
Proving Correctness of Transformation
Functions in Real-Time Groupware
Abdessamad Imine, Pascal Molli, Gérald Oster
and Michäel Rusinowitch
ECOO and CASSIS Teams - LORIA France
{imine,molli,oster,rusi}@loria.fr

Abstract. Operational transformation is an approach which allows to build real-time
groupware tools. This approach requires correct transformation functions. Proving the cor-
rection of these transformation functions is very complex and error prone. In this paper, we
show how a theorem prover can address this serious bottleneck. To validate our approach,
we have verified the correctness of state-of-art transformation functions defined on Strings
with surprising results. Counter-examples provided by the theorem prover have helped us
to define new correct transformation functions for Strings.

Introduction

Real-time groupware systems allow a group of users to manipulate the same object
(i.e. a text, an image, a graphic, etc.) at the same time from physically dispersed
sites that are interconnected by a supposed reliable network. In order to achieve
good responsiveness and friendly collaboration, the shared objects arereplicated
at the local memory of each participating user. One of the most significant issues
in building real-time groupware systems with replicated architecture isconsistency
maintenanceof shared objects (Sun, Jia, Zhang, Yang & Chen, 1998).

Operational transformation is an approach (Ellis & Gibbs, 1989)(Sun & Chen,
2002) which allows to build real-time groupware like shared editors. Algorithms
like aDOPTed (Ressel, Nitsche-Ruhland & Gunzenhauser, 1996), GOTO (Sun
et al., 1998), SOCT 2,3,4 (Suleiman, Cart & Ferrié, 1998)(Vidot, Cart, Ferrié &

Suleiman, 2000) are used to maintain the consistency of shared data. However these
algorithms rely on the definition of transformation functions. If these functions are
not correct then these algorithms cannot ensure the consistency of shared data.

Proving the correctness of transformation functions even on a simple typed ob-
ject like a String is a complex task. If we have more operations on more complex
typed objects, the proof is almost impossible without a computer. This is a serious
bottleneck for building more complex real-time groupware software.

We propose to assist development of transformation functions with SPIKE , an
automated theorem prover which is suitable for reasoning about functions defined
by conditional rewrite rules (Stratulat, 2001)(Imine, Molli, Oster & Rusinowitch,
2002). This approach requires specifying the transformation functions in first order
logic. Then, SPIKE automatically determines the correctness of transformation
functions. If correctness is violated, SPIKE returns counter-examples. Since the
proofs are automatic, we can handle more (even complex) operations and develop
quickly correct transformation functions.

This paper is organized as follows. The second section briefly presents the
transformational approach. In the third section, we give the surprising results we
have obtained when verifying the correctness of existing transformation functions
about Strings. Thanks to counter-examples provided by SPIKE we define newcor-
rect transformation functions for Strings. The fourth section briefly overviews the
features of SPIKE and describes how to specify transformation functions in this
prover. Finally, we conclude with some remarks and with some perspectives for
future works.

Transformational Approach

The model of transformational approach considersn sites. Each site has a copy of
the shared objects. When an object is modified on one site, the operation is executed
immediately and sent to the other sites to be executed again. So every operation is
processed in four steps:

(1) generation on one site,

(2) broadcast to other sites,

(3) reception by other sites,

(4) execution on other sites.

The execution context of a received operationopi may be different from the
generation context ofopi. In this case, the integration ofopi by other sites may
lead to inconsistencies between replicates. We illustrate this behavior in Figure 1.
There are two sites working on a shared data of typeString. We consider that a
String object can be modified with the operationIns(p, c) for inserting a character
c at positionp in the string. We suppose the position of the first character in the

string is1 (and not0). The users1 and2 generate two concurrent operations:op1 =
Ins(2, f) andop2 = Ins(6, s) respectively. Whenop1 is received and executed on
site 2, it produces the expected string “effects ”. But, whenop2 is received on
site 1, it does not take into account thatop1 has been executed before it. So, we
obtain a divergence between sites1 and2.

Figure 1. Incorrect integration.

