
Providing Witness Anonymity in Peer-to-Peer Systems

Bo Zhu
Center for Secure Information

Systems
George Mason University

4400 University Drive
Fairfax, VA 22030-4444

bzhu@gmu.edu

Sanjeev Setia
Department of Computer

Science
George Mason University

4400 University Drive
Fairfax, VA 22030-4444

setia@cs.gmu.edu

Sushil Jajodia
Center for Secure Information

Systems
George Mason University

4400 University Drive
Fairfax, VA 22030-4444

jajodia@gmu.edu

ABSTRACT
In this paper, we introduce the concept of witness anonymity
for peer-to-peer systems. Witness anonymity combines the
seemingly conflicting requirements of anonymity (for honest
peers who report on the misbehavior of other peers) and ac-
countability (for malicious peers that attempt to misuse the
anonymity feature to slander honest peers). We propose the
Secure Deep Throat (SDT) protocol to provide anonymity
for witnesses of malicious or selfish behavior to enable such
peers to report on this behavior without fear of retaliation.
On the other hand, in SDT the misuse of anonymity is re-
strained in such a way that any malicious peer that attempts
to send multiple claims against the same innocent peer for
the same reason (i.e., the same misbehavior type) can be
identified. We also describe how SDT can be used in two
modes. The active mode can be used in scenarios with real-
time requirements, e.g., detecting and preventing the prop-
agation of peer-to-peer worms, whereas the passive mode is
suitable for scenarios without strict real-time requirements,
e.g., query-based reputation systems. We analyze the secu-
rity and overhead of SDT and present countermeasures that
can be used to mitigate various attacks on the protocol. Our
analysis shows that the communication, storage, and com-
putation overheads of SDT are acceptable in peer-to-peer
systems.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Public Policy Issues—
Privacy ; C.2.0 [Computer-Communication Networks]:
General—Security and protection (e.g., firewalls)

General Terms
Security

Keywords
Privacy, Peer-to-Peer Systems, Witness Anonymity, k-Times

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’06, October 30–November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-518-5/06/0010 ...$5.00.

Anonymous Authentication

1. INTRODUCTION
One of the fundamental challenges in peer-to-peer sys-

tems is how to build trust relationships between peers. In
large-scale peer-to-peer systems, the chance that a given pair
of peers will have repeated interactions with each other is
small. Hence, two interacting peers may not have prior ex-
perience and knowledge of each other, and need a way to
evaluate the risk involved with a transaction. To address
this issue, several research studies [12, 13, 19, 33] have pro-
posed mechanisms for building and using reputation-based
trust models in peer-to-peer systems.

In these systems, a peer is assigned a trust value or rep-
utation based on a trust metric. Although various systems
differ in how this metric is defined, in general, the trust value
associated with a peer is calculated based on the feedback
provided by other peers. Peers rate the performance or be-
havior of another peer based on their previous interactions.
When a peer encounters a new peer, it can query the net-
work for trust ratings of that peer, and then based on the
received feedback it can decide whether to proceed with the
transaction.

There are three important requirements for these trust
management systems:

• Reliability: A peer that issues a query for the trust
ratings of another peer should be able to compute the
true trust value despite the presence of malicious peers.

• Anonymity: It should not be possible to identify the
peers who provide feedback in the form of their trust
ratings for another peer. This is especially important
when the feedback is negative in nature, since it could
lead to retaliation.

• Accountability: It should be possible to identify ma-
licious peers who attempt to misuse the anonymity
property to manipulate the trust value computed for
a peer. For example, without accountability, a mali-
cious peer may submit multiple negative claims anony-
mously about the trustworthiness of another peer.

Most previous work on trust management in peer to peer
systems has focused on the first requirement above, i.e., how
to reliably compute trust values in the presence of malicious
peers. However, the issues of anonymity and accountability
have not received much attention. Although some of these

6

systems [13, 29] make some provisions for peer anonymity,
these provisions are easily circumvented as discussed in Sec-
tion 9.

We observe that the issues of anonymity and accountabil-
ity are closely coupled. Anonymity without accountability
can be easily abused by malicious peers, so any system that
enables peers to anonymously provide feedback on another
peer must also include a mechanism for being able to iden-
tify peers that misuse the anonymity feature. We introduce
the term witness anonymity to refer to this combination of
seemingly conflicting requirements, i.e., identity anonymity
for honest peers and accountability for misbehaving peers.

The major goal of our work is to show how peer-to-peer
trust management systems can be extended to provide wit-
ness anonymity. The primary motivation for witness anony-
mity in peer-to-peer systems is similar to the need for whistle-
blower anonymity in real life. Without witness anonymity,
peers that report on the misbehavior (e.g. false transactions)
of other peers by submitting low trust ratings in response
to a query, can become targets for retaliation [3]. This
could take the form of tit-for-tat behavior, in which mali-
cious peers intentionally lower their own trust rating for an
honest peer. In extreme scenarios, peers giving a low rating
to another peer may become targets for electronic attacks,
e.g., denial of service, and even physical attacks.

Another important motivation for witness anonymity is
simply to preserve the privacy of peers participating in the
peer-to-peer trust management system. As a specific exam-
ple, a peer A that responds to a query for the trust ratings
of another peer B may not want to make public the fact
that it has had previous interactions with B.

The third motivation for witness anonymity is to hide the
trust topology of the peer-to-peer system from malicious
parties. In particular, when the reputation system uses tran-
sitive trust (e.g. [19]) without witness anonymity the trust
topology of the peer-to-peer system becomes public knowl-
edge and can be exploited by malicious parties. For example,
an adversary that wishes to launch an attack on a peer A
may choose to compromise another peer B, if it knows that
A has a high degree of trust in B. It can then exploit this
trust by using B to launch an attack on A.

In this paper, we present a protocol called the Secure Deep
Throat (SDT)1 for providing witness anonymity in peer-to-
peer systems. To the best of our knowledge, SDT is the first
protocol that can support both aspects of witness anony-
mity, i.e., identity anonymity for honest peers, and account-
ability for peers that attempt to misuse the anonymity fea-
ture. SDT ensures the anonymity of a peer as long as she
sends out only one feedback message per peer per malicious
or selfish operation type. However, if a peer sends multi-
ple claims against the same peer for the same reason, SDT
includes a tracing mechanism to identify the peer.

The SDT protocol is based on the k-times anonymity au-
thentication protocol proposed by Nguyen and Safavi-Naini
[24]. We adapt their protocol to match the distributed and
decentralized nature of peer-to-peer systems. In addition,
we describe how SDT can be used in two modes: active
mode and passive mode. The active mode is used in sce-
narios with real-time requirements for detecting malicious
behavior, e.g. for detecting and preventing the propagation

1It is well known that the information from the anonymous
source dubbed “Deep Throat” played an important role in
helping unravel the Watergate scandals in the early 1970s.

of peer-to-peer worms [34]. The passive mode is suitable
for scenarios that do not have strict real-time requirements,
e.g. query-based reputation systems [12].

