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I. INTRODUCTION 

The worst case behavior of decision algorithms using comparisons 

between inputs has been extensively studied for various sorting-type 

problems. Two principal methods have been used: the information 

theoretic method, and the adversary method. When the inputs are numbers, 

one can consider the use of more general comparisons. Many authors have 

tried to extend the lower bounds known for simple comparisons to deci ~ 

sion trees using linear comparisons [1,2,10-14]. Whereas information 

theoretic arguments carry through ad verbatim, the generalization of 

adversary arguments is not done so easily (see [12] for example). 

Decision trees using linear comparisons are a natural cDmputation 

model for problems which are defined by linear inequalities. This 

includes linear optimization problems such as minimal spanning trees 

for graphs, shortest path problems, minimal assignment problems, and 

many others. 

It is therefore interesting to develop new methods for proving 

lower bounds on the complexity of linear decision trees. This has been 

done to some extent in an ad hoc ~and ~ften cumbersome) manner by 

authors interested in specific problems. It is our hope that by focus- 

ing on general methods rather than on specific results, a better under- 

standing of the geometry underlying linear decision problems can be 

achieved. 

2. PRELIMINARIES 

We recall the following terminology from convex geometry (see for 

example [3]): A set U ~ ~n is affine if it is obtained by translating 

a linear subspace; dim U, the dimension of U, is defined to be the 

dimension of that subspace. A hyperplane H in ~n is an affine set of 

dimension n-l, that is, the set of solutions to a nontrivial linear 
n 

equation i~ 1 aix i = b. The hyperplane H cuts ~n into two (closed) 
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halfspaces defined by Z aix i ~ b~ and Z aix i ~ b. A convex poly- 

hedral set is a set obtained from the intersection of finitely many 

half spaces. If C is obtained by intersecting the half spaces 

defined by the hyperplanes {Hi: i C I} then for each subset I' ~ I the 

set C N (i~I' Hi) is a face of C. 

The following definitions will be used: 

A set U is polyhedral if it is the union of finitely many convex 

polyhedral sets; dim U, the dimension of U, is defined to be the least 

k such that U is contained in the union of finitely many affine sets 

of dimension k. 

A family {D i} of polyhedral sets forms a polyhedral partition 

of~ n if the sets D i have disjoint interiors and cover ~n The 

partition {E i} is a refinement of the partition {Dj} if each set 

E i is contained in a set Dj. 

A linear decision problem in ~n is given by a polyhedral parti~ 

tion {D i} of IR n. A decision procedure for that problem consists of 

an algorithm that computes for each input x = <Xl,...,Xn > the index 

of a set D i containing it. Quite often, such a procedure can be 

represented by a linear decision tree T: T is a labeled binary tree. 

Each internal node of T is labeled with a comparison f(x) : 0, where 

f(x) = Z aix i + b, and the two edges leaving it are labeled with the 

mutually exclusive outcomes f(x) > 0, f(x) ~ 0. 

The tree T represents a procedure for testing inputs from IR n, 

doing linear comparisons. We perform the test at the root, choose 

according to the result one of the branches, and iterate until a leaf 

is reached. Thus an input x reaches leaf v if it fulfills all the 

inequalities labeling the path to v. T solves the problem defined by 

the partition {D i} if each leaf v of T can be associated with a set 

Di(v) such that x reaches v iff x e Di(v) . 

Let I(v) be the set of inputs reaching the leaf v in T. With T 

is associated a polyhedral partition P(T) = {I(v): v is a leaf of T} 

of ~n. T solves the problem defined by {D i} iff P(T) refines {Di}. 

Thus, solving a linear decision problem has the geometrical mean- 

ing of building a refinement to given polyhedral partition of ~n 

by a succession of binary splittings. 

The linear complexity of a problem P is equal to the minimal depth 

of a linear decision tree solving P. 