In the operational transformation approach, received operations are transformed
according to local concurrent operations and then executed. This transformation is
done by calling transformation functions. A transformation functionT takes two
concurrent operationsop1 andop2 defined on the same state and returnsop′1 which
is equivalent toop1 but defined on a state whereop2 has been applied. We illustrate
the effect of a transformation function in Figure 2. Whenop2 is received on site1,
op2 needs to be transformed according toop1. The integration algorithm calls the
transformation function as follows:

T ((

op2︷ ︸︸ ︷
Ins(6, s),

op1︷ ︸︸ ︷
Ins(2, f)) =

op′2︷ ︸︸ ︷
Ins(7, s)

The insertion position ofop2 is incremented becauseop1 has inserted the character
“ f ” before “s ” in state “efect ”. Next, op′2 is executed on site1. In the same way,
whenop1 is received on site2, the transformation algorithm calls:

T (

op1︷ ︸︸ ︷
Ins(2, f),

op2︷ ︸︸ ︷
Ins(6, s)) =

op′1︷ ︸︸ ︷
Ins(2, f)

In this case the transformation function returnsop′1 = op1 because “f ” is inserted
before “s ”. Intuitively we can write the transformation function as follows:

T(Ins(p1 ,c1), Ins (p2 ,c2)) :−
if p1< p2 return Ins (p1 , c1)
else return Ins (p1 + 1 , c1)

Figure 2. Integration with transformation.

This example makes it clear that the transformational approach consists of two
main components: the integration algorithm and the transformation function. the
integration algorithm is responsible of receiving, broadcasting and executing op-
erations. It is independent of the type of shared data and it calls transformation
function when needed. The transformation function is responsible for merging two
concurrent operations defined on the same state. It is specific to the type of shared
data (String in our example).

A lot of work has been devoted to defining a theoretical model (Sun et al.,
1998)(Suleiman et al., 1998)(Sun & Chen, 2002, Sun, 2002). Basically, transfor-
mational approach defines a new consistency criteria for replicates. To be correct,
an algorithm has to ensure three general properties:

Convergence.When the system is idle (no operation in pipes), all copies are
identical.

Causality. If on one site, an operationop2 has been executed afterop1, thenop2

must be executed afterop1 in all sites.

Intention preservation. If an operationopi has to be transformed intoop′i, then
the effects ofop′i have to be equivalent toopi.

To ensure these properties, it has been proved (Sun et al., 1998)(Suleiman et al.,
1998) that the underlying transformation functions must satisfy two conditions:

• The conditionC1 defines astate equivalence. The state generated by the exe-
cutionop1 followed byT (op2, op1) must be the same than the state generated
by op2 followed byT (op1, op2):

C1 : op1 ◦ T (op2, op1) ≡ op2 ◦ T (op1, op2)

• The conditionC2 ensures that the transformation of an operation according
to a sequence of concurrent operations does not depend of the order in which

operations of the sequence are transformed:

C2 : T (op3, op1 ◦ T (op2, op1)) = T (op3, op2 ◦ T (op1, op2))

It is important to note that although many algorithms have been designed, only
few sets of transformation functions have been delivered to the community (Palmer
& Cormack, 1998)(Davis, Sun & Lu, 2002)(Molli, Skaf-Molli, Oster & Jourdain,
2002). ProvingC1 andC2 on transformation functions is very hard and error prone
even on a simple string object. For example, there are123 different cases to ex-
plore when trying to proveC2 on a String object. Each time the specification of
transformation functions is changed, it is necessary to redo the proof.

Without a correct set of transformation functions, the integration algorithm can-
not ensure consistency and the resulting groupware tools would not be reliable.
Consequently, to be able to develop the transformational approach with simple or
more complex objects, proving conditions on transformation functions must be au-
tomatic.

Verifying Transformation Functions

In this section, we return to existing transformation functions defined on String ob-
jects, where a String is considered as an array of characters starting at range1 (and
not 0). We have formalized them using SPIKE and checked their correctness. We
show in the fourth section how to specify these functions in SPIKE . Two operations
are defined on String:

• Ins(p, c): Inserts a characterc at positionp.

• Del(p): Deletes the character located at positionp.

Ellis’s Transformation Functions

Ellis and Gibbs (Ellis & Gibbs, 1989) are the pioneers of the operational transfor-
mation. They have defined the transformation functions shown below. Operations
Ins andDel are extended with a new parameterpr representing the priority. Prior-
ities are based on the site identifier where operations have been generated1. Id()
is the Identity operation, which does not affect state.