The rest of the paper is organized as follows. In Section 2,
we define the goals of SDT and analyze possible solutions
based on available cryptographic techniques. In Section 3,
we present the SDT framework including the system, ad-
versary, and network models assumed in its design. In Sec-
tion 4, we present the four procedures of the SDT protocol,
i.e. setup, registration, claim broadcasting, and public trac-
ing, under the active mode. In Section 5, we discuss two ap-
proaches for trading security for efficiency. We analyze the
security and anonymity-related properties achieved in SDT
and present the countermeasures to the collusion, Sybil and
denial-of-service attacks in Section 6 and Section 7 respec-
tively. In Section 8, we analyze the storage, communication,
and computation costs of the SDT protocol. Related work
is presented in Section 9. Finally, Section 10 contains our
conclusions.

2. THE GOALS OF OUR WORK AND
POSSIBLE SOLUTIONS

2.1 Design Goals
To achieve both anonymity and security in sending feed-

back (e.g., about the reputation of a peer) and event re-
ports (e.g., about the misbehavior detected), a protocol that
supports witness anonymity in peer-to-peer networks is ex-
pected to provide the following security and anonymity-
related properties. In this paper, the terms claim, feedback
message, and report are synonyms and used interchangeably.
Similarly, the terms user and peer are synonyms and used
interchangeably.

• Identity Anonymity Even if all the adversaries
collude with each other, they will not be able to iden-
tify the source of an anonymous claim, i.e., the witness,
as long as she sends the claim only once per adversary
per type of malicious or selfish operation.

• Backward Anonymity The anonymity of a user
that has acted as a witness is maintained even if other
members in the network are compromised at a later
time.

Backward anonymity addresses the situation where users
other than a witness are compromised. In this situa-
tion, adversaries can obtain the secrets known to the
compromised users, e.g., the secret keys of the compro-
mised users and the claims that were sent by witnesses
and are stored by the compromised users. Due to back-
ward anonymity, however, adversaries cannot use this
information to deduce the identity of the user that has
acted as a witness.

Clearly, if a witness herself is compromised, her anony-
mity cannot be maintained. Using the secret key of
the witness and the claims sent by the witness, adver-
saries can easily determine whether the compromised
user has acted as a witness in the past.

• Traceability If a malicious or selfish user sends
multiple claims against the same user for the same type
of malicious or selfish operation, she will be identified.

7

• Non-Slanderability A good user can never be framed
by adversaries, even if all of them collude with each
other. This property is optional, and it is a must only
when we assume there is a distributed trust mecha-
nism in place so that the number of adversaries in the
peer-to-peer system is lower than a threshold at any
given time.

In addition, it is desirable that the new protocol can pro-
vide other properties such as efficiency (i.e., the storage,
communication, and computation cost should be acceptable)
and decentralization (i.e., an online central party is not
necessary for the protocol).

2.2 Available Cryptographic Techniques for
Providing Witness Anonymity

2.2.1 Blind Signature and Untraceable Electronic
Cash

Blind signature and its applications to untraceable elec-
tronic cash cannot be used for our purpose. In untraceable
electronic cash schemes [11, 7], the problem of detecting
double-spending is similar to the problem of detecting mul-
tiple claims regarding the same peer in reputation systems.
However, these schemes require the use of an online trusted
party such as a bank. However, we cannot assume the ex-
istence of an online trusted party in peer-to-peer systems.
Even if we assume that there is such a trusted party and
it would be online periodically, a few problems still remain.
One problem is that during the periods that the trusted
party is off-line a group of innocent peers P might have been
deleted from the friend lists of another group of peers O.
This can occur if a single malicious peer has sent numerous
claims to slander the members of P and these claim are ac-
cepted by the peers in O. Communication and computation
overhead is another issue. The online trusted party could
become the bottleneck of the verification. Most importantly,
the content of the claim in a reputation system such as “the
peer with the identity A is a malicious user because it has
misbehavior of type I” cannot be predetermined. However,
untraceable electronic cash schemes are not flexible enough
to handle claims that are not predetermined.

2.2.2 Group and Ring Signatures
A typical group signature scheme must satisfy unforge-

ability, anonymity, unlinkability, exculpability, traceability2,
and coalition-resistance [2]. In group signature schemes [10,
2, 6], each group member can sign documents on behalf of
the whole group. The receiver of a signed document can
verify the signature to ensure that the document is signed
by a group member. However, no one except the trusted
group manager can recover the exact identity of the signer.
The major weakness of group signature schemes is that in
order to solve possible disputes at a later time, they give
the group manager the unnecessary ability to trace any user
even if there are no disputes. In other words, group signa-
ture schemes provide only partial anonymity to the signer,
and are not suitable for scenarios where users have privacy
concerns, e.g., peer-to-peer networks.

2Note that traceability as provided by group signatures and
ring signatures is different from the one defined in Sec-
tion 2.1.

Ring signatures[21, 8] can be viewed as a variant of group
signatures without the traceability property. In ring signa-
ture, the group consists of only users without a group man-
ager. Consequently, there is no way to revoke the anonymity
of the signer, even if there is a dispute. That is to say, ring
signatures can provide full anonymity, but fail to ensure ac-
countability.

2.2.3 k-Times Anonymity Authentication
k-times anonymous authentication was first proposed by

Teranishi, Furukawa, and Sako [31]. The entities in the
k-times anonymous authentication scheme include a group
manager, users, and application providers. This scheme pro-
vides stronger anonymity to a user in the sense that even
the group manager cannot trace the identity of the user,
as long as she follows the rule, i.e. authenticating her-
self and using the service provided by application providers
(e.g., trial browsing of content) fewer than k times, where
k is a predetermined number. In [31], the group mem-
bership is decided by the group manager, and application
providers have no control over giving users access to their
services. Nguyen and Safavi-Naini [24] proposed dynamic
k-times anonymous authentication to enhance the privileges
of application providers. In [24], application providers can
select their user groups and grant or revoke access to users
independently.

Compared to blind signature, group signature, and ring
signature, k-times anonymous authentication is more suit-
able for achieving our design goals. It can provide iden-
tity anonymity, backward anonymity, and traceability at the
same time.

3. THE FRAMEWORK OF THE SECURE
DEEP THROAT PROTOCOL

In this section, we describe the system, adversary, and
network models assumed in the design of the SDT proto-
col. We then provide an outline of the SDT protocol before
presenting a detailed description in Section 4.

3.1 System Model
Our work assumes a peer-to-peer system where there is

no online centralized Trusted Third Party (TTP). There
are two types of entities that participate in SDT, namely
the Offline3 Group Manager (OGM) and users. We as-
sume that there are a large number of users in the network
and that a small fraction of the users are adversaries. The
number of all the users and adversaries are denoted as n and
ta, respectively.

Unless explicitly specified, we assume the existence of a
distributed trust mechanism, e.g., one of the protocols pro-
posed in [22, 20, 35]. In these protocols, the number of
adversaries in the system during a given time period, e.g.,
the key refresh period, is less than a threshold denoted as t.
In addition, any group of t or more good users can cooper-
ate together to provide certification services, e.g., assigning
a certificate to a new user or revoking the certificate of an
existing user when there are t or more claims against this
user.

3The OGM is involved only in the first two procedures,
which are assumed to be executed offline in SDT.

8

3.2 Adversary Model
We consider two types of adversaries – malicious users and

selfish users. Malicious users attempt to disable the normal
functionalities of the network. They may sniff, modify, or
replay network communication messages. Selfish users take
advantage of services provided by other peers without con-
tributing back. For example, a selfish user may refuse to
forward packets for other users.

