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ABSTRACT

Scalability in stream processing systems can be achieved by using

a cluster of computing devices. The processing burden can, thus,

be distributed among the nodes by partitioning the query graph.

The specific operator placement plan can have a huge impact on

performance. Previous work has focused on how to move query

operators dynamically in reaction to load changes in order to keep

the load balanced. Operator movement is too expensive to allevi-

ate short-term bursts; moreover, some systems do not support the

ability to move operators dynamically. In this paper, we develop

algorithms for selecting an operator placement plan that is resilient

to changes in load. In other words, we assume that operators can-

not move, therefore, we try to place them in such a way that the

resulting system will be able to withstand the largest set of input

rate combinations. We call this a resilient placement.

This paper first formalizes the problem for operators that exhibit

linear load characteristics (e.g., filter, aggregate), and introduces

a resilient placement algorithm. We then show how we can extend

our algorithm to take advantage of additional workload information

(such as known minimum input stream rates). We further show how

this approach can be extended to operators that exhibit non-linear

load characteristics (e.g., join). Finally, we present prototype- and

simulation-based experiments that quantify the benefits of our ap-

proach over existing techniques using real network traffic traces.

1. INTRODUCTION
Recently, a new class of applications has emerged in which high-

speed streaming data must be processed with very low latency.

Financial data analysis, network traffic monitoring and intrusion

detection are prime examples of such applications. In these do-

mains, one observes increasing stream rates as more and more data

is captured electronically putting stress on the processing ability of

stream processing systems. At the same time, the utility of results

decays quickly demanding shorter and shorter latencies. Clusters

of inexpensive processors allow us to bring distributed processing
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techniques to bear on these problems, enabling the scalability and

availability that these applications demand [7, 17, 4, 23].

Modern stream processing systems [3, 13, 6] often support a data

flow architecture in which streams of data pass through specialized

operators that process and refine the input to produce results for

waiting applications. These operators are typically modifications

of the familiar operators of the relational algebra (e.g., filter, join,

union). Figure 1 illustrates a typical configuration in which a query

network is distributed across multiple machines (nodes). The spe-

cific operator distribution pattern has an enormous impact on the

performance of the resulting system.

Distributed stream processing systems have two fundamen-

tal characteristics that differentiate them from traditional parallel

database systems. First, stream processing tasks are long-running

continuous queries rather than short-lived one-time queries. In tra-

ditional parallel systems, the optimization goal is often minimizing

the completion time of a finite task. In contrast, a continuous query

has no completion time; therefore, we are more concerned with the

latency of individual results.

Second, the data in stream processing systems is pushed from

external data sources. Load information needed by task allocation

algorithms is often not available in advance or varies significantly

and over all time-scales. Medium and long term variations arise

typically due to application-specific behaviour; e.g., flash-crowds

reacting to breaking news, closing of a stock market at the end of

a business day, temperature dropping during night time, etc. Short-

term variations, on the other hand, happen primarily because of

the event-based aperiodic nature of stream sources as well as the

influence of the network interconnecting data sources. Figure 2

illustrates such variations using three real-world traces [1]: a wide-

area packet traffic trace (PKT), a wide-area TCP connection trace

(TCP), and an HTTP request trace (HTTP). The figure plots the

normalized stream rates as a function of time and indicates their

standard deviation. Note that similar behaviour is observed at other

time-scales due to the self-similar nature of these workloads [9].

A common way to deal with time-varying, unpredictable load

variations in a distributed setting is dynamic load distribution. This
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Figure 1: Distributed Stream Processing.
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Figure 2: Stream rates exhibit significant variation over time.

approach is suitable for medium-to-long term variations since they

persist for relatively long periods of time and are thus rather easy

to capture. Furthermore, the overhead of load redistribution is

amortized over time. Neither of these properties holds in the pres-

ence of short-term load variations. Capturing such transient varia-

tions requires frequent statistics gathering and analysis across dis-

tributed machines. Moreover, reactive load distribution requires

costly operator state migration and multi-node synchronization. In

our stream processing prototype, the base overhead of run-time op-

erator migration is on the order of a few hundred milliseconds.

Operators with large states will have longer migration times de-

pending on the amount of state transferred. Also, some systems

do not provide support for dynamic operator migration. As a re-

sult, dealing with short-term load fluctuations by frequent operator

re-distribution is typically prohibitive.

In this paper, we explore a novel approach to operator distri-

bution, namely that of identifying operator distributions that are

resilient to unpredictable load variations. Informally, a resilient

distribution is one that does not become overloaded easily in the

presence of bursty and fluctuating input rates. Standard load dis-

tribution algorithms optimize system performance with respect to

a single load point, which is typically the load perceived by the

system in some recent time period. The effectiveness of such an

approach can become arbitrarily poor and even infeasible when the

observed load characteristics are different from what the system

was originally optimized for. Resilient distribution, on the other

hand, does not try to optimize for a single load point. Instead, it

enables the system to “tolerate” a large set of load points without

operator migration.

It should be noted that static, resilient operator distribution is

not in conflict with dynamic operator distribution. For a system

that supports dynamic operator migration, the techniques presented

here can be used to place operators with large state size. Lighter-

weight operators can be moved more frequently using a dynamic

algorithm (e.g., the correlation-based scheme that we proposed ear-

lier [23]). Moreover, resilient operator distribution can be used to

provide a good initial plan.

We focus on static operator distribution algorithms. More specif-

ically, we model the load of each operator as a function of the sys-

tem input stream rates. For given input stream rates and a given

operator distribution plan, the system is either feasible (none of the

nodes are overloaded) or overloaded. The set of all feasible input

rate combinations defines a feasible set. Figure 3 illustrates an ex-

ample of a feasible set for two input streams. For unpredictable

workloads, we want to make the system feasible for as many in-

put rate points as possible. Thus, the optimization goal of resilient

operator distribution is to maximize the size of the feasible set.

In general, finding the optimal operator distribution plan requires

comparing the feasible set size of different operator distribution

plans. This problem is intractable for a large number of opera-

tors or a large number of input streams. In this paper, we present
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Figure 3: Feasible set on input stream rate space.

a greedy operator distribution algorithm that can find suboptimal

solutions without actually computing the feasible set size of any

operator distribution plan. The contributions of this work can be

summarized as follows:

1. We formalize the resilient operator distribution problem for

systems with linear load models, where the load of each op-

erator can be expressed as a linear function of system in-

put stream rates. We identify a tight superset of all possible

feasible sets called the ideal feasible set. When this set is

achieved, the load from each input stream is perfectly bal-

anced across all nodes (in proportional to the nodes’ CPU

capacity).

2. The ideal feasible set is in general unachievable. We pro-

pose two novel operator distribution heuristics to make the

achieved feasible set as close to the ideal feasible set as pos-

sible. The first heuristic tries to balance the load of each in-

put stream across all nodes. The second heuristic focuses on

the combination of the “impact” of different input streams on

each node to avoid creating bottlenecks. We then present a

resilient operator distribution algorithm that seamlessly com-

bines both heuristics.

