

willingness to cycle and to what extent an improvement in air quality would increase bike-sharing 

demand. 

Mode choice models are developed including nested logit and mixed nested logit (Hess et 

al., 2004; Ortúzar and Willumsen, 2011) to address inter-alternative correlation and panel effect. 

For models development, stated preference (SP) and revealed preference (RP) mode choice data is 

combined to obtain results with less behavioral bias (Hensher and Bradley, 1993; Ben-Akiva et al., 

1994). Our case study city is Taiyuan (China), which currently operates one of the most in demand 

bike-sharing schemes in China. The models are compared across each other and the one with the 

best performance is selected to study policy impacts on modal split changes in the SP 

environment1. This research focuses on short-distance trips (within 2km), since it is the most 

prevalent bike-sharing traveling range in China (Gu Dong, 2016). 

The paper is structured as follows. Section 2 reviews the current literature on factors 

affecting cycling and bike-sharing choices to draw insights and identify knowledge gaps. Section 3 

presents the case study information and data sources. Section 4 explains the modeling framework 

and describes the model specifications in detail. Section 5 discusses on model estimation results, 

followed by a policy impact analysis in section 6. Section 7 concludes research findings and policy 

implications. 

 

 

2. LITERATURE REVIEW 

                                                      
1 This study does not forecast market demand in the real world. 
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Previous studies have identified several factors affecting bike-sharing choice as well as 

cycling choice. These factors can be classified into three categories: 1. Natural and built 

environmental conditions, 2. Trip and mode attributes, and 3. Socio-economic characteristics.  

 

Natural and Built Environmental Conditions 
Natural environmental conditions, such as weather, temperature, air-pollution, seem to 

heavily affect cycling choice. Some researchers incorporated different weather conditions (e.g. 

sunny, rain or snow) in their mode choice models (Daito and Chen, 2013; Kamargianni, 2015), 

while others also accounted for temperature impact (Parkin et al., 2008; Saneinejad et al., 2012; 

Motoaki and Daziano, 2015; De Chardon et al., 2017). In general, these studies came to similar 

conclusions; namely that adverse weather conditions and colder temperature would significantly 

discourage travelers from cycling. Many studies also analyzed the impact of topography. In 

particular, steeper roads would significantly discourage the choice of bicycle (Waldman, 1977; 

Rietveld and Daniel, 2004; Parkin et al., 2008; Mateo-Babiano et al., 2016; De Chardon et al., 

2017), although Motoaki and Daziano (2015) argued that the impact of hills on the cycling route 

choice heavily depended on the fitness of cyclist. Additionally, the effect of air pollution has been 

studied, but, to our knowledge, among the great number of studies for developed countries, only 

Zahran et al. (2008) covered this effect via a cross-sectional analysis at the US county level and 

found pollution could decrease the number of cycling commuters on the road. 

In relation to built environmental and land use impacts, cycling-related infrastructures have 

attracted significant attention in the existing literature. Many studies have focused upon the 

importance of increasing the number of cycle lanes and bike-sharing stations in promoting the use 

of cycling or bike-sharing, in terms of reduced travel time, increased safety and convenience (Akar 

and Clifton, 2009; Larsen and El-Geneidy, 2011; Hankey et al., 2012; Daito and Chen, 2013; 

Kamargianni and Polydoropoulou, 2013; Deenihan and Caulfield, 2015; Kamargianni, 2015; 

Maness et al., 2015; Wang et al., 2015; Mateo-Babiano et al., 2016; De Chardon et al., 2017). 

However, there were also papers that found an insignificant relationship between the number of 

cycling facilities and cycling choice (Rodrı́guez and Joo, 2004; Moudon et al., 2005; Xing et al., 

2010). Some other relevant factors such as population density in community, the existence of 

university campuses and number of parks etc. were also studied (DeMaio and Gifford, 2004; 

Rodrı́guez and Joo, 2004; Barnes and Krizek, 2005; Moudon et al., 2005; Parkin et al., 2008; 

Maurer, 2012; Whalen et al., 2013; Kamargianni and Polydoropoulou, 2014). 

 

Trip and Mode Attributes 
Trip characteristics are also important factors that determine mode choices. Cycling has 

been found to be more associated with recreational-purpose trips (Moudon et al., 2005; Xing et al., 

2010; Mateo-Babiano et al., 2016). Faghih-Imani et al. (2015) found that cycling trips occurred 

more during noon and evening periods for meal purposes, while most of the morning cycle trips 

were for commuting. Moreover, since bicycles move more slowly than motorized vehicles, there 

was overwhelming evidence showing the negative relationship between cycling choice and trip 

distance (Parkin et al., 2008; Zahran et al., 2008; Akar et al., 2013; Faghih-Imani et al., 2015; 

Wang et al., 2015). Xing et al. (2010) even argued that perceived trip distance had the largest 

influence compared to other variables. Meanwhile, some trip characteristics, such as travel time, 

travel cost, and comfort level, may be seen as factors affecting transport mode choice. Many 

researchers studied the impacts of the attributes associated with bike-sharing and versus those 

associated with alternative modes (such as car speed, parking availability, public transport cost, 

and service frequency) to evaluate mode choice decisions (Lin and Yang, 2011; Kamargianni and 
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Polydoropoulou, 2013; Whalen et al., 2013; Faghih-Imani et al., 2015; Fishman et al., 2015; 

Ahillen et al., 2016; De Chardon et al., 2017). Due to different sample characteristics and different 

measurements of mode attributes, the impact significance of each attribute more or less differs 

across studies. 

 

Socio-economic Characteristics 
Socio-economic characteristics have been widely studied, with age and gender emerging as 

among the most influential factors. Younger generations and males are usually keener to cycle 

(Shafizadeh and Niemeier, 1997; Rodrı́guez and Joo, 2004; Moudon et al., 2005; Parkin et al., 

2008; Baker, 2009; Akar et al., 2013; Fishman et al., 2015; Ricci, 2015; Wang et al., 2015), whilst 

occupation and economic status may also play important roles in determining cycling choice. Xing 

et al. (2010) showed that travelers with lower income cycled more because those with higher 

income valued their time more highly and chose faster modes. Faghih-Imani et al. (2015) reached 

similar conclusions, arguing that the unemployed usually preferred cycling. However, some 

studies found that higher cycling rate could be associated with higher economic status (Parkin et 

al., 2008; Zahran et al., 2008; Fishman et al., 2015; Kamargianni, 2015) as a result of pursuing 

healthier lifestyles. In contrast, Baltes (1996) found that economic status and unemployment are 

both insignificant in determining cycling choice. Additionally, cycling was found to be a popular 

mobility choice among students (Baltes, 1996; Whalen et al., 2013; Wang et al., 2015). Vehicle 

ownership seems to be a more direct determinant of mode choice. In general, vehicle ownership 

could decrease the incentive or the need to cycle, either for educational (Rodrı́guez and Joo, 2004) 

or work purposes (Parkin et al., 2008). However, such an inverse relationship might be attributed 

to collinearity with other factors, that is those who do not own any vehicles and have to cycle could 

do so because of their disadvantaged income status that makes the purchase of a vehicle 

unaffordable, or travel distance may be too short to make it worthwhile (Baltes, 1996). Other 

socio-economic factors related to cycling choice include health status (Moudon et al., 2005) and 

educational level (Xing et al., 2010). 