For both types of adversaries, we assume that they will
collude together to maximize the effectiveness of their at-
tacks. We assume that it is possible to detect malicious
and selfish operations, e.g., via worm detection software or
by reviewing previous transactions with a specific peer. The
details of how to detect such operations are beyond the scope
of this paper.

3.3 Network Model
We assume the existence of a Mixnet-based anonymous

communication system [27, 28, 15] so that an adversary
cannot discover the identity-related information (e.g., the
IP address) of the sender of a claim through traffic analy-
sis. In this paper, we assume the existence of a mechanism
for monitoring the number of claims sent by a given peer,
irrespective of whether they are generated or forwarded by
her.

3.4 Outline of The SDT Protocol
In both active and passive modes, the SDT protocol uses

the following four procedures: setup, registration, claim broad-
casting, and public tracing. We now present an outline of the
operation of SDT in the active mode. (The passive mode of
operation is described in Section 5.1. In this mode, the claim
broadcasting and public tracing procedures operate differ-
ently.)

During the setup phase, the OGM generates a network-
wide public/secret key pair, and publishes the public key.
In addition, the OGM needs to publish the method of gen-
erating the tag bases, which correspond to the messages (or
the meaningful content of the claim such as user x executed
a malicious behavior of type y) to be anonymously authenti-
cated in the claim broadcasting procedure, and other public
information, e.g. the security parameters chosen.

Registration is done between the OGM and the user who
wants to join the network. After this step, the user obtains
a member public/secret key pair, and the OGM adds the
user’s identification and public key to an identification list
(LIST). A user who has completed the registration proce-
dure is called a member of the network.

Once a user detects any malicious or selfish behavior, and
would like to act as a witness, i.e., broadcast a claim bear-
ing witness to the misbehavior, she first calculates a tag
base using the method published in the setup phase. Then
she generates an anonymous claim using this tag base, and
broadcasts the claim through a Mixnet-based anonymous
communication system. The claim will be accepted by other
users only if the sender (i.e., the witness) is a member of the
network and the claim is generated by her secret key as-
signed in the registration procedure. Users that receive this
claim store it into a local claim log, if they have not seen the
same claim before. Otherwise, they simply drop the claim.
Then the claim is forwarded again using the Mixnet-based
anonymous communication system. Note that “the same
claim” is different from “the claim against the same user for

the same reason”. In SDT, due to a random parameter, a
witness can generate different claims against the same user
for the same reason, and thus these claims are considered as
distinct claims. (See Section 4.2 for more details.)

Using only the public information (i.e. LIST) and the
claim log, anyone can do public tracing. This procedure
outputs a user ID i or NO-ONE, which respectively mean
“the user i has tried to misuse witness anonymity by sending
multiple claims against the same user for the same reason”
and “the public tracing procedure cannot find malicious en-
tities misusing witness anonymity”.

4. THE SECURE DEEP THROAT
PROTOCOL

In this section, we present the details of the four proce-
dures of the SDT protocol in the active mode of operation.

4.1 Preliminaries

4.1.1 Notation and Terminology
Let N and Zp denote the set of natural integers and the set

of natural integers in the range from 0 to p−1, respectively.
A function f : N → R

+ is called negligible, if for every
positive number α, there exists a positive integer κ0 such
that for every integer κ > κ0, it holds that f(κ) < κ−α. Let
PT denote polynomial-time, and PPT denote probabilistic
PT. For a set X, “x ∈U X” denotes that x is an element
randomly and uniformly chosen from X. Let HX denote a
one-way hash function from the set of all finite binary strings
{0, 1}∗ onto the set X.

4.1.2 Bilinear Groups
Let G1, G2 be additive cyclic groups generated by P1 and

P2, respectively, whose orders are a prime p, and GT be a
cyclic multiplicative group with the same order p. Suppose
there is an isomorphism Ψ : G2 → G1 such that Ψ(P2) = P1.
Let e : G1×G2 → GT be a bilinear pairing with the following
properties:

• Bilinearity: e(aP, bQ) = e(P, Q)ab for all P ∈ G1,
Q ∈ G2, a, b ∈ Zp

• Non-degeneracy: e(P1, P2) �= 1

• Computability: There is an efficient algorithm to
compute e(P, Q) for all P ∈ G1, Q ∈ G2

For simplicity, hereafter we set G1 = G2 and P1 = P2, but
the proposed schemes can be easily modified for the general
case when G1 �= G2. In the rest of this paper, for a group
G of prime order, we denote the set G

∗ = G\{O}, where O
is the identity element of the group. We define a Bilinear
Pairing Instance Generator as a PPT algorithm G that takes
as input a security parameter 1κ and returns a uniformly
random tuple t = (p, G1, GT , e, P) of bilinear pairing
parameters, including a prime number p of size κ, a cyclic
additive group G1 of order p, a multiplicative group GT of
order p, a bilinear map e : G1 × G1 → GT and a generator
P of G1.

9

4.2 Procedures of The Protocol

4.2.1 Setup
Given as input a security parameter 1κ, the Bilinear Pair-

ing Instance Generator generates a tuple (p, G1, GT ,
e, P) as in Section 4.1.2. The OGM selects P0, H ∈U G1,
γ ∈U Z

∗
p, and sets Ppub = γP and Δ = e(P, P). The group

public and secret keys are gpk = (P, Ppub, P0, H, Δ) and
gsk = γ, respectively. The identification list of group mem-
bers denoted as LIST is initially empty.

An important task of the setup procedure is to define the
way of generating the tag bases, which are used in the claim
broadcasting procedure to create anonymous claims. Various
methods can be employed to generate the tag bases. In this
paper, we use the method defined in Equation (1).

(Tj , Ťj) = HGT ×GT (Typead, IDad, MAXClaim, j), (1)

for j = 1, . . . , MAXClaim, where

Typead — denotes the type of event reported in the claim,
e.g., accusing a user of refusing to forward a packet.
Typead ∈ TY PE, where TYPE is the set of all the
event or claim types supported in SDT.

IDad — denotes the identity of the user that the claim is
accusing.

MAXClaim — the maximum number of claims that a user
can send to accuse the same user for the same type of
operations.

j — The number of claims, including this one, that have
been sent against a user with the identity IDad because
of misbehavior of type Typead.

In this paper, we set MAXClaim = 1. Namely, no one
should send multiple claims against the same user for the
same reason. Otherwise, she will be detected and identified.
As such, there is only one tag base (i.e., j = 1) per type of
misbehavior per user.

