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Abstract

Informal justifications of security protocols involve arguing backwards that
various events are impossible. Inductive definitions can make such argu-
ments rigorous. The resulting proofs are complicated, but can be generated
reasonably quickly using the proof tool Isabelle/HOL. There is no restriction
to finite-state systems and the approach is not based on belief logics.

Protocols are inductively defined as sets of traces, which may involve
many interleaved protocol runs. Protocol descriptions model accidental key
losses as well as attacks. The model spy can send spoof messages made up
of components decrypted from previous traffic.

Several key distribution protocols have been studied, including Needham-
Schroeder, Yahalom and Otway-Rees. The method applies to both symmetric-
key and public-key protocols. A new attack has been discovered in a variant
of Otway-Rees (already broken by Mao and Boyd). Assertions concerning
secrecy and authenticity have been proved.
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1 Introduction

Cryptographic protocols are intended to let agents communicate securely
over an insecure network. An obvious security goal is secrecy: a spy cannot
read the contents of messages intended for others. Also important is authen-
ticity: agents can identify themselves to others, but nobody can masquerade
as somebody else. A typical protocol allows A to make contact with B, de-
livering a key to both parties for their exclusive use. They may involve as
few as four messages, but are surprisingly hard to get right. Anderson and
Needham’s excellent tutorial [5] presents several examples and defines the
notation and terminology used below.

Many researchers are using formal methods to analyze security protocols.
Two popular approaches are state exploration and belief logics.

e State exploration methods [22] model the protocol as a finite state sys-
tem and verify by exhaustive search that all reachable states are safe.
Lowe, for example, models protocols in CSP [13] and applies a model-
checker to explore their behaviour [15, 17]. The Interrogator [14] is
another finite-state tool. Such methods can find attacks quickly, but
keeping the state space small requires drastic simplifying assumptions.

e Belief logics formally express what an agent may infer from messages
received. The original BAN logic [9] allows short proofs expressed
at a high level of abstraction. It has identified weaknesses in some
protocols, but it has also failed to identify serious weaknesses in others.
The field remains promising; researchers such as Mao and Boyd [18§]
are developing new belief logics. However, such logics do not address
secrecy, and some of them are hard to put on a scientific footing.

We can fruitfully borrow elements from both approaches: from the first,
a concrete notion of events, such as A sending X to B; from the second,
the idea of deriving guarantees from each protocol message. Protocols are
formalized simply as the set of all possible traces of events. An agent may
extend a trace in any way permitted by the protocol, given what he can see
in the current trace. Agents do not know the true sender of a message and
may forward items that they cannot read. We can also model accidents and
attacks.

Properties are proved by induction on traces. Proofs are much too long
to carry out on paper, but the theorem prover Isabelle [20] allows partial
automation of the proofs. Analyzing a new protocol requires several days’
effort, while exploring the effects of a change to an existing protocol often
takes just a few hours. A complete Isabelle proof script executes in a few
minutes. Laws and proof techniques developed for one protocol are often
applicable to others.

The approach is oriented around proving guarantees, but their absence
can indicate possible attacks. In this way, I have discovered an attack on
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the variant of the Otway-Rees protocol suggested by Burrows et al. [9, page
247]. At the time, I was unaware of Mao and Boyd’s earlier attack [18], and
had been assuming the protocol to be correct.

The paper goes on to explain the role of induction (§2) and present
an overview of the method (§3). Then it presents the logical details more
closely: the theory of messages and shared-key protocols (§4) and the formal
proofs for three variants of Otway-Rees (§5). Some conclusions follow (§6).

2 Why an Inductive Approach?

Informal arguments for a protocol’s correctness are conducted in terms of
what could or could not happen. Here is a hypothetical dialogue:

Salesman. At the end of a run, only Alice and Bob can possibly
know the session key Kab.

Customer. What about an eavesdropper?

Salesman. He can’t read the certificates without Alice or Bob’s
long-term keys, which he can’t get.

Customer. Could an attacker trick Bob into accepting a key
shared with himself?

Salesman. The use of identifying nonces prevents that.

The customer may find such arguments unconvincing, but they can be made
rigorous. The necessary formal tool is the inductive definition [3]. Each in-
ductive definition lists the possible actions that an agent or system can
perform. The corresponding induction rule lets us reason about the con-
sequences of an arbitrary finite sequence of such actions. This approach is
highly general: it has long been used to specify the semantics of program-
ming languages [12] and can be applied to many nondeterministic processes.

Analyzing security protocols requires modelling the capabilities of an
attacker. Only those capabilities included in the model can be considered
in proofs. Contrast with the Spi calculus [1], where protocols are proved
correct with respect to an arbitrary environment.

Several inductively-defined operators are useful in specifications. One
(parts) merely enumerates all the components of a set of messages. Another
(analz) models the decryption of past traffic using available keys. Another
(synth) models the generation of spoof messages. The attacker is specified—
independently of the protocoll—in terms of analz and synth. Algebraic laws
governing parts, analz and synth have been proved by induction and are
invaluable for reasoning about protocols.

Each protocol is itself described by a further inductive definition. It
incorporates the attacker as well as the behaviour of honest agents faithfully
executing protocol steps. It can even model carelessness, such as agents



accidentally revealing secrets. The inherent nondeterminism models the
possibility of an agent’s being unavailable.

Belief logics allow short proofs; the main reason for mechanizing them [§]
is to eliminate human error. In contrast, inductive verification of protocols
involves long and highly detailed proofs. Each safety property is proved by
induction over the protocol. Each case considers a state of the system that
might be reached by the corresponding protocol step. Simplifying the safety
property for that case may reveal a combination of circumstances leading to
its violation. Only if all cases are covered has the property been proved.

Customer. What’s to stop somebody’s tampering with the nonce
in step 2 and later sending Alice the wrong certificate?

Salesman. Afraid you've got me there.

3 Overview

The method includes a theory of message analysis and a theory describing
standard features of protocols. Individual protocol descriptions rest on this
common base.