Tii(Ins (p1 ,c1 ,pr1), Ins (p2 ,c2 ,pr2)) :−
if p1 < p2 return Ins (p1 ,c1 ,pr1)
else if p1 > p2 return Ins (p1 + 1 , c1 ,pr1)

else if c1 == c2 return Id ()
else if pr1 > pr2 return Ins (p1 + 1 ,c1 ,pr1)

else return Ins (p1 ,c1 ,pr1)

1This priority becomes even more complex since it is also used like a list.

Tid(Ins (p1 ,c1 ,pr1), Del(p2 ,pr2)) :−
if p1 < p2 return Ins (p1 ,c1 ,pr1)
else return Ins (p1 − 1 ,c1 ,pr1)

Tdi(Del(p1 ,pr1), Ins (p2 ,c2 ,pr2)) :−
if p1 < p2 return Del(p1 ,pr1)
else return Del(p1 + 1 ,pr1)

Tdd(Del(p1 ,pr1), Del(p2 ,pr2)) :−
if p1 < p2 return Del(p1 ,pr1)
else if p1 > p2 return Del(p1 − 1 ,pr1)

else return Id()

Figure 3. Counter-example violating conditionC1.

It is well known that these transformation functions are not correct (Sun et al.,
1998)(Suleiman et al., 1998)(Ressel et al., 1996). Nevertheless, they were submitted
to SPIKE in order to verify if the problem can be automatically detected. SPIKE
found the counter-example depicted in figure 3 in a few seconds. SPIKE detected
that conditionC1 is violated.

The counter-example is simple:

(1) user1 insertsx in position2 (op1) while user2 concurrently deletes the char-
acter at the same position (op2).

(2) Whenop2 is received by site1, op2 must be transformed according toop1. So
Tdi(Del(2), Ins(2, x)) is called andDel(3) is returned.

(3) In the same way,op1 is received on site2 and must be transformed according
to op2. T (Ins(2, x), Del(2)) is called and returnIns(1, x). ConditionC1 is
violated. Accordingly, the final results on both sites are different.

The error comes from the definition ofTid. The conditionp1 < p2 should be
rewrittenp1 ≤ p2. But if we re-submit this version to the theorem prover, it is still
not correct with the counter-example detailed in the next section.

This gives a typical example of working with SPIKE . In some way, we use
this prover like a compiler. We express transformation functions using the SPIKE
syntax and SPIKE checks conditions in few seconds or few minutes depending of
the number of different cases induced by the specification.

Ressel’s Transformation Functions

Matthias Ressel (Ressel et al., 1996) have modified Ellis’s transformation func-
tions in order to satisfyC1 andC2. Priorities are replaced by the parameterui ∈
1, 2, ..., n. This parameter represents the user who generates the operation. M. Res-
sel wrote thatTid andTdi are exactly the same as those of Ellis. In this case, the
set of transformation functions does not satisfyC1 as in the counter-example of
Figure 3. We assume M. Ressel refers to a corrected version of Ellis whereTid
is redefined withp1 ≤ p2. On the other hand, Ressel modified the definition of
Tii as follows: when two insert operations have the same positionp, the character
produced by the site with the lower range is inserted atp.

Tii(Ins (p1 ,c1 ,u1), Ins (p2 ,c2 ,u2)) :−
if p1<p2 or (p1 =p2 andu1<u2) return Ins (p1 ,c1 ,u1)
else return Ins (p1+1,c1 ,u1)

Tdd(Del(p1 ,u1), Del(p2 ,u2)) :−
if p1<p2 return Del(p1 ,u1)
else if p1>p2 return Del(p1 − 1 ,u1)

else return Id()

Tid(Ins (p1 ,c1 ,u1), Del(p2 ,u2)) :−
if p1 ≤ p2 return Ins (p1 ,c1 ,u1)
else return Ins (p1 − 1 ,c1 ,u1)

Tdi(Del(p1 ,u1), Ins (p2 ,c2 ,u2)) :−
if p1 < p2 return Del(p1 ,u1)
else return Del(p1 + 1 ,u1)

This strategy seems to work but SPIKE found the counter-example given in fig-
ure 4. This counter-example requires three users where operationsop1 = Ins(2, x),
op2 = Del(2) andop3 = Ins(3, y) are concurrent:

(1) First of all,op2 is integrated onuser3’s site. So, we applyT (Del(2), Ins(3, y))
which returnsop′2 = Del(2).

Figure 4. Counter example violating conditionC2.

(2) When integratingop3 on site2, we applyT (Ins(3, y), Del(2)) which returns
op′3 = Ins(2, y).

