
Providing Robust and Ubiquitous Security Support for Mobile Ad-Hoc Networks

Jiejun Kong, Petros Zerfos, Haiyun Luo, Songwu Lu, Lixia Zhang
Computer Science Department

University of California at Los Angeles
fjkong,pzerfos,hluo,slu,lixiag@cs.ucla.edu

Abstract
Providing security support for mobile ad-hoc networks is

challenging for several reasons: (a) wireless networks are
susceptible to attacks ranging from passive eavesdropping
to active interfering, occasional break-ins by adversaries
may be inevitable in a large time window; (b) mobile users
demand “anywhere, anytime” services; (c) a scalable so-
lution is needed for a large-scale mobile network. In this
paper, we describe a solution that supports ubiquitous se-
curity services for mobile hosts, scales to network size, and
is robust against break-ins. In our design, we distribute
the certification authority functions through a threshold se-
cret sharing mechanism, in which each entity holds a secret
share and multiple entities in a local neighborhood jointly
provide complete services. We employ localized certifica-
tion schemes to enable ubiquitous services. We also up-
date the secret shares to further enhance robustness against
break-ins. Both simulations and implementation confirm
the effectiveness of our design.

1 Introduction

In recent years, network security has received critical at-
tention from both academia and industry. As the data net-
work becomes more pervasive and its scale becomes larger,
network intrusion and attack have become severe threats
to network users. This is especially true for the emerging
wireless data networks. Compared to their wired counter-
part, wireless networks are prone to security attacks rang-
ing from passive eavesdropping to active interfering. As it
is even more difficult to protect network entities against the
intruders in wireless environment, occasional break-ins in
a large-scale mobile network are nearly inevitable over a
large time period.

While we may employ sophisticated security techniques
into the system design to prevent intrusions, we expect com-
plete intrusion-free systems to be costly and unrealistic, if
not impossible at all. Therefore, in order to handle network
intrusions, we expect a paradigm shift from completely pre-
venting intrusions to tolerating intrusions to certain extent.
We seek to operate in the presence of system intrusions so

that the attacker’s damage will be contained locally and the
overall system security will not be compromised.

This work presents a scalable intrusion-tolerant security
solution for infrastructureless wireless mobile networks, in
which the network topology is dynamically changing due
to user mobility and node failures. In our design, we use
the idea of threshold secret sharing and secret share up-
dates to enable intrusion tolerance. No single entity in the
network knows or holds the complete system secret (e.g.,
a certification authority’s signing key). Instead, each en-
tity only holds a secret share of the certification authority’s
signing key. Multiple entities, say K, in a one-hop network
locality jointly provide complete security services, as if they
were provided by a single and omnipresent certification au-
thority. The system security is not compromised as long as
there are less than K collaborative intruders in each adver-
sary group. To further resist intrusions over long term, we
periodically (for example once every several hours) update
the secret shares for all entities.

The concepts of threshold secret sharing [14, 2, 4, 12, 15]
and secret share updates [7, 5] are not new, and have been
studied in the cryptography context. However, these pro-
posals assume limited number of secret share holders, and
are not scalable to network size. They typically involve
excessive communication overhead, and assume a richly-
connected network topology. Besides the scaling issue,
these solutions do not work well in the mobile network-
ing environment. They cannot satisfy the following two
requirements for mobile networking security: (1) Mobile
users demand “anywhere, anytime” ubiquitous security ser-
vices, since they may freely roam. As long as the network
condition is better than a predefined lower bound, security
services should be available all the time. (2) Compared to
wired networks, wireless networks are constrained by their
unique features. Security services must be provided de-
spite wireless channel error, network partitioning, and entity
joins/leaves. For the above reasons, these existing solutions
are not applicable to mobile networks with dynamic mem-
bership.

Though we use the aforementioned cryptographic con-
cepts in our work, our focus is to address network-oriented

security issues, in particular mobility, service ubiquity, net-
work dynamics, and scalability. We employ several tech-
niques to achieve this goal.

Our design employs a certificate-based approach based
on the public key infrastructure (PKI), which has been the
foundation of several recent network security protocols.
Any two communicating entities may establish a temporary
trust relationship via unforgeable, renewable and globally
verifiable certificates carried by each of the entities. Se-
curity functions such as confidentiality, data integrity, au-
thentication, and non-repudiation can be readily provided
via valid certificates that are usually issued by a globally
trusted certification server. However, in a large scale wire-
less mobile network, if we still rely on centralized certi-
fication servers to provide these security services such as
certificate issuing, renewal and revocation, both the mainte-
nance and performance of such servers are non-trivial is-
sues. In this paper, we propose new schemes to realize
the certificate-related security services to accommodate the
unique characteristics of ad-hoc wireless networks.

We provide ubiquitous services for mobile entities by
distributing the certification authority(CA)’s functionality
to each local neighborhood. A coalition of K neighbors
can serve as the CA and jointly provide certification ser-
vices for a requesting mobile entity. The fully localized and
everywhere available features of our design enable service
ubiquity for mobile users.

A novel self-initialization protocol is proposed to handle
dynamic node membership (i.e., joins and leaves) and secret
share updates. Each node can be (re)initialized by K neigh-
bors. Once initialized, a node is qualified to be a coalition
member to serve its neighborhood.

Our overall design scales to large network size. Security
services are effectively provided in the presence of mobil-
ity, wireless channel errors, network partitioning, and node
failures. Our implementation and network simulations have
confirmed the effectiveness of our proposal.

The focus of this paper is wireless ad-hoc networks that
do not have any infrastructure support, thus making the
problem more challenging. But our design is equally appli-
cable in several other scenarios. It can be plugged as value-
added security service into many networking systems, such
as cluster-based middleware and storage area networks.