The traditional notation used for describing protocols conflicts somewhat
with the need for mechanization. Expressing concatenation using a comma,
as in A, B, would be ambiguous. Enclosing it in braces, as in {A, B}, invites
confusion with finite sets. I have used fat braces to express concatenation,
as in {A, B}. Informal protocol descriptions revert partly to the traditional
notation, omitting outer-level braces and indicating encryption by a notation
such as {Na, Kab} .

3.1 Messages

Message items may include

e agent names A, B, ... ;
e nonces Na, Nb, ... ;
e keys Ka, Kb, Kab, ... ;

e compound messages {X, X'},

encrypted messages Crypt K X.

Under public-key encryption, K ! is the inverse of key K. The theory
assumes (K~1)~! = K for all K. The equality K ! = K expresses that key
K is intended for shared-key encryption.

The formalization assumes that an encrypted message can neither be
altered nor read without the appropriate key. The structure of each message
is explicit, and different types of components cannot be confused.
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Implementors must take care. Some published attacks involve accepting
a nonce as a key [16] or regarding one component as being two [10]. Many
real-world failures are the fault of slipshod human procedures [4]. Attempt-
ing to model the countless forms of carelessness would be futile.

3.2 Message Analysis

Three operations are defined on possibly infinite sets of messages. Each is
defined inductively, as the least set closed under specified extensions. Each
extends a set of messages H with other items derivable from H. Typically,
H contains an agent’s initial knowledge and the history of all messages sent
in a trace.

The set parts H is obtained from H by repeatedly adding the components
of compound messages and the bodies of encrypted messages. (It does not
regard the key K as part of Crypt K X unless K is part of X itself.) We might
regard parts H as what God could decrypt from H. Proving X & parts H
establishes that X does not occur in H at all. Here are some laws about
parts:

Crypt KX € parts H = X € parts H
parts G U parts H = parts(G U H)
parts(parts H) = parts H.

The set analz H is obtained from H by repeatedly adding the compo-
nents of compound messages and by decrypting messages whose keys are in
analz H. The set represents the maximum knowledge that a determined spy
could gain by analyzing intercepted traffic but not breaking ciphers. Prov-
ing K ¢ analz H should assure us that nobody could learn K by listening
to H. Here are some laws about analz:

Crypt KX € analzH, K~' € analzH = X € analzH
analzGUanalzH C analz(GU H)
analz(analz H) = analz H
analz H C parts H.

The set synth H models the messages a spy could build up from ele-
ments of H, by repeatedly adding agent names, forming compound messages
and encrypting with keys contained in H. Agent names are added because
they are publicly known. Nonces and keys are not added because they are
unguessable; the spy can only use nonces and keys given in H. Here are
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some laws about synth:

X esynthH, K € H=— Crypt KX € synth H
KcsynthH — K € H
synth G U synth H C synth(G U H)
synth(synth H) = synth H.

3.3 The Attacker

The enemy observes all traffic in the network—the set H—and sends fraud-
ulent messages drawn from the set synth(analz H). Interception of messages
is modelled indirectly: there are traces where agents ignore some messages.
The formalized protocol describes what can happen, but nobody is forced
to do anything, just as in the real world where machines crash and commu-
nication links break.

No protocol should demand perfect competence from all players. If the
spy should get hold of somebody’s key, communications between other agents
should not suffer. Typically, the model gives the spy access to an unspecified
set of “lost” long-term keys. An “oops” message in protocol descriptions
models accidental loss of session keys.

Our spy is accepted by the others as an honest agent. He may send nor-
mal protocol messages using his own long-term secret key, as well as sending
fraudulent messages. This combination lets him participate in protocol runs
using intercepted keys, thereby impersonating other agents.

One might imagine that proving anything might be difficult in the pres-
ence of so powerful a spy. But standard protocol steps can be just as difficult
to analyze. Sometimes an agent forwards an encrypted part of a message
(which might be anything) to somebody else. It is a great help that all
protocols assume the same sort of spy. A common body of laws and proof
techniques can be developed for use in all proofs.

3.4 Modelling a Protocol

Each event in a trace has the form Says A B X, meaning A says message X
to B. Other events could be envisaged, such as the changing of a long-term
key. Each agent’s state is represented by its initial knowledge (typically its
key, shared with the server) and what it can scan from the list of events.
Apart from the spy, agents only read messages addressed to themselves.
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Consider a variant of the Otway-Rees protocol [9, page 247]:!

1.A— B: Na, A, B,{Na, A, B},

2. B— S : Na, A, B,{Na, A, B} ;;,, Nb, {Na, A, B} .,
3. S — B: Na,{Na, Kab} j,, {INb, Kab} x,

4. B — A: Na,{Na, Kab} .,

The protocol steps are modelled as possible extensions of a trace with new
events. The server is the constant S, while A and B are variables ranging
over all agents, including the spy. We transcribe each step in turn:

1. If evs is a trace, Na is a fresh nonce and B is an agent distinct from A

and S, then evs may be extended with the event

Says A B {Na, A, B,{Na, A, B} ..}

. If evs is a trace that has an event of the form

Says A’ B{Na, A, B, X},

and Nb is a fresh nonce and B # S, then evs may be extended with
the event

Says BS {Na, A, B, X, Nb, {Na, A, B} ;.,}}.

The sender’s name is shown as A’ and is not used in the new event
because B cannot know who really sent the message. The component
intended to be encrypted with A’s key is shown as X, because B does
not attempt to read it.

. If evs is a trace containing an event of the form

Says B'S{Na, A, B,{Na, A, B} ., Nb,
{Na’7 Av B}Kb}

and Kab is a fresh key and B # S, then evs may be extended with the
event

SaysS B {Na, {Na, Kab} ;,, {Nb, Kab} ., }.

'Here is an informal description of this protocol.

. A asks B to set up a secure conversation, generating Na to identify the run.

