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Abstract. Program verification is concerned with proving that a pro-
gram is correct and adheres to a given specification. Testing a program,
in contrast, means to search for a witness that the program is incorrect.
In the present paper, we use a program logic for Java to prove the in-
correctness of programs. We show that this approach, carried out in a
sequent calculus for dynamic logic, creates a connection between calculi
and proof procedures for program verification and test data generation
procedures. Starting with a program logic enables to find more general
and more complicated counterexamples for the correctness of programs.
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1 Introduction

Testing and program verification are techniques to ensure that programs behave
correctly. The two approaches start with complementary assumptions: when we
try to verify correctness, we implicitly expect that a program is correct and want
to confirm this by conducting a proof. Testing, in contrast, expects incorrectness
and searches for a witness (or counterexample for correctness):

“Find program inputs for which something bad happens.”

In the present paper, we want to reformulate this endeavour and instead write
it as an existentially quantified statement:

“There are program inputs for which something bad happens.” (1)

Written like this, it becomes apparent that we can see testing as a proof proce-
dure that attempts to eliminate the quantifier in statements of form (1). When
considering functional properties, many program logics that are used for veri-
fication are general enough to formalise (1), which entails that calculi for such
program logics can in fact be identified as testing procedures.

The present paper discusses how the statement (1), talking about a Java
program and a formal specification of safety-properties, can be formalised in



dynamic logic for Java [1, 2]. Through the usage of algebraic datatypes, this
formalisation can be carried out without leaving first-order dynamic logic. Sub-
sequently, we use a sequent calculus for automatic reasoning about the resulting
formulae. The component of the calculus that is most essential in this setting
is quantifier elimination. Depending on the way in which existential quanti-
fiers are eliminated—by substituting ground terms, or by using metavariable
techniques—we either obtain proof procedures that much resemble automated
white-box test generation methods, or we arrive at procedures that can find more
general and more complicated solutions (program inputs) of (1), but that are
less efficient for “obvious” bugs. We believe that this viewpoint to incorrectness
proofs can both lead to a better understanding of testing and to more powerful
methods for showing that programs are incorrect.

Organisation of the Paper Sect. 2 introduces dynamic logic for Java and describes
how (1) can be formalised. In Sect. 3, we show how different versions of a sequent
calculus for dynamic logic can be used to reason about (1). Sect. 4 discusses
how solutions of (1) can be represented. Sect. 5 provides further details about
incorrectness proofs using the incremental closure approach. Sect. 6 discusses
related work, and Sect. 7 gives future work and concludes the paper.

Running Example: Erroneous List Implementation The Java program shown in
Fig. 1 is used as example in the whole paper. It is interesting for our purposes
because it operates on a heap datastructure and contains unbounded loops,
although it is not difficult to spot the bug in the method delete.

2 Formalisation of the Problem in Dynamic Logic

In the scope of this paper, the only “bad things” that we want to detect are
violated post-conditions of programs. Arbitrary broken safety-properties (like
assertions) can be reduced to this problem, whereas the violation of liveness-
properties (like looping programs) falls in a different class and the techniques
presented here are not directly applicable. This section describes how the state-
ment that we want to prove can be formulated in dynamic logic:

There is a pre-state—possibly subject to pre-conditions—such that the
program at hand violates given post-conditions. (2)

Dynamic Logic First-order dynamic logic (DL) [1] is a multi-modal extension of
first-order predicate logic in which modal operators are labelled with programs.
There are primarily two kinds of modal operators that are dual to each other: a
diamond formula 〈α〉φ expresses that φ holds in at least one final state of pro-
gram α. Box formulae can be regarded as abbreviations [α]φ ≡ ¬〈α〉 ¬φ as usual.
The DL formulae that probably appear most often have the form φ→ 〈α〉ψ and
state, for a deterministic program α, the total correctness of α concerning a
precondition φ and a postcondition ψ. In this paper, we will only use dynamic
logic for Java [2] (JavaDL) and assume that α is a list of Java statements.



public class IntList {

private ListNode head;

public void add (int n) { ... }

/*@

@ public normal_behavior
@ ensures !contains(n);

@*/

public void delete(int n) {

ListNode cur = head, prev = head;

while (cur != null) {

if (cur.val == n) prev.next = cur.next;

else prev = cur;

cur = cur.next;

}

}

public /*@ pure @*/ boolean contains(int n) {

ListNode temp = head;

while (temp != null) {

if (temp.val == n) return true;
temp = temp.next;

}

return false;
}

}

class ListNode {

public int val;

public ListNode next;

}

IntList

+add(n:int)

+delete(n:int)

+contains(n:int)

ListNode
+val: int

head0..1

next0..1

Fig. 1. The running example, a simple implementation of singly-linked lists, annotated
with JML [3] constraints. We concentrate on the method delete for removing all
elements with a certain value, which contains bugs.

Updates JavaDL features a notation for updating functions in a substitution-
like style [4], which is primarily useful because it allows for a simple and natural
memory representation during symbolic execution. For our purposes, updates can
be seen as a simplistic programming language and are defined by the grammar:

Upd ::= skip || f(s1, . . . , sn) := t || Upd |Upd || if φ {Upd} || for x {Upd}

in which s1, . . . , sn, t range over terms, f over function symbols, φ over formulae
and x over variables. The update constructors denote effect-less updates, assign-
ments, parallel composition, guarded updates and quantified updates. Updates u
can be attached to terms and formulae (like in {u} t) for changing the state in
which the expression is supposed to be evaluated:

Expression with update: Equivalent update-free expr.:
{a := g(3)} f(a) f(g(3))
{x := y | y := x+ 1} (x < y) y < x+ 1
{a := 3 | for x {f(x) := 2 · x+ 1}} f(f(a)) 15



As illustrated here, it is always possible to apply updates to terms and formu-
lae like a substitution, unless a formula contains further modal operators. In
the latter case, the application has to be delayed until the modal operator is
eliminated.