This paper is organized as follows. We begin in x 2 by
describing the problem and showing why the conventional
approaches fail to solve it. x 3 presents our security archi-
tecture and the design rationale. x 4 illustrates the protocol
design. x 5 describes the evaluation and measurements on
our implementation on Unix and ns-2 simulator, and x 6
concludes this paper.

2 Background
We consider a dynamic wireless ad-hoc network with

N networking hosts/entities. Each entity i has a globally
unique nonzero ID vi. There is no other constraint on se-
lecting the ID as long as it can uniquely identify the corre-
sponding entity. Entities communicate with one another via
the bandwidth-constrained, error-prone, and insecure wire-
less channel. They may freely roam in the network. The
number of network entities N may change over time be-
cause mobile hosts may join, leave, or crash. Besides, N is
not limited. There may be a large number of communicat-
ing entities.

2.1 Design challenges

Security design in such infrastructureless wireless mo-
bile networks is challenging for several reasons:

� Security breach: Wireless transmissions are prone to
security attacks, and it is very likely that adversaries
will eventually break into a limited number of entities
over a large time window.

� Mobility and service ubiquity: Mobile users incur dy-
namic topological changes. A mobile user may be able
to perform effective and timely communication with
its local neighbors but not with remote entities. For
example, routing protocols may fail to establish robust
communication over multi-hop paths, as it is the case
with DSR, which is limited to 10-hop scenarios [8].

� Network dynamics: Channel errors, and node failures
all incur dynamics into the network. Besides, an entity
may join and leave the network over time.

� Network scale: The number of networking devices can
be large, thus a scalable solution is critical.

2.2 Intrusion model

At first we briefly discuss what kind of intrusions is al-
lowed in this work. In the worst case, all information,
whether public or private, is known to the intruder when
a network entity is compromised. The intruder can forge,
modify, and delete any information. The intruder can also
do bookkeeping to facilitate future break-ins. However, we
have to limit the power of an intruder to make the prob-
lem tractable. Giving infinite power to the intruder simply
makes any security design meaningless. We consider a re-
alistic intrusion model in the system.

Since authentication is the basic building block for all
security services, we focus our discussion on this part. Fun-
damentally, we have to assume that each network entity has
some information that is unknown to or unforgeable by the
intruder. Otherwise, once an entity is broken, there is no
way others can differentiate the intruder and the genuine
entity. We consider two specific cases:

1. An entity’s private key will not be exposed for a certain
period of time. Thus an entity is able to maintain its
security identity by periodically renewing its private
key via certificate renewal services (x 4).

2. An entity’s ID vi is not forgeable by the intruder, or the
intruder can be detected by intrusion detection mech-
anisms when it pretends to be the broken entity. In-
trusion detection within one hop is more practical and
some schemes have been recently proposed [10].

In the first case, we allow the intruder to know, modify and
forge information other than the private key. The broken
entity can authenticate itself via its valid certificate and a
common challenge-response scheme on its certified public
key. The intruder cannot answer the challenge without the
private key. In the second case, we allow all information,
including its private key, to be exposed to the intruder. The
intruder and the broken entity are differentiated by the un-
forgeable ID. For example, intrusion on the ID can be de-
tected by tamper resistance schemes [6] or localized one-
hop monitoring (e.g., perception-based monitoring).

2.3 Problems with conventional approaches

Then we show why two common approaches, namely the
centralized and the hierarchical approach, do not work well
in large mobile networks.

In the centralized approach, a single certification author-
ity (CA) provides certification services for the entire net-
work. In a large mobile network, the scalability problem
with this approach is quite obvious. Besides, from the secu-
rity aspect, the CA will be exposed to single point of failure
due to system faults, compromises and denial-of-service at-
tacks.

In a hierarchical approach, the entire network is logically
partitioned into domains where local CAs are deployed.
This is also the approach discussed in [20] where collabora-
tive CAs are deployed as access points for security services.
At a first glance, this scales to network size and fits well in a
large wireless network. However, several characteristics of
mobile networks make this approach ineffective: (1) High
mobility causes frequent route changes, thus contacting the
local CA in a timely fashion is non-trivial [8]. Besides, in
ad-hoc networks the local CA may be multi-hops away and
may also move. This not only causes complicated dynamic
repartitioning of the network, but also stretches the problem
of locating and tracking a local CA server. (2) Multi-hop
communication over the error-prone wireless channel ex-
poses the data transmission to high loss rate. This reduces
the success ratio and increases the average service latency.
(3) Every local CA is exposed to single point of compro-
mises or DoS attacks. Threshold secret sharing among local
CAs [20] solves the problem, but aggravates the previous
two concerns.

We use certificate renewal service as an example to eval-
uate these approaches in the ns2 network simulator. We
measured results with mobility speed set at the moderate
value of 5m=sec and various network sizes. In Figure 1, we
observe that the success ratio, defined as the percentage of
successful certificate renewals over all requests during the
simulation time, is low for centralized approaches (around
70% – 90%), while our scheme is close to 100%. In Fig-
ure 2, we observe that the average delay required by each
node to contact the local CA is much larger compared with
our fully localized approach.

30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

of Nodes

S
uc

ce
ss

 R
at

io
 (

%
)

Success Ratio − CR vs. CA, Mobility 5m/sec

Cert. Renewal
Central Authority − 1 serv.
Central Authority − 4 serv.

Figure 1. Success
Ratio vs. node #

30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

of Nodes

A
vg

. D
el

ay
 (

se
c)

Avg. Delay − CR vs. CA, Mobility 5m/sec

Cert. Renewal
Central Authority − 1 serv.
Central Authority − 4 serv.