Another popular approach to study socio-economic characteristics (instead of assuming 

their direct effects on mode choice utilities) is exploring systematic taste heterogeneity (Amador et 

al., 2005; Cherchi and Ortúzar, 2011). More insightful results could be gained by also taking into 

account this effect. In the case of cycling, for instance, it reveals how different socio-economic 

groups would react to the impacts of natural and built environmental conditions as well as trip and 

mode attributes, e.g. female travelers were still reluctant to cycle even if in sunny days which in 

general could increase the attractiveness of cycling (Kamargianni, 2015).  

 

Although many studies have been conducted on cycling and bike-sharing choices, gaps 

still exist. Firstly, there is a lack of mode choice studies in developing countries, particularly with 

respect to bike-sharing. The results in developed countries may have limited implications for 

developing countries since different local characteristics could lead to different results and 

conclusions. The existing literature has demonstrated such differentiations even when carried out 

within developed countries. Some studies also directly showed the context-specific nature of mode 

choice study through simultaneously studying multiple cases (Barnes and Krizek, 2005; Tang et 

al., 2011; Maurer, 2012; Faghih-Imani et al., 2015; Kamargianni, 2015). Secondly, there is a lack 

of literature focusing upon the impact of air pollution, which is generally not a significant concern 

in developed countries. However, it is essential to take into account such effects in the developing 

world where air pollution is a much more severe challenge. A recent study should be 

acknowledged (Campbell et al., 2016), in which the authors took into account air pollution’s 
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impact when using SP survey data from 623 participants and a multinomial logit model to study 

bike-sharing choice in Beijing. In our research, despite having a different scope and methodology 

as well as a larger sample, we extend further the findings on air pollution by revealing its effect on 

modal splits via a policy impact analysis. 

 

 

3. CASE STUDY AND DATA 
The case study city is Taiyuan, the capital city of Shanxi province in northern China. 

Taiyuan has more than 3 million citizens and operates one of the most in demand bike-sharing 

services in the country (Song, 2015). The service can be easily accessed via public transport card 

and cycle lanes are available on most streets. The city has sharp air pollution level variations 

making the impact on mode choice behavior worth exploring. 

The data used in this paper originate from a paper-based questionnaire survey that 

collected both revealed and stated preference data. In terms of, RP data, the survey collected 

information about the socio-economic characteristics of the participants, while they were also 

asked to fill in their trip diary for one day. Due to resource constraints and the local cultural 

barriers, the use of GPS or smartphone based travel survey tools that could collect more advanced 

travel data was not feasible. As such, only essential travel information were provided in the trip 

diary (e.g. starting/end time of the trip, travel time, travel cost, mode used). In terms of SP  

experiments, the participants were presented with hypothetical situations for short-distance trips 

(less than 2km)2, where they were asked to chose a transport mode. 

Table 1 shows the SP experimental design for short-distance trips. In our design, there are 

six alternatives: 1. car, 2. electric bike, 3. bus, 4. car-sharing3, 5. bike-sharing and 6. walk. Each of 

the alternatives possesses a number of mode specific attributes, joint with trip purpose, weather 

condition and air pollution level. The selection of these attributes were based on literature review, 

and their levels/values were derived from the pilot survey results (to produce the levels of travel 

times and travel costs, the averages of the perceived travel times and costs from the pilot trip diary 

survey were used as references). 

 The SP experiment followed the orthogonal main effects design (Hensher et al., 2005). 

Although this is not as advanced as several later proposed designs, such as D-optimal design and 

D-efficient design (Bliemer et al., 2009; Rose and Bliemer, 2009; Bliemer and Rose, 2010), this 

project adopted the traditional orthogonal design due to time, cost and availability of advanced 

data collection tools constraints. A summary of the different advantages and generations of these 

SP designs can be found in Ortúzar and Willumsen (2011). In total, 60 different scenarios were 

expertly generated for short-distance trips while satisfying the required degree of freedom in order 

to maintain orthogonality (Caussade et al., 2005; Hensher et al., 2005). The 60 scenarios were 

assigned to 30 blocks to further reduce the number of scenarios presented to each individual 

respondent. Eventually, each questionnaire contained 2 scenarios for short-distance trips and 1 out 

of every 30 respondents was given the same scenarios4. Appendix A gives an example of the two 

scenarios as presented to the respondents. 

 

                                                      
2 There are two more types of scenarios in the SP experiment, medium-distance trips (2km to 5km) and long-distance trips (more 

than 5km), since the available alternatives and some attribute levels (i.e. travel time and travel cost) vary across distances. These 

two cases follow the same technical design as short-distance trips. 
3 Car-sharing was just about to enter Taiyuan at the time of the survey and there was imperfect knowledge regarding this concept 

among respondents. Thus, the concept was described in the beginning of the SP part to reduce understanding bias. 
4 Each participant responded to 2 short, 2 medium and 2 long-distance scenarios to limit the total number below 8, i.e. the threshold 

that most of the pilot survey participants would start to feel annoyed. 
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TABLE 1 SP Experimental Design, Short-distance Trip 
Trip purpose: work/education, leisure, shopping. 

Weather condition: sunny (-10°, -5°, 0°, 5°, 10°, 20°, 25°, 30°), snow (-10°, -5°, 0°), rain (5°, 10°, 20°, 25°, 30°). 

Air pollution level: excellent, good, light pollution, medium pollution, heavy pollution, terrible pollution. 

 Car Electric bike Bus Car-sharing Bike-sharing Walk 

Travel time 2, 3, 5, 7, 10 

min. 

5, 6, 7, 9 min. 5, 7, 10, 12, 

15min. 

2, 3, 5, 7, 10 

min. 

8, 10, 12min. 10, 15, 20, 

25, 30min. 

Travel cost* ￥1, 1.2, 1.4, 

1.6, 1.8. 

 ￥0.5, 1, 1.5, 

2, 2.5. 

￥0.8, 1, 1.5, 

2, 3, 4, 5. 

￥0, 0.5, 1.  