4.2.2 Registration
A user Ui can join the network as follows.

a. User Ui interacts with the OGM to determine her iden-
tity in the network. This can be done in various ways.
In one possible approach, Ui selects an identity and
forwards it to the OGM, who checks the availability of
this identity. If it has been chosen by others, Ui will
have to select another identity and repeat this process
until the identity picked is available. Let the identity
of Ui be denoted by i.

b. User Ui selects x′, r ∈U Z
∗
p, and sends a commitment

C′ = x′P + rH of x′ to the OGM.

c. The OGM sends y, y′ ∈U Z
∗
p to Ui.

d. User Ui computes x = y + x′y′ and (C, β) = (xP, Δx).
Next, Ui sends (C, β) to the OGM with a standard
proof Proof1 (please refer to [9] for this proof) to show
that C is correctly computed from C′, y, y′, and that
Ui knows the value of x satisfying C = xP .

e. The OGM verifies that the proof is valid, and that
e(C, P) = β is satisfied. If the verification succeeds,

the OGM adds a new entry (i, β) to the LIST. The
OGM then generates a ∈U Z

∗
p different from all corre-

sponding previously generated values, computes S =
1

γ+a
(C +P0), and sends (S, a) to user Ui. In addition,

the OGM selects s items from the LIST (not including
(i, β)), and forwards them to Ui. All the LIST items
are signed using the OGM’s secret key, and thus can
be verified by any user.

f. User Ui confirms that e(S, aP+Ppub) = e(C+P0, P) is
satisfied. The new member Ui’s secret key is usk = x,
and her public key is upk = (a, S, C, β). Ui also
verifies the s LIST items from the OGM.

4.2.3 Claim Broadcasting
Each user maintains two claim databases locally. One is

a private claim database denoted as DBPC . DBPC records
the claims that have been sent by the user herself. The other
database is a common claim database denoted as DBCC .
DBCC records the claims that she receives from other users.

Once a user detects any malicious or selfish operation that
is a member of the set TY PE, she first examines DBPC to
check whether she has sent a claim against the malicious or
selfish user for the same reason in the past. If the witness
cannot find any entry with the same (IDad, T ypead) pair,
she generates a new anonymous claim and stores it in DBPC .
Otherwise, the witness will not generate another claim.

The anonymous claim is generated via the following steps.
The witness first selects a random number l ∈U Z

∗
p. Then

she computes the tag base (T1, Ť1) following the method
published in the setup procedure. Next, she calculates the
tag (Γ, Γ̌) = (T x

1 , (ΔlŤ1)
x) using the tag base. Finally,

the witness broadcasts (Γ, Γ̌) with a proof Proof2 (please
refer to [25] for this proof) using a Mixnet-based anonymous
communication system. The format of the anonymous claim
is [Typead, IDad, Γ, Γ̌, l, P roof2].

When a user receives the claim, she first checks whether
there is an entry corresponding to the same claim in her
DBPC and DBCC . If so, she simply drops the claim. Oth-
erwise, the receiver computes T1 according to equation (1),
and checks whether Proof2 is valid. If the proof is invalid,
the user ignores the claim. Otherwise, she records the claim
in DBCC , and forwards the claim using the Mixnet-based
anonymous communication system.

Once any user Ui finds t claims against the same user Ua

for the same type of malicious or selfish operation (i.e., with
the same IDad and Typead), she first checks whether all
these claims are from distinct sources. Let the set of these
t claims be denoted by V . Users can easily judge whether
the claims in V are from distinct sources by comparing their
Γ’s. If any pair of claims in V has the same Γ, it means that
a malicious user sent multiple claims against the same user
for the same reason. She can be traced using the method
presented in Section 4.2.4, and these claims are removed
from V . If there are still t claims after this check, Ui can
assert that Ua is an adversary who has executed the type of
malicious or selfish operation indicated in all these claims.
A message including the t claims collected is generated by
Ui and broadcast to the network. Any user receiving the
message can verify the claims included and agree with Ui’s
judgment on Ua if all the t claims are valid.

10

4.2.4 Public Tracing
Each member in the network can trace the identity of

an adversary, if the adversary sends multiple claims against
the same user for the same type of misbehavior. The public
tracing procedure is as follows.

a. Look for two entries [Typead, IDad, Γ, Γ̌, l, P roof2]
and [Type′ad, ID′

ad, Γ′, Γ̌′, l′, P roof ′
2] in the DBPC

and DBCC , such that Typead = Type′ad, IDad =
ID′

ad, Γ = Γ′ and l �= l′, and that both Proof2 and
Proof ′

2 are valid. If no such entry can be found, out-
put NO-ONE.

b. If such a pair of entries is found, compute β as β =

(Γ̌
Γ̌′)

1
l−l′ = [(ΔlŤ1)x

(Δl′ Ť ′
1)x

]
1

l−l′ = Δx.

c. Search for a pair (i, β) in the part of LIST stored
locally. If such a pair is found, broadcast a message
including this pair together with the two entries as
proofs to disclose the malicious user’s identity.

d. If such a pair cannot be found locally, generate a mes-
sage including β and the two entries and broadcast it
to the network. If any member receiving this message
finds a pair (i, β) in her local LIST, she repeats step
a-c to verify the proofs and to disclose the malicious
user’s identity.

5. TRADEOFF BETWEEN SECURITY AND
EFFICIENCY

In this section, we discuss how the security requirements of
SDT can be relaxed in return for higher protocol efficiency,
i.e., lower communication, computation, and storage costs.

5.1 Passive Mode Operation of SDT
The active mode of SDT is designed to support real-time

detection of misbehavior by adversaries. In other words, a
malicious or selfish peer is disclosed and expelled from the
network as soon as t good peers detect her misbehavior,
e.g. proliferating worms [34] or Trojans [23]. However, in
situations where the real-time requirement is not critical,
e.g. query-based reputation systems, SDT can operate in
the passive mode to achieve better efficiency. More specifi-
cally, to reduce the communication, computation, and stor-
age overheads, peers accept a delay in the disclosure and
banishment of malicious or selfish peers.

To support the passive operation mode, modifications are
required to the claim broadcasting and the public tracing
procedures discussed in Section 4, as described below.

In the claim broadcasting procedure, when a peer detects a
malicious or selfish operation performed by a peer A, instead
of generating and sending an anonymous claim immediately,
she keeps silent until she receives a query for the trust rat-
ings of A. For example, another peer B who wants to know
the trust ratings of A will broadcast a query to collect feed-
back from other peers. On receiving this query, each good
peer who has witnessed A’s misbehavior generates an anony-
mous claim in the same manner as in the active mode, and
sends it through a Mixnet-based anonymous communication
system. After collecting a sufficient number of feedback mes-
sages (e.g., t negative claims), B calculates the reputation
of A based on the feedback received according to the trust
metric defined. If B receives t or more claims from distinct

peers accusing of A for the same reason, she knows that A
is a malicious or selfish peer. As a result, B will refuse to
participate in transactions with A, and inform other peers
about this fact by broadcasting a message containing all
these claims.

To prevent an adversary from sending multiple claims to
slander or boost other peers, B needs to perform the pub-
lic tracing procedure over all the claims received using the
procedure described in Section 4.2.4.

In a peer-to-peer system, it is likely that there will be
multiple peers who are interested in the trust ratings of A.
Thus, when the witness receives a query on A for the second
time, she should not generate a new claim. Otherwise, her
anonymity will be compromised because of sending multiple
claims against A. Instead, she can locate the claim regarding
A in her DBPC , which was generated in response to the first
query process, and use it as the reply. Note that the same
claim is counted only once even if any querying peer receives
multiple copies of it.