1
2. B forwards A’s message to the authentication server, adding a nonce of his own.
3.
4

S generates a new session key Kab and packages it separately for A and B.

. B decrypts his part of message 3, checks that the nonce is that sent previously, and

forwards the rest to A, who will similarly compare nonces before accepting Kab.
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The server too does not know where the message originated, hence
the B’ above. If he can decrypt the components using the keys of the
named agents, revealing items of the right form, then he accepts the
message as valid and replies to B.

4. If evs is a trace containing the two events

Says BS{Na, A, B, X', Nb,{Na, A, B} 1., }
Says S’ B{Na, X,{Nb, K} ;-,}

and A # B, then evs may be extended with the event
Says B A{Na, X}.

B receives a message of the expected format, decrypts his portion,
checks that Nb agrees with the nonce he previously sent to the server,
and forwards component X to A. The rule does not require the mes-
sage from S’ to be more recent than that from B; this holds by the
freshness of Nb.

An agent may participate in several protocol runs concurrently; the trace
represents his state in all those runs. Agents may respond to past events, no
matter how old they are. They may respond any number of times, or never.
If the protocol is safe even under these liberal conditions, then it will remain
safe when time-outs and other checks are added. Letting agents respond only
to the most recent message would prevent modelling middle-person attacks
and complicate the analysis. Excluding some traces as ill-formed weakens
theorems proved about all traces.

A protocol description usually requires three additional rules:

e The empty list, [], is a trace.

o If evs is a trace, X € synth(analzH) is a fraudulent message and
B # Spy, then evs may be extended with the event

SaysSpy B X.

Here H contains all messages in the past trace as well as the spy’s
initial state, which holds the long-term keys (supposedly shared with
the server) of an arbitrary set of “lost” agents. Thus, the spy may say
anything he plausibly could say, and can masquerade as any of the lost
agents.

e If evs is a trace and S distributed key K to A, and nonces Na and Nb
were used, then evs may be extended with the event

Says A Spy {Na, Nb, K}.
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This strange-looking rule, the “oops” rule, models the accidental loss
of session keys. Even if A and B safeguard their long-term keys Ka
and Kb, they may have carelessly revealed an old session key. We need
an assurance that such old keys cannot compromise future runs. The
“oops” message includes nonces in order to identify the protocol run.
This distinguishes between the recent loss of a key and one in the past.

A normal protocol rule would never demand that a message originated
from a particular agent (here S), because the recipient cannot know
who the originator is. The oops rule, however, is not intended to model
A’s knowledge. Insisting that the originator is S ensures that the oops
message {Na, Nb, K} specifies the true values of the nonces.

3.5 Induction

The specification defines the set of possible traces inductively: it is the least
set closed under the given rules. To appreciate what this means, it may be
helpful to recall that the set IN of natural numbers is inductively defined by
the rules 0 € N and n € N = Sucn € N.

For reasoning about an inductively defined set, we may use the corre-
sponding induction principle. For the set N, it is the usual mathematical
induction: to prove P(n) for each natural number n, prove P(0) and prove
P(z) = P(Sucz) for each x € N. For the set of traces, the induction
principle says that P(evs) holds for each trace evs provided P is preserved
under all the rules for creating traces.

We must prove P[] to cover the empty trace. For each of the other rules,
we must prove an assertion of the form P(evs) = P(ev#evs), where event
ev contains the new message. (Here ev#evs is the trace that extends evs
with event ev: new events are added to the front of a trace.) The rule may
resemble list induction, but the latter considers all conceivable messages,
not just those allowed by the protocol.

A trivial example of induction is to prove that no agent sends a message
to himself: no trace contains an event of the form Says A A X. This holds
vacuously for the empty trace, and the other rules specify conditions such
as B # S to prevent the creation of such events.

3.6 Regularity Lemmas

These lemmas concern occurrences of a particular item X as a possible
message component. Such theorems have the form X € parts H — -,
where H is the set of all messages available to the spy. These are strong
results: they hold in spite of anything that the spy might do.

It is easy to prove that the spy never gets hold of any agent’s long-term
key except those presumed lost at the outset. The inductive proof amounts
to examining the protocol rules and observing that none of them involve
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sending long-term keys. The spy cannot send any either because, by the
induction hypothesis, he has none at his disposal (except for the lost keys).

Unicity results state that nonces or session keys identify certain messages.
Naturally we expect the server never to re-issue session keys, or agents their
nonces. If they generate these numbers using the means provided in the
model, then it is straightforward to prove that the key (or nonce) part of a
message determines the values of the other parts. A standard proof script
works for all the protocols considered.

3.7 Secrecy Theorems

Regularity lemmas are easy to prove because they are stated in terms of the
parts operator. Secrecy cannot be so expressed; if X is a secret then some
agents can say X and others cannot. Secrecy theorems are, instead, stated
in terms of analz. Their proofs can be long and difficult, typically splitting
into cases on whether or not certain keys are compromised.

A typical result involving analz involves secrecy of session keys: if the spy
holds some session keys, he cannot use them to reveal others. It would suffice
to prove that nobody sends messages of the form Crypt Kab{...Kcd.. }.
Unfortunately, the spy himself can either send such messages directly or
cause other agents to send them. To work such mischief, he must already
possess Kcd, so he does not thereby learn new session keys.

The discussion above suggests the precise form of the theorem. If K can
be analyzed with the help of a session key K’ and previous traffic, then either
K = K’ or K can be analyzed from the traffic alone. Because some protocol
steps introduce new keys, proof by induction seems to require strengthening
the formula, generalizing K’ to a set of session keys.

The first time I proved this theorem it seemed complicated and difficult,
but the script is now down to six commands, and essentially the same script
works for all the protocols investigated. Proving this theorem, even for
a new protocol, is now routine. The theorem makes explicit something we
may have taken for granted: that no agent should use session keys to encrypt
other keys (see also Gollmann [11, §2.1]).