Parking 

space 

Easy/hard to 

find parking 

     

Parking cost* free, ￥2/h, 

￥5/h, ￥8/h. 

     

Walking time 

to/from 

station 

  5min, 10min, 

15min. 

5min, 

10min, 

15min. 

2, 5, 10 min.  

Bus 

Frequency 

  every 2min, 

5min, 10min, 

15min. 

   

Mobile app 

availability 

  Yes, no. Yes, no. Yes, no.  

* ￥1 ≈ $0.15 

 

In collecting the data, the authors co-operated with Shanxi Transportation Research 

Institute, which provided 15 researchers assisting with the questionnaire distribution, 

questionnaire collection and incorporation of the data into electronic datasets. The questionnaire 

was distributed to 15,000 Taiyuan citizens during summer 2015 after a pilot survey in January 

2015. Due to the population size of more than 3 million in the urban area, the concern on sample 

representativeness was addressed by calibrating the sample to Taiyuan census data. First, the 

sampled individuals were proportionally spread over the six districts in the urban area as per the 

population size in each district; and second, the gender distribution of sampled individuals in each 

district was set proportional to the population gender distribution in each district. 

After preliminary data cleaning, 9,499 individuals provided valid data (see Appendix B for 

a comparison between the sample and the census data). Then, the SP mode choice data used for 

this paper, was further refined by keeping only observations that were rigorously consistent with 

the participants’ RP trip diary information (i.e. if someone made SP choices in the short-distance 

scenarios but did not reveal any “within 2km” trips in the trip diary, these SP choices were 

excluded from the analysis). In the end, there are 4,769 individuals offering 9,028 valid 

observations for the short-distance trips SP experiment. 

Table 2 shows the modal splits in these observations as well as a comparison to the modal 

splits in the RP trip diary. It is noteworthy that apart from car-sharing was not yet a mature option 

in Taiyuan at the time of the survey, private bike was deliberately excluded in the SP survey 

leading to another distinction between the two choice sets. This is due to private bike usage has 

dropped substantially after the city’s huge success in bike-sharing and is expected to diminish 

further as bike-sharing continues to grow (Oortwijn, 2017; Poon, 2017). The statistics in Table 3 

reveals a similar trend that bike possession rate is much lower than the other private modes in the 

sample. 

Table 3 also presents other key descriptive statistics. Age and occupational status statistics 

indicate that adults with fixed jobs constitute the main group in the sample, indicating that the 

sample has successfully captured regular commuters whose mode choice behaviors are most 
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considered in urban planning and policy-making. There is a high possession rate of public 

transport cards meaning that most of the sampled individuals can access both bus and bike-sharing 

services hassle-free. Almost all respondents are healthy enough to cycle, which ensures that 

bike-sharing is a feasible choice in a sufficient number of scenarios. 

 

TABLE 2 Modal Splits in Short-distance Trips 
SP data 

(9,028 obs.) 

RP data 

(6,614 obs.) 

Bike-sharing 22% Bike-sharing 18% 

Walk 30% Walk 31% 

Electric bike 9% Electric bike 12% 

Bus 29% Bus 26% 

Car-sharing 2% - - 

Car 8% Car* 8% 

- - Bike 5% 

* In the RP data, it is also known that the 8% car trips consist 

of 6% car driver trips and 2% car passenger trips. 

 

TABLE 3 Socio-economic Statistics of the Sample 
  N=4,769 

Gender Male 51% 

Female 49% 

Age under 18 9% 

18-25 31% 

26-35 27% 

36-45 20% 

46-59 11% 

60 or above 2% 

Marital status Single 47% 

Married 53% 

Educational level High school or below 29% 

College 32% 

Undergraduate 34% 

Graduate and above 5% 

Occupational status Fixed job 68% 

Student 24% 

Retired 2% 

Self-employed or unemployed 6% 

Public transport card Percentage of possession 74% 

Cycling capability Health enough to cycle 94% 

Household monthly income 

(after tax)* 

Under ￥3000 34% 

￥3000 -￥6000 36% 

￥6000 -￥9000 16% 

￥9000 -￥15000 9% 

￥15000 -￥30000 4% 

Over ￥30000 1% 

Household car Percentage of possession 46% 

Household electric bike  Percentage of possession 42% 

Household bike  Percentage of possession 17% 

* ￥1 ≈ $0.15 
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4. MODELING FRAMEWORK AND MODELS SPECIFICATION 
To estimate the mode choice models we utilize the SP dataset and the combined SP and RP 

dataset. This approach is followed, because the scenarios are hypothetical and the choices made 

could be inconsistent to the behavior in reality. Thus, combing SP data with RP data as a way to 

reduce such bias has become a popular practice in choice modeling (Hensher and Bradley, 1993; 

Ben-Akiva et al., 1994; Bradley and Daly, 1997; Bhat and Sardesai, 2006; Cherchi and Ortúzar, 

2011; Lavasani et al., 2017). This study takes advantage of having access to both data types and 

pools together SP and RP mode choice data based on distance criteria (within 2km, see Table 2). 

In terms of modelling, nested logit (NL) models using SP and both SP and RP mode choice 

data are developed (as base models) to account for any potential correlation among the 

alternatives. Due to the panel structure of SP data (i.e. repeated choice observations from a single 

respondent), mixed nested logit (mixed NL) models are further developed to capture the 

correlation across choice observations. Mixed logit is a flexible model structure that can 

approximate any random utility model (McFadden and Train, 2000; Hensher and Greene, 2003). A 

mixture of multinomial logit can simultaneously address the aforementioned inter-alternative 

correlation and panel effect by adding error components. However, arguments have arisen 

supporting the use of a mixture of nested logit in order to avoid any potential confounding effects 

when introducing more than one type of error component (Hess et al., 2004; Ortúzar and 

Willumsen, 2011). Hence, we follow the mixed NL approach to develop the mode choice models 

for this study. The mathematical equations used to specify the model are provided below (Eq.(1) – 

Eq.(7)) (for more information see: Hess et al., 2004; Ortúzar and Willumsen, 2011). 

 

The utility function for an alternative i  ( ni C ) chosen by an individual n  ( 1,...,n N ) at the t th 

( 1,...,t T ) number of SP scenario is given by: 

1

K

int k intk i in int

k

U X   


     (1) 

while the measurable part of the utility is defined as: 

1

K

int k intk i in

k

V X  


    (2) 

where nC  is the choice set, U  is the utility associated with a mode choice, X  is the vector of 

explanatory variables, and the normally distributed error component   with zero mean captures 

the panel effect. The estimated parameters are k  and  . V  is the measurable utility and   is the 

unobserved term i.i.d. Extreme Value and independent from  . 