The discussion so far has mainly focused on negative feed-
back. However, SDT can be used for positive feedback as
well. For example, let Np and Nn denote the numbers of pos-
itive and negative claims collected, respectively. A simple

trust metric can be defined as
Np

Np+Nn
. However, we argue

that positive feedback should not be considered in the active
mode. Generally, the larger the number of positive claims
received for a given peer, the higher the trust rating of the
peer. However, a major difference between positive and neg-
ative feedback is that there is no threshold such that a peer
is fully trusted if the number of positive claims regarding
the peer is larger than this threshold. Suppose that such a
threshold exists and is denoted as t′. An adversary A can
cheat the system by first conducting t′ transactions with dis-
tinct peers honestly. Thereafter A will be fully trusted and
can cheat other peers in its subsequent transactions. This
attack is a type of strategic oscillation attack [30]. Since we
assume that most of peers in the network are benign and
the claims are flooded in the active mode, counting positive
feedback will result in large overheads. Fortunately, the goal
of the active mode of operation is to detect malicious be-
havior in real-time, and thus it is sufficient to consider only
negative feedback. In contrast, the goal of the passive mode
of operation is to obtain an accurate trust value about the
peer queried. Thus, we should consider both positive and
negative feedback in the passive mode.

5.2 Probabilistic Forwarding
An approach for improving the efficiency of SDT in the

active mode is for each peer receiving a claim to forward
the claim with a probability pf , instead of flooding claims
to the whole network and storing them on each peer. Intu-
itively, the lower the probability pf , the smaller the average
number of peers storing a claim (denoted as ns), and the
lower the probability that at least one good peer stores t or
more claims against the same adversary for the same type
of misbehavior (denoted as pr).

In this approach, the tradeoffs in security include: (i) a
larger number of witnesses are needed before the adversary
is disclosed (ii) given an upper bound on the number of
witnesses needed, there is a non-zero probability that an
adversary will escape disclosure. Let tr denote the num-
ber of witnesses detecting an adversary’s misbehavior and
generating claims against her. Let pd denote the security

11

requirement, i.e., the lower bound of pr. We first analyze
the relationship between ns and tr while ensuring a high pd,
and then discuss how to select an appropriate pf .

Assuming that an adversary engages in malicious or self-
ish behavior while interacting with peers that are uniformly
distributed in the network, the claims against this adversary
are generated, forwarded, and stored with a uniform proba-
bility. Therefore, the probability that a peer stores a given
claim is ns/n. Thus, we have pr = (n − ta) · (ns

n
)t · Ct

tr
≥

(n − t + 1) · (ns
n

)t · Ct
tr

≥ pd.
Figure 1 shows the average number of peers required to

store a claim (i.e. ns) so that a high-level security (i.e. pd =
0.9999) is achieved under different tr’s. We notice that ns

declines very fast when tr increases. For example, when tr =
1.1·t, i.e., requiring 10% more witnesses, ns is around 24% to
27% lower than the case when tr = t. Therefore depending
on the level of security required and potential number of
adversaries in the network, we can find an optimal ns that
achieves a good balance between security and efficiency. Let
this optimal ns be denoted by no

s.

20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

t −− The Threshold of Distributed Trust Mechanism

n s −
−

A
ve

ra
ge

 M
in

im
u

m
 #

 o
f

P
ee

rs
 N

ee
de

d
to

 S
to

re
 A

 C
la

im

t
r
=t

t
r
=1.05*t

t
r
=1.1*t

t
r
=1.2*t

t
r
=1.3*t

Figure 1: ns under different tr’s (n = 10000, pd =
0.9999)

After determining no
s, we need to compute an appropriate

probability of forwarding such that if every peer forwards
the claims received with a probability pf , the number of
peers storing a claim is approximately equal to no

s. Let d
denote the average degree/number of neighbors of a peer.
When d · pf < 1 we have:

ns < d + d2 · pf + · · · + di+1 · pi
f + · · · ≈ d

1 − d · pf
(2)

Finally, we can compute the range of pf as follows:

no
s − d

no
s · d < pf <

1

d
(3)

In peer-to-peer systems, peers can join and leave the sys-
tem at will. For both the active and passive modes of SDT,
the trust value of a peer A is calculated based on the trust
ratings collected from all the online good peers who have
interactions with her. Therefore as long as there are at
least t good peers online that detect A’s misbehavior, A
will be detected and expelled from the network. However,
when we use the probabilistic forwarding approach, the dy-
namic nature of peer-to-peer networks does have an impact

on the parameter setting. More specifically, let pon denote
the probability that a peer is online. Equations (2) and (3)
should be modified by replacing d with d · pon.

6. SECURITY AND ANONYMITY-RELATED
PROPERTIES ACHIEVED IN SDT

In this section, we examine how the security and anonymity-
related goals defined in Section 2.1 are achieved in SDT.

6.1 Identity Anonymity
Generally, the possible methods of breaking identity anony-

mity as defined in Section 2.1 can be divided into two cate-
gories: traffic-based analysis and protocol-based analysis.

The idea behind traffic-based analysis is to detect com-
mon information among sniffed network traffic, assuming
that any two packets are transferred along the same route
if they have information in common. The “common infor-
mation” could be either identical content (e.g., the same
sequence number) in sniffed packets, or identical time con-
sumed in handling sniffed packets (i.e., time analysis). In
SDT, to prevent traffic analysis [26], the witness sends her
claim through a Mixnet-based anonymous communication
system [27, 28, 15] so that adversaries cannot discover the
identity of the sender. Previous research [14, 16] shows that
reputation systems can improve the performance of Mixnets.
As such, we expect that the combination of SDT-based rep-
utation systems and Mixnet-based anonymous communica-
tion systems is mutually beneficial and can enhance the ef-
fectiveness of both systems.

In protocol-based analysis, adversaries try to deduce the
identity of the sender by analyzing the semantic context of
messages. For example, to ensure that the receiver can verify
the signature, the sender may include her public key in the
packet. If that is the case, adversaries can easily discover
the identity of the sender. In SDT, there is no public key or
identity-related information in a claim, and the verification
process is based on the zero knowledge proof. Given that the
Discrete Logarithm Problem (DLP) is hard, SDT is robust
against brute force attacks. More specifically, given T1 and
Γ, there is no PPT function which adversaries can use to
find the secret of the witness (i.e., x) and thus deduce her
identity.

6.2 Backward Anonymity
Most peer-to-peer systems can be viewed as overlay net-

works on top of another network, e.g. the Internet. The
security of peer-to-peer systems will certainly be affected by
the security of the underlying network. In addition, due
to its open nature a peer-to-peer system is also vulnerable
to attacks within the system, e.g. worms [34]. Therefore,
our protocol should be resistant to possible compromises
of peers. In SDT, a claim itself does not provide infor-
mation disclosing the identity of the sender. Even if ad-
versaries compromise multiple peers and collect additional
claims, they cannot differentiate the claims sent by a peer
from those sent by others. Thus, compromising more peers
does not increase the probability of deducing the identity of
the sender, i.e. the witness. Backward anonymity is ensured
even when the OGM cooperates with adversaries, because
in the registration procedure the OGM is convinced that a
peer is holding the secret key corresponding to a given pub-
lic key through zero knowledge proof and has no information
about the secret key of that peer.