(3) Next,op1 is integrated on site2 as follows:op1 must be transformed according
to op2 and the result of this transformation must be transformed according
to op′3. T (op1 = Ins(2, x), op2 = Del(2)) which returns a new operation
Ins(2, x). This operation must be transformed again according toop′3:

T (Ins(2, x),

op′3︷ ︸︸ ︷
Ins(2, y)) =

op′1︷ ︸︸ ︷
Ins(3, x)

(4) op1 is integrating on site3 in the same way. So we calculate the result of:

op′′1︷ ︸︸ ︷
Ins(2, x) = T (T (Ins(2, x),

op3︷ ︸︸ ︷
Ins(3, y)),

op′2︷ ︸︸ ︷
Del(2))

Copies on site2 and3 do not converge. Consequently, transformation functions
of Ressel do not verifyC2.

Sun’s Transformation Functions

Chengzheng Sun (Sun et al., 1998) has derived the set of transformation functions
below. The signature of operationsIns andDel are slightly different. Indeed,Ins
may be used to insert either a character or a string at positionp.

T(Ins(p1 ,s1 ,l1), Ins (p2 ,s2 ,l2)) :−
if p1< p2 return Ins (p1 , s1 , l1)
else return Ins (p1 + l2 , s1 , l1)

T(Ins(p1 ,s1 ,l1), Del(p2 ,l2)) :−
if p1 ≤ p2 return Ins (p1 ,s1 ,l1)
else if p1 > (p2 + l2) return Ins (p1 − l2 ,s1 ,l1)

else return Ins (p2 ,s1 ,l1)

T(Del(p1 ,l1), Ins (p2 ,s2 ,l2)) :−
if p2 ≥ p1 return Del(p1 ,l1)
else if p1 ≥ p2 return Del(p1 + l2 ,l1)

else return [Del(p1 ,p2 − p1); Del(p2 + l2 ,l1 − (p2 − p1))]

T(Del(p1 ,l1), Del(p2 ,l2)) :−
if p2 ≥ p1 + l1 return Del(p1 ,l1)
else if p1 ≥ p2 + l2 return Del(p1 − l2 ,l1)
else if p2 ≤ p1 andp1 + l1 ≤ p2 + l2 return Del(p1 ,0)
else if p2 ≤ p1 andp1 + l1 > p2 + l2 return Del(p2 , (p1 + l1)− (p2 + l2))
else if p2 > p1 andp2 + l2 ≥ p1 + l1 return Del(p1 , p2 − p1)
else return Del(p1 , l1 − l2)

For a better comparison with others set of transformation functions, we have rewrit-
ten Sun’s transformations functions for characters. The result is given below.

T(Ins(p1 ,c1), Ins (p2 ,c2)) :−
if p1<p2 return Ins (p1 , c1)
else return Ins (p1 + 1 , c1)

T(Ins(p1 ,c1), Del(p2)) :−
if p1 ≤ p2 return Ins (p1 ,c1)
else return Ins (p1 − 1 ,c1)

T(Del(p1), Ins (p2 ,c2)) :−
if p1 < p2 return Del(p1)
else return Del(p1 + 1)

T(Del(p1), Del(p2)) :−
if p1 < p2 return Del(p1)
else if p1 > p2 return Del(p1 − 1)

else return Id()

SPIKE has found that this set of transformation functions violatesC2 with the
counter-example presented in Figure 5. Let us consider the following three concur-
rent operationsop1 = Ins(2, y), op2 = Del(2) andop3 = Ins(3, y).

Figure 5. Counter example scenario which violates conditionC2.

(1) Site3 integratesop2:

op′2︷ ︸︸ ︷
Del(2) = T (

op2︷ ︸︸ ︷
Del(2),

op3︷ ︸︸ ︷
Ins(3, y))

(2) Then, Site2 integratesop3:

op′3︷ ︸︸ ︷
Ins(2, y) = T (

op3︷ ︸︸ ︷
Ins(3, y),

op2︷ ︸︸ ︷
Del(2))

(3) Next, Site2 integratesop1:

op′1︷ ︸︸ ︷
Ins(3, y) = T (T (

op1︷ ︸︸ ︷
Ins(2, y),

op2︷ ︸︸ ︷
Del(2)),

op′3︷ ︸︸ ︷
Ins(2, y))