 

The choice probability functions are: 

 

Choice of a nest (upper level): 

1

s snt

s

z znt

IV

M nt Z
IV

z

e
P

e










  (3) 

 

Choice of an alternative inside a nest (lower level): 
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| /

int s

s jnt s

s

V

int M V

j M

e
P

e










  (4) 

 

General choice of an alternative: 

|s sint M nt int MP P P   (5) 

where P
 

is choice probability, sM

 

represents the nest s ( 1,...,s z ), IV

 

is the expected 

maximum utility for the choice of alternatives inside a nest, 
 

is the scale parameter measuring 

the different variances across nests. 

 

The general choice probability function is integrated over  , gives (now intP

 

is fully denoted as 

the conditional probability ( | , , , )nt t int k in nP i X C  ): 

1

( | , , , ) ( | , , , ) ( )
T

n in k i n nt t int k in n in in

t

L i X C P i X C f d     


    (6) 

 

Log-likelihood function that needs to be maximized: 

1

( , ) ( | , , , )
n

N

in n in k i n

n i C

LL y InL i X C   
 

   (7) 

where iny  takes the value of 1 if an individual n  chooses an alternative i  and 0 otherwise. 

 

Several models have been estimated to identify the correct explanatory variables and their 

appropriate forms. For each variable, we measured its impact on all mode choice utilities and 

identified the one which parameter value is closest to zero for normalization. Variables that 

displayed highly insignificant effects on mode choice utilities were dropped out to avoid type I 

errors5. These include snowy weather, car parking space availability and bus frequency etc. A 

linear relationship was adopted to measure the impact of temperature as it showed much higher 

significance than a curvilinear relationship (i.e. extreme and moderate temperature). 

Socio-economic factors were tested in two ways: 1.by assuming their direct effects on mode 

choice utilities, and 2. by interacting with other attributes (i.e. systematic taste heterogeneity). The 

results showed that model fitness improved significantly with the latter manner. To capture 

systematic taste heterogeneity, the sub-categories of the socio-economic variables were merged 

into two general groups (i.e. low and high) to more explicitly reveal their impacts. For 

inter-alternative correlation, many possibilities were tested including bike-sharing and electric 

bike as two wheeled vehicle, bike-sharing and walk as active mode, bike-sharing and car-sharing 

as newly emerged sharing economy, car and car-sharing as comfortable automobile, bus and 

car-sharing as shared automobile. Eventually, only bus and car-sharing were found to have 

significant correlation. Table 4 presents the variables included in the final models and the ways 

they were measured. 

Regrading, the NL and mixed NL models using the combined SP and RP, the RP trip diary 

data was utilised to estimate the parameter values on the following variables: “Rain”, “Commute”, 

“Travel cost”, “Travel time” and all the socio-economic factors. “Air pollution”, “Temperature”, 

“Parking cost”, “Access time” and “App availability” were not captured in the RP data and such as 

                                                      
5 Incorrect rejection of a true null hypothesis 
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we cannot estimate these paremeters. Meanwhile, the values of “Air pollution” and “Temperature” 

displayed little variations across the observed RP trips and were therefore considered as redundant. 

It is because the trip diary survey was conducted only in summer days and the case study city 

Taiyuan has very stable pollution and temperature levels in this season. Different scaling factors 

(to correct variance difference) were adopted in the model estimation6. 

Finally, three availability conditions were included in the mode choice models: 1. Car is 

available to households that own a car, 2. Electric bike is available to households that own an 

electric bike, and 3. Cycling is available to those who are able to cycle given their state of health. 

The availability conditions can increase model validity by helping to explain the circumstances 

within which someone does not choose a particular mode due to the fact that the mode is not an 

available option. Possession of a driving license was not considered an availability condition since 

the choice of car or car-sharing could be made by drivers as well as passengers; possession of 

public transport card was also excluded as travelers would still access bus or bike-sharing service 

by paying cash or borrowing others’ card. 

 

TABLE 4 Explanatory Variables and Measurements 
Variable Measurement 

Air pollution air quality index (AQI) by taking the average value of each level (25 

for excellent level ‘0-50’, 75 for good level ‘51-100’, 125 for light 

pollution ‘101-150’, 175 for medium pollution ‘151-200’, 250 for 

heavy pollution ‘201-300’, 400 for terrible pollution ‘above 300’) 

Rain 1 if weather is rainy, 0 if otherwise 

Temperature temperature in °C 

Commute 1 if trip purpose is commute (i.e. work/education), 0 if otherwise 

Travel cost in RMB 

Parking cost in RMB/hour 

Travel time in min 

Access time in min, walking time to stations/parking spots 

App availability 1 if a smart phone application is available, 0 otherwise 

Male 1 if gender is male, 0 if female 

Lower age 1 if age is “under 18” or “18-25” or “26-35”, 0 if “36-45” or “46-59” or 

“60 or above” 

Lower income* 1 if household monthly income is “under ￥3000” or “￥3000-

￥6000” or “￥6000-￥9000”, 0 if “￥9000-￥15000” or “￥15000-

￥30000” or “over ￥30000” 

Lower education 1 if educational level is “high school or below” or “college”, 0 if 

“undergraduate” or “graduate and above” 

* ￥1 ≈ $0.15  

 

 

5. MODEL ESTIMATION RESULTS 

To estimate the NL and mixed NL models, PythonBiogeme (Bierlaire, 2016) was used. 

Table 5 shows the findings on the SP data and Table 6 shows the findings on the pooled data. We 

first compare across these modeling outputs and then discuss the factors affecting the choice of 

bike-sharing and other mode choices in general. 

 

5.1 Models performance and comparison 

The first model is a NL model based on the use of SP data. Bus and car-sharing are found to 

share some common unobserved attributes under the so-called nest “shared automobile”. The 

                                                      
6 In this study SP data is the primary data source and the RP utilities were scaled relative to it (Hensher and Bradley, 1993). 
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output   value 2.24, complies with the specification requirement of nested logit as it is greater 

than 1, where 1/  7 (Hess et al., 2004; Ortúzar and Willumsen, 2011). There is no other 

significant correlation being detected among the rest alternatives. Panel effect is revealed next 

using a mixed NL model and appears to be significant on all mode choices (car-sharing is 

normalized). The nesting parameter   shrinks as expected (Hess et al., 2004) since the mixed NL 

model decomposes the error term further than the NL model. The model performance increases by 

capturing the panel effect given the significant improvements in likelihood ratio test and adjusted 

rho-bar squared. 