3. We present a generalization of our approach that can trans-

form a nonlinear load model into a linear load model. Using

this transformation, our resilient algorithm can be applied to

any system.

4. We present algorithm extensions that take into account the

communications costs and knowledge of specific workload

characteristics (i.e., lower bound on input stream rates) to

optimize system performance.

Our study is based on extensive experiments that evaluate the rel-

ative performance of our algorithm against several other load distri-

bution techniques. We conduct these experiments using both a sim-

ulator and the Borealis distributed stream processing prototype [2]

on real-world network traffic traces. The results demonstrate that

our algorithm is much more robust to unpredictable or bursty work-

loads than traditional load distribution algorithms.

The rest of the paper is organized as follows: In Section 2, we in-

troduce our distributed stream processing model and formalize the

problem. Section 3 presents our optimization approach. We dis-

cuss the operator distribution heuristics in detail in Section 4 and

present the resilient operator distribution algorithm in Section 5.

Section 6 discusses the extensions of this algorithm. Section 7 ex-

amines the performance of our algorithm. We discuss related work

in Section 8 and present concluding remarks in Section 9.

2. MODEL & PROBLEM STATEMENT

2.1 System Model
We assume a computing cluster that consists of loosely coupled,

shared-nothing computers because this is widely recognized as the

most cost-effective, incrementally scalable parallel architecture to-

day. We assume the available CPU cycles on each machine for

stream data processing are fixed and known. We further assume

that the cluster is interconnected by a high-bandwidth local area

network, thus bandwidth is not a bottleneck. For simplicity, we
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Figure 4: Example query graph.

initially assume that the CPU overhead for data communication is

negligible compared to that of data processing. We relax this as-

sumption in Section 6.3.

The tasks to be distributed on the machines are data-flow-style

acyclic query graphs (e.g., in Figure 1), which are commonly used

for stream processing (e.g., [3, 13, 6]). In this paper, we consider

each continuous query operator as the minimum task allocation

unit.

2.2 Load Model
We assume there are n nodes (Ni, i = 1, · · · , n), m operators

(oj , j = 1, · · ·, m), and d input streams (Ik, k = 1, · · ·, d) in the

system. In general, an operator may have multiple input streams

and multiple output streams. The rate of a stream is defined as

the number of data items (tuples) that arrive at the stream per unit

time. We define the cost of an operator (with respect to an input

stream) as the average number of CPU cycles needed to process

an input tuple from that input stream per unit time. The selectivity

of an operator (with respect to an input and an output stream) is

defined as the ratio of the output stream rate to the input stream rate.

We define the load of an operator per unit time as the CPU cycles

needed by the operator per unit time to process its input tuples. We

can thus write the load of each operator as a function of operator

costs, selectivities and system input stream rates (rk, k = 1, · · ·, d).

Example 1: Consider the simple query graph shown in Figure 4.

Assume the rate of input stream Ik is rk for k = 1, 2, and operator

oj has cost cj and selectivity sj for j = 1, · · ·, 4. The load of these

operators is then computed as

load(o1) = c1r1

load(o2) = c2s1r1

load(o3) = c3r2

load(o4) = c4s3r2 .

Our operator distribution algorithm is based on a linear load

model where the load of each operator can be written as a linear

function, i.e.

load(oj) = lj1x1 + · · · + ljdxd, j = 1, · · · , m,

where x1, · · · , xd are variables and ljk are constants. For sim-

plicity of exposition, we first assume that the system input stream

rates are variables and the operator costs and selectivities are con-

stant. Under this assumption, all operator load functions are linear

functions of system input stream rates. Assuming stable selectivity,

operators that satisfy this assumption include union, map, aggre-

gate, filter etc. In Section 6.2, we relax this assumption and discuss

systems with operators whose load cannot be written as linear func-

tions of input stream rates (e.g., time-window based joins).

2.3 Definitions and Notations
We now introduce the key notations and definitions that are used

in the remainder of the paper. We also summarize them in Table 1.

We represent the distribution of operators on the nodes of the

system by the operator allocation matrix:

A = {aij}n×m,
where aij = 1 if operator oj is assigned to node Ni and aij = 0
otherwise.

Given an operator distribution plan, the load of a node is defined

as the aggregate load of the operators allocated at that node. We

Table 1: Notation.

n number of nodes

m number of operators

d number of system input streams

Ni the ith node

oj the jth operator

Ik the kth input stream

C = (C1, · · ·, Cn)T available CPU capacity vector

R = (r1, · · · , rd)T system input stream rate vector

ln
ik

load coefficient of Ni for Ik

lo
jk

load coefficient of oj for Ik

Ln =
˘

ln
ik

¯

n×d
node load coefficient matrix

Lo =
n

lo
jk

o

m×d
operator load coefficient matrix

A = {aij}n×m
operator allocation matrix

D workload set

F (A) feasible set of A
CT total CPU capacity of all nodes

lk sum of load coefficients of Ik

wik

`

ln
ik

/lk
´

/ (Ci/CT ), weight of Ik on Ni

W = {wik}n×d weight matrix

Table 2: Three example operator distribution plans.

Lo Plan A Ln

0

B

@

14 0
6 0
0 9
0 7

1

C

A

(a)

„

1 1 0 0
0 0 1 1

« „

20 0
0 16

«

(b)

„

1 0 1 0
0 1 0 1

« „

14 9
6 7

«

(c)

„

1 0 0 1
0 1 1 0

« „

14 7
6 9

«

express the load functions of the operators and nodes as:

load(oj) = loj1r1 + · · · + lojdrd , j = 1, · · · , m,
load(Ni) = lni1r1 + · · · + lnidrd , i = 1, · · · , n,

where lojk is the load coefficient of operator oj for input stream Ik

and lnik is the load coefficient of node Ni for input stream Ik. As

shown in Example 1 above, the load coefficients can be computed

using the costs and selectivities of the operators and are assumed to

be constant unless otherwise specified. Putting the load coefficients

together, we get the load coefficient matrices:

Lo =
˘

lojk

¯

m×d
, Ln = {lnik}n×d.

It follows from the definition of the operator allocation matrix

that
Ln = ALo,

n
X

i=1

lnik =
m

X

j=1

lojk , k = 1, · · · d.

Example 2: We now present a simple example of these defini-

tions using the query graph shown in Figure 4. Assume the follow-

ing operator costs and selectivities: c1= 14, c2= 6, c3= 9, c4= 14

and s1= 1, s3= 0.5. Further assume that there are two nodes in the

system, N1 and N2, with capacities C1 and C2, respectively. In

Table 2, we show the corresponding operator load coefficient ma-

trix Lo and, for three different operator allocation plans (Plan (a),

Plan (b), and Plan(c)), the resulting operator allocation matrices

and node load coefficient matrices.

Next, we introduce further notations to provide a formal def-

inition for the feasible set of an operator distribution plan. Let

R = (r1, · · · , rd)T
be the vector of system input stream rates.