Figure 2. Avg. de-
lay vs. node #

3 Architecture

In this section we describe our architecture for ubiqui-
tous security services in wireless ad-hoc networks. From
the cryptographic perspective, our design is based on the
concepts of threshold secret sharing and secret share up-
dates. From the system aspect, the architecture is fully dis-
tributed and localized.

3.1 Concepts

We adopt an RSA-based design, which is currently the
most prevalent public key cryptosystem. The system CA’s
RSA key pair is denoted as fSK;PKg, where SK is the
system secret/private key and PK is the system public key.
SK is used to sign certificates for all entities in the net-
work. A certificate signed by SK can be verified by the
well-known system public key PK.

By threshold secret sharing, SK is shared among the net-
work entities. Each entity vi holds a secret share Pvi , and
anyK of such secret share holders can collectively function
as the role of CA. However, SK is not visible or known by
any component of the network except at the system boot-
strapping phase. We seek to preserve the secrecy of SK all
the time after then.

Besides the system key pair, each entity vi also maintains
a personal RSA private and public key pair fsk i; pkig. This
pair of personal keys is used in end-to-end security to realize
cipher key exchange, message privacy, message integrity,
and non-repudiation.

To certify its personal keys, each entity vi also holds a
certificate certi in the format of hvi; pki; Tsign; Texpirei,
which may read: “It is certified that the personal public key
of entity vi is pki from the signing time Tsign to the expi-
ration time Texpire”. A certificate is valid if it is signed by
SK. To further control the validity of a certificate, we have
employed two complementary methods.
Implicit certificate revocation We predefine a system pa-
rameter Trenew to bound the valid time of every certifi-
cate in the network. In any certificate certi, the condition
(Texpire�Tsign + Trenew) must hold. In other words, the
entity vi has to renew its certificate within Trenew.
Explicit certificate revocation A certificate accused by the
system certificate revocation list (CRL) is invalid no mat-
ter what its valid time says. Due to the implicit certificate
revocation mechanism, only those certificates that haven’t
expired yet need to be stored in the CRL, thus saving its
storage.

3.2 Basic operations

The basic operations in our architecture involve only lo-
cal coalitions of secret share holders. K, the size of these
coalitions, is an important system parameter that needs to
be carefully tuned.
Secret share dealing An entity vi obtains its secret share
Pvi during system bootstrapping phase or through our self-
initialization service (x 4.2). In the bootstrapping phase,
network entities obtain their valid certificates and secret
shares from a centralized management before joining (or
forming) the ad-hoc network. To ease the job of secret share
dealing, we have devised a self-initialization algorithm to
securely deliver the secret share to a uninitialized entity by
a local coalition of K secret share holders. As a result, after
initializing K entities, the centralized dealer is not needed
any more.
Certification services When an entity requests for certifi-
cation service, a local coalition of K secret share holders
is formed on the fly. Each secret share holder v i provides
to the requester a partial certificate that is signed by a value
SKi which is directly derived from the secret share Pvi .
Once the requester locally collects K such partial certifi-
cates, it combines them together and obtains its complete
certificate that is signed by SK.
Secret share updates In our design, no adversary group
having less than K collaborative adversaries can forge a
valid certificate. Our system tolerates up to K � 1 break-
ins from each adversary group. In order to resist grad-
ual break-ins over a long term period, each entity’s secret
share is updated periodically [7, 5]. As long as there are
less than K entities broken between two consecutive se-
cret share updates, the system signing key SK is protected
against break-ins and can remain unchanged throughout.

3.3 Design rationale

Why a certificate-based approach? As it has been pro-
posed in literatures [18], there are five basic aspects that
characterize a secure communication: Data integrity, which
ensures that only authorized parties are able to modify
transmitted information. Authentication, through which
the sender of a message can be correctly identified. Mes-
sage confidentiality, which ensures that transmitted data are
accessible only for reading by authorized entities. Non-
repudiation requires that neither the sender, nor the receiver
of a message be able to deny the transmission and Service
availability, which demands that computer system assets be
available to authorized entities when needed.

Certificate-based approaches readily provide workable
solutions to the first four of the above mentioned functions.
We seek to solve the problem of service availability through
the design of the ubiquitous certification protocols, specifi-
cally for mobile ad-hoc networks.
Why threshold secret sharing? Threshold secret sharing
exhibits several desirable properties that fit well in ad-hoc
networks: (a) A key feature of ad-hoc networks is lack of
centralized control. Distributing and sharing the control are
consistent to the nature of ad-hoc networks. (b) Ubiquitous
services are enabled once the secret is fully distributed to
each locality. Besides, intrusion detection is more practical
and efficient if localized. (c) The thresholdK is the balance
point between service availability and intrusion tolerance.
An adversary group must destroy (N�K+1) share holders
to turn off certification services, whereas it must break in at
least K share holders to steal the system secret SK. We
next compare our choice of K-threshold with two extreme
cases in the entire solution space:

“1 out of N” scheme The centralized solution is actually
a special case of the threshold secret sharing. The
threshold K = 1 results in vulnerable security since
SK is held by a single entity. The centralized server
suffers from a single point of service denial and a sin-
gle point of compromise. In the former case, no service
can be provided to network entities. In the latter case,
the system secret SK is revealed and the entire system
is compromised.

“N out of N” scheme: The threshold K = N results in
maximal security but minimal fault tolerance. Unless
the adversary breaks into every entity in the system, it
cannot expose SK. However, since all N entities are
required in providing the service, the system secret is
lost once system failure occurs at any single entity. Be-
sides, this approach is not scalable in a large network.