A crucial secrecy property states that if the server distributes a session
key Kab to A and B, then no other agent gets this key. It is necessary to
assume that A and B have not lost their secret keys to the spy, and that
no oops message has given the session key to the spy. If we must forbid all
oops messages for Kab, not just those involving the current nonces, then we
should consider whether the protocol is vulnerable to a replay attack.

This property can usually be proved with fewer than a dozen commands.
A specialized proof procedure deals with unknown message components,
both fraudulent messages and forwarded parts of previous messages. Such
mechanical procedures are called tactics; a typical command invokes one
tactic.



10 3 OVERVIEW

Proving the first result of this kind took weeks, partly spent building
libraries of tactics and relevant laws. A constant problem in secrecy proofs
is being presented with gigantic formulas. We need to discard just the right
amount of information, and think carefully about how induction formulas
are expressed.

3.8 An Attack

Secrecy is necessary but not sufficient for correctness. The server might be
distributing the key to the wrong pair of agents. When A receives message 4
of the Otway-Rees protocol, can she be sure it really came from B, who got
it from S? For the simplified version of the protocol outlined above (§3.4),
the answer is no.

The only secure part of message 4 is its encrypted part, {Na, Kab} x,,.
But it need not have originated as the first encrypted part of message 3. It
could as well have originated as the second part, if S received a fraudulent
message 2 in which a previous Na had been substituted for Nb.

The machine proof leads us to consider a scenario in which Na is used
in two roles. It is then easy to invent an attack. A spy, C, intercepts A’s
message 1 and records Na. He masquerades first as A (indicated as Cy
below), causing the server issue him a session key Kca and also to package
Na with this key. He then masquerades as B.

1. A— B:Na,A B,{Na, A, B}, (intercepted)
1. C— A:Nc,C, A {Nc,C, A} .

2. A— S:Ne¢,C,A{Nc,C, A}y, Nd' . {Nc,C, A},  (intercepted)
9. Cp— S: Ne,C, A, {Ne,C, A} .., Na, {Ne, C, A} o,

3. S — A: Ne {Nc,Kca} ., {Na, Kca} , (intercepted)
4. Cp — A: Na,{Na, Kca},

Replacing nonce Na' by A’s original nonce Na (in message 2”) eventually
causes A to accept key K., as a key for talking with B. This attack is more
serious than that discovered by Mao and Boyd [18], where the server could
detect the repetition of a nonce. It cannot occur in the original version of
Otway-Rees, where Nb is encrypted in the second message.

As Abadi and Needham discuss [2], the Otway-Rees protocol uses nonces
not merely to assure freshness, but for binding: to identify the principals.
Verifying the binding complicates the formal proofs. One can prove—for
the corrected protocol—that Na and Nb uniquely identify the messages they
originate in and never clash. Then we can prove guarantees for both agents:
if they receive the expected messages, and the nonces agree, then the server
really did distribute the session key to the intended parties.

This concludes the overview of how protocols are analyzed. Let us now
examine the theory and its mechanization in more detail.



11

4 A Mechanized Theory of Messages

The approach has been mechanized using Isabelle/HOL, an instantiation of
the generic theorem prover Isabelle [19, 20] to higher-order logic. Isabelle
is appropriate because of its support for inductively defined sets and its
automatic tools. Some Isabelle syntax appears below in order to convey
a feel for how proofs are conducted, but some mathematical symbols have
been substituted for their ASCII equivalents to improve legibility.

Higher-order logic is a typed formalism. An item of type agent can
never be used where something of type msg is expected. Isabelle uses type
inference to eliminate the need to specify types in expressions and to allow
polymorphic theories such as those of lists and sets.

4.1 Agents and Messages

There are three kinds of agents: the server S, the friendly (or honest) agents,
and the spy. Friendly agents have the form Friendi, where 4 is a natural
number. The following declaration specifies type agent to Isabelle. (The
type of natural numbers is nat.)

datatype agent = Server | Friend nat | Spy

This, like any datatype declaration, introduces axioms to say that the vari-
ous kinds of agent are distinct from each other. Thus we have S # Friend,
S # Spy, Spy # Friend ¢, and also Friend i = Friend j only if i = j.

The five kinds of message items (discussed above, §3.1) are declared sim-
ilarly. Observe the reference to type agent and the recursive use of type msg.
Not shown are further declarations that make {Xi,... X,—1, X,,} abbreviate
MPair X7 ... (MPair X,,_1 X,,).

datatype msg = Agent agent

Nonce nat
Key key
MPair msg msg
Crypt key msg

Again, the various kinds of message are distinct. We have Agent A #
Nonce NV, and Nonce N = Nonce N/ = N = N’, etc. Less expected is
the law

Crypt KX =Crypt K'X' = K=K N X = X'

This is easily violated in practice if the plaintext is just a nonce, say, but
not if it contains redundancy.
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4.2 Message Analysis

The operators parts, analz and synth are defined inductively, as are protocols
themselves. If H is a set of messages then parts H is the least set including H
and closed under projection and decryption. The following rules express the
definition precisely.

XeH Crypt KX € parts H
X € parts H X € partsH

{X,Y} € parts H {X,Y} € parts H
X € parts H Y € parts H

Similarly, analz H is the least set including H and closed under projection
and decryption by known keys.

XeH Crypt KX €analzH K~ !'€canalzH
X €analzH X €analzH
{X,Y} €analzH {X,Y} €analzH
X €analzH Y €analzH

The set synth H is the least that includes H and all agent names, and is
closed under pairing and encryption.

XeH
X € synth H Agent A € synth H

X esynthH Y €synthH XesynthH KeH
{X,Y} € synthH Crypt KX € synth H

To illustrate Isabelle’s syntax for such definitions, here is the one for analz.

consts analz :: msg set => msg set
inductive "analz H"
intrs
Inj "X€H — X¢€analz H"
Fst "{I|X,Y|}€analz H =— X E€analz H"
Snd "{|X,Y|}€analz H — Y €analz H"
Decrypt "[| Crypt K X €analz H;
Key(invKey K) € analz H |[]
— X €analz H"

Given such a definition, Isabelle defines an appropriate fixedpoint and proves
the desired rules. These include the introduction rules (those that constitute
the definition itself) as well as case analysis and induction.