Two other models of decision trees are frequently encountered in 

the literature: one can consider ternary trees where each comparison 

has three outcomes, < , = and > ; one can also consider binary deci- 

sion trees where each comparison has two outcomes < and > . For the 
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sake of completeness we add a third model, where each comparison has 

two outcomes < and > (an input reaches more than one leaf if equality 

obtains). In all cases the relation "tree T solves problem P" is 

defined as before: T solves P if for each leaf v of T the set I(v) 

of inputs reaching v is contained in one of the sets defining P. It 

is easy to see that a decision tree of one type solving a problem P 

can be transformed into a decision tree of any o~her type, with the 

same depth, solving problem P. Also, we can delete from a partition 

{D i} any set with empty interior, without changing the complexity of 

the problem. 

3. THE INFOrmaTION THEORETIC ARGUMENT AND ITS EXTENSIONS 

The most general argument used to prove lower bounds on decision 

trees is the inform&tion theoretic one: if the problem P is defined 

by m sets then any tree solving P has at least m leaves, and thereforer 

has at least depth log m. It is sometimes possible to extend this 

argument to problems with few outcomes, by proving that one cannot 

solve that problem without solving some refinement of it, which has 

many outcomes. We introduce the following definitions: 

A set U c ~n is weakly connected if there exists a set V such that 

dim V < n-l, and U \V is disconnected; it is strongly connected 

otherwise. 

Any convex set with nonempty interior is strongly connected. Any 

open polyhedral set in ~n is equal to the finite union of maximal 

strongly connected subsets. This decomposition into strong components 

is unique. We have: 

LEMM~ 3.1. Let {D i} he a polyhedral partition of ]R n, and let 

for each i, Dij , j = l,...,j i be the strongly connected components 

of int D i Let {E i} be a partition of ~n into convex sets with 

nonempty interiors. Then, if the partition {Ei} is finer than the 

partition {D i} , it is also finer than the partition {Dij]. 

C D. then the sets int E N Dij partition PROOF: If Er -- 3 r 

int E r into strong components. Since E r is strongly connected, it 

follows that E C 5.. for some j. 
r l 3 

~D {Dij COROLLARY 3.2. Let t i } , } be defined as above. Then a 

linear decision tree (with strong inequalities) solves the problem 

defined by {D i} iff it solves the problem defined by {Dij} . 

We list three applications to this theorem. 
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(i) Any linear decision tree that distinguishes inputs ordered 

according to an odd permutation from those permuted by an even permuta- 

tion, solves the sorting problem as well [5, §5.3.1, Ex. 29]. 

(ii) Any linear decision tree finding the k-th element of 

Xl,...,x n , also finds which k-I elements are smaller than it [5, 

§5.3.3, Ex. 2]. 

(iii) Any linear decision tree finding the set of maximal points 

out of n points in the plane, also sorts the maxima by their x (and y) 

coordinates [9,4]. 

4. FACE COUNTING ARGUMENT 

We have shown in the previous chapter how to count correctly the 

number of components of a partition. We want now to take into consider- 

ation the complexity of each component, as embodied in its 

face structure. We shall restrict ourselves in this chapter to parti- 

tions consisting of convex polyhedral sets. The extension to the 

general case is straightforward but tedious. 

We omit the proof to the following geometrical len~na. 

LEMMA 4.1. Let {D i} be a partition of the convex polyhedral set 

D into convex polyhedral subsets. Then each k-dimensional face of D 

contains a k-dimensional face of some subset D i. 

Thus, if a partition {Ej} is finer than the partition {Di}, it 

also refines the face structure of {Di}. This can be used to prove 

lower bounds based on a face counting argument. We have: 

LEMMA 4.2. Let T be a binary decision tree of depth d, with 

strong inequalities in IR n. The sets in the partition P(T) defined 

by the leaves of T have at most (~)2 d-k~ n-k dimensional faces. 