Therefore, ourK-threshold security design seeks to provide
flexible tradeoffs among security, availability, intrusion tol-
erance, and fault tolerance. By choosing 1 < K < N , we

avoid both the ”single point of compromise” and the ”sin-
gle point of failure/DoS attack” problems. Though a certain
number of entities may be intruded or faulty, the system se-
cret SK is not exposed or lost.
Why secret share updates? In threshold secret sharing, ad-
versaries need to compromise at least K entities to expose
the system secret SK. However, they have the entire sys-
tem lifetime to mount these attacks. Gradual break-ins into
K entities over a long period of time may be possible and
therefore long-lived secret sharing is not sufficient. A naive
make-up is to periodically change SK itself. However, in a
wireless ad-hoc network without centralized control, it is an
open issue who has the authority to annul the current SK
and enforce the change. This motivates our design choice
to periodically update the shares instead of the SK itself.

4 Protocols
4.1 Localized certification service

As in PKI-based systems, our certification services in-
clude certificate issuing, renewal, and revocation. The re-
newal service also serves as an implicit revocation mecha-
nism, as described in x 3.
Certificate issuing Technically this operation is same as
certificate renewal. However, it raises more security con-
cerns. Once an entity obtains its initial certificate, in our de-
sign it earns the trust of the entire network. A well-defined
certificate issuing policy is needed to regulate certificate is-
suing. (a) At the network bootstrapping phase, we assume
the entities can obtain their initial certificates from a trusted
centralized management. (b) If an entity joins the network
later on, or if it wishes to recover its certificate from a sys-
tem crash, then a well-known certificate issuing policy must
be pre-determined before the ad-hoc network is formed.
Since our architecture delivers certification services within
one-hop neighborhood, we suggest to use some reliable out-
of-bound physical proofs, such as human perceptions and
biometrics, to enforce certificate re-issuing policy.
Certificate renewal Once an initial certificate is issued to
an entity, it must be renewed within Trenew time. The en-
tity may also need to renew its certificate once it updates its
personal key pair. To renew its certificate, a network entity
must present its current valid certificate and a future expi-
ration time T < (current time+Trenew) for the new certifi-
cate. The local coalition uses the system PK and system
CRL to verify the validity of the certificate, then accepts or
denies the renewal request accordingly.
Certificate revocation Besides the implicit revocation
scheme, the explicit revocation scheme is devised to revoke
compromised certificates at real time. If vx’s certificate is
considered compromised, an SK-signed counter-certificate
h?vx; T

?

signiSK is flooded over the network, where ? is
a special tag denoting counter-certificates and T ?

sign is the

time when the counter-certification request is submitted. By
the help from implicit revocation, each node only needs
to maintain a subset of counter-certificates within the past
Trenew. That is, given a counter-certificate h?vx; T?

signiSK
and the current time NOW , a node needs to store the
counter-certificate if (T?

sign + Trenew > NOW), or dis-
card it otherwise.

Like a certificate, a counter-certificate is signed thus un-
forgeable. Besides the flooding mechanism, neighboring
nodes can safely exchange their local CRL cache and obtain
the maximal list. If a counter-certificate h?vx; T?

signiSK is
listed in local CRL cache, any certificate of vx signed be-
fore T?

sign is considered invalid. An out-of-bound certificate
re-issuing policy may decide whether to re-issue vx a new
certificate signed after T?

sign.

4.1.1 Protocol details

Our architecture is built upon Shamir’s [14] threshold se-
cret sharing. A secret can be shared by an arbitrary large
community using a secret polynomial f(x). If the degree
of f(x) is K � 1, then any K members of the community
can recover the secret via Lagrange interpolation, while any
less thanK members of the community reveals no informa-
tion of the secret. This is normally denoted as K-threshold
secret sharing.

At the system bootstrapping phase, the centralized se-
cret share dealer obtains the RSA secret key SK = hd; ni
and randomly selects a polynomial f(x) of degree K � 1,
f(x) = d + f1�x + � � �+ fK�1�x

K�1 such that the shared
secret is f(0) = d. Each entity vi; (i = 1; 2; :::; N) holds a
secret share Pvi = (f(vi) mod n). For any coalition of K
entities fv1; v2; : : : ; vKg, Lagrange interpolation states that

d�

KX

j=1

(Pvj �lvj (0) mod n)�
KX

j=1

SKj (mod n) (1)

where lvj (0) are the Lagrange coefficients1.
In a local neighborhood where there are K secret share

holders, each share holder vj can compute an SKj from its
secret share Pvj by Lagrange interpolation, SK is recov-

ered from the sum d = (
PK

j=1 SKj mod n).
Instead of revealing the private exponent d to the coali-

tion, a better security scheme is employed to accomplish
certification services without constructing an explicit d. The
corner stone of the multi-signature protocol [2, 4, 12, 15] is
the following arithmetic formula:

XSK1 �XSK2 �� � ��XSKK = XSK1+SK2+���+SKK :

In this scheme each member provides a partial certificate
XSKj rather than revealing its private SKj (Figure 3).

1Lagrange coefficient in the coalition is defined as lvj (x) =
(x�v1)���(x�vj�1)(x�vj+1)���(x�vK)

(vj�v1)���(vj�vj�1)(vj�vj+1)���(vj�vK)
.