2.1 Heap Representation in Dynamic Logic for Java

Reasoning in JavaDL always takes place in the context of a system of Java
classes, which is supposed to be free of compile-time errors. From this context,
a vocabulary of sorts and function symbols is derived that represents variables
and the heap of the program in question [2].

Most importantly, in JavaDL objects of classes are identified with natural
numbers. For each class C, a sort with the same name and a (injective) function
C.get : nat → C are introduced. C.get(i) is the ith object of class C (i is the in-
dex or “address”). For distinct classes C and D, C.get(i) and D.get(j) are never
the same object. Each sort C representing a class also contains a distinguished
individual denoted by null , which is used to represent undefined references. At-
tributes of type T of a class C are modelled by functions C → T . Instead of the
infix notation attr(o), we mostly write o.attr for attribute accesses.

C can be seen as a reservoir containing both those objects that are already
created and those that can possibly be created later by a program: JavaDL uses
a constant-domain semantics in which modal operators never change the do-
mains of existing individuals. In order to distinguish existing and non-existing
objects, for each class C also a constant C.nextToCreate : nat is declared that
denotes the lowest index of a non-created object. All objects C.get(i) with
i < C.nextToCreate are created, all others are not.

For the program in Fig. 1, the vocabulary is as follows:

Sorts: Functions:
IntList ,ListNode, IntList .get : nat → IntList
int ,nat , . . . ListNode.get : nat → ListNode

IntList .nextToCreate : nat
ListNode.nextToCreate : nat
head : IntList → ListNode
next : ListNode → ListNode
val : ListNode → int

2.2 Formalising the Violation of Post-Conditions

We go back to (2). It is almost straightforward to formalise the part of (2) that
comes after the existential quantifier “there is a pre-state”:

¬(
pre-conditions → 〈 statements 〉 post-conditions

)
(3)

Formula (3) is true if and only if the pre-conditions hold, the program fragment
does not terminate, or terminates and the post-conditions do not hold in the
final state.



Property (2) does not mention termination, which could be interpreted in
different ways. If in (3) the box operator [α]φ was used instead of a diamond,
we would also specify that the program has to terminate for the inputs that we
search for. JavaDL does, however, not distinguish between non-termination due
to looping and abrupt termination due to exceptions (partial correctness model).
Because we, most likely, will consider abrupt termination as a violation of the
post-conditions, the diamond operator appears more appropriate.

2.3 Quantification over Program States

In order to continue formalising (2), it is necessary to close the statement (3)
existentially and to add quantifiers that express “there is a pre-state”:

∃ pre-state. {pre-state}¬(
pre-conditions → 〈 statements 〉 post-conditions

)
(4)

Because state quantification is not directly possible in JavaDL, we use an up-
date {pre-state} to define the state in which (3) is to be evaluated. For a Java
program, the pre-state covers (i) variables that turn up in a program, and (ii) the
heap that the program operates on. Following Sect. 2.1, at a first glance this turns
out to be a second-order problem, because the heap is modelled by functions like
head , next , etc.3 A second glance reveals, fortunately, that a proper Java program
and proper pre- and post-conditions4 will only look at the values C.get(i).attr of
attributes for i < C.nextToCreate: the state of non-existing objects is irrelevant.
Quantification of C.nextToCreate and the finite prefix

C.get(0).attr , C.get(1).attr , . . . , C.get(C.nextToCreate − 1).attr

can naturally be realised through quantification over algebraic datatypes like
lists. Note, that the number of quantified locations is finite, but unbounded.

Attributes of Primitive Types The simplest case is an attribute attr of a primitive
Java type. If attr has type int , the quantification can be performed as follows:

∃ attrV : intList . {for x : nat {C.get(x).attr := attrV ↓x}} . . .
Apart from the actual quantifier, an update is used for copying the contents of
the list variable attrV to the attribute. The expression also contains an operator
for accessing lists [a0, . . . , an], which we define by

[a0, . . . , an]↓ i :=

{
ai for i ≤ n

0 otherwise
(i : nat)

The fact that the operator returns a default value (0, but any other value would
work equally well) for accesses outside of the list bounds simplifies the overall
treatment and basically renders the length of lists irrelevant. Instead of lists, one
could also talk about functions with finite support.
3 JavaDL does not provide higher-order quantification.
4 In the whole paper, we assume that pre- and post-conditions only talk about the

program state, and only about created objects.



Attributes of Reference Types The quantification is a bit more involved for at-
tributes attr of type D, where D is a reference type like a class: (i) attributes
can be undefined, i.e., have value null , (ii) attributes of created objects must
not point to non-created objects, and (iii) attributes of type D can also point
to objects of type D′, provided that D′ is a subtype of D. We capture these re-
quirements by overloading the function D.get . Assuming that D0 (= D), . . . , Dk

is an arbitrary, but fixed enumeration of D’s subtypes, we define:

D.get(s, i) :=

{
Ds.get(i) for i < Ds.nextToCreate, s ≤ k

null otherwise
(s, i : nat)

Apart from the object index i, we also pass D.get(s, i) the index s of the re-
quested subtype of D. The result of D.get(s, i) is either a created object (if i
and s are within their bounds Ds.nextToCreate and k) or null . With this defi-
nition, the quantification part for a reference attribute boils down to

∃ aS , aV : natList . {for x : nat {C.get(x).attr := D.get(aS ↓x, aV ↓x)}} . . .

In case of a class D that does not have proper subclasses, the list aS can of
course be left out (and the first argument of D.get can be set to 0).