4.3 Laws Governing the Operators

Section 3.2 presented a few of the laws proved for the operators, but pro-
tocol verification requires many more. Let us examine them systematically.
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Below, ins X H stands for the set { X} UH, whose elements are X and those
of H.

The operators are monotonic: if G C H then

parts G C parts H
analzG C analzH
synth G C synth H.

They are idempotent:

parts(parts H) = H
analz(analzH) = H
synth(synth H) = H.

Similarly, we have the equations

parts(analz H) = parts H
analz(parts H) = parts H.

Building up, then breaking down, results in two less trivial equations:

parts(synth H) = parts H U synth H
analz(synth H) = analz H U synth H

We have now considered seven of the nine possible combinations involving
two of the three operators. The remaining combinations, synth(parts H)
and synth(analz H), are irreducible. The latter one models the fraudulent
messages that a spy could derive from H. We can still prove useful laws
such as

{X,Y} € synth(analzH) «—
X € synth(analzH) AY € synth(analz H).

More generally, we have a rule that bounds what the enemy can say:

X € synth(analzG)
parts(ins X H) C synth(analzG) U parts G U parts H

In a typical proof, G is the set of all messages sent during a trace, while
H is some known set of messages. (Often, G = H or G C H.) The rule
lets us eliminate the fraudulent message X. It yields an upper bound on
parts(ins X H) expressed in terms of parts H, which itself is bounded by
the induction hypothesis. An analogous rule is useful for proving theorems
expressed in terms of analz.
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4.4 Symbolic Evaluation

Applying rewrite rules to a term such as
parts{{Agent A, Nonce Na} }
can transform it to the equivalent term
{{Agent A, Nonce Na}, Agent A, Nonce Na}.

This form of evaluation can deal with partially specified arguments such as
{{Agent A, X}} and

ins{Agent A, Nonce Na} H.

Symbolic evaluation for parts is straightforward. For a protocol step that
sends the message X we typically consider a subgoal containing the expres-
sion parts(ins X H) or analz(ins X H). The previous section has discussed
the case in which X is fraudulent. In other cases, X will be something more
specific, such as

{Nonce Na, Agent A, Agent B,
Crypt Ka{Nonce Na, Agent A, Agent B}}.

Now parts(ins X H) expands to a big expression involving all the new ele-
ments that are inserted into the set parts H, from Nonce Na and Agent A
to X itself. The expansion may sound impractical, but a subgoal such as
Key K ¢ parts(ins X H) simplifies to Key K ¢ parts H (for the particular X
shown above) because none of the new elements has the form Key K’. If this
element were present, then the subgoal would still simplify to a manageable

formula, K # K' A Key K & parts H.
The rules that perform this symbolic evaluation are fairly obvious:

parts() = ()
parts(ins(Agent A) H) = ins(Agent A)(parts H)
parts(ins(Nonce N) H) = ins(Nonce V) (parts H)
parts(ins(Key K) H) = ins(Key K)(parts H)
parts(ins{X,Y}H) = ins{X, Y} (parts(ins X (insY H)))
parts(ins(Crypt K X)H) = ins(Crypt KX )(parts(ins X H))

Symbolic evaluation of analz is more difficult. A key can only be pulled out
if there are no messages encrypted using its inverse. A message encrypted

using K can only be pulled out if K~! is not available. We need an operator
to denote the set of keys that can be used to decrypt messages in H:

keysFor H = {K~' | 3X. Crypt KX € H}
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Now we can prove that a key can be pulled out provided it is not required
for decryption.

K ¢ keysFor(analz H)
analz(ins(Key K) H) = ins(Key K)(analz H)

The rule for pulling out encrypted messages involves case analysis:

analz(ins(Crypt KX )H) =

ins(Crypt K X)(analz(ins XH)) K~ canalzH
ins(Crypt KX)(analz H) otherwise

Nested encryptions give rise to nested if-then-else expressions. Sometimes
we know whether the relevant key is secure, but letting automatic tools
generate a full case analysis gives us short proof scripts. Impossible cases
are removed quickly. Redundant case analyses—those that simplify to “if
P then @ else Q”—can be simplified to (). The resulting expression might
still be enormous, but symbolic evaluation at least expresses analz(ins X H)
in terms of analz H.

Symbolic evaluation of synth is obviously impossible: its result is infinite.
Fortunately, it is never necessary. Instead, we need to simplify assumptions
of the form X € synth H, which arise when considering whether a certain
message might be fraudulent. The inductive definition regards nonces and
keys as unguessable, giving rise to the implications

Nonce N € synth H = Nonce N € H
Key K € synthH —= Key K € H

If Crypt KX € synth H then either Crypt KX € H or else X € synth H
and K € H. If we already know K ¢ H, then the rule tells us that the
encrypted message is a replay rather than a spoof. There is a similar rule
for {X,Y} € synth H.

In all, over ninety theorems are proved about parts, analz, synth and
keysFor. Most of them are stored in such a way that Isabelle can apply them
automatically for simplification. Most are proved by induction with respect
to the relevant inductive definition. Logically speaking, some of these proofs
are complex, but they need (on average) under three commands each, thanks
to Isabelle’s automatic tools. The full proof script, over 200 commands,
executes in under ninety seconds.

4.5 Events and Agent Knowledge

A trace is a list of events. Isabelle/HOL provides lists, while events are
trivial to declare as a datatype:
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datatype event = Says agent agent msg

Triples of the form (A, B, X)) might be used, but the datatype gives a nicer
notation and accommodates future extensions to other sorts of events.