The load of node Ni can then be written as Ln
i R, where Ln

i is the

ith row of matrix Ln. Let C = (C1, · · · , Cn)T
be the vector of

available CPU cycles (i.e., CPU capacity) of the nodes. Then Ni is
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Figure 5: Feasible sets for various distribution plans.

feasible if and only if Ln
i R ≤ Ci. Therefore, the system is feasi-

ble if and only if LnR ≤ C. The set of all possible input stream

rate points is called the workload set and is referred to by D. For

example, if there are no constraints on the input stream rates, then

D = {R : R ≥ 0}.

Feasible Set Definition: Given a CPU capacity vector C, an

operator load coefficient matrix Lo, and a workload set D, the fea-

sible set of the system under operator distribution plan A (denoted

by F (A)) is defined as the set of all points in the workload set D
for which the system is feasible, i.e.,

F (A) = {R : R ∈ D, ALoR ≤ C} .

In Figure 5, we show the feasible sets (the shaded regions) of the

distribution plans of Example 2. We can see that different operator

distribution plans can result in very different feasible sets.

2.4 Problem Statement
In order to be resilient to time-varying, unpredictable workloads

and maintain quality of service (i.e., consistently produce low la-

tency results), we aim to maximize the size of the feasible set of the

system through intelligent operator distribution. We formally state

the corresponding optimization problem as follows:

The Resilient Operator Distribution (ROD) problem: Given

a CPU capacity vector C, an operator load coefficient matrix Lo,

and a workload set D, find an operator allocation matrix A∗ that

achieves the largest feasible set size among all operator allocation

plans, i.e., find

A∗ = arg max
A

Z

· · ·

Z

F (A)

1 dr1 · · · drd.

In the equation above, the multiple integral over F (A) represents

the size of the feasible set of A. Note that A∗may not be unique.

ROD is different from the canonical linear programming and

nonlinear programming problems with linear constraints on feasi-

ble sets. The latter two problems aim to maximize or minimize a

(linear or nonlinear) objective function on a fixed feasible set (with

fixed linear constraints) [10, 15], whereas in our problem, we at-

tempt to maximize the size of the feasible set by appropriately con-

structing the linear constraints through operator distribution. To the

best of our knowledge, our work is the first to study this problem in

the context of load distribution.

A straightforward solution to ROD requires enumerating all pos-

sible allocation plans and comparing their feasible set sizes. Unfor-

tunately, the number of different distribution plans is nm/n!. More-

over, even computing the feasible set size of a single plan (i.e., a d
dimensional multiple integral) is expensive since the Monte Carlo

integration method, which is commonly used in high dimensional

integration, requires at least O(2d) sample points [19]. As a re-

sult, finding the optimal solution for this problem is intractable for

a large d or large m.

3. OPTIMIZATION FUNDAMENTALS
Given the intractability of ROD, we explore a heuristic-driven

strategy. We first explore the characteristics of an “ideal” plan us-

ing a linear algebraic model and its corresponding geometrical in-

terpretation. We then use this insight to derive our solution.

3.1 Feasible Set and Node Hyperplanes
We here examine the relationship between the feasible set

size and the node load coefficient matrix. Initially, we assume

no knowledge about the expected workload and thus let D =
{R : R ≥ 0} (we relax this assumption in Section 6.1). The fea-

sible set that results from the node load coefficient matrix Ln is

defined by

F ′(Ln) = {R : R ∈ D, LnR ≤ C} .

This is a convex set in the nonnegative space below n hyperplanes,

where the hyperplanes are defined by

lni1r1 + · · · + lnidrd = Ci, i = 1, · · · , n.

Note that the ith hyperplane consists of all points that render

node Ni fully loaded. In other words, if a point is above this hy-

perplane, then Ni is overloaded at that point. The system is thus

feasible at a point if and only if the point is on or below all of the n
hyperplanes defined by LnR = C. We refer to these hyperplanes

as node hyperplanes.

For instance, in Figure 5, the node hyperplanes correspond to the

lines above the feasible sets. Because the node hyperplanes collec-

tively determine the shape and size of the feasible set, the feasible

set size can be optimized by constructing “good” node hyperplanes

or, equivalently, by constructing a “good” node load coefficient ma-

trix.

3.2 Ideal Node Load Coefficient Matrix
We now present and prove a theorem that characterizes an ideal

node load coefficient matrix.

THEOREM 1. Given load coefficient matrix Lo =
˘

lojk

¯

m×d

and node capacity vector C = (C1, · · · , Cn)T
, among all n by d

matrices Ln = {lnik}n×d that satisfy the constraint

n
X

i=1

lnik =

m
X

j=1

lojk, (1)

the matrix Ln∗ = {ln∗

ik }n×d with

ln∗

ik = lk
Ci

CT

, where lk =

m
X

j=1

lojk, CT =

n
X

i=1

Ci,

achieves the maximum feasible set size, i.e.,

Ln∗ = arg max
Ln

Z

· · ·

Z

F ′(Ln)

1 dr1 · · · drd,

PROOF. All node load coefficient matrices must satisfy con-

straint 1. It is easy to verify that Ln∗ also satisfies this constraint.

Now, it suffices to show that Ln∗ has the largest feasible set size

among all Ln that satisfy constraint 1.

From LnR ≤ C, we have that

(1 · · · 1)

0

B

@

ln11 · · · ln1d

...
. . .

...

lnn1 · · · lnnd

1

C

A

0

B

@

r1

...

rd

1

C

A
≤ (1 · · · 1)

0

B

@

C1

...

Cn

1

C

A
,
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Figure 6: Ideal hyperplanes and feasible sets.

which can be written as

l1r1 + · · · + ldrd ≤ CT . (2)

Thus, any feasible point must belong to the set

F ∗ = {R : R ∈ D, l1r1 + · · · + ldrd ≤ CT } .

In other words, F ∗is the superset of any feasible set. It then suffices

to show that F ′(Ln∗) = F ∗.

There are n constraints in Ln∗R ≤ C (each row is one con-

straint). For the ith row, we have that

l1
Ci

CT

r1 + · · · + ld
Ci

CT

rd ≤ Ci ,

which is equivalent to inequality 2. Since all n constraints are the

same, we have that F ′(Ln∗) = F ∗.

Intuitively, Theorem 1 says that the load coefficient matrix that

balances the load of each stream perfectly across all nodes (in pro-

portion to the relative CPU capacity of each node) achieves the

maximum feasible set size. Such a load coefficient matrix may not

be realizable by operator distribution, i.e., there may not exist an

operator allocation matrix A such that ALo = Ln∗ (the reason

why Ln∗ is referred to as “ideal”). Note that the ideal coefficient

matrix is independent of the workload set D.

When the ideal node load coefficient matrix is obtained, all node

hyperplanes overlap with the ideal hyperplane. The largest feasible

set achieved by the ideal load coefficient matrix is called the ideal

feasible set (denoted by F ∗). It consists of all points that fall below

the ideal hyperplane defined by

l1r1 + · · · + ldrd = CT .

We can compute the size of the ideal feasible set as:

V (F ∗) =

Z

· · ·

Z

1

F∗

dr1 · · · drd =
Cd

T

d!
·

d
Y

k=1

1

lk
.