Example We show the formalisation of (2) for the method delete in the pro-
gram of Fig. 1. Apart from the values of the attributes head , next and val , which
are treated as discussed above, one also has to quantify over the number of
created objects (IntList .nextToCreate and ListNode.nextToCreate), over the re-
ceiver o of the method invocation and over the argument n. o is assumed to
be either an arbitrary created object or null (IntList .get(0, oV )). The pre- and
post-conditions correspond to the JML specification: initially, o is not null , and
delete in fact removes the elements with value n.

∃ kIL, kLN , oV : nat . ∃nV : int . ∃ headV ,nextV : natList . ∃ valV : intList .
{IntList .nextToCreate := kIL | ListNode.nextToCreate := kLN }
{for x : nat {IntList .get(x).head := ListNode.get(0, headV ↓x)} |
for x : nat {ListNode.get(x).next := ListNode.get(0,nextV ↓x)} |
for x : nat {ListNode.get(x).val := valV ↓x} |
o := IntList .get(0, oV ) | n := nV }
¬(

o 6= null → 〈 o.delete(n) 〉 〈 b = o.contains(n) 〉 b = FALSE
)

(5)

3 Constructing Proofs for Program Incorrectness

A Gentzen-style sequent calculus for JavaDL is introduced in [2], which has been
implemented in the KeY system and is used by us as test-bed. Fig. 2 shows a small
selection of the rules. Relevant for us are the following groups of rules: (i) rules
for a sequent calculus for first-order predicate logic with metavariables (the first
5 rules of Fig. 2), (ii) rules that implement symbolic execution [5] for Java (the



Γ ` φ,∆ Γ ` ψ,∆

Γ ` φ ∧ ψ,∆ ∧r
Γ, φ, ψ ` ∆

Γ, φ ∧ ψ ` ∆
∧l

Γ, φ ` ∆

Γ ` ¬φ,∆ ¬r

Γ ` φ[x/f(X1, . . . , Xn)],∆

Γ ` ∀x.φ,∆ ∀r (X1, . . . , Xn all
metavariables in φ)

Γ ` φ[x/X], ∃x.φ,∆
Γ ` ∃x.φ,∆ ∃r (X a fresh

metavariable)

Γ, {u} {r := l} 〈. . .〉φ ` ∆

Γ, {u} 〈r = l; . . .〉φ ` ∆
assign-l

(r, l side-effect-free)

Γ, {u} 〈α1; . . .〉φ, {u} b ` ∆
Γ, {u} 〈α2; . . .〉φ ` {u} b,∆

Γ, {u} 〈if (b) α1 else α2 . . .〉φ ` ∆
if-l

(b side-effect-free)

Γ, {u} 〈if (b) {α; while (b) α} . . .〉φ ` ∆

Γ, {u} 〈while (b) α . . .〉φ ` ∆
while-l

Fig. 2. Examples of (simplified) sequent calculus rules for JavaDL. In the last three
rules, the update u can also be empty (skip) and disappear. Γ and ∆ denote arbitrary
sets of formulae (side-formulae).

last three rules of Fig. 2), and (iii) rewriting rules for applying and simplifying
updates (not shown here, see [4]). The rule assign-l turns a Java assignment
into an update, which subsequently can be merged with the former preceding
update u and simplified. In if-l, a case analysis for an if-statement is performed
by splitting on the branch predicate b evaluated in the current program state u.
Both rules require that expressions with side-effects are simplified first. Finally,
the rule while-l unwinds a loop once.

The fact that the calculus directly integrates symbolic execution—and covers
all important features of Java like dynamic object creation and exceptions—
is most central for us. When symbolically executing a program, the proof tree
resembles the symbolic execution tree of the program [5] and reflects the (feasible)
paths through the program. Branch predicates that describe, in terms of the pre-
state, when a certain path is taken are accumulated as formulae in a sequent.
JavaDL introduces such predicates for conditional statements and for statements
that might raise exceptions. A simple example is the following proof:

....
p+ 1 ≤ 0, p ≥ 0 `

{p := p+ 1} 〈〉 p ≤ 0, p ≥ 0 `
〈p = p+ 1; 〉 p ≤ 0, p ≥ 0 ` assign-l

....
−p ≤ 0 ` p ≥ 0

{p := −p} 〈〉 p ≤ 0 ` p ≥ 0
〈p = −p; 〉 p ≤ 0 ` p ≥ 0

〈if (p ≥ 0) p = p+ 1; else p = −p; 〉 p ≤ 0 ` if-l



Symbolic execution and update application can usually be automated easily—in
contrast to reasoning in first-order logic—because in each proof situation only
few rules are applicable, and because the application order does not matter.

This section discusses how the sequent calculus can be used to prove for-
mulae (4). The first and essential task is always to eliminate the existential
quantifiers, i.e., to provide the programs inputs, which can be concrete or sym-
bolic. Assuming that pre- and post-conditions only talk about the program state,
it is sufficient to apply ∃r once (and not multiple times) for each quantifier in
∃ pre-state, because the validity of (4) only depends on the program fragment
and the pre- and post-conditions, not on the values of other symbols.

We focus on and propose two methods for constructing proofs: the usage of
metavariables and depth-first search (Sect. 3.2) and the usage of metavariables
and backtracking-free search with constraints (Sect. 3.3, Sect. 5). In our experi-
ments, we have concentrated on the latter method, because the implementation
KeY follows this paradigm. As a comparison, Sect. 3.1 shortly discusses how
a ground calculus would handle (4), which resembles common test generation
techniques.