SK5

responding unicasts

X

SK4X

local broadcast

SK3X

SK2X
SK1X

X
broadcast

reply
reply

reply

reply

reply

Figure 3. Localized Certification Service

3. route shuffling packages

2. unicast shuffling package

1. broadcast request + coalition info

local broadcast

responding unicasts

4. unicast partial secret share

Figure 4. Localized Self-initialization Service

However, there is a technical obstruction, named as the
“interpolation over Z�(n) problem” in [15], that needs to
be solved to implement the multi-signature scheme. The
solution proposed in [2, 4, 12] assumes a limited number of
secret share holders as for fixed members of a social or legal
group [1]. The total number of all share holders is consid-
ered constant, and the entire system needs to restart if this
number changes. In other words, the existing secret shares
and sometimes the current signing key need to be regener-
ated when a new member joins. Contributions from [5, 15]
improve the robustness of scheme by various techniques
like verifiable secret sharing [3, 17, 13] and proactive se-
cret share update [7]. However, the application domain is
still group-oriented multi-signature with fixed number of
share holders. Their algorithms cannot be directly applied
in large-scale networks with dynamic node membership.

We have devised a new algorithm to meet the demand of
scalability and dynamic node membership [9]. In our archi-
tecture, membership changes do not affect existing secret
shares or the current signing key.
Secret share dealing Unlike [2, 4, 12], we follow the sim-
ple procedures specified by Shamir [14]. Given an RSA
signing key SK = hd; ni, the shared secret is the private
exponent f(0) = d, and the secret share for entity v i is
Pvi = (f(vi) mod n).
Generating partial certificates using secret shares When
a secret share is used in signing, it is treated as an exponent
in RSA algorithm. Given a message M and a secret share
P , the signed result is (MP mod n).
Combining partial certificates Having collected K partial
certificates, the service requester can obtain the complete
certificate by K-bounded coalition offsetting algorithm.

4.1.2 K-bounded coalition offsetting

In Equation 1, the sum of Lagrange interpolationPK

i=1(Pvi �lvi(0) mod n) = t�n + d for certain t. How-
ever, no mathematical identity ensures that the result of
the multiplicative multi-signature equals the SK-signature:

M t�n+d�M t�n�Md 6�1�Md�Md (mod n):
Fortunately, each (Pvi �lvi(0) mod n) is a value between

0 and n � 1 due to modular arithmetic. Thus t satisfies
the inequation 0�t�K. After Algorithm 1 we are able to
recover M d by the help from the original message M and
the system public key PK = he; ni.

Algorithm 1 K-bounded Coalition Offsetting

Require: Y�M
P

K

i=1
(Pvi �lvi (0) mod n)�M t�n+d (mod n)

is the product of all partial certificates.
1: Z :=M�n mod n
2: j := 0;W := 1

3: while j�K do
4: Y := Y �W mod n, then W := W �Z mod n
5: if (M�Y e (mod n)) then
6: Success, break the loop
7: end if
8: end while

Ensure: Y�Md (mod n)

In an ad-hoc network, K is a small number correspond-
ing to number of nodes in a neighborhood. Thus the loop
in Algorithm 1 ends within reasonable rounds. Also it is
well-known that PK-verification in RSA is an inexpensive
operation [19]. The complexity ofK-bounded coalition off-
setting is the sum of O(1) exponentiation, O(k) modular
multiplications, and O(k) RSA PK-verifications.

4.2 Localized self-initialization

Each well-behaving, certificate-holding entity vx can
also obtain a secret share Pvx , which is used to derive SKx

in providing certification services. We have devised a local-
ized self-initialization algorithm to compute secret shares
when the centralized dealer is absent.

Given an uninitialized entity vx (i.e., vx is not a se-
cret share holder), a local coalition of K share holders,
fv(x;1); v(x;2); � � � ; v(x;K)g, can compute its secret share

Pvx by Lagrange interpolation:

Pvx�f(vx)�

KX

j=1

Pv(x;j) �lv(x;j) (vx)�

KX

j=1

SS(x;j) (mod n):

Each coalition member v(x;j) computes a partial secret
share SS(x;j) from its secret share Pv(x;j) , then returns the
partial secret share to the requester. The requester’s secret
share is the sum of the K partial secret shares.

As Lagrange coefficients are publicly known, vx can de-
rive Pv(x;j) by knowing SS(x;j) directly. To keep Pv(x;j)

as a secret only to its owner v(x;j), we employ a complete
shuffling scheme. In the complete shuffling scheme, a ran-
dom nonce is exchanged between any two members in the
coalition. The entity with larger ID treats the nonce as a
positive number while the other side treats it as a negative
number. Each member totally has K � 1 such nonces. Be-
fore v(x;j) sends back the partial secret share, it sums the
K � 1 nonces and SS(x;j), then sends a shuffled partial se-
cret share SS 0

(x;j)
= SS(x;j)+

P
(nonces) to vx. It is easy

to verify that vx obtains the same value Pvx .
As depicted in Figure 4, the protocol requires four steps

of communication:

1. The uninitialized node vx broadcasts the service re-
quest, along with local coalition information.

2. Each coalition member selects a random nonce for
other members if its ID is lower than the other one.
Each nonce is encrypted with the personal pk of the
intended receiver. The requester acts as the router
and accepts all shuffling packages from K � 1 mem-
bers (The member with the highest ID needs not select
nonces).

3. The requester routes encrypted nonces to intended re-
ceivers.

4. Each member decrypts all nonces, computes a shuffled
partial secret share, and then sends it back to vx.

It can be shown that the self initialization protocol is still
K-out-of-N secure if there are at least two uncompromised
entities in the coalition. The cryptoanalysis details are avail-
able in [9].