When the RP data is added, the model performance increases further compared to the two 

models based on only SP data. Meanwhile, panel effect is estimated simultaneously in the RP data 

as there are also repeated observations from an individual in the RP trip diary. Nests are tested on 

the RP mode choices as well although they did not turn out significant as in the SP case. Overall, 

the mixed NL model based on combined SP and RP data shows the best performance and will 

therefore be used next to study the factors’ impacts on mode choices. 

 

5.2 Model estimation results  

 
5.2.1 Model estimation results: Bike-sharing 

Regarding natural environmental conditions, firstly, air pollution is found to have 

significant negative effect on bike-sharing choice. Due to the possible concern on health damage 

an increase in air pollution level would discourage travelers from using bike-sharing. Next, the 

impacts of weather and temperature are shown to be similar to those found in earlier studies. A 

rainy weather can significantly decrease the demand for bike-sharing and a warmer weather can 

increase the probability to use bike-sharing. 

The impacts of trip and mode attributes are revealed next. When conducting commute trips 

(for work or education) bike-sharing is a less preferable option. In other words, as the most 

literature shows, bike-sharing is more likely to be used for leisure purposes. As for travel cost and 

travel time, bike-sharing choice is, as expected negatively correlated with the former and however 

positively correlated with the latter. A discussion on this finding is given in the next subsection 

(5.2.2). Access time to bike-sharing parking spots is negatively associated with its choice which 

means longer walking distance will discourage people from using the service. It is also found a 

negative coefficient on bike-sharing app availability. Such a result is nevertheless in line with the 

fact that the existing bike-sharing app in Taiyuan is not popular at all among the registered 

bike-sharing users as shown in the operator’s latest report (Taiyuan Public Transport Holdings, 

2016). The bike-sharing docking stations in Taiyuan is quite dense (there is a docking station every 

500m on average) and probably this has made a smartphone app (e.g. provide real-time 

information on bike availability) rather redundant. 

Finally, the choice of bike-sharing is not significantly associated with any key 

socio-economic characteristics (gender, age, household income and education level) although their 

effects are analyzed in the way of systematic taste heterogeneity (results not included in the final 

models due to high insignificance). Such a finding is in fact similar to the results of the 

aforementioned Beijing study (Campbell et al., 2016) in which the authors showed bike-sharing 

users could emerge across the social spectrum with no significant preference from any particular 

groups of people. 

 

                                                      
7   was defined earlier in Eq. 3 and Eq. 4. 
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5.2.2 Model estimation results: Rest of the modes 

Apart from bike-sharing, air pollution also has significant negative impact on walk, electric 

bike and bus choices. Car-sharing is the only mode that displays positive correlation between its 

utility and higher air pollution level (in fact car choice shows a positive relationship too, but it is 

normalized to base when specifying the model). The impact of adverse weather is consistent with 

air pollution, such that rain will discourage the choices of electric bike and walk while increasing 

the attractiveness of car and car-sharing. As for temperature, another mode choice besides 

bike-sharing that is preferred under warmer weather is walking, whereas car and car-sharing are 

more likely to be chosen when temperature falls. 

In terms of trip purpose, walking is a significantly preferred mode for short-distance 

commute trips. A more interesting result is found on private car choice. In Table 5, people’s stated 

choices imply that they do not like to use cars for commuting; however, when their actual behavior 

is incorporated (combined SP and RP data), private car choice turns out to be positively associated 

with commute trips (Table 6). Regarding, the rest of the modes (electric bike, bus and car-sharing) 

no significant correlation has been found between their choices and trip purposes. 

An increase in travel cost will decrease the utility of all mode choices, although such an 

impact on bus choice and car choice is insignificant as shown by the mixed NL model in Table 5 

and 6. However, for travel time, its effect is positively associated with all mode choice utilities 

except for walk. Hess et al. (2005) offered a comprehensive explanation for such a phenomenon 

and positive travel time coefficients would simply indicate the existence of conjoint activities8 and 

travel-experience factors9 (Salomon and Mokhtarian, 1998) that people perceive when making 

mode choice decisions. In microeconomic term, the marginal opportunity cost of travel time would 

be offset or even overwhelmed by the marginal benefit of travel time associated with a mode 

choice. As a result, the willingness to pay for travel time saving is not possible to derive in this case 

since the “travel time” variable captures not only the effect of travel time, but also the effect of any 

conjoint activities and travel-experience factors. 

The willingness to pay for access time savings can be estimated using the ratio of marginal 

utilities of access time over travel cost. The access time variable on the choices of bike-sharing, 

car-sharing and bus all display negative signs meaning that longer walking journeys to the stations 

or parking spots can reduce the utilities associated with these choices. In the case of short-distance 

trip, the estimated willingness to pay values are ￥0.12, ￥0.16 and ￥1.02 per minute for 

bike-sharing, car-sharing and bus respectively. Future studies, especially in the context of China, 

are welcome to compare to the results. At last, the remaining mode attributes have the expected 

signs of impact: bus app availability (positive), car-sharing app availability (positive) and car 

parking cost (negative). 

Systematic taste heterogeneity is firstly captured in the NL models with its significant 

impact being found on the choices of bus, car and walk (no other systematic taste heterogeneity is 

detected as significant apart from those presented). Recall that bus usage is negatively correlated 

with air pollution, the positive coefficients on the two interacted terms (air pollution and lower age 

group, air pollution and lower income group) suggest that younger and less wealthy people would 

still use bus service even if air quality becomes worse. On the contrary, the group of male travelers 

is found to prefer bus less than female travelers, while air pollution would further push the male 

group away from using the service. For the taste heterogeneity on trip purpose, in the SP only 

model (Table 5), the lower income group do not prefer neither car nor walk for commuting, no 

                                                      
8 That is the negative marginal utility of a travel-time increase is compensated by the gains in utility resulting from simultaneously 

conducted activities. 
9 Such as the comfort, pleasure or the positive social perception associated with traveling by a particular mode. 
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matter the mode itself is actually a preferable option (walk) or a less preferable option (car) for 

commute journeys. In the pooled dataset (Table 6), the lower income group still dislikes car and 

walk for commute purpose even though car is now positively associated with commuting as we 

showed earlier. Nevertheless, these results have become slightly different when panel effect is 

incorporated; the t-statistics measuring systematic taste heterogeneity decrease in the mixed NL 

models and some values then become insignificant (Table 5 and 6). 