PROOF: We assume without loss of generality that T does not 

contain redundant comparisons. We associate each leaf v of T with a 

string of l's and 2's representing the outcomes of the comparisons 

on the path leading to v. Each string thus obtained has length at 

most d and no string is a prefix of another. Each n-k dimensional 

face of I(v), the set of inputs reaching v, is obtained by replacing 

k inequalities on the path to v by equalities. We encode that face by 

putting n-k zeros in the corresponding positions of the string associ- 

ated with v. It is now clear that the total number of n-k dimensional 

faces is bounded by the number of strings of length d over {0,1,2} 
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2 d-k" cQntaining exactly k zerost which is (~) 

THEOREM 4.3. Let P be the problem defined by the convex poiy- 

hedral sets {D i} in ~n. Let F(P,k) be the sum of the number of 

k-dimensional faces of each set D i . Then, if T is a linear decision 

tree of depth d solving P , we have for 0 < k < n 
m 

(d ! 2d-k _> F(P,n-k) (4.1) 

PROOF: Follows immediately from the previous two lemmas. 

Note that for k = 0 we have the standard information theoretic 

inequality 

2 d > # of sets defining P. 

Inequality (4.1) also implies that the depth of T is at least as 

large as the maximum degree of a face. This degree argument implies 

for example that at least n-1 comparisons are needed to find the maxi- 

mum of n elements. 

It is interesting to note that Theorem 4.3 is proved in [13], for 

the particular case of a two-outcomes problem, by an adversary argument. 

5. INVARIANCE PRINCIPLE 

We wish to introduce in this chapter a new principle, which is 

familiar from other fields of mathematics. A way of showing that 

some problem has a simple structure is to show that it is invariant 

under a large family of transformations. If this is the case then we 

can in general restrict the search for an efficient solution to algo- 

rithms which are "invariant" under the "dual" family of transformations. 

To pick a very simple example, if x n does not occur in the definition 

of a problem P in]R n, a fact that can be expressed by saying that the 

sets {D i} defining P are invariant under translations along the x n 

axis, then comparisons involving x n do not help in solving P. 

We first need a few facts from linear algebra. Let L n be the 

space of affine functionals on ]R n, and A n be the space of affine 

transformations in]R n. Each functional f 6 L n has the form 

f(x) = (a- x) + b, and we associate f with the n+l vector vf = [a;b]. 

Each transformation f e A n has the form f(x) = Ax + b, and we associate 

f with the (n+l) x (n+l) matrix 
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Let f E L n ~ F E An. The functional f is (weakly) invariant under 

F if V x, f(x) ~ 0 ~ f(Fx) ~ 0. This holds true iff 9fM F : 19f , 

with ~ > 0, that is, iff ~f is an eigenvector of M~ with positive 

eigenvalue. Note that f is invariant under F iff F maps each of the 

half spaces If(x) > 0], [f(x) < 0] into itself. 

A polyhedral partition {D i} is invariant under F if F preserves 

the sets {D i} and their faces. Let {fl,...,fk} be a minimal set of 

functionals such that the sets D. are in the algebra of sets generated 
l 

by the sets [fi(x) ~ 0], i = 1,...,k. (Each set D i can be defined 

by some propositional combination of the terms fi(x) ~ 0 , i = 1 .... ,k). 

{fl ..... fk } is defined to be a basis for {Di}. The partition {D i} 

is invariant under F iff fi is invariant under F, for i = 1 ..... k. 

The main theorem of this section is given below: 

THEOREM 5.1. Let P be the problem defined by the partition {D i} 

and let G be the set of affine transformations that keep that partition 

invariant. There exists a minimal depth linear decision tree that 

solves P using only comparisons invariant under G. 

The proof of that theorem will involve repeated applications of 

the following lemma. 

LEMMA 5.2. Let T be a decision tree (with strong inequalities) 

that solves the problem defined by the partition {D i} . Let T' be 

the decision tree obtained from T by replacing each comparison f(x) : 0 

by the comparison f'(x) : 0. Let G be a set of affine transformations 

that fulfills the following conditions: 

(i) V F E G , x 6 D. iff Fx e D. 
1 1 

(P is invariant under G) ; 

(ii) For any f' in T' and F 6 G 

f' (Fx) > 0 iff f' (x) > 0 

(T' is invariant under F) ; 

(iii) Vx e ~n 3 F E G such that 

f~(F x ) > 0 iff f(Fx) > 0 for any f in T . 