Figure 6 illustrates the ideal hyperplane (represented by the thick

lines) and the feasible sets of Plan (a), (b) and (c) in Example 2. It

is easy to see that none of the shown distribution plans are ideal.

In fact, no distribution plan for Example 2 can achieve the ideal

feasible set.

3.3 Optimization Guidelines
The key high-level guideline that we will rely on to maximize

feasible set size is to make the node hyperplanes as close to the

ideal hyperplane as possible.

To accomplish this, we first normalize the ideal feasible set by

changing the coordinate system. The normalization step is neces-

sary to smooth out high variations in the values of load coefficients

of different input streams, which may adversely bias the optimiza-

tion.

Let xk = lkrk/CT . In the new coordinate system with axis x1

to xk, the corresponding node hyperplanes are defined by

lni1
l1

x1 + · · · +
lnid
ld

xd =
Ci

CT

, i = 1, · · · , n.

The corresponding ideal hyperplane is defined by

x1 + · · · + xd = 1.

By the change of variable theorem for multiple integrals [21],

we have that the size of the original feasible set equals the size

of the normalized feasible set multiplied by a constant c, where

c = Cd
T

.

Qd

k=1 lk . Therefore, the goal of maximizing the original

feasible set size can be achieved by maximizing the normalized

feasible set size.

We now define our goal more formally using our algebraic

model: Let matrix

W = {wik}n×d = {lnik/ln∗

ik }n×d .

wik = (lnik/lk) / (Ci/CT ) is the percentage of the load from

stream Ik on node Ni divided by the normalized CPU capacity of

Ni. Thus, we can view wik as the “weight” of stream Ik on node

Ni and view matrix W as a normalized form of a load distribution

plan. Matrix W is also called the weight matrix.

Note that the equations of the node hyperplanes in the normal-

ized space is equivalent to

wi1x1 + · · · + widxd = 1, i = 1, · · · , n.

Our goal is then to make the normalized node hyperplanes close to

the normalized ideal hyperplane, i.e. make

Wi = (wi1, · · · , wid) close to (1, · · · , 1) ,

for i = 1, · · · , n.

For brevity, in the rest of this paper, we assume that all terms,

such as hyperplane and feasible set, refer to the ones in the normal-

ized space, unless specified otherwise.

4. HEURISTICS
We now present two heuristics that are guided by the formal anal-

ysis presented in the previous section. For simplicity of exposition,

we motivate and describe the heuristics from a geometrical point of

view. We also formally present the pertinent algebraic foundations

as appropriate.

4.1 Heuristic 1: MaxMin Axis Distance
Recall that we aim to make the node hyperplanes converge to the

ideal hyperplane as much as possible. In the first heuristic, we try

to push the intersection points of the node hyperplanes (along each

axis) to the intersection point of the ideal hyperplane as much as

possible. In other words, we would like to make the axis distance

of each node hyperplane as close to that of the ideal hyperplane as

possible. We define the axis distance of hyperplane h on axis a as

the distance from the origin to the intersection point of h and a. For

example, this heuristic prefers the plan in Figure 7(b) to the one in

Figure 7(a).

Note that the axis distance of the ith node hyperplane on the kth

axis is 1/wik, and the axis distance of the ideal hyperplane is one

on all axes (e.g. Figure 7(a)). Thus, from the algebraic point of

view, this heuristic strives to make each entry of Wi as close to 1

as possible.

Because
P

i lnik is fixed for each k, the optimization goal of mak-

ing wik close to one for all k is equivalent to balancing the load of

each input stream across the nodes in proportion to the nodes’ CPU
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Figure 7: Illustrating MaxMin Axis Distance.

capacities. This goal can be achieved by maximizing the minimum

axis distance of the node hyperplanes on each axis, i.e., we want to

maximize

min
i

1

wik

, for k = 1, · · · , d.

We therefore refer to this heuristic as MaxMin Axis Distance

(MMAD). The arrows in Figure 7(b) illustrate how MMAD pushes

the intersection points of the node hyperplanes that are closest to

the origin to that of the ideal hyperplane.

It can be proven that when the minimum axis distance is maxi-

mized for axis k, all the node hyperplane intersection points along

axis k converge to that of the ideal hyperplane. In addition, the

achieved feasible set size is bounded by

V (F ∗) ·
d

Y

k=1

min
i

1

wik

from below, where V (F ∗) is the ideal feasible set size (we omit

the proof for brevity). Therefore, MMAD tries to maximize a lower

bound for feasible set size, and this lower bound is close to the ideal

value when all axis distances are close to 1.

On the downside, the key limitation of MMAD is that it does

not take into consideration how to combine the weights of differ-

ent input streams at each node. This is best illustrated by a sim-

ple example as depicted by Figure 8. Both plans in Figure 8 are

deemed equivalent by MMAD, since their axis intersection points

are exactly the same. They do, however, have significantly differ-

ent feasible sets. Obviously, if the largest weights for each input

stream are placed on the same node (e.g., the one with the lowest

hyperplane in Figure 8(a)), the corresponding node becomes the

bottleneck of the system because it always has more load than the

other node. Next, we will describe another heuristic that addresses

this limitation.

4.2 Heuristic 2: MaxMin Plane Distance
Intuitively, MMAD pushes the intersection points of the node

hyperplanes closer to those of the ideal hyperplane using the axis

distance metric. Our second heuristic, on the other hand, pushes

the node hyperplanes directly towards the ideal hyperplane using

the plane distance metric. The plane distance of an hyperplane h is

the distance from the origin to h. Our goal is thus to maximize the

minimum plane distance of all node hyperplanes. We refer to this

heuristic as MaxMin Plane Distance (MMPD).

Another way to think about this heuristic is to imagine a partial

hypersphere that has its center at the origin and its radius r equal

the minimum plane distance (e.g., Figure 8). Obviously, MMAD

prefers Figure 8(b) to Figure 8(a) because the former has a larger r.

The small arrow in Figure 8(b) illustrates how MMPD pushes the

hyperplane that is the closest to the origin in terms of plane distance

towards the ideal hyperplane.
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Figure 8: Illustrating MaxMin Plane Distance.
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Figure 9: Relationship between r and the feasible set size.

The plane distance of the ith hyperplane is computed as:

1
p

w2
i1 + · · · + w2

id

=
1

‖Wi‖ ,

where ‖Wi‖ denotes the second norm of the ith row vector of W .

Thus, the value we would like maximize is:

r = min
i

1

‖Wi‖
.

By maximizing r, we maximize the size of the partial hyper-

sphere, which is a lower bound on the feasible set size. To further

examine the relationship between r and the feasible set size, we

generated random node load coefficient matrices and plotted the

ratios of their feasible-set-size / ideal-feasible-set-size vs. the ratio

of r/ r∗ (r∗is the distance from the origin to the ideal hyperplane).

Figure 9 shows the results of 10000 random load coefficient matri-

ces with 10 nodes and 3 input streams. We see a trend that both the

upper bound and lower bound of the feasible-set-size ratio increase

when r/ r∗ increases. The curve in the graph is the computed lower

bound using the volume function of hyperspheres, which is a con-

stant times rd [22]. For different n and d, the upper bound and

lower bound differs from each other; however, the trend remains

intact. This trend is an important ground for the effectiveness of

MMPD.