(4) Finally, Site3 integratesop1:

op′′1︷ ︸︸ ︷
Ins(2, y) = T (T (

op1︷ ︸︸ ︷
Ins(2, y),

op3︷ ︸︸ ︷
Ins(3, y)),

op′2︷ ︸︸ ︷
Del(2))

The final result is the same as in site2 and3, butC2 is not satisfied. In fact:

op′1︷ ︸︸ ︷
Ins(3, y) = T (op1, op2 ◦ T (op3, op2)) 6=

op′′1︷ ︸︸ ︷
Ins(2, y) = T (op1, op3 ◦ T (op2, op3))

Note that if we useop1 = Ins(2, x) instead ofop1 = Ins(2, y), then the result
will diverge on site2 and3 as in the counter-example of Figure 4.

Suleiman’s Transformation Functions

Suleiman (Suleiman, Cart & Ferrié, 1997) proposes a different set of transforma-
tion functions. He adds two new parameters to functionIns which is defined as
follows: Ins(pi, ci, bi, ai) wherebi (ai respectively) is the set of concurrent opera-
tions to this insertion operation and that have deleted a character before (after re-
spectively) the positionpi. Hence, for two concurrent operationsIns(p1, c1, b1, a1)
andIns(p2, c2, b2, a2) defined on the same state, the following cases are given:

• if (b1 ∩ a2) 6= ∅ thenc2 was inserted beforec1,

• if (a1 ∩ b2) 6= ∅ thenc2 was inserted afterc1,

• if (b1 ∩ a2) = (a1 ∩ b2) = ∅ thenc1 andc2 were inserted at same position.
Hence, we can use thecode of charactercode(ci) to determine which character
we have to insert at this position.

T(Ins(p1 ,c1 ,b1 ,a1), Ins (p2 ,c2 ,b2 ,a2)) :−
if p1 < p2 return Ins (p1 ,c1 ,b1 ,a1)
else if p1 > p2 return Ins (p1 + 1 ,c1 ,b1 ,a1)

else // p1 == p2

if (b1 ∩ a2) 6= ∅ return Ins (p1 + 1 ,c1 ,b1 ,a1)
else if (a1 ∩ b2) 6= ∅ return Ins (p1 ,c1 ,b1 ,a1)

else if code(c1)>code(c2) return Ins (p1 ,c1 ,b1 ,a1)
else if code(c1)<code(c2) return Ins (p1 + 1 ,c1 ,b1 ,a1)

else return Id()

T(Ins(p1 ,c1 ,b1 ,a1), Del(p2)) :−
if p1 > p2 return Ins (p1 − 1 ,c1 ,b1 +Del(p2),a1)
else return Ins (p1 ,c1 ,b1 ,a1 +Del(p2))

T(Del(p1), Del(p2)) :−
if p1 < p2 return Del(p1)
else if p1 > p2 return Del(p1 − 1)

else return Id()

T(Del(p1 ,pr1), Ins (x2 ,p2 ,b2 ,a2)) :−
if p1 < p2 return Del(p1)
else return Del(p1 + 1)

SPIKE has proved that this set of transformation functions is correct. The only
problem is the management of the setsai andbi associated with eachIns opera-
tion. The implementation is more difficult and transferring theIns operation is not
efficient.

Proposed Transformation Functions

We propose a new set of correct transformation functions which is simpler than the
ones by Suleiman. In fact, Suleiman’s transformation functions are over-specified.
Managing the set of operations before and after eachIns operation is not neces-
sary. By studying the counter-examples given by SPIKE, we have noted that the
problem came from the conflict between the insertion operations which have the
same position. To solve this problem we need to know the exact insertion positions
at the generation of each of the two operations. Then two cases are possible: either
the two users had effectively inserted the characters in the same position or they
had inserted them into different positions and other users concurrently erased the
characters located between these two positions.

Accordingly, we propose to add a new parameteripi to everyIns operation. This
parameter represents theinitial position of characterci. Suppose the user insert a
characterx at position 3, then an operationIns(3, 3, x) is generated. If this opera-
tion is transformed, only the position will change. The initial position parameter is
not affected.