3.1 Construction of Proofs using a Ground Proof Procedure

The simplest approach is ground reasoning, i.e., to not use metavariables. There-
fore, a ground version of ∃r can be used: (t is an arbitrary term)

Γ ` φ[x/t], ∃x.φ,∆
Γ ` ∃x.φ,∆ ∃rg

Equivalently, also the normal rule ∃r can be applied, immediately followed by
a substitution step that replaces the introduced metavariable X with a concrete
term t. For (4), the usage of rule ∃rg encompasses that a concrete pre-state has
to be chosen up-front that satisfies the pre-condition and makes the program
violate its post-condition. If we consider (5), for instance, we see that a proof
can be conducted with the following instantiations:

kIL kLN oV nV headV nextV valV
1 1 0 5 [0] [7] [5] (6)

The instantiations express that the classes IntList and ListNode have one cre-
ated object each (kIL, kLN ), that the object IntList .get(0) receives the method
invocation (oV ) with argument 5 (nV ), that IntList .get(0).head points to the
object ListNode.get(0) (headV ), that ListNode.get(0).next is null (nextV , be-
cause of 7 ≥ kLN ), i.e., that the receiving list has only one element, and that
ListNode.get(0).val is 5 (valV ).

A ground proof of a formula (4) is the most specific description of an er-
roneous situation that is possible. For debugging purposes, this is both an ad-
vantage and a disadvantage: (i) it is possible to concretely follow a program
execution that leads to a failure, but (ii) the description does not distinguish



∗
[P 7→ 2 ]

P + 1 > 3, P ≥ 0 `
{p := P + 1} 〈〉 p > 3, p ≥ 0 `

{p := P} 〈p = p+ 1; 〉 p > 3, P ≥ 0 `

∗
[P 7→ 2 ]

{p := P} 〈p = −p; 〉 p > 3 ` P ≥ 0

{p := P} 〈if (p ≥ 0) p = p+ 1; else p = −p; 〉 p > 3 ` if-l

` ¬{p := P} 〈if (p ≥ 0) p = p+ 1; else p = −p; 〉 p > 3, . . .
¬r

` ∃ pV : int . {p := pV }¬〈if (p ≥ 0) p = p+ 1; else p = −p; 〉 p > 3
∃r

Fig. 3. Proof that a program violates its post-condition p > 3. The initial (quantified)
formula is derived as described in Sect. 2. The application of updates is not explicitly
shown in the proof.

between those inputs (or input features) that are relevant for causing a failure
and those that are irrelevant. The disadvantage can partly be undone by look-
ing at more than one ground proof, and by searching for proofs with “minimal”
input data (e.g., [6]). Technically, the main advantage of a ground proof is that
program execution (and checking pre- and post-conditions) is most efficient for a
concrete pre-state. The difficulty, of course, is to find the right pre-state, which is
subject of techniques for automated test data generation. Common approaches
are the generation of random pre-states (e.g., [6]), or the usage of backtrack-
ing, symbolic execution and constraint techniques in order to optimise coverage
criteria and to reach the erroneous parts of a program (see, e.g., [7]).

3.2 Construction of Proofs using Metavariables and Backtracking

The most common technique for efficient automated proof search in tableau or se-
quent calculi are rigid metavariables (also called free variables) and backtracking
(depth-first search), for an overview see [8]. The rules shown in Fig. 2, together
with a global substitution rule that allows to substitute terms for metavariables
in a proof tree, implement a corresponding sequent calculus. Because, in par-
ticular, the substitution rule is destructive and a wrong decision can hinder the
subsequent proof construction, proof procedures usually carry out a depth-first
search with iterative deepening and backtrack when earlier rule applications
appear misleading.

The search space of a proof procedure can be seen as an and/or search tree:
(i) And-nodes occur when the proof branches, for instance when applying ∧r,
because each of the new proof goals has to be closed at some point. (ii) Or-nodes
occur when a decision has to be drawn about which rule to apply next, or about
a substitution that should be applied to a proof; in general, only one of the
possible steps can be taken.

Metavariables and backtracking can be used to prove formulae like (4). The
central difference to the ground approach is that metavariables can be introduced



as place-holders for the pre-state, which can later be refined and made concrete
by applying substitutions. A simple example is shown in Fig. 3, where the ini-
tial value of the variable p is represented by a metavariable P . After symbolic
execution of the program, it becomes apparent that the post-condition p > 3
can be violated in the left branch by substituting 2 for P . The right branch can
then be closed immediately, because this path of the program is not executed
for P = 2: the branch predicate P ≥ 0 allows to close the branch. Generally, the
composition of the substitutions that are applied to the proof can be seen as a
description of the pre-state that is searched for. A major difference to the ground
case is that a substitution also can describe classes of pre-states, because it is
not necessary that concrete terms are substituted for all metavariables.

Branch Predicates Strictly speaking, the proof branching that is caused by the
rule if-l (or by similar rules for symbolic execution) falls into the “and-node”
category: all paths through the program have to be treated in the proof. The
situation differs, however, from the branches introduced by ∧r, because if-l
performs a cut (a case distinction) on the branch predicate {u} b. As the program
is executed with symbolic inputs (metavariables), it is possible to turn {u} b into
true or false (possibly into both, as one pleases), by applying substitutions and
choosing the pre-state appropriately. Coercing {u} b in this way will immediately
close one of the two branches.

There are, consequently, two principal ways to close (each of) the proof
branches after executing a conditional statement: (i) the program execution can
be continued until termination, and the pre-state can be chosen so that the post-
condition is violated, or (ii) one of the two branches can be closed by making
the branch predicate true or false, which means that the program execution is
simply forced not to take the represented path. Both cases can be seen in Fig. 3,
in which the same substitution P 7→ 2 leads to a violation of the post-condition
in the left branch and turns the branch predicate in the right branch into true.

Proof Strategy The proof construction consists of three parts: (i) pre-conditions
have to be proven, (ii) the program has to be executed symbolically in order
to find violations of the post-conditions, and (iii) it has to be ensured that the
program execution takes the right path by closing the remaining proof branches
with the help of branch predicates. These steps can be performed in different
orders, or also interleaved. Furthermore, it can in all phases be necessary to
backtrack, for instance when a violation of the post-conditions was found but
the pre-state does not satisfy the pre-condition, or if the path leading to the
failure is not feasible.