 

TABLE 5 Model Estimation Results Using SP Data 

 NL Mixed NL 

 Coef. t-stat Coef. t-stat 

bikeshare    0.97   1.88   2.85   3.62 

walk    2.23 7.71   4.02 7.72 

ebike    0.23   0.57   0.80   1.10 

carshare  - 17.80 - 4.20 - 0.03 - 0.06 

car    0.98 2.21   1.07 1.28 

Natural environmental conditions     

Air pollution-bikeshare - 0.0032 - 4.66 - 0.0081 - 6.20 

Air pollution-walk - 0.0049 - 9.20 - 0.0111 - 9.48 

Air pollution-ebike - 0.0028 - 4.59 - 0.0078 - 6.40 

Air pollution-bus - 0.0041 - 4.63 - 0.0062 - 4.27 

Air pollution-carshare   0.0213   3.36   0.0011 0.74* 

Rain-bikeshare - 0.51 - 2.63 - 0.64 - 2.54 

Rain-walk - 1.10 - 8.15 - 1.74 - 8.89 

Rain-ebike - 0.74 - 4.39 - 0.73 - 2.92 

Rain-carshare   5.37   3.51   1.46 4.72 

Rain-car   0.16   0.84*   1.06 3.40 

Temperature-bikeshare   0.01   3.23   0.02 3.89 

Temperature-walk   0.01   2.38   0.01 2.60 

Temperature-carshare - 0.24 - 4.45 - 0.08 - 7.09 

Temperature-car - 0.02 - 4.23 - 0.05 - 6.17 

Trip and mode attributes     

Commute-bikeshare - 0.76 - 7.22 - 1.23 - 7.61 

Commute-walk   0.25   2.96   0.22   1.31* 

Commute-car - 0.23 - 1.43* - 0.79 - 2.66 

Travel cost-bikeshare - 0.69 - 6.17 - 0.78 - 4.92 

Travel cost-bus - 0.41 - 3.45 - 0.08 - 0.62* 

Travel cost-carshare - 2.05 - 3.37 - 0.27 - 2.63 

Travel cost-car - 0.29 - 0.74* - 0.90 - 1.22* 

Parking cost-car - 0.06 - 2.78 - 0.09 - 2.26 
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Travel time-bikeshare   0.27   5.03   0.38   4.37 

Travel time-walk - 0.03 - 2.60 - 0.05 - 2.17 

Travel time-ebike   0.24   4.28   0.38   3.82 

Travel time-bus   0.12   6.93   0.18   7.72 

Travel time-carshare   0.18   1.07*   0.13   3.39 

Travel time-car   0.04   0.81*   0.01   0.14* 

Access time-bikeshare - 0.17 - 8.17 - 0.24 - 7.45 

Access time-bus - 0.11 - 6.60 - 0.24 - 8.10 

Access time-carshare - 0.17 - 0.94* - 0.08 - 1.98 

App availability-bikeshare - 0.87 - 9.58 - 1.11 - 8.10 

App availability-bus   0.12   1.28*   0.70   5.44 

App availability-carshare   2.14   3.30   0.24   1.40* 

Systematic taste heterogeneity     

Air pollution * Male-bus - 0.0017 - 4.94 - 0.0018 - 3.67 

Air pollution * Lower age-bus   0.0024   6.29   0.0020   3.75 

Air pollution * Lower income-bus   0.0013   2.31   0.0013   1.61* 

Commute * Lower income-car - 0.33 - 2.67 - 0.53 - 1.99 

Commute * Lower education-walk - 0.18 - 3.18 - 0.18 - 1.31* 

Inter-alternative correlation & Panel effect   

sharedmotor  2.24   7.30#   1.84   6.75# 

bikeshare  - -   0.84   4.60# 

walk  - -   3.28   23.23# 

ebike  - -   2.58   13.25# 

bus  - - 1.78 15.39# 

car  - - 3.27 12.66# 

Number of observations   9028 9028 

Initial log-likelihood - 14122.8 - 14122.8 

Final log-likelihood - 12188.0 - 11079.7 

Likelihood ratio test   3869.5 6086.1 

Adjusted rho-bar squared   0.13 0.21 

* parameter values not meeting the 95% significance level 

# t-test against base value of 1 

 

TABLE 6 Model Estimation Results Using Combined SP and RP Data 

 NL Mixed NL 

 Coef. t-stat Coef. t-stat 

bikeshare (SP)   1.64   8.62   1.89   10.19 

walk (SP)   1.82 8.57   1.91 9.43 
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ebike (SP)   0.33   1.97   0.75   4.79 

carshare (SP) - 21.9 - 3.81 - 1.66 - 2.59 

car (SP)   0.11 0.61   0.50 2.79 

bikeshare (RP) - 0.04 - 0.42   0.24   2.88 

bike (RP) - 0.43 - 3.65   0.39   5.01 

walk (RP) - 0.03 - 0.29   0.45 5.72 

ebike (RP) - 0.03 - 0.32   0.43   5.61 

cardriver (RP) - 0.72 - 5.26   0.16   2.08 

carpassenger (RP) - 1.29 - 7.11 - 0.05 - 0.56 

Natural environmental conditions     

Air pollution-bikeshare (SP) - 0.0048 - 8.89 - 0.0045 - 8.29 

Air pollution-walk (SP) - 0.0046 - 9.24 - 0.0045 - 9.17 

Air pollution-ebike (SP) - 0.0029 - 5.01 - 0.0022 - 3.93 

Air pollution-bus (SP) - 0.0052 - 6.06 - 0.0020 - 2.65 

Air pollution-carshare (SP)   0.0274   3.27   0.0023 1.96 

Rain-bikeshare (SP & RP) - 0.15 - 6.37 - 0.10 - 3.89 

Rain-walk (SP & RP) - 0.48 - 4.41 - 0.62 - 6.99 

Rain-ebike (SP & RP) - 0.26 - 1.71* - 0.40 - 2.77 

Rain-carshare (SP)   8.60   3.91   1.26 4.11 

Rain-car (SP & RP)   0.88   8.37   0.41 8.32 

Temperature-bikeshare (SP)   0.01   2.19   0.01 3.16 

Temperature-walk (SP)   0.01   1.67*   0.01 4.12 

Temperature-carshare (SP) - 0.27 - 4.45 - 0.05 - 4.95 

Temperature-car (SP) - 0.03 - 6.04 - 0.02 - 4.37 

Trip and mode attributes     

Commute-bikeshare (SP & RP) - 0.12 - 5.36 - 0.18 - 10.27 

Commute-walk (SP & RP)   0.05   2.83   0.06   7.90 

Commute-car (SP & RP)   0.30   6.66   0.03   2.48 

Travel cost-bikeshare (SP & RP) - 0.61 - 6.69 - 0.72 - 8.33 

Travel cost-bus (SP & RP) - 0.15 - 1.42* - 0.10 - 0.10* 

Travel cost-carshare (SP) - 1.66 - 3.40 - 0.30 - 3.16 

Travel cost-car (SP & RP) - 0.12 - 2.11 - 0.04 - 1.22* 

Parking cost-car (SP) - 0.04 - 2.17 - 0.03 - 1.66* 

Travel time-bikeshare (SP & RP)   0.06   6.60   0.04   5.75 

Travel time-bike (RP)   0.11   7.93   0.05   6.16 

Travel time-walk (SP & RP) - 0.02 - 6.58 - 0.01 - 5.56 

Travel time-ebike (SP & RP)   0.14   6.94   0.09   5.83 



Li, Kamargianni   17 

 