T(Ins(p1 ,ip1 ,c1), Ins (p2 ,ip2 ,c2)) :−
if (p1<p2) return Ins (p1 ,ip1 ,c1)
else if (p1>p2) Ins (p1+1,ip1 ,c1)

else // p1 ==p2

if (ip1<ip2) return Ins (p1 ,ip1 ,c1)
else if (ip1>ip2) return Ins (p1+1,ip1 ,c1)

else // ip1 ==ip2

if (code(c1) < code(c2)) return Ins (p1 ,ip1 ,c1)
else if (code(c1) > code(c2)) return Ins (p1+1,ip1 ,c1)

else // c1 ==c2

return Id ()

T(Ins(p1 ,ip1 ,c1), Del(p2)) :−
if (p1>p2) return Ins (p1 − 1 ,ip1 ,c1)
else return Ins (p1 ,ip1 ,c1)

T(Del(p1), Del(p2)) :−
if (p1<p2) return Del(p1)
else if (p1>p2) return Del(p1 − 1)

else return Id()

T(Del(p1 ,pr1), Ins (p2 ,ip2 ,c2)) :−
if (p1<p2) return Del(p1)
else return Del(p1 + 1)

This set of transformation functions is correct,w.r.t. C1 andC2. This kind of

result shows an important aspect of our approach. By studying counter-examples of
Ellis and Ressel, we were sure that the priority systems are unsafe. After proving
that Suleiman’s functions were safe, we tried to simplify them. With the theorem
prover, it was easy for us to try different kind of simplifications and finally con-
verge towards these transformation functions. One serious bottleneck for verifying
transformation functions is the number of possible cases to be considered. With
our approach, we delegate this task to the theorem prover. Hence we can try a lot
of different solutions in a short time. By this way, we have a process to develop
quickly correct transformation functions.

Formalization of Transformation Functions

In this section, we describe the principles of SPIKE prover and then we explain how
to specify transformation functions and convergence conditions (C1 andC2).

The Theorem Prover: SPIKE

Theorem provers have been applied to the formal development of software. They
are based on logic-based specification languages and they provide support to the
proof of correctness properties, expressed as logical formulas. Theorem provers can
be roughly classified in two categories: (i) theproof assistantsneed many interac-
tions even sometimes for simple proof steps; (ii) theautomatic proversare working
in a push-button mode. Tools from the second category are especially useful for
handling problems with numerous but relatively simple proof obligations.

For the analysis of collaborative editing systems we have employed the SPIKE
induction prover, which belongs to the second category and seems particularly
adapted to the task.

SPIKE induction prover has been designed to verify quantifier-free formulas in
theories built with first-order conditional rules. SPIKE proof method is based on
the so-calledcover set induction: Given a theory SPIKE computes in a first step
induction variables where to apply induction and induction terms which basically
represent all possible values that can be taken by the induction variables. Typically
for a nonnegative integer variable, the induction terms are0 andx+ 1, wherex is a
variable.

Given a conjecture to be checked, the prover selects induction variables accord-
ing to the previous computation step, and substitutes them in all possible way by
induction terms. This operation generates several instances of the conjecture that
are thensimplifiedby rules, lemmas, and induction hypotheses.

Note that if the conjecture is false, then it is guaranteed that the prover will
exhibit a counter-example. This is very important for our approach.

Formal Specification

For modelling the structure and the manipulation of data in programs,abstract data
types(ADTs) are frequently used (Wirsing, 1990). Indeed, thestructureof data is
reflected by so calledconstructors(e.g., zero0 and successors(x), meaningx+ 1,
may construct the ADTnat of natural numbers). Moreover, all (potential) data
are covered by the set ofconstructors terms, exclusively built by constructors. An
ADT may have differentsorts, each characterized by a separate set of constructors.
Furthermore, themanipulationof data is reflected byfunction symbols(e.g., plus
andminus onnat). The value computed by such functions are specified byaxioms,
usually written in equational logic. Analgebraic specificationis a description of
one or more such abstract data types (Wirsing, 1990).

Specification of Functions

More formally a real-time groupware system can be considered as a structure of the
formG =< S,O, Tr > where:

• S is the structure of the shared object (i.e., a string, an XML document, a CAD
object),

• O is the set of operations applied to the shared object,

• Tr is the transformation function.

In our approach, we construct an algebraic specification from a real-time group-
ware system . Indeed, the shared object structure is transformed in ADT specifi-
cationState. We define a sortOpn for the operation setO, where each operation
serves as a constructor of this sort. For instance, a collaborative editing text has a
character string as shared object structure, andO = {O1, O2} where:

• O1 = Ins(p, c) inserts characterc at positionp,

• O2 = Del(p) deletes the character at positionp.