Intuitively, by maximizing r, i.e., minimizing the largest weight

vector norm of the nodes, we avoid having nodes with large weights

arising from multiple input streams. Nodes with relatively larger

weights often have larger load/capacity ratios than other nodes at

many stream rate points. Therefore, MMPD can also be said to

balance the load of the nodes (in proportion to the nodes’ capacity)

for multiple workload points. Notice that this approach sharply

contrasts with traditional load balancing schemes that optimize for

single workload points.

5. THE ROD ALGORITHM
We now present a greedy operator distribution algorithm that

seamlessly combines the heuristics discussed in the previous sec-

tion. The algorithm consists of two phases: the first phase orders

the operators and the second one greedily places them on the avail-

able nodes. The pseudocode of the algorithm is shown in Figure 10.
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Initialization
CT ← C1 + · · ·+ Cn

for k = 1, · · ·, d, lk ← lo1k
+ · · ·+ lo

mk
for i = 1, · · ·, n, j = 1, · · ·, m, aij ← 0
for i = 1, · · ·, n, k = 1, · · ·, d, ln

ik
← 0

Operator Ordering

Sort operators by
q

loj1
2+, · · · , +lo

jd
2 in descending

order (let h1, · · ·, hm be the sorted operator indices)
Operator Assignment

for j = h1, · · ·, hm (assign operator oj)
class I nodes← φ, class II nodes← φ
for i = 1, · · ·, n (classify nodes)

for k = 1, · · ·, d, w′

ik
←

““

ln
ik

+ lo
jk

”

/lk

”

/ (Ci/CT )

if w′

ik
≤ 1 for all k = 1, · · ·, d

add Ni to class I nodes
else

add Ni to class II nodes
if class I is not empty

select a destination node from class I
else

select the node with min
i

1

ffi
q

w
′

i1
2

+ · · ·+ w
′

id

2

(Assume Ns is the selected node. Assign oj to Ns )
asj ← 1;
for k = 1, · · · , d, ln

sk
← 1n

sk
+ lo

jk

Figure 10: The ROD algorithm pseudocode.

5.1 Phase 1: Operator Ordering
This phase sorts the operators in descending order based on the

second norm of their load coefficient vectors. The reason for this

sorting order is to enable the second phase to place “high impact”

operators (i.e., those with large norms) early on in the process, since

dealing with such operators late may cause the system to signifi-

cantly deviate from the optimal results. Similar sorting orders are

commonly used in greedy load balancing and bin packing algo-

rithms [8].

5.2 Phase 2: Operator Assignment
The second phase goes through the ordered list of operators and

iteratively assigns each to one of the n candidate nodes. Our basic

destination node selection policy is greedy: at each step, the oper-

ator assignment that minimally reduces the final feasible set size is

chosen.

At each step, we separate nodes into two classes. Class I nodes

consist of those that, if chosen for assignment, will not lead to a

reduction in the final feasible set. Class II nodes are the remaining

ones. If Class I nodes exist, one of them is chosen as the destina-

tion node using a goodness function (more on this choice below).

Otherwise, the operator is assigned to the Class II node with the

maximum candidate plane distance (i.e., the distance after the as-

signment).

Let us now describe the algorithm in more detail while providing

geometrical intuition. Initially, all the nodes are empty. Thus, all

the node hyperplanes are at infinity. The node hyperplanes move

closer to the origin as operators get assigned. The feasible set size

at each step is given by the space that is below all the node hyper-

planes. Class I nodes are those whose candidate hyperplanes are

above the ideal hyperplane, whereas the candidate hyperplanes of

Class II nodes are either entirely below, or intersect with, the ideal

hyperplane. Figure 11(a) and 11(b) show, respectively, the cur-

rent and candidate hyperplanes of three nodes, as well as the ideal

hyperplane.

Since we know that the feasible set size is bounded by the ideal
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Figure 11: Node selection policy example.

hyperplane, at a given step, choosing a node in Class I will not

reduce the possible space for the final feasible set. Figure 11(c)

shows an example of the hyperplanes of a Class I node. Notice that

as we assign operators to Class I nodes, we push the axis intersec-

tion points closer to those of the ideal hyperplane, thus follow the

MMAD heuristic. If no Class I nodes exist, then we have to use

a Class II node and, as a result, we inevitably reduce the feasible

set. An example of two Class II nodes and the resulting decrease

in the feasible set size are shown in Figure 11(d). In this case, we

follow the MMPD heuristic and use the plane distance to make our

decision by selecting the node that has the largest candidate plane

distance.

As described above, choosing any node from Class I does not

affect the final feasible set size in this step. Therefore, a random

node can be selected or we can choose the destination node using

some other criteria. For example, we can choose the node that re-

sults in the minimum number of inter-node streams to reduce data

communication overheads for scenarios where this is a concern.

6. ALGORITHM EXTENSIONS

6.1 General Lower Bounds on Input Rates
We have so far leveraged no knowledge about the expected work-

load, assuming D = {R : R ≥ 0}. We now present an extension

where we allow more general, non-zero lower bound values for the

stream rates, assuming:

D = {R : R ≥ B, B = (b1, · · · , bd)T , bk ≥ 0 for k = 1, · · · , d}.

This general lower bound extension is useful in cases where it

is known that the input stream rates are strictly, or likely, larger

than a workload point B. Using point B as the lower bound is

equivalent to ignoring those workload points that never or seldom

happen; i.e., we optimize the system for workloads that are more

likely to happen.

The operator distribution algorithm for the general lower bound

is similar to the base algorithm discussed before. Recall that the

ideal node load coefficient matrix does not depend on D. There-

fore, our first heuristic, MMAD, remains the same. In the second

heuristic, MMPD, because the lower bound of the feasible set size

changes, the center of the partial hypersphere should also change.

In the normalized space, the lower bound corresponds to the point

B′ = (b1l1/CT , · · · , bdld/CT )T
. In this case, we want to maxi-
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mize the radius of the partial hypersphere centered at B′ within the

normalized feasible set (e.g., Figure 12). The formula of its radius

r is

r = min
i

1 − WiB
′

‖Wi‖
.

In the ROD algorithm, we simply replace the distance from the

origin to the node hyperplanes with the distance from the lower

bound to the node hyperplanes.

6.2 Nonlinear Load Models
Our discussion so far has assumed linear systems. In this section,

we generalize our discussion to deal with nonlinear systems.

Our key technique is to introduce new variables such that the

load functions of all operators can be expressed as linear functions

of the actual system input stream rates as well as the newly intro-

duced variables. Our linearization technique is best illustrated with

a simple example.

Example 3: Consider the query graph in Figure 13. Assume that

the selectivities of all operators except o1 are constant. Because

of this, the load function of o2 is not a linear function of r1. So

we introduce the output stream rate of o1 as a new variable r3.

Thereby, the load functions of o1 to o4 are all linear with respect to

r1 to r3.

Assume operator o5 is a time-window-based join operator that

joins tuples whose timestamps are within a give time window w [1].