Example Formula (5) can be proven by choosing the following values, which
could be found using metavariables and backtracking:

kIL kLN oV nV headV nextV valV
1 1 0 NV [0, . . .] [7, . . .] [NV , . . .]

(7)



Comparing this solution to (6), the main difference is that no concrete value
has to be chosen for nV . It suffices to state that the value of nV coincides with
the first element of the list valV : when calling delete, the actual parameter
coincides with the first element of the receiving linked list. Likewise, the parts
of the pre-state that are described by lists do not have to be determined com-
pletely: the tail of lists can be left unspecified by applying substitutions like
VALV 7→ cons(NV ,VALtail) (which is written as [NV , . . .] in the table). Sect. 4
discusses how the representation of solutions can further be generalised.

3.3 Construction of Proofs using Incremental Closure

There are alternatives to proof search based on backtracking: one idea is to work
with metavariables, but to delay the actual application of substitutions to the
proof tree until a substitution has been found that closes all branches. The idea
is described in [9] and worked out in detail in [10]. While backtracking-free proof
search is, in principle, also possible when immediately applying substitutions,
removing this destructive operation vastly simplifies proving without backtrack-
ing. Because KeY implements this technique, it is used in our experiments.

The approach of [10] works by explicitly enumerating and collecting, for
each of proof goals, the substitutions that would allow to close the branch.
Substitutions are represented as constraints, which are conjunctions of unifi-
cation conditions t1 ≡ t2. A generalisation is discussed in Sect. 4. For the ex-
ample in Fig. 3, the “solutions” of the left branch could be enumerated as
[P ≡ 2 ], [P ≡ 1 ], [P ≡ 0 ], [P ≡ −1 ], . . . , and the solutions of the right branch
as [P ≡ 0 ], [P ≡ 1 ], [P ≡ 2 ], . . . In this case, we would observe that, for in-
stance, the substitution represented by [P ≡ 0 ] closes the whole proof. Gener-
ally, the conjunction of the constraints for the different branches describes the
substitution that allows to close a proof (provided that it is consistent).

When proving formulae (4) using metavariables, a substitution (i.e., pre-
state) has to be found that simultaneously satisfies the pre-conditions, vio-
lates the post-conditions in one (or multiple) proof branches and invalidates
the branch predicates of all remaining proof branches. The constraint approach
searches for such a substitution by enumerating the solutions of all three in a
fair manner. In our experiments, we also used breadth-first exploration of the
execution tree of programs, which simply corresponds to a fair selection of proof
branches and formulae that rules are applied to. For formula (5), the method
could find the same solution (7) as the backtracking approach of Sect. 3.2.

Advantages Compared to backtracking, the main benefits of the constraint ap-
proach are that duplicated rule applications (due to removed parts of the proof
tree that might have to be re-constructed) are avoided, and that it is possible
to search for different solutions in parallel. Because large parts of the proofs in
question—the parts that involve symbolic execution—can be constructed algo-
rithmically and do not require search, the first point is particularly significant
here. The second point holds because the proof search does never commit to



one particular (partial) solution by applying a substitution. Constraints also
naturally lead to more powerful representations of classes of pre-states (Sect. 4).

Disadvantages Destructively applying substitutions has the effect of propagating
decisions that are made in one proof branch to the whole proof. While this is
obviously a bad strategy for wrong decisions, it is by far more efficient to verify
a substitution that leads to a solution (by applying it to the whole proof and by
closing the remaining proof branches) than to hope that the remaining branches
can independently come up with a compatible constraint. In Fig. 3, after applying
the substitution [P 7→ 2 ] that is found in the left branch, the only work left in
the right branch is to identify the inequation 2 ≥ 0 as valid. Finding a common
solution of P + 1 6> 3 and P ≥ 0 by enumerating partial solutions, in contrast,
is more naive and less efficient. One aspect of this problem is that unification
constraints are not a suitable representation of solutions when arithmetic is
involved (Sect. 4).

3.4 A Hybrid Approach: Backtracking and Incremental Closure

Backtracking and non-destructive search using constraints do not exclude each
other. The constraint approach can be seen as a more fine-grained method for
generating substitution candidates: while the pure backtracking approach always
looks at a single goal when deriving substitutions, constraints allow to compare
the solutions that have been found for multiple goals. The number of goals that
can simultaneously be closed by one substitution, for instance, can be considered
as a measure for how reasonable the substitution is. Once a good substitution
candidate has been identified, it can also be applied to the proof destructively and
the proof search can continue focussing on this solution candidate. Because the
substitution could, nevertheless, be misleading, backtracking might be necessary
at a later point. Such hybrid proof strategies have not yet been developed or
tested, to the best of our knowledge.

4 Representation of Solutions: Constraint Languages

In Sect. 3.2 and 3.3, classes of pre-states are represented as substitutions or uni-
fication constraints. These representations are well-suited for pure first-order
problems [10], but they are not very appropriate for integers (or natural num-
bers) that are common in Java: (i) Syntactic unification does not treat inter-
preted functions like +, − or literals in special way. This rules out too many
constraints, for instance [X + 1 ≡ 2 ], as inconsistent. (ii) Unification conditions
t1 ≡ t2 cannot describe simple classes of solutions that occur frequently, for in-
stance classes that can be described by linear conditions like X ≥ 0.5

5 Depending on the representation of integers or natural numbers, certain inequa-
tions like X ≥ 1 ⇔ X ≡ succ(X ′) might be expressible, but this concept is rather
restricted.