4.3 Secret share update

To further enhance the robustness of our design, we pe-
riodically update all the secret shares to invalidate compro-
mised secret shares. In the bootstrapping phase all secret
shares are tagged with version 1 and ID 0. Each secret
share update will increase the version by 1, and there is
a predefined minimal lapse time between two consecutive
updates. During the update transition period, secret share
holders with the same version tag can collaboratively func-
tion as the CA.

We employ the proactive secret share update algorithms
proposed in the literature [7] to create a community of K
entities with new version of secret shares. Then the self-
initialization protocol is employed to propagate the new ver-
sion over the entire network. If there are multiple proactive
updates concurrently going on, then we may have version
conflicts. Our solution is to include the lowest ID of the
originalK updated entities into the version tag. The version
tag with the lowest ID wins in the case of version conflicts.

4.4 Discussions

Verifiable Secret Sharing If there are compromised se-
cret share holders in the network, values other than the se-
cret shares may be used by the adversaries to sign and is-
sue false partial-certificates. With verifiable secret sharing
(VSS) [3, 17, 13] employed with the multi-signature algo-
rithms, signing a message with a wrong secret share can be
detected publicly or by the service requester. In the proac-
tive update scheme proposed by [7], VSS is also employed
to enforce proper secret share updates. In our architec-
ture, the self-initialization algorithm can also be enhanced
by VSS with witnesses associated with each partial secret
share. The cryptographic details are available in [9].
Less than K one-hop neighbors So far we assume that the
requesting entity has at least K one-hop neighbors. How-
ever, if the users constantly roam, this may not always hold.
In our solution the requesting entity may broadcast the re-
quests for a limited number of times (e.g., 2–3) over a time
window, expecting new mobile entities to serve it. Sim-
ilarly, the requesting node may also move to a new loca-
tion, where it can find at least K share holders to serve it.
Thus node mobility helps providing certification services
(x 5.2.1).
Storage requirements The system CRL is required to be
locally stored at each node. From our implementation ex-
perience the size of a counter-certificate is normally in the
range of 128 to 256 bytes (as for RSA signing key length
1024 to 2048 bit). When the size of an ad-hoc network
0 < N < 1000 and the probability of compromise 0�P�1,
the storage required for system CRL is acceptable for most
low-end devices. Besides, the implicit revocation mecha-
nism helps to reduce the storage requirement significantly
(x 3).

5 Evaluation of implementation

We realize our design in both Unix platforms and a pop-
ular network simulator NS-2 [11]. Our Unix implementa-
tion seeks to quantitatively characterize the computational
cost of our solution, and the simulator helps to evaluate as-
pects of mobility, ability to handle ubiquitous service, chan-
nel and node dynamics, in a large network setting.

key RSA-PK RSA-SK PCC Combine
(bit) (msec) (sec) (sec) (sec)
512 0.093 0.0056 0.0466 0.0928
768 0.124 0.0173 0.1198 0.2416

1024 0.142 0.0386 0.2610 0.5280
1280 0.136 0.0669 0.4590 0.9742
1536 0.133 0.1089 0.7944 1.5598
2048 0.208 0.2462 1.7058 3.4410

Table 1. RSA and certification performance (K =

5; SPEC = 20:5)

key RSA-PK RSA-SK PCC Combine
(bit) (msec) (sec) (sec) (sec)
512 0.884 0.0678 0.1835 0.1982
768 1.276 0.2165 0.5973 1.3430

1024 1.324 0.4672 1.1637 1.1978
1280 1.356 0.8734 2.2912 2.4109
1536 1.416 1.4863 3.5820 3.6952
2048 1.036 3.1883 7.7855 8.0324

Table 2. RSA and certification performance (K =

5; SPEC = 12:1)

key RSA-PK RSA-SK PCC Combine
(bit) (msec) (sec) (sec) (sec)
512 2.782 0.2347 0.5499 0.6144
768 3.382 0.6403 1.4818 1.6478

1024 4.036 1.2953 3.1738 3.3283
1280 4.065 2.4607 5.5492 5.9019
1536 3.941 3.8543 10.1253 10.4301
2048 3.954 8.3826 20.6606 21.7095

Table 3. RSA and certification performance (K =

5; SPEC = 1:37)

K SPEC = 20:5 SPEC = 12:1 SPEC = 1:37

PCC Combine PCC Combine PCC Combine
2 0.260 0.526 1.293 1.334 2.991 3.304
3 0.261 0.528 1.149 1.171 2.998 3.293
5 0.261 0.528 1.164 1.198 3.174 3.328
7 0.263 0.531 1.140 1.207 3.163 3.530

10 0.262 0.537 1.309 1.410 3.099 3.394
20 0.261 0.532 1.308 1.464 3.078 3.458
30 0.261 0.537 1.160 1.510 3.082 3.410

Table 4. Certification performance in terms of
system parameter K (RSA key: 1024bit, time
unit: sec)

5.1 Unix implementation and measurements

Our cryptographic implementation on UNIX is writ-
ten in C and currently consists of about 8,000 lines of
code. It implements certification, counter-certification, self-
initialization, and proactive secret share update services,
along with a number theory module and other supportive
modules.