Travel time-bus (SP & RP)   0.08   7.85   0.05   6.04 

Travel time-carshare (SP)   0.36   2.04   0.07   2.01 

Travel time-car (SP & RP)   0.09   5.50   0.07   6.26 

Access time-bikeshare (SP) - 0.09 - 5.09 - 0.09 - 4.58 

Access time-bus (SP) - 0.08 - 5.05 - 0.10 - 6.78 

Access time-carshare (SP) - 0.07 - 0.35* - 0.05 - 1.57* 

App availability-bikeshare (SP) - 0.66 - 8.49 - 0.66 - 8.14 

App availability-bus (SP)   0.07   0.82*   0.33   4.51 

App availability-carshare (SP)   2.38   3.08   0.27   1.96 

Systematic taste heterogeneity     

Air pollution * Male-bus (SP) - 0.0016 - 4.84 - 0.0010 - 3.23 

Air pollution * Lower age-bus (SP)   0.0025   6.53   0.0010   2.89 

Air pollution * Lower income-bus (SP)   0.0014   2.40   0.0005   0.94* 

Commute * Lower income-car (SP & RP) - 0.41 - 7.10 - 0.01 - 0.01* 

Commute * Lower education-walk (SP & RP) - 0.17 - 6.59 - 0.02 - 3.47 

Inter-alternative correlation & Panel effect   

sharedmotor (SP)   2.21   4.91#   1.68   4.89# 

bikeshare  (SP & RP) - -   1.51   10.88# 

walk  (SP & RP) - -   1.05   7.04# 

ebike  (SP & RP) - -   1.31   12.32# 

bus  (SP & RP) - - 1.74 14.01# 

car  (SP & RP) - - 1.15 7.20# 

Scaling factor (RP) 4.83   7.93# 5.96 9.53# 

Number of observations   15642 15642 

Initial log-likelihood - 24788.3 - 24788.3 

Final log-likelihood - 21010.1 - 16994.7 

Likelihood ratio test   7556.4 15587.1 

Adjusted rho-bar squared   0.15 0.31 

* parameter values not meeting the 95% significance level 

# t-test against base value of 1 

 

 

6. POLICY IMPACT ANALYSIS 
A number of scenarios are proposed to help explore the effectiveness of different policy 

options aiming at increasing bike-sharing ridership.The model estimation results of the mixed NL 

model based on combined SP and RP data are used for simulation. The simulation method is 

sample enumeration. 

A key objective is to find out to what extent an improvement in air quality would promote 

bike-sharing usage. To begin with, 20% air quality increase is set as a mid-term target in our policy 
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scenarios in accordance with the air pollution reduction target in China (Zhang, 2017). 

Specifically, the central government has set a 2012-2017 five-year plan to decrease the air 

pollution levels in the country’s top 3 city clusters (i.e. Beijing-Tianjin-Hebei cluster, the Yangtze 

cluster centered by Shanghai and the Pearl cluster centered by Guangzhou) by 25%, 20% and 15% 

respectively. As a result, the median target (20%) is selected as the reference for this study. Next, a 

50% air quality increase is proposed as a long-term target. It is based on the fact that coal burning 

accounts for 50%-70% of air pollution in the above mentioned 3 clusters (Wang, 2014). Thus, a 

50% air quality increase is set to represent an optimistic “coal free era” in the long-term. 

To generate broader insights, measures for bike-sharing service improvement are also 

proposed. As per the model estimation results, reductions in travel cost and access time are 

introduced and joint with air quality improvement to create more scenarios for analysis. Table 7 

shows the simulation results and the key insights are identified as follows: 

 

- Firstly, better air quality can indeed improve the demand for bike-sharing (Baseline to M1 and 

L1); meanwhile the demand for walking also rises whereas private car usage drops. However, 

by comparing to the rest of scenarios (M2-M5 and L2-L5), it is easily noticed that air quality 

improvement is less effective than bike-sharing service improvement (e.g. access time saving, 

travel cost saving) in promoting bike-sharing ridership. 

 

- Secondly, a saving in access time to bike-sharing parking spots appears to be more effective 

than a saving in bike-sharing travel cost in short-distance trips. In M4 and M5 (or L4 and L5) 

when access time reduction starts to intervene, bike-sharing ridership rises more significantly 

than M2 and M3 (or L2 and L3). The elasticity analysis in Table 8 reflects the same fact that 

the probability to choose bike-sharing is more elastic to a change in access time (-0.274) than a 

change in travel cost (-0.118). 

 

- Finally, by looking through M2-M5 and L2-L5 (i.e. measures focusing on bike-sharing service 

improvement), it is seen that the increases in bike-sharing demand largely come from the 

shrinking demand for walking and bus rather than private car. The cross elasticity values also 

reveal the same trend (Table 8). Such a discovery leads to an interesting choice in policy 

making: the improvement of bike-sharing service (e.g. access time saving, travel cost saving) 

is more effective than air quality improvement in promoting bike-sharing usage; however, the 

latter is on the other hand more useful in suppressing private car demand as the figures show. 

Hence, since all policy measures come with costs it should be policy makers’ discretion to 

prioritize target and make use of the two options. 

 

TABLE 7 Scenarios and Modal Splits 
Scenarios 

M
id

-t
er

m
 

M1 20% air quality increase 

M2 20% air quality increase + 20% bike-sharing travel cost saving 

M3 20% air quality increase + 50% bike-sharing travel cost saving 

M4 20% air quality increase + 50% bike-sharing travel cost saving + 20% bike-sharing access time saving 

M5 20% air quality increase + 50% bike-sharing travel cost saving + 50% bike-sharing access time saving 

L
o

n
g

-t
er

m
 L1 50% air quality increase 

L2 50% air quality increase + 20% bike-sharing travel cost saving 
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L3 50% air quality increase + 50% bike-sharing travel cost saving 

L4 50% air quality increase + 50% bike-sharing travel cost saving + 20% bike-sharing access time saving 

L5 50% air quality increase + 50% bike-sharing travel cost saving + 50% bike-sharing access time saving 