The constraint approach of Sect. 3.3 is not restricted to unification con-
straints: we can see constraints in a more semantic way and essentially use any
sub-language of predicate logic (also in the presence of theories like arithmetic)
that is closed under the connective ∧ as constraint language. For practical pur-
poses, validity should be decidable in the language, although this is not strictly
necessary. The language that we started using in our experiments is a combina-
tion of unification conditions (seen as equations) and linear arithmetic:

C ::= C ∧ C || tint = tint || tint 6= tint || tint < tint || tint ≤ tint || toth = toth

in which tint ranges over terms of type int and toth over terms of other types.
The constraints are given the normal model-theoretic semantics of first-order
formulae (see, for instance, [9]):

Definition 1. A constraint C is called consistent if for each arithmetic struc-
ture (interpreting the symbols +, −, 6=, <, ≤ and literals as is common over the
integers, and all other function symbols arbitrarily), there is an assignment of
values to metavariables such that C is evaluated to tt.

Example 1. Of the following constraints, C1, C2 and C3 are consistent, while
the others are not. C4 is inconsistent because the ranges of f and g could be
disjoint, C5 because f could be the identity, and C6 because 5 could be outside
of the range of the function ·↓ ·. Our constraint language does not know about
lists, so that ·↓ · is just an arbitrary function symbol in this regard.

C1 := X = 5 ∧ 2 = Y + 1 C2 := h(A, 2) = h(h(c, Y ), Y + 1)
C3 := c < X ∧ d ≤ X C4 := f(X) = g(Y )
C5 := X < f(X) C6 := (ATTR↓O) = 5

We are in the process of working out details of this language—so far, we do
not know whether consistency of constraints is decidable. Using a prototypical
implementation of the constraints in KeY (as part of the constraint approach of
Sect. 3.3), it is possible to find the following solution of (5) automatically:

kIL kLN oV nV headV nextV valV
KIL KLN 0 NV [0, . . .] [E, . . .] [NV , . . .]

KIL > 0 ∧
KLN > 0 ∧
E ≥ KLN

Compared to (7), this description of pre-states is more general and no longer con-
tains the precise number of involved objects of IntList and ListNode. It is enough
if at least one object of each class is created (KIL > 0,KLN > 0). Further, the so-
lution states that IntList .get(0) receives the invocation of delete with arbitrary
argumentNV , that IntList .get(0).head points to the object ListNode.get(0), that
the attribute ListNode.get(0).next is null (E ≥ KLN ), i.e., the receiving list has
only one element, and that the value of this element coincides with NV .



5 Reasoning about Lists and Arithmetic

The next pages give more (implementation) details and treat some further as-
pects of the backtracking-free method from Sect. 3.3. As incremental closure
works by enumerating the closing constraints of all proof branches, the central
issue is to design suitable goal-local rules that produce such constraints, and
to develop an application strategy that defines which rule should be applied at
which point in a proof. The solutions shown here are tailored to the constraint
language of the previous section.

5.1 Rules for the Theory of Lists

For proof obligations of the form (4), the closing constraints of a goal mostly
describe the values of metavariables X1, X2, . . . over lists—the lists that in
Sect. 2.3 are used to represent program states—and usually have the form:

X1 = cons(X1
1 , cons(X2

1 , . . .)) ∧ X2 = cons(X1
2 , cons(X2

2 , . . .)) ∧ · · ·
∧ C(X1

1 , X
2
1 , . . . , X

1
2 , X

2
2 , . . .)

Such constraints consist of a first part that determines to which depth the
listsX1,X2, . . . have been “expanded,” and of a part C(X1

1 , X
2
1 , . . . , X

1
2 , X

2
2 , . . .)

(which is again a constraint, e.g. in the language from Sect. 4) that describes the
values of list elements. As each of the list elements X1

1 , X2
1 , . . . belongs to one

object of a class (following Sect. 2.3), this intuitively means that a constraint
always represents one fixed arrangement of objects in the heap. One constraint
in the language from Sect. 4 cannot represent multiple isomorphic heaps (like
heaps that only differ in the order of objects), because the constraints are not
evaluated modulo the theory of lists. As it is explained in Example 1, a con-
straint like (ATTR ↓O) = 5, telling that the value of an instance attribute is 5
for the object with index O, is inconsistent and has to be written in a more
concrete form like ATTR = cons(ATTR1, T ) ∧O = 0 ∧ATTR1 = 5.

The expansion of lists is handled by a single rule that introduces fresh
metavariables H, T for the head and the tail of a list. We use the constrained
formula approach from [10] to remember this decomposition of a list L into two
parts. A constrained formula is a pair φ¿ C consisting of a formula φ and a
constraint C. The semantics of a formula φ¿ C that occurs in the antecedent
of a sequent is (roughly) the same as of the implication C → φ, and in the succe-
dent the semantics is C ∧ φ: intuitively, the presence of φ can only be assumed
if the constraint C holds. C has to be kept and propagated to all formulae that
are derived from φ¿ C during the course of a proof. If φ¿ C is used to close a
proof branch, the closing constraint that is created has to be conjoined with C.