In Tables 1, 2 and 3 we measured2 the performance of
our certification service with the standard RSA operations
on heterogeneous devices. The SPECint95 values [16] are

2In all the tables, key denotes RSA key length in bits, RSA-PK de-
notes standard RSA’s PK-verification. RSA-SK denotes standard RSA’s
SK-signature. PCC denotes partial certificate computation which equals
using secret share to sign a message. Combine denotes the delay caused
by combiningK partial certificates. PSS denotes partial secret share com-
putation which equals a Lagrange interpolation operation. Sum denotes
obtaining a secret share by summing together all partial secret shares.

key SPEC = 20:5 SPEC = 12:1 SPEC = 1:37
(bit) PSS Sum PSS Sum PSS Sum
512 0.413 0.288 1.145 0.378 3.861 1.196
768 0.459 0.382 2.588 0.443 5.163 1.497

1024 0.490 0.319 3.321 0.781 7.024 1.847
1280 0.561 0.411 4.926 0.840 8.215 1.996
1536 0.798 0.460 3.480 0.630 10.251 2.006
2048 1.420 0.473 5.245 0.754 24.414 2.528

Table 5. Self initialization service (K = 5, time
unit: msec)

20.5, 12.1, and 1.37, respectively. Our measurements show
that computation power is a critical factor that affects the
efficiency of our RSA based scheme, and for typical sce-
narios the performance is acceptable. For example, a Pen-
tiumIII/500 laptop (SPECint95=20.5) performs well in all
test cases, while a SPARCstation5/85 (SPECint95=1.37) re-
quires more time (3–5 sec for certification service) when
using typical values for key length (1024 or 1280 bits) and
coalition size K (�10 in practice).

In Table 4 we measured the performance of the certifica-
tion service in terms of the coalition size K. We find that
parameter K does not affect the system performance signif-
icantly because (i) partial certificates are computed in par-
allel by the coalition members; (ii) at the requester’s side,
all the operations in the partial certificate combination loop
are moderate in terms of computation overhead (x 4.1.2).

The operations used in self-initialization and proactive
update, namely multiplicative inverse and Lagrange inter-
polation, are inexpensive to compute. We present Table 5 to
show the effects. All measured computation overheads are
at the scale of milliseconds.

5.2 NS-2 simulation

We have also used the ns-2 simulator to implement all
the communication protocols described in x 4. We follow an
application-layer approach and have developed a UDP-like
transport agent that allows for delivery of actual application
data units (ADUs) and one-hop broadcast.

In order to evaluate the communication efficiency of our
protocol, we use the following metrics: Success ratio mea-
sures the ratio of the number of successful certification ser-
vices over the number of attempts during the simulation
time. Average delay measures the average latency for each
node to perform a certification service, in the case of self
initialization, the average time it needs to become a fully
functional member of the network, from the moment it joins
in. Average number of failures measures the number of
times an entity fails on average, before successfully accom-
plishing its certification.

We study the performance of our protocols by running
experiments in networks with sizes that range from 30 to
100 nodes. The node mobility varies from 1, 3, 5, 10, 15 and
20m=sec. The random way-point model in ns-2 is used to
emulate mobility patterns. In the simulations, the expiration

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Node speed (m/sec)

S
uc

ce
ss

 R
at

io
 (%

)

Success Ratio − CR vs. CA, 100 Nodes, Chan. Error 1%

Cert. Renewal
Centr. CA − 1 serv.
Centr. CA − 4 serv.

Figure 5. Certificate Renewal:
Success Ratio vs. Node
Speed, Error Rate 10%

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

Node speed (m/sec)

A
vg

. #
 R

et
rie

s

Avg. # Retries − CR vs. CA, 100 Nodes, Chan. Error 10%

Cert. Renewal
Centr. CA − 1 serv.
Centr. CA − 4 serv.

Figure 6. Certificate Renewal:
Avg. # of Failures vs. Node
Speed, Error Rate 10%

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

Node speed (m/sec)

A
vg

. D
el

ay
 (s

ec
)

Avg. Delay − CR vs. CA, 100 Nodes, Chan. Error 10%

Cert. Renewal
Centr. CA − 1 serv.
Centr. CA − 4 serv.

Figure 7. Certificate Renewal:
Avg. Delay vs. Node Speed,
Error Rate 10%

time of the certificate is selected as five minutes, and the
coalition size K = 5, except for the topologies that consist
of 30 nodes, where K = 3.

5.2.1 Certification services

We first examine the effectiveness of the certificate re-
newal service, as the node speed increases from 1m=sec
to 20m=sec and the channel error rate becomes 10%. As
it is shown in Figure 5, the success ratio of our approach
is almost 100%, while the centralized and the hierarchical
solutions fail. This confirms not only the effectiveness of
our method in terms of mobility, but also service ubiquity,
since during the simulation time, every node is required to
renew its certificate multiple times, which means that the
service should be available at any part of the network topol-
ogy, at any time. The robustness of our distributed certifica-
tion services is also demonstrated in Figure 6, from another
perspective; the number of failures each node is experienc-
ing on average, before successfully receiving its service.
Our proposal requires significantly less effort in providing
the service, compared to the centralized and the hierarchi-
cal cases. Moreover, we observe that mobility helps our
protocol. As node speed increases, the average number of
failures for each node not only remains unchanged in our
approach, but also diminishes.

In Figure 7, we also present results for the average delay.
From the figures, we observe that the average delay almost
remains unchanged as mobility speed grows from 1m=sec

to 20m=sec. However, as it is evident from the same fig-
ures, both centralized and hierarchical solutions incur much
higher delay, which also greatly fluctuates, thus making it
hard to predict some useful information, such as the future
expiration time in certificate renewal and consequently the
frequency of renewal.

5.2.2 Self initialization & Proactive update

To evaluate the self initialization protocol of our certifica-
tion services we focus on the time needed for the nodes that

haven’t been already initialized by the root-of-trust to be-
come fully functional entities (by obtaining a secret share).
In each experiment that we conducted, 2 �K nodes of our
topology are assumed to have been initialized by an imag-
inary dealer, so that the remaining nodes be able to find a
coalition of K neighbors, in order to perform self initializa-
tion. Figure 8 presents the average latency for each node to
complete this phase. From the graph, we note that our al-
gorithm scales well to the network size and node mobility;
even for the largest topology of 100 nodes and node speed
fixed at 20m=sec, all nodes manage to self initialize in less
that 500 seconds.