The function sees models the set of messages an agent receives from a
trace. Its first argument, lost, is a set of agents whose keys (supposedly
shared only with the server) have been lost to the spy. Honest agents only
see messages intended for themselves, but the spy sees all traffic. (Recall
that ev#evs is the list consisting of ev prefixed to the list evs.)

seeslost A ((Says A’ B X) # evs) =
{ins X (seeslost Aevs) A € {B,Spy}

seeslost A evs otherwise
From the empty trace, an agent sees his initial state:
seeslost A [] = initState lost A

Otway-Rees assumes a symmetric-key environment. Every agent A has a
long-term key, shrK A, shared with the server and perhaps lost to the spy.
The spy has a such a key (shrK Spy) and there is even the redundant shrKS.
Function initState specifies agents’ initial knowledge:

initState lost S = all long-term keys
initState lost (Friend i) = {Key(shrK(Friendi))}
initState lost Spy = {Key(shrK(A)) | A € lost}

A peculiarity is that the spy does not see his own key unless Spy € lost,
which some theorems assume explicitly. We hardly need to consider sees
and initState except when formalizing the creation of spoof messages. The
descriptions of the legitimate messages directly model what the agents may
be presumed to see.

The file that develops the simple theory outlined above also defines proof
tactics common to all protocols. It provides specialized rewriting for analz
and a tactic for proving cases involving fraudulent messages.

4.6 The Formal Protocol Specification

Section 3.4 discussed the modelling of a protocol informally, though in detail.
Now, let us consider the specification as supplied to the theorem prover
(Fig. 1).

The identifiers at the far left name the rules: Nil for the empty trace,
Fake for fraudulent messages, OR1-4 for protocol steps, and Oops for the
accidental loss of a session key. The set of traces is called otway. (Giving
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[1 € otway

[l evscotway; B#Spy; XE€synth (analz (sees lost Spy evs)) |]
— Says Spy B X # evs € otway

[l evs€otway; A # B; B # Server; Nonce NA ¢ used evs |[]
—> Says A B {|Nonce NA, Agent A, Agent B,
Crypt (shrK A) {|Nonce NA, Agent A, Agent B|} |}
# evs € otway

[l evscotway; B # Server; Nonce NB ¢ used evs;
Says A’ B {|Nonce NA, Agent A, Agent B, X|}Eset_of_list evs |]
—> Says B Server
{|Nonce NA, Agent A, Agent B, X, Nonce NB,
Crypt (shrK B) {|Nonce NA, Agent A, Agent B|}|}
# evs € otway

[l evscotway; B # Server; Key KAB ¢ used evs;
Says B’ Server
{|Nonce NA, Agent A, Agent B,
Crypt (shrK A) {|Nonce NA, Agent A, Agent B|},
Nonce NB,
Crypt (shrK B) {|Nonce NA, Agent A, Agent B|}|}
€set_of_list evs |]
— Says Server B
{|Nonce NA,
Crypt (shrK A) {|Nonce NA, Key KAB|},
Crypt (shrK B) {|Nonce NB, Key KAB|}|}
# evs € otway

[l evs€otway; A # B;
Says B Server {|Nonce NA, Agent A, Agent B, X’, Nonce NB, X’’ |}
€set_of_list evs;
Says S’ B {|Nonce NA, X, Crypt (shrK B) {|Nonce NB, Key K|}|}
Eset_of_list evs |]
— Says B A {|Nonce NA, X|} # evs € otway

[l evscotway; B # Spy;
Says Server B {|Nonce NA, X, Crypt (shrK B) {|Nonce NB, Key K|}|}
€set_of_list evs |]
— Says B Spy {|Nonce NA, Nonce NB, Key K|} # evs €& otway

Figure 1: Specifying a Protocol
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each formal protocol a different name allows reasoning about several of them
at once, though I have not tried this.)

The Nil rule is trivial, so let us examine Fake. The condition evs € otway
states that evs is an existing trace. Now

X € synth(analz(seeslost Spy evs))

denotes anything that could be faked from what the spy could decrypt with
the help of the lost keys. The spy can send any such message to any other
agent B, including the server. All rules have additional conditions, here
B # Spy, to ensure that agents send no messages to themselves; this trivial
condition eliminates some impossible cases in proofs.

Rule OR1 formalizes step 1 of Otway-Rees. List evs is the current trace.
The nonce Na may be anything not contained in used evs; this set contains
all message components that are accessible to some agent. An agent has no
sure means of generating fresh nonces, but can do so with a high probability
by using a random process or a reliable clock. The spy may use rule ORI,
although a successful attack is more likely to involve the replay of an old
nonce through rule Fake.

In rule OR2, set_of _list evs denotes the set of all events, stripped of their
temporal order. Agent B responds to a past message, no matter how old
it is. We could restrict the rule to ensure that B never responds to a given
message more than once. Current proofs do not require this restriction,
however, and it might prevent the detection of replay attacks.

There is nothing else in the rules that was not already discussed above (§3.4).
Translating informal protocol notation into Isabelle format is perhaps suffi-
ciently straightforward to be automated.

5 Protocol Proofs

Section 3 outlined the form of induction used, the key theorems proved about
the Otway-Rees variant, the attack found, and further guarantees proved of a
corrected protocol. Let us now take a closer look, though without discussing
particular proof commands.

The first theorems to prove of any protocol description are some possi-
bility properties. These do not assure liveness, merely that message formats
agree from one step to the next. We cannot prove that anything must hap-
pen; agents are never forced to act. But if the protocol can never proceed
from the first message to the last, then it must have been transcribed incor-
rectly.

Here is a possibility property for Otway-Rees. For all agents A and B,
distinct from themselves and from the server, there is a key K, nonce N and
a trace such that the final message B — A : Na, {Na, Kab} ., is sent. This
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theorem is proved by joining up the protocol rules in order and showing that
all their preconditions can be met.

The assertion that nobody sends messages to themselves is proved by
induction followed by use of the auto-tactic, which performs simplification
and simple logical reasoning. If evs € otway then

VAX.Says A A X ¢ set of listevs.