The rule for expanding lists is essentially a case distinction on whether the
head (i = 0) or a later element (i > 0) of a list is accessed. An attached constraint
[L = cons(H,T ) ] expresses that the nameH is introduced for the head of the list
and T for its tail. In practice, the rule is only applied if an expression L↓ i occurs
in the sequent Γ ` ∆, where L is a metavariable. As described in Sect. 2.3, the



∗
[H > 3 ∧ C ]

X = 0 ¿ C,L↓0 = H ¿ C,H ≤ 3 ¿ C ` ≤l

X = 0 ¿ C,L↓0 = H ¿ C ` H > 3 ¿ C

X = 0 ¿ C,L↓0 = H ¿ C ` L↓X > 3

(X = 0 ∧ L↓0 = H) ¿ C ` L↓X > 3

D

D

∗
[X < 1 ∧ C ]

X ≥ 1 ¿ C,L↓X = T ↓(X − 1) ¿ C ` L↓X > 3
≥l

X > 0 ¿ C,L↓X = T ↓(X − 1) ¿ C ` L↓X > 3

(X > 0 ∧ L↓X = T ↓(X − 1)) ¿ C ` L↓X > 3

` L↓X > 3
expand-list

Fig. 4. Example for a proof involving lists and metavariables L, T : intList , H : int ,
X : nat . We write C as abbreviation for the constraint [L = cons(H,T ) ]. The first so-
lution (shown here) that is produced by the proof is [L = cons(H,T ) ∧X < 1 ∧H > 3 ]
and stems from the formulas X ≥ 1 ¿ C and H ≤ 3 ¿ C in the two branches. When
applying further rules to the proof—instead of closing it—and expanding the list more
than once, further solutions like [L = cons(H, cons(H ′, T ′)) ∧X = 1 ∧H ′ > 3 ] can be
generated. Concerning the handling of inequations in the proof, see Sect. 5.3.

length of lists is irrelevant, so that the case L = nil does not have to be taken
into account:

Γ, (i = 0 ∧ (L↓0) = H) ¿ [L = cons(H,T ) ] ` ∆
Γ, (i > 0 ∧ (L↓ i) = (T ↓(i− 1))) ¿ [L = cons(H,T ) ] ` ∆

Γ ` ∆
expand-list

(H,T fresh metavariables)

Fig. 4 shows an example how expand-list is used to enumerate the solutions of
the formula L↓X > 3.

By repeated application of expand-list, all list access expressions L↓ i in
a sequent can be replaced with scalar metavariables, which subsequently can
be handled with other rules for first-order logic and arithmetic. The fact that
different goals are created for all possible heap arrangements (because expand-
list splits on the value of the list index i) obviously leads to a combinatorial
explosion, however, when the number of considered objects is increased. This is
not yet relevant for programs like the one in Fig. 1. Generally, two possibilities
to handle this issue (which we have not investigated yet) are (i) to work with a
constraint language that directly supports the theory of lists, or to (ii) use the
approach suggested in Sect. 3.4 to focus on one particular heap arrangement,
ignoring isomorphic heaps. In this manner, it is, for instance, possible to simulate
the lazy-initialisation approach from [11].



5.2 Fairness Conditions

As the different branches (and formulae) of a proof are expanded completely in-
dependently when using incremental closure, it is important to choose a fairness
strategy that ensures an even distribution of rule applications. When proving
program incorrectness, there are two primary parameters that describe how far
a problem has been explored: (i) how often loops have been unwound on a branch
(the number of applications of the rule while-l from Fig. 2), and the (ii) the
depth to which lists have been expanded (the size of the heap under considera-
tion, or the number of applications of the rule expand-list from the previous
section).

In the KeY prover, automatic reasoning is controlled by strategies, which are
basically cost computation functions that assign each possible rule application
in a proof an integer number as cost. The rule application that has been given
the least cost (for the whole proof) is carried out first. In this setting, we achieve
fairness in the following way:

– Applications of while-l are given the cost cw = αw · kw + ow, where kw is
the number of applications of while-l that have already been performed on
a proof branch, and αw > 0, ow are constants. This means that the cost for
unwinding a loop a further time grows linearly with the number of earlier
loop unwindings.

– Applications of expand-list are given the cost ce = αe · ke + oe, where ke

is the sum of the depths to which each of the list metavariables has been
expanded on a proof branch. This sum can be computed by considering the
constraints C that are attached to formulae φ¿ C in a sequent that contain
list access expressions L↓ i: one can simply count the occurrences of cons in
the terms that have to be substituted for the original list metavariables when
solving the constraint C.6

Good values for the constants αw, αe are in principle problem-dependent, but
in our experience it is meaningful to choose αe (a lot) bigger than αw. When
proving the formula (5), yielding the constraint shown in Sect. 4, we had chosen
αw = 50, ow = 200, αe = 2500, oe = −2000.

A slightly different approach is to choose a fixed upper bound either for
the number of loop unwindings or for the heap size, and to let only the other
parameter grow unboundedly within one proof attempt. If the proof attempt
fails, the bound can be increased and a new proof is started. In the experiments
so far, we have not found any advantages of starting multiple proof attempts
over the method described first, however.

5.3 Arithmetic Handling in KeY

The heap representation that is introduced in Sect. 2.3 heavily uses arithmetic
(both natural and integer numbers). After the elimination of programs using
6 The actual computation of ce is more complicated, because smaller costs are chosen

when applying expand-list for terms L↓ i in which i is a concrete literal, or when
the rule has already been applied for the same list L earlier.



symbolic execution, of updates and of list expressions, the construction of solu-
tions or closing constraints essentially boils down to handling arithmetic formu-
lae. Although KeY is in principle able to use the theorem prover Simplify [12]
as a back-end for discharging goals that no longer contain modal operators and
programs, this does not provide any support when reasoning with metavariables
(Simplify does not use metavariables). In this section, we shortly describe the
native support for arithmetic that we, thus, have added to KeY.

Linear Arithmetic Equations and inequations over linear polynomials is the most
common and most important fragment of integer arithmetic. We use Fourier-
Motzkin variable elimination to handle such formulae—inspired by the Omega
test [13], which is an extension of Fourier-Motzkin. Although Fourier-Motzkin
does not yield a complete procedure over the integers, in contrast to the Omega
test, we have so far not encountered the need to create a full implementation of
the Omega test.