In the next set of figures 9 and 10, we present a more
detailed analysis of the proactive update latency, for net-
work topologies of 50 and 100 nodes respectively and for
three node speeds (3, 10 and 15 m=sec, that correspond
roughly to low, medium and high mobility). For the case of
50 nodes, we see that the first 20% of them needs almost
50 seconds to update. But as soon as a sufficient number
of nodes manages to acquire their new secret shares, then
the convergence of the algorithm is pretty fast, since those
nodes may in turn help others to self initialize and so on;
we reach 80% in another 50 seconds of simulation time. We
also observe that the evolution of the algorithm is similar for
all mobility speeds, which shows that our design is tolerant
to mobility. The results for the scenario of 100 nodes are
slightly different. As expected, the curves are shifted to the
right, since the network is larger and consequently it takes
up more time for all nodes to become part of it.

6 Conclusions

In this paper, we have described a solution to security
support in wireless mobile networks. Our design has been
motivated by three main factors: (a) We do not believe that
any security system is completely unbreakable. Therefore,
our design has to work in the presence of such break-ins.
(b) We seek to maximize the service availability in each
network locality; this is crucial to supporting ubiquitous
services for mobile users. (c) The solution has to be fully

30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

of nodes

Ti
m

e
(s

ec
)

Average Delay − Self Initialization

Mobility 1m/sec
Mobility 3m/sec
Mobility 5m/sec
Mobility 10m/sec
Mobility 15m/sec
Mobility 20m/sec

Figure 8. Self Initialization:
Avg. Delay vs. Node Speed

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

of

 N
od

es
 (%

)

Self Initialization − Node percentage vs. Delay, 50 Nodes

Mobility 3m/sec
Mobility 10m/sec
Mobility 15m/sec

Figure 9. Proactive Update:
Node percentage vs. Delay,
50 Nodes

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

of

 N
od

es
 (%

)

Self Initialization − Node percentage vs. Delay, 100 Nodes

Mobility 3m/sec
Mobility 10m/sec
Mobility 15m/sec

Figure 10. Proactive Update:
Node percentage vs. Delay,
100 Nodes

decentralized to operate in a large-scale network. To this
end, we have addressed networking issues including mobil-
ity, scalability, service ubiquity, and network dynamics such
as channel interference and node failures. Our experiences
in implementation and simulations have shown positive re-
sults for our approach.

References

[1] Y. Desmedt. Society and Group Oriented Cryptography: A
New Concept. In CRYPTO, pages 120–127, 1987.

[2] Y. Desmedt and Y. Frankel. Shared Generation of Authen-
ticators and Signatures (Extended Abstract). In CRYPTO,
pages 457–469, 1991.

[3] P. Feldman. A Practical Scheme for Non-interactive Verifi-
able Secret Sharing. In FOCS, pages 427–437, 1987.

[4] Y. Frankel and Y. G. Desmedt. Parallel Reliable Thresh-
old Multi-signature. Technical Report TR-92-04-02, Dept.
of EECS, University of Wisconsin-Milwaukee, 1992.

[5] Y. Frankel, P. Gemmell, P. MacKenzie, and M. Yung. Op-
timal Resilience Proactive Public-Key Cryptosystems. In
FOCS, pages 384–393, 1997.

[6] J. Hastad, J. Jonsson, A. Juels, and M. Yung. Funkspiel
Schemes: an Alternative to Conventional Tamper Resis-
tance. In ACM CCS, 2000.

[7] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proac-
tive Secret Sharing or: How to Cope with Perpetual Leak-
age. extended abstract, IBM T.J. Watson Research Center,
November 1995.

[8] D. B. Johnson and D. A. Maltz. Dynamic Source Routing in
Ad Hoc Wireless Networks. In Imielinski and Korth, editors,
Mobile Computing, volume 353. Kluwer Academic Publish-
ers, 1996.

[9] H. Luo and S. Lu. Ubiquitous and Robust Authentication
Services for Ad Hoc Wireless Networks. Technical Report
TR-200030, Dept. of Computer Science, UCLA, 2000.

[10] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating Routing
Misbehavior in Mobile Ad Hoc Networks. In MOBICOM,
2001.

[11] NS-2 (The Network Simulator). http://www.isi.
edu/nsnam/ns/.

[12] A. D. Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to
Share a Function Securely (Extended Summary). In STOC,
pages 522–533, 1994.

[13] B. Schoenmakers. A Simple Publicly Verifiable Secret Shar-
ing Scheme and its Application to Electronic Voting. In
CRYPTO, pages 148–164, 1999.

[14] A. Shamir. How to Share a Secret. Communications of the
ACM, 22(11):612–613, 1979.

[15] V. Shoup. Practical Threshold Signatures. In EUROCRYPT,
pages 207–220, 2000.

[16] Standard Performance Evaluation Corporation. http://
www.specbench.org.

[17] M. Stadler. Publicly Verifiable Secret Sharing. In EURO-
CRYPT, pages 190–199, 1996.

[18] W. Stallings. Cryptography and Network Security: Princi-
ples and Practice. Prentice-Hall, 2nd edition, 1999.

[19] M. J. Wiener. Performance Comparison of Public-Key Cryp-
tosystems. RSA CryptoBytes, 4(1):1–5, 1998.

[20] L. Zhou and Z. J. Haas. Securing Ad Hoc Networks. IEEE
Networks, 13(6):24–30, 1999.