Let o5’s input stream rates be ru and rv , its selectivity (per tuple

pair) be s5, and its processing cost be c5 CPU cycles per tuple pair.

The number of tuple pairs to be processed in unit time is wrurv .

The load of o5 is thus c5wrurv and the output stream rate of this

operator is s5wrurv . As a result, it is easy to see that the load

function of o5 cannot be expressed as a linear function of r1 to r3.

In addition, the input to o6 cannot be expressed as a linear function

of r1 to r3 either. The solution is to introduce the output stream

rate of operator o5 as a new variable r4. It is easy to see that the

load of operator o6 can be written as a linear function of r4. Less

apparent is the fact that the load of operator o5 can also be written

as (c5/s5)r4, which is a linear function of r4 (assuming c5 and

s5 are constant). Therefore, the load functions of the entire query

graph can be expressed as linear functions of four variables r1 to

r4. This approach can also be considered as “cutting” a nonlinear

query graph into linear pieces (as in Figure 13).

This linearization technique is general; i.e., it can transform any

nonlinear load model into a linear load model by introducing addi-

tional input variables. Once the system is linear, the analysis and

techniques presented earlier apply. However, because the perfor-

mance of ROD depends on whether the weights of each variable

can be well balanced across the nodes, we aim to introduce as few

additional variables as possible.

6.3 Operator Clustering
So far, we have ignored the CPU cost of communication. We

now address this issue by introducing operator clustering as a pre-
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Figure 13: Linear cut of a non-linear query graph.

processing step to be applied before ROD. The key idea is to iden-

tify costly arcs and ensure that they do not cross the network by

placing the end operators on the same machine.

We studied two greedy clustering approaches. The first approach

(i) computes a clustering ratio (i.e., the ratio of the per-tuple data

transfer overhead of the arc over the minimum data processing

overhead of the two end-operators) for each arc; (ii) clusters the

end-operators of the arc with the largest clustering ratio; and (iii)

repeats the previous step until the clustering ratios of all arcs are

less than a given clustering threshold. A potential problem with

this method is that it may create operator clusters with very large

weights. A second approach is, thus, to choose the two connected

operators with the minimum total weight in step (ii) of the approach

above. In both cases, we set an upper bound on the maximum

weight of the resulting clusters. It is easy to see that varying cluster-

ing thresholds and weight upper bounds leads to different clustering

plans.

Our experimental analysis of these approaches did not yield a

clear winner when considering various query graphs. Our current

practical solution is to generate a small number of clustering plans

for each of these approaches by systematically varying the thresh-

old values, obtain the resulting operator distribution plans using

ROD, and pick the one with the maximum plane distance.

7. PERFORMANCE STUDY
In this section, we study the performance of ROD by comparing

it with several alternative schemes using the Borealis distributed

stream processing system [2] and a custom-built simulator. We use

real network traffic data and an aggregation-heavy traffic monitor-

ing workload, and report results on feasible set size as well as pro-

cessing latencies.

7.1 Experimental Setup
Unless otherwise stated, we assume the system has 10 homoge-

neous nodes. In addition to the aggregation-based traffic monitor-

ing queries, we used random query graphs generated as a collection

of operator trees rooted at input operators. We randomly generate

with equal probability from one to three downstream operators for

each node of the tree. Because the maximum achievable feasible set

size is determined by how well the weight of each input stream can

be balanced, we let each operator tree consists of the same num-

ber of operators and vary this number in the experiments. For ease

of experimentation, we also implemented a “delay” operator whose

per-tuple processing cost and selectivity can be adjusted. The delay

times of the operators are uniformly distributed between 0.1 ms to

1 ms. Half of these operators are randomly selected and assigned a

selectivity of one. The selectivities of other operators are uniformly

distributed from 0.5 to 1. To measure the operator costs and selec-

tivities in the prototype implementation, we randomly distribute the

operators and run the system for a sufficiently long time to gather

stable statistics.

In Borealis, we compute the feasible set size by randomly gen-

erating 100 workload points, all within the ideal feasible set. We

compute the ideal feasible set based on operator cost and selectivity
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Figure 14: Base resiliency results.

statistics collected from trial runs. For each workload point, we run

the system for a sufficiently long period and monitor the CPU uti-

lization of all the nodes. The system is deemed feasible if none of

the nodes experience 100% utilization. The ratio of the number of

feasible points to the number of runs is the ratio of the achievable

feasible set size to the ideal one.

In the simulator, the feasible set sizes of the load distribution

plans are computed using Quasi Monte Carlo integration [14]. Due

to the computational complexity of computing multiple integrals,

most of our experiments are based on query graphs with five in-

put streams (unless otherwise specified). However, the observable

trends in experiments with different numbers of input streams sug-

gest that our conclusions are general.

7.2 Algorithms Studied
We compared ROD with four alternative load distribution ap-

proaches. Three of these algorithms attempt to balance the load

while the fourth produces a random placement while maintaining

an equal number of operators on each node. Each of the three

load balancing techniques tries to balance the load of the nodes

according to the average input stream rates. The first one, called

Largest-Load First (LLF) Load Balancing, orders the operators by

their average load-level and assigns operators in descending order

to the currently least loaded node. The second algorithm, called

Connected-Load-Balancing, prefers to put connected operators on

the same node to minimize data communication overhead. It as-

signs operators in three steps: (1) Assign the most loaded candidate

operator to the currently least loaded node (denoted by Ns). (2) As-

sign operators that are connected to operators already on Ns to Ns

as long as the load of Ns (after assignment) is less than the average

load of all operators. (3) Repeat step (1) and (2) until all operators

are assigned. The third algorithm, called Correlation-based Load

Balancing, assigns operators to nodes such that operators with high

load correlation are separated onto different nodes. This algorithm

was designed in our previous work [23] for dynamic operator dis-

tribution.

7.3 Experimental Results

7.3.1 Resiliency Results

First, we compare the feasible set size achieved by different oper-

ator distribution algorithms in Borealis. We repeat each algorithm

except ROD ten times. For the Random algorithm, we use different

random seeds for each run. For the load balancing algorithms, we

use random input stream rates, and for the Correlation-based algo-

rithm, we generate random stream-rate time series. ROD does not

need to be repeated because it does not depend on the input stream

rates and produces only one operator distribution plan. Figure 14(a)

shows the average feasible set size achieved by each algorithm di-

vided by the ideal feasible set size on query graphs with different

numbers of operators.
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Figure 15: Impact of number of input streams.

It is obvious that the performance of ROD is significantly better

than the average performance of all other algorithms. The Con-

nected algorithm fares the worst because it tries to keep all con-

nected operators on the same node. This is a bad choice because a

spike in an input rate cannot be shared (i.e., collectively absorbed)

among multiple processors. The Correlation-Based algorithm does

fairly well compared to the other load balancing algorithms, be-

cause it tends to do the opposite of the Connected algorithm. That

is, operators that are downstream from a given input have high load

correlation and thus tend to be separated onto different nodes. The

Random algorithm and the LLF Load Balancing algorithm lie be-

tween the previous two algorithms because, although they do not

explicitly try to separate operators from the same input stream, the

inherent randomness in these algorithms tends to spread operators

out to some extent. ROD is superior because it not only separates

operators from each input stream, but also tries to avoid placing

“heavy” operators from different input streams on the same node,

thus avoiding bottlenecks.