12

6.3 Traceability
In SDT, if an adversary sends multiple claims against a

user for the same reason, she is identified by the public trac-
ing procedure. To successfully disclose an adversary mis-
using witness anonymity, good peers need to find a valid
record of this adversary, i.e., the LIST item containing the
identity and public key of the adversary. In SDT, each item
in the LIST has s copies distributed within the peer-to-peer
system. As shown in Section 8.1, the probability that all
the copies of a given item are controlled by the adversary
group is tiny, even when s is very small. If we assume that
such a probability is negligible, any adversary sending mul-
tiple claims against the same user for the same reason will
be traced, and her identity will be disclosed.

6.4 Non-Slanderability
In this paper, we assume the existence of a distributed

trust mechanism, e.g., one of the protocols proposed in [22,
20, 35]. Together with the traceability property provided by
SDT, the maximum number of claims that the adversary
group can send against the same good user for the same
reason is the number of adversaries in that group, which is
assumed to be less than t. In other words, adversaries cannot
collect enough number of claims, i.e. t or more claims, to
convince others that an innocent user is malicious or selfish.

7. COUNTERMEASURES TO VARIOUS
ATTACKS

In this section, we consider several attacks on the SDT
protocol and present possible countermeasures.

7.1 Collusion Attacks
The effectiveness of collusion attacks is limited by the

combination of the traceability property provided by SDT
and the distributed trust mechanism. The former ensures
that any adversary sending multiple claims against the same
user for the same reason will be detected and traced. As a re-
sult, an adversary can only send one claim per user per type
of malicious or selfish behavior. Moreover, the existence of
the latter guarantees that the number of adversaries in the
peer-to-peer system is less than t. Consequently, even if all
the adversaries collude with each other, they cannot gener-
ate t or more claims against an innocent user for the same
reason.

7.2 Sybil Attacks
In a Sybil attack [17], malicious peers can assume multiple

identities, and thus can control a substantial part of the sys-
tem. If such an attack is possible, it would undermine the
basis of trust schemes for peer-to-peer systems, i.e., most
peers are honest and each peer can vote only once when
assessing a given peer. According to [17], without a logi-
cally centralized authority, Sybil attacks are always possible
except under certain assumptions regarding the resources
possessed by the attacker.

A straightforward solution for SDT is to let the OGM
assume the responsibility of the centralized authority. More
specifically, during the registration procedure, the OGM is
responsible for binding the user registering as a member to
a real-world identity, and for limiting the number of the
registrations per identity to one.

Assume that in a Sybil attack there is single real-world

user assuming multiple identities. We refer to this real-world
user as the Sybil source and the users corresponding to the
assumed identities as Sybil users. To prevent Sybil attacks
when there is no centralized authority, Douceur [17] pro-
posed the use of a scheme in which the potential Sybil users
are challenged to solve some resource-intensive task that can
only be accomplished by multiple real-world users but will
be impractical for a Sybil source. For example, suppose that
a peer A receives t claims against another peer B. When
employing the direct identity validation method proposed in
[17] against Sybil attacks, A should first challenge all the t
witnesses who generated the claims to perform some task
that can only be completed by t real-world users before as-
serting that B is malicious or selfish. However, in SDT, the
identities of the witnesses are unknown due to the require-
ment of witness anonymity. Thus the only way to deliver
the task to the witnesses is via a system-wide broadcast.
Although this method is relatively expensive, it may not
be impractical given certain assumptions regarding resource
parity and coordination among peers [17].

7.3 Denial-of-Service Attacks
In the SDT protocol, Denial-of-Service (DoS) attacks can

be launched against the claim broadcasting procedure and
the public tracing procedure.

The DoS attacks launched in the claim broadcasting pro-
cedure are similar to those against reputation systems, e.g.,
sending numerous fake claims [30]. In SDT, such attacks are
restrained by the traceability property. However, a smart
adversary may choose to send one claim per innocent peer
per misbehavior type. Given that the size of the network is
large, she can still flood the network with a number of fake
claims, although it does not help her successfully slander
any innocent peer.

When SDT is in the passive mode, this type of attack
can be prevented by the following method. When a peer A
receives an anonymous claim against another peer B, she
first checks whether it has received a query regarding B
within the previous T seconds. If there is no such query,
A will drop the claim. If we set a small upper bound on
the number of queries that each peer can launch every T
seconds, the effectiveness of DoS attacks can be reduced.

In this paper, we assume the existence of a mechanism for
monitoring the number of claims sent by a peer, irrespective
of whether they are generated or forwarded by her. In the
active mode, each valid claim is generated after an interac-
tion between the sender and the peer accused. Suppose that
an interaction between two peers takes time ti. Assuming
that each peer accused can have only one interaction at a
time, since we know that only negative feedback is consid-
ered in the active mode and the number of adversaries is
assumed to be less than t, any peer that sends out claims at
a rate higher than t

ti
per unit time is suspected of launching

a DoS attack. For example, given that t = 100 and ti = 300
seconds, a peer sends claims at a rate of one claim per second
can be suspected to be launching a DoS attack.

Given that we can limit the number of claims that a peer
can send within a certain time period as shown above, and
since the computation requirements of SDT are relatively
small (even on a low-powered Pentium III platform as shown
in Section 8.4), we argue that most users in today’s peer-
to-peer systems have sufficient computational power to han-
dle such DoS attacks. Similarly, considering the amount of

13

storage available on computers [32] and the small size of
each claim in SDT (as shown in Section 8.3), DoS attacks
launched with the goal of exhausting the storage of a given
peer are also ineffective.

To launch DoS attacks during the execution of the pub-
lic tracing procedure, adversaries may generate fake broad-
casting messages to exhaust the computational resources of
other peers and the communication resources of the network.
However, the effectiveness of these attacks is limited. In each
message, the attacker needs to include the proofs that could
be verified by other peers. Otherwise, the receiver will drop
the message so that it cannot be propagated. The proofs in
the pair of entries can be verified only if they are generated
using the same secret key of a member in the network. As
a result, the identity of the holder of this secret key will be
disclosed in the public tracing procedure. In other words, in
order to launch this attack successfully, the adversary has
to expose herself or a peer that has been compromised by
her.

8. THE COMMUNICATION, STORAGE, AND
COMPUTATION COSTS OF SDT

8.1 Distributed Storage of the LIST
In the SDT protocol, the OGM maintains a complete iden-

tification list LIST offline. However, in most cases, e.g., to
disclose the identity of malicious or selfish users during the
public tracing procedure, users may want to access the LIST
immediately instead of waiting for the OGM to be online. In
addition, due the large size of the network, it would be too
onerous to let each peer maintain a full copy of the LIST.
Therefore, in SDT the LIST is stored in a distributed form.
As discussed in Section 4.2.2, during the registration proce-
dure the OGM assigns each member a portion of the LIST,
which is signed by her secret key. The assignment is exe-
cuted in such a way that each peer has no knowledge about
the items of the LIST stored on another peer, and each item
in the LIST has multiple copies stored on different members.