Modal Splits 

 Bike-sharing Walk Electric bike Bus Car-sharing Car 

 Baseline 21.5% 30.2% 9.2% 28.8% 2.4% 7.9% 

M
id

-t
er

m
 

M1 22.0% 30.9% 9.1% 28.7% 1.9% 7.4% 

M2 22.6% 30.7% 9.0% 28.5% 1.9% 7.4% 

M3 23.4% 30.4% 8.9% 28.1% 1.8% 7.4% 

M4 24.7% 29.8% 8.8% 27.7% 1.8% 7.2% 

M5 26.7% 28.9% 8.6% 27.0% 1.8% 7.0% 

L
o

n
g
-t

er
m

 

L1 22.7% 31.7% 8.8% 28.7% 1.4% 6.7% 

L2 23.2% 31.5% 8.8% 28.5% 1.4% 6.6% 

L3 24.1% 31.2% 8.7% 28.1% 1.4% 6.5% 

L4 25.4% 30.6% 8.6% 27.6% 1.4% 6.4% 

L5 27.4% 29.7% 8.3% 26.9% 1.3% 6.3% 

 

TABLE 8 Direct and Cross Point Elasticity 
Choice probability of Bike-sharing 

travel cost 

Bike-sharing 

access time 

Bike-sharing (direct) - 0.118 - 0.274 

Walk (cross) 0.038 0.084 

Bus (cross) 0.035 0.072 

Car (cross) 0.034 0.066 

 

 

7. CONCLUSIONS 
This study investigated the factors affecting mode choice behavior in Taiyuan (China) with 

a focus on bike-sharing choice. Based on the combined SP and RP short-distance trip data, NL and 

Mixed NL models were developed to study the impacts of natural environmental conditions, trip 

and mode attributes as well as systematic taste heterogeneity on mode choices. In the end, the 

potential impacts of a number of policy options on modal split changes were analyzed. 

The mixed NL model well addressed the inter-alternative correlation between bus and 

car-sharing as well as the panel effect caused by repeated choice observations. The incorporation 

of RP data into SP data significantly increased the model performance and the credibility of model 

estimation results. The signs of coefficients are in general consistent between the SP alone models 

and the models using combined SP and RP data. Several key insights were generated for 

bike-sharing choice. People would be more likely to use the service if air quality was better; the 

service users also favored warmer weather and disliked rain; bike-sharing appeared to be a more 

popular choice in leisure trips rather than commute trips; lower travel cost and shorter access time 

to parking spots would encourage its ridership. Moreover, by comparing the results to the existing 
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findings in developed countries, a significant difference was revealed with respect to 

socio-economic factors. Bike-sharing choice was often significantly associated with particular 

socio-economic groups as shown in the literature. In this research by examining through 

systematic taste heterogeneity, none of the socio-economic groups significantly interacted with 

any factors affecting bike-sharing choice. The finding was however in line with the earlier study in 

Beijing (Campbell et al., 2016), in which the results also showed the users of bike-sharing service 

could arise anywhere from the social spectrum. 

The policy impact analysis offered more intuitive information to policy makers. In 

short-distance trips, improving bike-sharing service itself (e.g. access time saving, travel cost 

saving) would be more effective than improving air quality for promoting bike-sharing usage. To 

take one step further, access time saving was found to be more effective than travel cost saving. 

Nevertheless, if suppressing private car usage was also a policy target, then air quality 

improvement could be reconsidered since it was more effective than bike-sharing service 

improvement which was more likely to bring down the demand for walking and bus rather than 

private car. 

Overall, this study is one of the first works that explores air pollution’s impact on mode 

choice behavior as well as factors affecting bike-sharing choice in a developing country. The 

findings could benefit policy making by revealing the effectiveness of different policy options, 

although how to deliver the proposed policy options in reality remains as a challenge to policy 

makers and such an issue is beyond the scope of this work. Cities with close characteristics to 

Taiyuan could benefit the most from the results and the insights. Researchers from developing 

countries could also make use of the methodologies in this research to study similar issues in their 

own cases; especially in cities that have overt local and geographical differences to Taiyuan. 
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APPENDIX A: An example of the two short-distance scenarios as seen by a respondent 

(translated from Chinese) 

 

Scenario 1:  Travel within 2km, to work/education, sunny day, 10°C, with light pollution 
 Car E-bike Bus Car share Bike share Walk 

Travel 3 min Ride 5 min Travel 5 min Travel 7 min Ride 8 min Walk 20 min 

Fuel ￥1.2  Ticket ￥1 Cost ￥3 Cost ￥0  

Easy to park 

car 

     

Parking ￥5/h      

  Walk 5 min to 

station 

Walk 5 min to 

station 

Walk 2 min to 

station 

 

  Every 2 min    

  With app With app With app  

Your choice 

(please tick) 

      

 

Scenario 2:  Travel within 2km, to shopping, snowy day, -10°C, with excellent air quality 
 Car E-bike Bus Car share Bike share Walk 

Travel 7 min Ride 5 min Travel 12 min Travel 7 min Ride 8 min Walk 15 min 

Fuel ￥1.6  Ticket ￥1 Cost ￥1 Cost ￥1  

Hard to park 

car 

     

Parking ￥5/h      

  Walk 5 min to 

station 

Walk 10 min 

to station 

Walk 5 min to 

station 

 

  Every 2 min    

  With app With app Without app  

Your choice 

(please tick) 
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APPENDIX B: Sample Data versus Census Data after the 2-stage Calibration (census data source: 

Shanxi Statistical Yearbook 2014, available at: China Statistics Press, http://csp.stats.gov.cn/) 

 
Districts of 

Taiyuan 

Sample Census 

Population Male Female Population Male Female 

In: number of people 

Xiaodian 2,293 1,192 1,101 820,004 429,098 390,906 

Wanbailin 2,091 1,066 1,025 765,956 390,413 375,543 

Xinghualing 1,794 879 915 653,854 321,154 332,700 

Yingze 1,632 816 816 601,109 299,120 301,989 

Jiancaoping 1,127 741 386 424,294 205,182 219,112 

Jinyuan 562 238 324 225,849 115,219 110,630 

Total 9,499   3,491,066   

In: percentage 

Xiaodian 24% 52% 48% 23% 52% 48% 

Wanbailin 22% 51% 49% 22% 51% 49% 

Xinghualing 19% 49% 51% 19% 49% 51% 

Yingze 17% 50% 50% 17% 50% 50% 

Jiancaoping 12% 66% 34% 12% 48% 52% 

Jinyuan 6% 42% 58% 7% 51% 49% 

Total 100%   100%   

 

Note: after dropping out invalid questionnaires (from 15,000 to 9,499), the sample data remains 

consistent with the census data except for the gender distribution in the least two populated 

districts “Jiancaoping” and “Jinyuan”. 