5.1 Forwarding Lemmas

Some results are proved for reasoning about steps in which an agent forwards
an unknown item. Here is a rule for OR2:

Says A’ B {N, Agent A, Agent B, X} € set_of listevs
X € analz(seeslost Spy evs)

The proof is trivial. The spy sees the whole of the message; since X is
transmitted in clear, analz will find it. So the spy can learn nothing new by
seeing X again when B responds to this message.

Sometimes the forwarding party removes a layer of encryption, perhaps
revealing something to the spy. Then the forwarding lemma is stated using
parts instead of analz, and is useful only for those theorems (“regularity lem-
mas”) that can be stated using parts. Otway-Rees has no nested encryption,
but the Oops case removes a layer of encryption. Here is its forwarding
lemma:

SaysS B {Na, X, Crypt K’ {Nb, K}} € set_of listevs
— K € parts(seeslost Spy evs)

These lemmas are trivial, but they are essential to the mechanization. Most
inductive proofs require applying them in the appropriate cases.
5.2 Proving Regularity Lemmas

Statements of the form
X € parts(seeslost Spy evs) — - -

impose conditions on the appearance of X in any message. Many such
lemmas can be proved in the same way.

1. Apply induction, generating cases for each protocol step and Nil, Fake,
Oops.

2. For each step that forwards part of a message, apply the corresponding
forwarding lemma, using analz H C parts H if needed to express the
conclusion in terms of parts.
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3. Prove the trivial Nil case using a standard automatic tactic.
4. Try to prove the Fake case using laws proved for this purpose (§4.3).

5. Simplify all remaining cases.

A predefined tactic performs these tasks and returns any remaining subgoals.
A Dbasic regularity law states that secret keys remain secret. If evs €
otway (meaning, evs is a trace) then

Key(shrK A) € parts(sees lost Spy evs) <= A € lost.

The predefined tactic proves all but one case, and that is proved in one
command by calling another tactic.

5.3 Unicity Theorems

Fresh session keys and nonces uniquely identify their message of origin. But
we must exclude the possibility of spoof messages, and this can be done in
two different ways. In the case of session keys, a typical formulation refers
to an event and names the server as the sender (for evs € otway):

dB' Na' NV’ X'. VB Na Nb X.
SaysS B {Na, X, Crypt(shrK B){Nb, K'}}
€ set_of _listevs
— B=B ANa=Nd ANb=NVAX = X'

The free occurrence of K in the event uniquely determines the other four
components shown. To apply such a theorem requires proof that the message
in question really originated with the server.

An alternative formulation, here for nonces, presumes the existence of a
message encrypted with a secure key:

AB’.VB. Crypt(shrK A){Na, Agent A, Agent B}
€ parts(sees lost Spy evs)
— B=D01.

Here evs is some trace and, crucially, A ¢ lost. The spy could not have
performed the encryption because he lacks A’s key. The free occurrence
of Na in the message determines the identity of B.

As in the BAN logic, we obtain guarantees from encryption by keys
known to be secret. However, such guarantees are not built into the logic:
they are proved. Both formulations of unicity may be regarded as regularity
lemmas. Their proofs are not hard to generate.
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5.4 Proving Secrecy Theorems

Section 3.7 discussed a theorem stating that the compromise of some session
keys does not immediately compromise other keys: if K can be analyzed
from a set of session keys and messages, then either it is one of those keys,
or it can be analyzed from the messages alone. The precise statement of
this theorem requires some explanation. As always, evs is some trace (evs €
otway).

K € analz(K U seeslost Spy evs)) <
K € KV K € analz(seeslost Spy evs)

Here K is an arbitrary set of session keys, not necessarily present in the
trace. The right hand side of the equivalence is a simplification of

K € K U analz(sees lost Spy evs)

Replacing analz by parts, which distributes over union, would render the
theorem trivial. The right-to-left direction is trivial anyway.

To prove such a theorem can be a daunting task. However, I have dis-
covered a number of techniques that make proving secrecy theorems almost
routine.

1. Apply induction.

2. For each step that forwards part of a message, apply the corresponding
forwarding lemma, if its conclusion is expressed in terms of analz.

3. Simplify all cases, using rewrite rules for the easy cases of symbolic
evaluation of analz (pulling out agent names, nonces and compound
messages) and performing automatic case splits on encrypted mes-
sages.

A tactic developed for the Fake case can often prove subgoals involving
message forwarding. For the theorem mentioned above (concerning session
keys), the remaining subgoals fall to the classical reasoner, one of Isabelle’s
automatic tools. Some other secrecy theorems require an explicit and de-
tailed argument. Chief among these is proving that nonce Nb of the Yahalom
protocol [9] remains secret, which requires establishing a correspondence be-
tween nonces and keys.

Common patterns of reasoning observed in these long proofs can often
be packaged to form new proof tactics, shortening the script and facilitating
future proofs.

A crucial secrecy theorem states that the protocol’s step 3 distributes the
session key only to A and B. It takes the following form. Let evs € otway
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and A, B ¢ lost. Suppose that the server issues key K to A and B:

SaysS B {Na, Crypt(shrK A){Na, K},
Crypt(shrK B){Nb, K}} € set_of listevs

Suppose also that the key is not lost in an Oops event involving the same
nonces:

Says B Spy {Na, Nb, K} ¢ set_of listevs

Then we have K ¢ analz(seeslost Spy evs); the key is never available to the
spy.2

This secrecy theorem is slightly harder to prove than the previous one. In
the step 3 case, there are two possibilities. If the new message is the very one
mentioned in the theorem statement then then the session key is not fresh,
contradiction; otherwise, the induction hypothesis yields the needed result.
A single call to the classical reasoner executes this argument. The Oops
case is also nontrivial; showing that any Oops message involving K must
also involve Na and Nb requires unicity of session keys, a theorem discussed
in the previous section. The full proof script consists of six commands and
executes in about thirty seconds, generating a 1466-step proof.?