For the character string we may specify it with the list ADT; its constructors are
〈〉 andl •x (i.e., an empty list and a list composed by an elementx added to the end
of the list l respectively). Because all operations are applied to the object structure
in order to modify it, we give the following function:

� : State×Opn→ State

All appropriate axioms of the function� describe the transition between the ob-
ject states when applying an operation. For example, the operationDel(p) changes
the character string as follows:

l �Del(p) =


〈〉 if l = 〈〉
l if l = l′ • c andp ≥ |l|
l′ if l = l′ • c andp = |l| − 1
(l′ �Del(p)) • c if l = l′ • c andp < |l| − 1

where|l| returns the length of the listl.
To overcome the user-intention violation problem, a transformation function is

used in order to adjust the parameters of one operation according to the effects of
other operations executed independently. Writing the specification of a transforma-
tion function in first-order logic is straightforward. For this we define the following
function:

T : Opn×Opn→ Opn

which takes two arguments, namely remote and local operations and produces an-
other operation. The axioms concerning this function show how the considered
real-time groupware transforms its operations when they are broadcasted. For ex-
ample, the following transformation:

T(Del(p1), Ins (p2 ,c2) :−
if p1 > p2 return Del(p1 + 1)
else return Del(p1)

is defined by two conditional equations:

p1 > p2 =⇒ T(Del(p1), Ins (p2 ,c2))=Del(p1 + 1)
p1 ≯ p2 =⇒ T(Del(p1), Ins (p2 ,c2))=Del(p1)

This example illustrates how it is easy to translate transformation function into the
formalism of SPIKE . This task is straightforward and can be done automatically.
The cost of formalisation is not expensive.

Specification of ConditionsC1 andC2

We now express the convergence conditions as theorems to be proved in our alge-
braic setting. For this purpose, we use a predicateEnabled : Opn×State→ Bool

expressing the condition under which an operation can be executed on a given state.
Adding this predicate allows to avoid the generation of unreachable executions
which violate conditionsC1 andC2 (Imine et al., 2002).

The first condition,C1, expresses asemantic equivalencebetween two sequences.
Each sequence consists of two operations. Given two operationsop1 andop2, the
execution of the sequence ofop1 followed byT (op2, op1) must produce the same
state as the execution of the sequence ofop2 followed byT (op1, op2).

Theorem 1 (ConditionC1).

∀opi, opj ∈ Opn and∀st ∈ State :

Enabled(opi, st) ∧ Enabled(opj, st) =⇒
(st� opi)� T (opj, opi) = (st� opj)� T (opi, opj)

The second conditionC2 stipulates asyntactic equivalencebetween two se-
quences, where every sequence is composed of three operations. Given three op-
erationsop1, op2 andop3, the transformation ofop3 with regards to the sequence

formed byop2 followed byT (op1, op2) must give the same operation as the transfor-
mation ofop3 with regards to the sequence formed byop1 followed byT (op2, op1).

Theorem 2 (ConditionC2).

∀opi, opj, opk ∈ Opn and∀st ∈ State :

Enabled(opi, st) ∧ Enabled(opj, st) ∧ Enabled(opk, st) =⇒
T (T (opk, opi), T (opj, opi)) = T (T (opk, opj), T (opi, opj))

Conclusion and Perspectives

We have demonstrated in this paper the difficulty of building correct transformation
functions. Even on a simple String object, all existing transformation functions are
incorrect or over-specified. The difficulty stems from the complexity of correctness
proof for transformations functions. On a simple String object, each time a function
definition changes, you have to explore123 different cases carefully. We are con-
vinced that this task cannot be done properly without assistance of a computer. Our
approach is very valuable:

• The result is a set of safe transformation functions.

• During the development, the guidance of the theorem prover gives a high value
feedback. Indeed, the theorem prover quickly produces counter-examples.

• Formalization is easy.

We are convinced that this approach allows the transformational approach to be
applied on more complex typed objects (Imine et al., 2002). We are working in
several directions now:

• As we can proveC1 andC2 on large number of operations, we are currently de-
veloping correct transformation functions for a file system, XML files, blocks
of text, etc. We are working not only on new sets of safe transformation func-
tions but also on correctness of composition of these sets.