When there is no central party storing the LIST, it is pos-
sible that all the information about an adversary in the LIST
is stored only by the adversary group. They can remove the
public information of this adversary from the LIST. As a
result, this adversary will not be identified even if submits
multiple claims against the same peer for the same reason
because the output of the public tracing procedure will al-
ways be always NO-ONE. However, we argue that, given
that there are s copies of the public information for each
member, and they are uniformly distributed within the net-
work, the probability (denoted as pad) that the entry for
an adversary in the LIST is stored only by the adversary
group is vert small. The probability can be calculated as
pad = Cs

ta
/Cs

n. In Table 1, we show the values of pad for
different settings, when the network size is 10000. For ex-
ample, when each member stores only around three items of
the LIST, the probability that the public information of an
adversary is stored only by the adversary group is less than
9.70 × 10−7.

In fact, even if this low probability event does occur, this
attack can be utilized by good peers to detect more adver-
saries with the help from the OGM, as illustrated by the
following example. Assume that there are a group of adver-
saries denoted as M = {M1, M2, . . . , M6}, and s is set to

Table 1: pad under Different ta and s (n = 10000)
ta = 50 ta = 75 ta = 100

s = 2 2.45 × 10−5 5.55 × 10−5 9.90 × 10−5

s = 3 1.18 × 10−7 4.05 × 10−7 9.70 × 10−7

s = 4 5.53 × 10−10 2.92 × 10−9 9.41 × 10−9

s = 5 2.55 × 10−12 2.07 × 10−11 9.04 × 10−11

5. M1 sends multiple claims against a good peer denoted as
Q1. Another good peer denoted as Q2 receives these claims,
and thus detects the misuse of witness anonymity accord-
ing to the public tracing procedure. Then Q2 broadcasts
a query, and asks for helps to disclose the identity of the
senders (i.e. M1) corresponding to β calculated in the pub-
lic tracing procedure. Unfortunately all the five copies of
M1’s LIST information are stored by M2, M3, . . . , M6, and
they refuse to respond to the query. In such a case, Q1 may
ask for the help from the OGM, who will check the LIST
stored, and then broadcast a signed message claiming that
members of M are malicious and at the same time disclosing
their public information.

8.2 Communication Costs
Assume that the SDT protocol is implemented by an ellip-

tic curve or hyperelliptic curve over a finite field. To ensure
the security of the protocol, the prime p should be at least
160 bits long, G1 should be a subgroup of an elliptic curve
or a Jacobian of a hyperelliptic curve over a finite field of
order p, and GT should be a subgroup of a finite field of
size at least approximately 21024 . This will ensure that the
Decisional Bilinear Diffie-Hellman (DBDH) problem [24]
is sufficiently hard.

The major communication cost of the SDT protocol is
for forwarding claims. By employing techniques in [18], ele-
ments of GT can be compressed by a factor of three. As a
result, the size of each claim is 405 bytes, excluding Typead

and IDad. Usually, it is sufficient to set the length of Typead

to one byte. As to the length of IDad, it should be set to
at least �log n� bits. For a network with at most 10 million
peers, we can set the length of IDad to three bytes, and
thus the length of a claim is 409 bytes in total. Due to the
relatively small size of the claim, given that we can limit the
number of queries that a peer can launch and the number of
claims that a peer can send within a certain time period as
shown in Section 7.3, the communication overhead of SDT
is acceptable in peer-to-peer systems.

If we store the LIST in a distributed manner, it leads to
additional additional communication costs. Specifically, in
the public tracing procedure, a peer may need to broadcast
a message to search for pair (i, β) corresponding to a claim
against a user. Intuitively, the smaller the number of LIST
items that are stored on a peer, the higher is the probability
that she may broadcast a message to ask for help to identify
the adversary in the public tracing procedure. Fortunately,
assuming that adversaries are rational in the sense that they
may not launch attacks in which they are doomed to be
caught, we argue that such cases may happen infrequently.

8.3 Storage Requirements
The storage requirements of SDT are due to (i) the cryp-

tographic keys (ii) the items of the LIST, and (iii) the local
claim databases (i.e. DBPC and DBCC). A user in the SDT

14

protocol only needs to store her public/secret key pair and
the public key of the OGM. With respect to the items of
the LIST, as shown in Section 8.1, they can be stored in a
distributed form, and the cost is only s LIST items per user.
Each LIST item is a (i, β) pair, and its size is 46 bytes after
compression, given that the identity of a peer is represented
with three bytes.

With respect to the storage required for the local claim
database, in the passive mode, the claims stored by each peer
are actually the claims that were generated by her. She does
not store the claims that are forwarded. In the active mode,
however, to avoid the looping of the claim message during its
broadcast, each peer needs to store the claims forwarded. As
shown in Section 5.2, the probabilistic forwarding approach
can help reduce the storage cost. Moreover, for both the
active and passive modes, the storage cost can be reduced
by deleting claims after a suitable time interval.

8.4 Computation Costs
The most expensive computational operation used in the

SDT protocol is the calculation of bilinear pairing. If the
bilinear mapping used is the well-known Tate Pairing, using
MIRACL libraries [1] (optimized using Comba method for
modular multiplication) on a Pentium III 1GHz desktop,
it takes 20 milliseconds to calculate a 512-bit Tate pairing
(for effective 1024-bit security) without pre-computation [4].
More recent results [5] show that the Tate pairing can be
evaluated up to 10 times faster than in previously reported
implementations by the use of various optimizations.

9. RELATED WORK
In [14, 16], Dingledine et al propose to use reputation

systems to increase the reliability and efficiency of vari-
ous Mixnet-based applications, e.g., remailer networks and
anonymous publishing. Their protocols do not provide anony-
mity for the witnesses in reputation systems.

XRep [13] supports weak anonymity for the peer. The
reputation is bound to a pseudonym or an opaque identifier,
i.e. the digest associated with a servent. However, the real
IP address of the peer is still required when it replies to a
voting query.

In TrustMe [29], when a peer i joins the network, a boot-
strap server randomly assigns a set of peers to be its Trust-
Holding Agent (THA) peers. Subsequently, any peer having
interactions with peer i will send out an encrypted report
which can only be decrypted by the THA peers for peer i.
As such, each THA peer stores all the reports related to peer
i and can thus reply to queries from other peers regarding
peer i. A major weakness of TrustMe is that if any THA
peer randomly chosen at the bootstrapping stage is an ad-
versary, the identities of the reporting peers are disclosed. In
other words, TrustMe does not support, or at best partially
supports witness anonymity.

10. CONCLUSIONS
This paper presents the Secure Deep Throat (SDT) pro-

tocol to provide witness anonymity to users that report on
the misbehavior or trust ratings of other peers in peer-to-
peer systems. SDT can be used in an active mode in sce-
narios with real-time requirements for detecting malicious
behavior, e.g., for detecting and preventing the propagation
of peer-to-peer worms [34], or it can be used in a passive

mode in scenarios that do not have strict real-time require-
ments, e.g., query-based reputation systems [12]. We discuss
the security and anonymity-related requirements of a pro-
tocol for providing witness anonymity, and show that these
requirements are met by SDT. Further, we describe coun-
termeasures that can be used to defend against collusion
attacks, Sybil attacks, and denial-of-service attacks against
SDT. Finally, we analyze the storage, communication, and
computation costs of SDT and show that the overhead of
the protocol is acceptable in peer-to-peer systems.

11. REFERENCES
[1] MIRACL library. http://indigo.ie/˜mscott/.

[2] G. Ateniese and G. Tsudik. Some open issues and new
directions in group signatures. In Proceedings of The
Third International Conference on Financial
Cryptography (FC’99), LNCS 1648, pages 196–211,
1999.