Then T ~ solves P . 

PROOF: We shall show that if x reaches in T' the leaf v, which 

is associated in T with D i ~ then x E D i. Indeed, by (iii) there exist 

F E G such that Fx reaches the same leaf in T and T' By (ii), Fx 

reaches leaf v in T', so that Fx reaches leaf v in T, and Fx E D i. 

By (i), it follows that x c D i. 
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~ D THEOREM 5.3. Let {fl °°°~fk } be a basis for the partition { i ~ . 

There exists a minimal depth linear decision tree solving the problem 

defined by {Di} that uses only comparisons that are linear combinations 

of fl'''''fk" 

PROOF: Let T be a minimal decision tree for P . We distinguish 

two cases : 

(i) Any linear homogeneous functional is spanned by {fl~0. ~fk}o 

Replace in T each nonhomogeneous comparison (u. x) + a : 0 , with a~ 0~ 

by the comparison a : 0. Apply Lemma 5.2, with G being the set of 

expansions x ÷ Ix , I > 0. 

(ii) Otherwise, there exists a vector w e ]R n such that w # 0 

and fi(w) = 0, i = 1 .... ,k. Let V = sp{f I .... ,fk } and letV be the 

orthogonal complement of V. Each functional f 6 L n can be decomposed 
1 

into f = fl + f2 ' where fl 6 V, f2 E V . Replace each comparison 

f(x) : 0 by the comparison f2(w) : 0, if f2 #~ 0. Apply Lemma 5.2, with 

G being the set of translations x ÷ x + lw , I > 0. 

PROOF OF THEOREM 5.1: Let T be a minimal depth decision tree for 

P. By the previous theorem we can assume without loss of generality 

that T uses only comparisons of the form f(x) : 0, wit~ f e V 

= sP{fl,...,fk}. Note that [0,1] ~ V. V can be decomposed into the 

direct sum of s <_ k linear subspaces, V = V 1 @ ... @ V s , such that 

f is invariant under G iff f E V. for some i. Conversely, any affine ! 

transformation that preserves the functionals in u V. is in G. Let 
3 

1 > I ! > 12 > ... > I Define a matrix B = M F of the form (5.1) such 
s s 

that ~B = I.v if ~ e V. , ~B = 0 if ~ ~ V. If ~= .Z.a.5. ~ with 
1 l s m-m l= 3 1 1 

vi E Vi , ~ilJ = 1 , then vB m = Z a.l.v. , and vBm/iI~Bmjl converges 
i= 9 11i 

to the vector ~ e Vj. Note that the transformations associated with 

the matrices B m are in G, and that the limit ~. is a vector associated 
3 

with a functional invariant under G~ 

Replace each comparison f(x) : 0 in T by the comparison f' (x) : 0, 

where vf, = lim ~f Bm/ll~fBm~. The resulting tree T' uses only compari- 

sons invariant under G, and solves the problem P bv Lemma 5.2. 

Note that, unless T were of the prescribed form, some comparisons 

would be made redundant while T' is built. 

Let us present some applications of this theorem. We have 

COROLLARY 5.4 [14]. If P is a problem defined by homogeneous 

inequalities then there exists a minimal depth decision tree solving 

P which uses only homogeneous comparisons. 

COROLLARY 5.5 [14]. If P is a problem defined by inequalities of 
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the form x k < xj , then there exists a minimal depth decision tree 

which solves P using only comparisons of the form Z aix i : 0 , where 

Zai=0. 

Weuwould like to conclude this section with an interesting combined 

application of the invariance principle with the adversary method. 

First let us introduce a few definitions. 