As a pre-processing step, the equations and inequations of a sequent are
always moved to the antecedent and are transformed into inequations c · x ≤ s
or c · x ≥ s, where c is a positive number and s is a term. Further, in order
to ensure termination, we assume the existence of a well-ordering on the set of
variables of a problem and require that x is strictly bigger than all variables in s.
Fourier-Motzkin variable elimination can then be realised by the following rule:

Γ, c · x ≥ s, d · x ≤ t, d · s ≤ c · t ` ∆

Γ, c · x ≥ s, d · x ≤ t ` ∆
transitivity

(c > 0, d > 0)

Apart from the rule for eliminating variables from inequations, we also have
to provide rules for generating closing constraints (using the constraint language
from Sect. 4):

[ s = t ]
Γ ` s = t,∆

=r
[ s 6= t ]

Γ, s = t ` ∆
=l

[ s > t ]
Γ, s ≤ t ` ∆

≤l
[ s < t ]

Γ, s ≥ t ` ∆
≥l

Non-Linear Arithmetic In order to handle multiplication, division- and modulo-
operations that frequently occur in programs, we have also added some support
for non-linear integer arithmetic to KeY. Our approach is similar to that of the
ACL2 theorem prover [14] and is based on the following rule (together with the
rules for handling linear arithmetic):

Γ, s ≤ s′, t ≤ t′, 0 ≤ (s′ − s) · (t′ − t) ` ∆

Γ, s ≤ s′, t ≤ t′ ` ∆
mult-inequations

Often, it is also necessary to perform a systematic case analysis. The rule mult-
inequations alone is, for instance, not sufficient to prove simple formulae like
x · x ≥ 0. Case distinctions can be introduced with the following rules:

Γ, x < 0 ` ∆
Γ, x = 0 ` ∆
Γ, x > 0 ` ∆

Γ ` ∆
sign-cases

Γ, s < t ` ∆
Γ, s = t ` ∆

Γ, s ≤ t ` ∆
strengthen



We can now prove x · x ≥ 0 by first splitting on the sign of x. The rules sign-
cases and strengthen are in principle sufficient to find solutions for arbitrary
solvable polynomial equations and inequations. Combined with the rules =r,
=l, ≤l, ≥l from above, this guarantees that the calculus can always produce
solutions and closing constraints for satisfiable sequents that (only) contain such
formulae.

6 Related Work

Proof strategies based on metavariables and backtracking are related to common
approaches to test data generation with symbolic execution, see, e.g., [5, 7]. Con-
ceiving the approach as proving provides a semantics, but also opens up for new
optimisations like backtracking-free proof search. Likewise, linear arithmetic is
frequently used to handle branch predicates in symbolic execution, e.g. [15]. This
is related to Sect. 4, although constraints are in the present paper not only used
for branch predicates, but also for the actual pre- and post-conditions.

As discussed in Sect. 3.1, there is a close relation between ground proof pro-
cedures and test data generation using actual program execution. Constructing
proofs using metavariables can be seen as exhaustive testing, because the be-
haviour of a program is examined (simultaneously) for all possible inputs. When
using the fairness approach of limiting the size of the initial heap that is described
in Sect. 5.2, the method is related to bounded exhaustive testing, because only
program inputs up to a certain size are considered.

A technique that can be used both for proving programs correct and incor-
rect is abstraction-refinement model checking (e.g., [16–18]). Here, the typical
setup is to abstract from precise data flow and to prove an abstract version of
a program correct. If this attempt fails, usually symbolic execution is used to
extract a precise witness for program incorrectness or to increase the precision
of the employed abstraction. Apart from abstraction, a difference to the method
presented here is the strong correlation between paths in a program (reacha-
bility) and counterexamples in model checking. In contrast, our approach can
potentially produce classes of pre-states that cover multiple execution paths.

Related to this approach is the general idea of extracting information from
failing verification attempts, which can be found in many places. ESC/Java2
[19] and Boogie [20] are verification systems for object-oriented languages that
use the prover Simplify [12] as back-end. Simplify is able to derive counterexam-
ples from failed proof attempts, which are subsequently used to create warnings
about possible erroneous behaviour of a program for certain concrete situations.
Another example is [21], where counterexamples are created from unclosed se-
quent calculus proofs. Making use of failing proof attempts has the advantage of
reusing work towards verification that has already been performed, which makes
it particularly attractive for interactive verification systems. At the same time, it
is difficult to obtain completeness results and to guarantee that proofs explicitly
“fail,” or that counterexamples can be extracted. In this sense, our approach is
more systematic.



7 Conclusions and Future Work

The development of the proposed method and of its prototypical implementation
has been driven by working with (small) examples [22], but we cannot claim to
have a sufficient number of benchmarks and comparisons to other approaches
yet. It is motivating, however, that our method can handle erroneous programs
like in Fig. 1 (and similar programs operating on lists) automatically, which we
found to be beyond the capabilities of commercial test data generation tools
like JTest [23, 22]. This supports the expectation that the usage of a theorem
prover for finding bugs (i) is most reasonable for “hard” bugs that are only
revealed when running a program with a non-trivial pre-state, and (ii) has the
further main advantage of deriving more general (classes of) counterexamples
than testing methods. The method is probably most useful when combined with
other techniques, for instance with test generation approaches that can find
“obvious” bugs more efficiently.

For the time being, we consider it as most important to better understand
the constraint language of Sect. 4 for representing solutions, and, in particular,
to investigate the decidability of consistency. Because of the extensive use of
lists in Sect. 2.3, it would also be attractive to have constraints that directly
support the theory of lists. As explained in Sect. 5.1, such constraints would
introduce a notion of heap isomorphism, which is a topic that we also plan to
address. Further, we want to investigate the combination of backtracking and
incremental closure (as sketched in Sect. 3.4). A planned topic that conceptually
goes beyond the method of the present paper are proofs about the termination
behaviour of programs.
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