• We are currently modifying the SPIKE theorem prover in order to build an
integrated development environment for transformation functions. Within this
environment a user will enter functions like in this paper and will call the theo-
rem prover on them like a compiler. If errors are reported then the environment
gives counter-examples immediately. We believe that this kind of environment
can greatly improve the process of deriving transformation functions.

Acknowledgments

Many thanks for Fethi A. Rabhi, Senior lecturer at University of New South Wales of Sydney and

Hala Molli, Associate Professor at University of Nancy, for their reviewing of this paper.

References
Davis, A. H., Sun, C. & Lu, J. (2002): ‘Generalizing Operational Transformation to the Standard

General Markup Language’,in Proceedings of the 2002 ACM conference on Computer sup-
ported cooperative work, ACM Press, pp. 58–67.

Ellis, C. A. & Gibbs, S. J. (1989): ‘Concurrency Control in Groupware Systems’,in SIGMOD
Conference, Vol. 18, pp. 399–407.

Imine, A., Molli, P., Oster, G. & Rusinowitch, M. (2002): ‘Development of Transformation Func-
tions Assisted by a Theorem Prover’,in Fourth International Workshop on Collaborative Edit-
ing, New Orleans, Louisiana, USA.

Molli, P., Skaf-Molli, H., Oster, G. & Jourdain, S. (2002): ‘SAMS: Synchronous, Asynchronous,
Multi-synchronous Environments’,in The Seventh International Conference on CSCW in De-
sign, Rio de Janeiro, Brazil.

Palmer, C. R. & Cormack, G. V. (1998): ‘Operation Transforms for a Distributed Shared Spread-
sheet’, in Proceedings of the 1998 ACM Conference on Computer Supported Cooperative
Work, ACM Press, pp. 69–78.

Ressel, M., Nitsche-Ruhland, D. & Gunzenhauser, R. (1996): ‘An Integrating, Transformation-
oriented Approach to Concurrency Control and Undo in Group Editors’,in Proceedings of
the ACM Conference on Computer Supported Cooperative Work (CSCW’96), Boston, Mas-
sachusetts, USA, pp. 288–297.

Stratulat, S. (2001): ‘A General Framework to Build Contextual Cover Set Induction Provers’,Jour-
nal of Symbolic Computation32(4), 403–445.

Suleiman, M., Cart, M. & Ferrié, J. (1997): ‘Serialization of Concurrent Operations in a Distributed
Collaborative Environment’,in Proceedings of the International ACM SIGGROUP Conference
on Supporting Group Work : The Integration Challenge (GROUP’97), ACM Press, pp. 435–
445.

Suleiman, M., Cart, M. & Ferrié, J. (1998): ‘Concurrent Operations in a Distributed and Mobile
Collaborative Environment’,in Proceedings of the Fourteenth International Conference on
Data Engineering (ICDE’98), IEEE Computer Society, Orlando, Florida, USA, pp. 36–45.

Sun, C. (2002): ‘Undo as Concurrent Inverse in Group Editors’,ACM Transactions on Computer-
Human Interaction (TOCHI)9(4), 309–361.

Sun, C. & Chen, D. (2002): ‘Consistency Maintenance in Real-Time Collaborative Graphics Editing
Systems’,ACM Transactions on Computer-Human Interaction (TOCHI)9(1), 1–41.

Sun, C., Jia, X., Zhang, Y., Yang, Y. & Chen, D. (1998): ‘Achieving Convergence, Causality-
preservation and Intention-preservation in Real-Time Cooperative Editing Systems’,ACM
Transactions on Computer-Human Interaction (TOCHI)5(1), 63–108.

Vidot, N., Cart, M., Ferríe, J. & Suleiman, M. (2000): ‘Copies Convergence in a Distributed Real-
Time Collaborative Environment’,in Proceedings of the ACM Conference on Computer Sup-
ported Cooperative Work (CSCW’00), Philadelphia, Pennsylvania, USA.

Wirsing, M. (1990): ‘Algebraic specification’,Handbook of Theoretical Computer Science (vol. B):
formal models and semanticspp. 675–788.

	Introduction
	Transformational Approach
	Verifying Transformation Functions
	Ellis's Transformation Functions
	Ressel's Transformation Functions
	Sun's Transformation Functions
	Suleiman's Transformation Functions
	Proposed Transformation Functions

	Formalization of Transformation Functions
	The Theorem Prover: SPIKE
	Formal Specification
	Specification of Functions
	Specification of Conditions C1 and C2

	Conclusion and Perspectives