Let P1 and P2 be problems defined on inputs Xl,...,x m and yl,...,y m 

respectively by the families of sets{Di } and{Ej}. The Cartesian 

product of P1 and P2 ' P1 x P2 is defined on inputs x I .... ,Xm,Y 1 .... 'Yn 

by the sets {D ix Ej}. It consists of deciding concurrently to which of 

the sets D i <Xl,...,Xm> belongs, and to which of the sets Ej 

<yl,...,yn > belongs. It is therefore obvious that the (linear) complex- 

ity of P1 × P2 is at most equal to the sum of the complexities of P1 and 

P2 " Surprisingly, there are problems for which equality does not hold 

(for a result with the same flavor, see [7]). The following example 

is due to M. Rabin [9]. 

Let P1 be the problem defined in~ by the 5 sets x ~ 0, i _< x 

(i+l) for i = 0,1,2 and i ~ 3. Let P2 be the problem defined in 

by the 9 sets y < 0, i < y < (i+l) for i = 0,...,6 and y > 7. The 

problem P1 has 5 outcomes, and 3 comparisons are required to solve it, 

the problem P2 has 9 outcomes and 4 comparisons are required to solve 

it. Yet the problem P1 x P2 can be solved using only 6 linear compari- 

sons: Figure 5.1 illustrates a partition of the xy plane that can be 

obtained in 4 comparisons. Each region of the partition intersects 

with at most 4 of the rectangular sets of the partition, and two more 

comparisons can distinguish each one. 

The problems used in the previous example are defined by nonhomo- 

geneous equations. It turns out that this is essential: 

THEOREM 5.6. If P1 and P2 are defined by homogeneous inequalities 

then the linear complexity of P1 x P2 is equal to the sum of the 

complexities of P1 and P2" 

The proof of this theorem consists of two parts: we first show 

that one can assume without loss of generality that each step in the 

decision algorithm either involves the x i or involves the yj , but not 

both. This is done using the invariance principle. We then prove the 

theorem using an adversary argument. 

LEMMA 5.7. If P1 and P2 are defined by homogeneous inequalities 

then there is a minimal decision tree solving P1 × P2 using only 

comparisons of the form f(x) : 0 or g(y) : O. 
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Figure 5.1 

PROOF: The problem_. P1 × P2 is invariant under the group of trans- 

formations of the form T(x,y) = (rx,sy) , r,s > 0. A nontrivial affine 

functional is invariant under these transformations iff it depends only 

on x or depends only on y. 

PROOF OF THEOREM 4.6: Let us first define formally what is the 

adversary argument. We associate with the problem P to be solved a 

game played between decider and adversary. Alternately decider chooses 

a comparison on Xl,...,x n and adversary chooses a consistent answer to 

this comparison. The game ends if the results of the comparisons deter- 

mine a unique answer to problem P. The complexity of problem P is c 

iff the adversary has a strategy forcing c moves in the game. 

Now let G 1 and G 2 be the games corresponding to problems P1 and P2 

respectively, and c I and c 2 their respective complexities. By Lemma 5.7 

we can restrict our attention in the solution of P! × P2 to unmixed 

comparisons involving only xi's or yj's. The complexity of Pl × P2 is 

therefore equal to the maximal number of moves the adversary can force 
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in the Cartesian product G 1 × G 2 of the games G 1 and G 2 ~ where moves 

are either moves of G 1 or moves of G 2 , and this is Cl+C 2 [4]. 

6. CONCLUSIONS 

We have exhibited several general methods that can be used to 

obtain lower bounds for linear decision trees. Applications were 

scarcely given, and the interested reader can find other results in 

[ii], and in the other papers mentioned in the bibliography. 

Some of these methods seem to generalize to more powerful compari- 

sons (quadratic, polynomial (?)), particularly, the face counting 

argument. One must however, in order to do so, leave the well trodden 

fields of linear algebra and linear geometry, and enter into the more 

exotic realm of (real) algebraic geometry. 
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