As the number of operators increases, ROD approaches the ideal

case and most of the other algorithms improve because there is a

greater chance that the load of a given input stream will be spread

across multiple nodes. On the other hand, even for fewer operators,

our method retains roughly the same relative performance improve-

ment (Figure 14(b)).

Notice that the two hundred operators case is not unrealistic.

In our experience with the financial services domain, applications

often consist of related queries with common sub-expressions, so

query graphs tend to get very wide (but not necessarily as deep).

For example, a real-time proof-of-concept compliance application

we built for 3 compliance rules required 25 operators. A full-blown

compliance application might have hundreds of rules, thus requir-

ing very large query graphs. Even in cases where the user-specified

query graph is rather small, parallelization techniques (e.g., range-

based data partitioning) significantly increase the number of oper-

ator instances, thus creating much wider, larger graphs.

We also ran the same experiments in our distributed stream-

processing simulator. We observed that the simulator results

tracked the results in Borealis very closely, thus allowing us to trust

the simulator for experiments in which the total running time in Bo-

realis would be prohibitive.

In the simulator, we compared the feasible set size of ROD with

the optimal solution on small query graphs (no more than 20 oper-

ators and 2 to 5 input streams) on two nodes. The average feasible

set size ratio of ROD to the optimal is 0.95 and the minimum ratio

is 0.82. Thus, for cases that are computationally tractable, we can

see that ROD’s performance is quite close to the optimal.

7.3.2 Varying the Number of Inputs

Our previous results are based on a fixed number of input streams

(i.e., dimensions). We now examine the relative performance of

different algorithms for different numbers of dimensions using the

simulator.
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Figure 16: (a) Penalty for not using the lower bound. (b)

Penalty for using a wrong lower bound.

Table 3: Average penalty

number of operators 25 50 100 200

origin as the lower bound 0.90 0.79 0.56 0.35

Zi as the lower bound 0.89 0.83 0.55 0.32

Figure 15 shows the ratio of the feasible set size of the compet-

ing approaches to that of ROD, averaged over multiple independent

runs. We observe that as additional inputs are used, the relative per-

formance of ROD gets increasingly better. In fact, each additional

dimension seems to bring to ROD a constant relative percentage

improvement, as implied by the linearity of the tails of the curves.

Notice that the case with two inputs exhibits a higher ratio than that

estimated by the tail, as the relatively few operators per node in

this case significantly limits the possible load distribution choices.

As a result, all approaches make more or less the same distribu-

tion decisions. For example, when the number of operators equals

the number of nodes, all algorithms produce practically equivalent

operator distribution plans.

7.3.3 Using a Known Lowerbound

As discussed in Section 6, having knowledge of a lower bound

on one or more input rates can produce results that are closer to the

ideal. We verify this analysis in this next set of experiments in the

simulator.

We generate random points Bi in the ideal feasible space an-

chored at the origin to use as the lower bounds of each experiment.

For each Bi, we generate two operator distribution plans, one that

uses Bi as the lower bound and one that uses the origin. We then

compute the feasible set size for these two plans relative to Bi. Let

us call the feasible set size for the former plan FFS(Bi) and the

feasible set size for the later FSS(O). We compute the penalty for

not knowing the lower bound as (FFS(Bi) − FSS(O)) /FSS(Bi)
We now run our experiment on a network of 50 operators. We

plot the penalty in Figure 16(a) with the x-axis as the ratio of the

distance from Bi to the ideal hyperplane to the distance from the

origin to the ideal hyperplane. Notice that when this ratio is small

(Bi is very close to the ideal hyperplane), the penalty is large be-

cause without knowing the lower bound it is likely that we will sac-

rifice the small actual feasible set in order to satisfy points that will

not occur. As Bi approaches the origin (i.e., the ratio gets bigger),

the penalty drops off as expected.

The next experiment quantifies the impact of inaccurate knowl-

edge of the lower bound values. In Figure 16(b), we run

the same experiment as above except that, instead of using the

origin as the assumed lower bound, we use another randomly

generated point. As in the above experiment, we compute a

penalty for being wrong. In this case, the penalty is computed

as (FFS(Bi) − FSS(Zi)) /FSS(Bi) where Bi is the real lower

bound, as before, and Zi is the assumed lower bound. The x axis

is the distance between Bi and Zi in the normalized space. As
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Figure 17: Performance with operator clustering.

one might expect, when the real and the assumed lower bounds are

close to each other, the penalty is low. As the distance increases,

the penalty also increases (Figure 16(b)).

The penalty is also dependent on the number of operators in our

query network. We redo our experiments for different networks

with 25 to 200 operators. Looking at Table 3, we see that the aver-

age penalty drops as we increase the number of operators. For very

large numbers of operators, the penalty will converge to zero since,

at that point, all the hyperplanes can be very close to the ideal case

given the greater opportunity for load balancing.

7.3.4 Operator Clustering

In this section, we address data communication overheads and

study the impact of operator clustering. For simplicity, we let each

arc have the same per-tuple data communication cost and each op-

erator have the same per tuple data processing cost. We vary the

ratio of data communication cost over data processing cost (from

0 to 1) and compare ROD with and without operator clustering.

The results shown in Figure 17(a) are consistent with the intuition

that operator clustering becomes more important when the relative

communication cost increases.

We also compare the performance of clustered ROD with Con-

nected Load Balancing in Figure 17(b). Our first observation is that

clustered ROD consistently performs better than Connected Load

Balancing regardless of the data communication overhead. Sec-

ondly, we observe that clustered ROD can do increasingly better

as the number of operators per input stream increases—more op-

erators means more clustering alternatives and more flexibility in

balancing the weight of each input stream across machines.

7.3.5 Latency Results

While the abstract optimization goal of this paper is to maximize

the feasible set size (or minimize the probability of an overload

situation), stream processing systems must, in general, produce low

latency results. In this section, we evaluate the latency performance

of ROD against the alternative approaches. The results are based

on the Borealis prototype with five machines for aggregation-based

network traffic monitoring queries on real-world network traces.

As input streams, we use an hour’s worth of TCP packet traces

(obtained from the Internet Traffic Archive [5]). For query graph,

we use 16 aggregation operators that compute the number of pack-

ets and the average packet size for each second and each minute

(using non-overlapping time windows), and for the most recent

10 seconds and most recent one minute (using overlapping sliding

windows), grouped by the source IP address or source-destination

address pairs. Such multi-resolution aggregation queries are com-

monly used for various network monitoring tasks including denial

of service (DoS) attack detection.