[3] AuctionBytes. Online auction feedback survey.
Retrieved from
http://www.auctionbytes.com/cab/pages/
feedbacksurvey1105 on May 5, 2006.

[4] P. S. Barreto, H. Y. Kim, B. Lynn, and M. Scott.
Efficient algorithms for pairing-based cryptosystems.
In Proceedings of Advances in Cryptology – CRYPTO
2002, LNCS 2442, pages 354–368, 2002.

[5] P. S. L. M. Barreto, B. Lynn, and M. Scott. On the
selection of pairing-friendly groups. In Proceedings of
Annual International Workshop on Selected Areas in
Cryptography (SAC’03), LNCS 3006, pages 17–25,
2003.

[6] M. Bellare, D. Micciancio, and B. Warinschi.
Foundations of group signatures: Formal definitions,
simplified requirements, and a construction based on
general assumptions. In Proceedings of Advances in
Cryptology - EUROCRPYT 2003, LNCS 2656, pages
614–629, 2003.

[7] S. Brands. Untraceable off-line cash in wallets with
observers (extended abstract). In Proceedings of the
13th Annual International Cryptology Conference on
Advances in Cryptology, LNCS 773, pages 302–318,
1993.

[8] E. Bresson, J. Stern, and M. Szydlo. Threshold ring
signatures and applications to ad-hoc groups. In
Proceedings of Advances in Cryptology - CRYPTO
2002, LNCS 2442, pages 465–480, 2002.

[9] J. Camenisch and M. Michels. A group signature
scheme with improved efficiency (extended abstract).
In Proceedings of Advances in Cryptology -
ASIACRYPT’98, LNCS 1514, pages 160–174, 1998.

[10] D. Chaum and E. V. Heyst. Group signatures. In
Proceedings of Advances in Cryptology -
EUROCRYPT ’91, LNCS 547, pages 257–265, 1991.

[11] D. L. Chaum, A. Fiat, and M. Naor. Untraceable
electronic cash. In CRYPTO88, Lecture Notes in
Computer Science 403, pages 319–327, 1989.

[12] F. Cornelli, E. Damiani, S. D. C. D. Vimercati,
S. Paraboschi, and P. Samarati. Choosing reputable
servents in a P2P network. In Proceedings of the 11th
International Conference on World Wide Web, pages
376–386, 2002.

[13] E. Damiani, S. D. C. D. Vimercati, S. Paraboschi,

15

P. Samarati, and F. Violante. A reputation-based
approach for choosing reliable resources in
peer-to-peer networks. In Proceedings of the 9th ACM
Conference on Computer and Communications
Security, pages 207–216, 2002.

[14] R. Dingledine, M. J. Freedman, D. Hopwood, and
D. Molnar. A reputation system to increase MIX-net
reliability. In Proceedings of The 4th International
Workshop on Information Hiding (IHW’01), LNCS
2137, pages 126–141, 2001.

[15] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The second-generation onion router. In Proceedings of
the 13th USENIX Security Symposium, 2004.

[16] R. Dingledine and P. Syverson. Reliable MIX cascade
networks through reputation. In Proceedings of
Financial Cryptography (FC’02), LNCS 2357, 2002.

[17] J. R. Douceur. The sybil attack. In Proceedings of The
First International Workshop on Peer-to-Peer Systems
(IPTPS 2002), pages 251–260, 2002.

[18] R. Granger, D. Page, and M. Stam. A comparison of
CEILIDH and XTR. In Algorithmic Number Theory,
6th International Symposium, ANTS-VI, pages
235–249, 2004.

[19] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
The eigentrust algorithm for reputation management
in P2P networks. In Proceedings of the 12th
International Conference on World Wide Web
(WWW 2003), pages 640–651, 2003.

[20] H. Luo, J. Kong, P. Zerfos, S. Lu, and L. Zhang.
URSA: Ubiquitous and robust access control for
mobile ad hoc networks. IEEE/ACM Transactions on
Networking, 12(6):1049–1063, 2004.

[21] M. Naor. Deniable ring authentication. In Proceedings
of Advances in Cryptology - CRYPTO 2002, LNCS
2442, pages 481–498, 2002.

[22] M. Narasimha, G. Tsudik, and J. H. Yi. On the utility
of distributed cryptography in P2P and MANETs:
The case of membership control. In Proceedings of the
11th IEEE International Conference on Network
Protocols (ICNP’03), pages 336–345, Nov. 2003.

[23] I. B. S. News. New peer-to-peer trojan worm attacks
enterprises, Mar. 2006. Retrieved from
http://www.justloadit.com/pr/6169 on May 5, 2006.

[24] L. Nguyen and R. Safavi-Naini. Dynamic k-times
anonymous authentication. In Proceedings of The
Third International Conference on Applied
Cryptography and Network Security (ACNS 2005),
pages 318–333, 2005.

[25] L. Nguyen and R. Safavi-Naini. Dynamic k-times
anonymous authentication. Full version, 2005.

[26] J.-F. Raymond. Traffic analysis: Protocols, attacks,
design issues, and open problems. In DIAU00, Lecture
Notes in Computer Science 2009, pages 10–29, 2000.

[27] M. K. Reiter and A. D. Rubin. Crowds: Anonymity
for web transactions. ACM Transactions on
Information and System Security (TISSEC),
1(1):66–92, 1998.

[28] C. Shields and B. N. Levine. A protocol for
anonymous communication over the internet. In ACM
Conference on Computer and Communications
Security (CCS 2000), pages 33–42, 2000.

[29] A. Singh and L. Liu. TrustMe: Anonymous
management of trust relationships in decentralized
P2P systems. In Proceedings of The Third
International Conference on Peer-to-Peer Computing
(P2P 2003), pages 142–149, 2003.

[30] M. Srivatsa, L. Xiong, and L. Liu. TrustGuard:
Countering vulnerabilities in reputation management
for decentralized overlay networks. In Proceedings of
the 14th International Conference on World Wide
Web, pages 422–431, 2005.

[31] I. Teranishi, J. Furukawa, and K. Sako. K-times
anonymous authentication (extended abstract). In
Proceedings of ASIACRYPT 2004, LNCS 3329, pages
308–322, 2004.

[32] Www.Programmersheaven.Com. Poll archive – how
much storage capacity does your computer have?,
June 2004. Available at
http://www.programmersheaven.com/c/userpoll/
Poll archive.htm?PollID=148.

[33] L. Xiong and L. Liu. PeerTrust: Supporting
reputation-based trust for peer-to-peer electronic
communities. IEEE Transactions on Knowledge and
Data Engineering, 16(7):843–857, July 2004.

[34] W. Yu, C. Boyer, S. Chellappan, and D. Xuan.
Peer-to-peer system-based active worm attacks:
Modeling and analysis. In Proceedings of IEEE
International Conference on Communications (ICC
’05), pages 295–300, 2005.

[35] B. Zhu, F. Bao, R. H. Deng, M. S. Kankanhalli, and
G. Wang. Efficient and robust key management for
large mobile ad-hoc networks. Computer Networks,
48(4):657–682, July 2005.

16