To give more flexibility to the load distributor and enable higher
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Figure 18: Latency results (prototype based).

data parallelism, we partition the input traces into 10 sub-streams

based on the IP addresses, with each sub-stream having roughly

one tenth of the source IP addresses. We then apply the aggregation

operators to each sub-stream and thus end up with 160 “physical”

operators. Note that this approach does not yield perfectly uni-

form parallelism, as the rates of the sub-streams are non-uniform

and independent. It is therefore not possible to assign equal num-

bers of sub-streams along with their corresponding query graphs to

different nodes and expect to have load balanced across the nodes

(i.e. expect that the ideal feasible set can be achieved by pure data-

partitioning based parallelism).

In addition to the algorithms described earlier, we introduce yet

another alternative, Max-Rate-Load-Balancing, that operates simi-

lar to LLF-Load-Balancing, but differs from it in that the new algo-

rithm balances the maximum load of the nodes using the maximum

stream rate (as observed during the statistics collection period).

In order to test the algorithms with different stream rates, we

scale the rate of the inputs by a constant. Figure 18 shows the

average end-to-end latency and the maximum end-to-end latency

results for the algorithms when the input rate multiplier is 1, 2, 3,

and 3.5, respectively. These multipliers correspond to 26%, 48%,

69% and 79% average CPU utilization for ROD. Overall, ROD per-

forms better than all others not only because it produces the largest

feasible set size (i.e., it is the least likely to be overloaded), but

also because it tends to balance the load of the nodes under mul-

tiple input rate combinations. When we further increase the input

rate multiplier to 4, all approaches except ROD fail due to overload

(i.e., the machines run out of memory as input tuples queue up and

overflow the system memory). At this point, ROD operates with

approximately 91% average CPU utilization.

The results demonstrate that, for a representative workload and

data set, ROD (1) sustains longer and is more resilient than the

alternatives, and (2) despite its high resiliency, it does not sacrifice

latency performance.

7.3.6 Sensitivity to Statistics Errors

In the following experiments, we test, in the simulator, how sen-

sitive ROD is to the accuracy of the cost and selectivity statistics.

Suppose that the true value of a statistic is v. We generate a random

error factor f uniformly distributed in the interval [1 − e, 1 + e].
The measured value of v is then set as f × v. We call e the error

level. In each experiment, we generate all measured costs and se-

lectivities according to a fixed e. Figure 19 shows the performance

of different algorithms with different error levels on a query graph

of 100 operators. The feasible set size of all algorithms, except

for Random, decreases when the error level increases. The feasible

set size of ROD does not change much when the error level is 10%.

ROD’s performance remains much better than the others even when

the error level is as large as 50%.
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Figure 19: Sensitivity to statistics errors.

8. RELATED WORK
Task allocation algorithms have been widely studied for tradi-

tional distributed and parallel computing systems [11, 18]. In prin-

ciple, these algorithms are categorized into static algorithms and

dynamic algorithms. In static task allocation algorithms, the dis-

tribution of a task graph is performed only once before the tasks

are executed on the processing nodes. Because those tasks can be

finished in a relatively short time, these algorithms do not consider

time-varying workload as we did.

In this paper, we try to balance the load of each input stream for

bursty and unpredictable workloads. Our work is different from the

work on multi-dimensional resource scheduling [12]. This work

considers each resource (e.g. CPU, memory) as a single dimen-

sion, while we balance the load of different input streams that share

the same resource (CPU). Moreover, balancing the load of different

input streams is only part of our contribution. Our final optimiza-

tion goal is to maximize the feasible set size, which is substantially

different from previous work.

Dynamic task migration received attention for systems with long

running tasks, such as large scientific computations or stream data

processing. Dynamic graph partitioning is a good example [16,

20]. This problem involves partitioning a connected task graph into

uniformly loaded subgraphs, while minimizing the total “weight”

(often the data communication cost) of the cutting edges among

the subgraphs. If changes in load lead to unbalanced subgraphs,

the boundary vertices of the subgraphs are moved to re-balance

the overall system load. Our work differs in that we aim to keep

the system feasible under unpredictable workloads without opera-

tor migration.

Our work is done in the context of distributed stream processing.

Early work on stream processing (e.g., Aurora [3] , STREAM [13],

and TelegraphCQ [6]) focused on efficiently running queries over

continuous data streams on a single machine. The requirement

for scalable and highly-available stream processing services led to

the research on distributed stream processing systems [7]. Load

management in these systems has recently started to receive atten-

tion [4, 17, 23].

Shah et al. presented a dynamic load distribution approach

for a parallel continuous query processing system, called Flux,

where multiple shared-nothing servers cooperatively process a sin-

gle continuous query operator [17]. Flux performs dynamic “intra-

operator” load balancing in which the input streams to a single op-

erator are partitioned into sub-streams and the assignment of the

sub-streams to servers is determined on the fly. Our work is or-

thogonal to Flux, as we address the “inter-operator” load distribu-

tion problem.

Medusa [4] explores dynamic load management in a federated

environment. Medusa relies on an economical model based on

pair-wise contracts to incrementally converge to a balanced con-
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figuration. Medusa is an interesting example of load balancing, as

it focuses on a decentralized dynamic approach, whereas our work

attempts to keep the system feasible without relying on dynamic

load distribution.

Our previous work [23] presented another dynamic load balanc-

ing approach for distributed stream processing. This approach con-

tinually tracks load variances and correlations among nodes (cap-

tured based on a short recent time window) and dynamically dis-

tributes load to minimize the former metric and maximize the latter

across all node pairs. Among other differences, our work is differ-

ent in that it does not rely on history information and is thus more

resilient to unpredictable load variations that are not captured in the

recent past.

9. CONCLUSIONS
We have demonstrated that significant benefit can be derived by

carefully considering the initial operator placement in a distributed

stream processing system. We have introduced the notion of a re-

silient operator placement plan that optimizes the size of the input

workload space that will not overload the system. In this way, the

system will be able to better withstand short input bursts.

Our model is based on reducing the query processing graph to

segments that are linear in the sense that the load functions can be

expressed as a set of linear constraints. In this context, we present

a resilient load distribution algorithm that places operators based

on two heuristics. The first balances the load of each input stream

across all nodes, and the second tries to keep the load on each node

evenly distributed.

We have shown experimentally that there is much to be gained

with this approach. It is possible to increase the size of the allow-

able input set over standard approaches. We also show that the av-

erage latency of our resilient distribution plans is reasonable. Thus,

this technique is well-suited to any modern distributed stream pro-

cessor. Initial operator placement is useful whether or not dynamic

operator movement is available. Even if operator movement is sup-

ported, this technique can be thought of as a way to minimize its

use.

An open issue of resilient operator distribution is how to use ex-

tra information, such as upper bounds on input stream rates, varia-

tions of input stream rates, or input stream rate distributions, to fur-

ther optimize the operator distribution plan. Due to the complexity

of computing multiple integrals and the large number of possible

operator distribution plans, incorporating extra information in the

operator distribution algorithm is not trivial. For each kind of new

information, new heuristics need to be explored and integrated into

the operator distribution algorithm.

Recall that we deal with systems with non-linear operators by

transforming their load models into linear ones. We would like to

investigate alternatives to this that would not ignore the relation-

ships between the contiguous linear pieces. We believe that in so

doing, we would end up with a larger feasible region.
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