5.5 Proving Further Guarantees

The “step 3” secrecy theorem described above is worthless on its own. It
holds of a protocol variant that can be attacked (§3.8). In the correct pro-
tocol, if A or B receive the expected nonce, then the server has indeed sent
the critical step 3. How can we prove such guarantees for agents?

The correct protocol differs in message 2, which now encrypts Nb:

1.A— B: Na, A, B,{Na, A, B},

2. B— S : Na, A, B,{Na, A, B} ;;,, {Na, Nb, A, B} .,
3. S — B : Na,{Na, Kab} j,, {INb, Kab} x,

4. B — A: Na,{Na, Kab} .,

Given step 3, B can only read the third component, which is encrypted with
his key. He does not know what he is sending as step 4 or who will receive
it.

2To show that K is also unavailable to any other agent C, simply apply the theorem
putting {C} Ulost in place of lost: we can without loss of generality assume C' € lost, and
the spy can decrypt everything intended for the agents in lost. This little corollary is the
only reason why the set lost is given as an argument to sees and otway. Declaring lost as
a constant would sacrifice the corollary but simplify the notation.

3 All runtimes were measured on a Sun SuperSPARC model 61. A human could prob-
ably generate a much shorter proof by omitting irrelevant steps.
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B’s guarantee is as follows. If B & lost and B # Spy, and if a trace
contains an event of the form

Says S’ B {Na, X, Crypt(shrK B){Nb, Key K'}}
and if B recalls sending message 2,

Says BS {Na, Agent A, Agent B, X',
Crypt(shrK B){Na, Nb, Agent A, Agent B}}

then the server has sent a correct instance of step 3. The theorem does not
establish S’ =S or even that the X component is correct: the message may
have been tampered with. But the “step 3” secrecy theorem can be applied.
Checking his nonce assures B that K will be secure, subject to the premises
of the secrecy theorem.

B’s guarantee follows from a lemma proved by induction. It resembles a
regularity lemma. Its main premise is

Crypt(shrK B){Nb, Key K} € parts(seeslost Spy evs)

with other premises and conclusion as in the guarantee itself. Its proof is
complex, requiring several subsidiary lemmas:

e If the encrypted part of message 2 appears, then a suitable version of
message 2 was actually sent.

e The nonce Nb uniquely identifies the other components of message 2’s
encrypted part. This was discussed above (§5.3).

e A nonce cannot be used both as Na and as Nb in two protocol runs.
If A € lost then the elements

Crypt(shrK A){Na, Agent A, Agent B}
Crypt(shrK A){Nd', Na, Agent A’, Agent A}
cannot both be in parts(seeslost Spy evs).

The proof complexity arises from the use of nonces for binding and because
the two encrypted messages in step 3 have identical formats.

Now consider what A can safely conclude upon receiving message 4.
Suppose A & lost and A # Spy. If a trace contains a message of the form

Says B’ A {Na, Crypt(shrK A){Na, Key K}}
and if A recalls sending message 1,

Says A B {Na, Agent A, Agent B,
Crypt(shrK A){Na, Agent A, Agent B}}
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then the server has sent a message of the correct form, for some Nb. There
are many similarities, in both statement and proof, with B’s guarantee. A
message, purportedly from B, is considered as A would see it. Nonces are
compared with those from another message sent from A to B. The proof
again requires our proving by induction a lemma whose main premise is

Crypt(shrK A){Na, Key K} € parts(seeslost Spy evs),

with a detailed consideration of how nonces can be used.

5.6 Proving a Simplified Protocol

Abadi and Needham [2] suggest simplifying Otway-Rees by eliminating the
encryption in the first two messages. Nonces serve only for freshness, not
for binding. Message 3 explicitly names the intended recipients.

1. A—-B:A B,Na

2. B— S:A B,Na, Nb

3. S — B: Na,{Na, A, B, Kab} ., {Nb, A, B, Kab}
4. B — A: Na,{Na, A, B, Kab} .,

The authors claim [2, page 11], “The protocol is not only more efficient but
conceptually simpler after this modification.” The machine proofs support
their claims. The vital guarantees to B and A, from the last two messages,
become almost trivial to prove. Nonces do not need to be unique and no
facts need to be proved about them. The new proof script is half the size
and runs in half the time.*

The new protocol is slightly weaker than the original. The lack of encryp-
tion in message 2 allows an intruder to masquerade as B, though without
learning the session key. The original Otway-Rees protocol assures A that
B is present (I have proved this using Isabelle), but the new protocol does
not. However, the original version never assured B that A was present; any-
body could replay message 1, as Burrows et al. have noted [9, page 247]. To
Lowe [16], this represents a failure of authentication. The more refined anal-
ysis of Gollmann [11] lets us decide for ourselves whether such a limitation
matters.

6 Conclusions

I have applied the approach to three versions of the Otway-Rees protocol:
1. a flawed version from Burrows et al. [9, page 247|

2. the same protocol, corrected by restoring the encryption of Nb

4From 348 to 142 seconds, and from 88 proof commands to 57.
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3. a version that replaces much encryption by explicitness [2]

All three versions satisfy a crucial secrecy property: a key distributed by
the server to two agents remains secure. They differ in their authenticity
properties.

Version 1 is so weak as to be useless; the participants are not assured
that the server has distributed the keys to the correct agents. Attempting
to prove this assurance suggested a new attack (§3.8). Version 2 does assure
its participants that keys are distributed correctly; the proof requires many
lemmas that nonces uniquely identify certain messages. Version 3 gives its
participants the same assurance, and the proof is much shorter, requiring
no reasoning about unicity. However, version 2 satisfies a further property:
it assures A that B is present.

Implementors must recognize the limitations of formal proofs. The model
assumes strong encryption: the attacker can neither read nor modify mes-
sages. The model does not consider confusion between items of different
types, say between keys and nonces. If distinct encrypted parts might be
confused (because, say, their lengths are identical in bits), then labels must
be inserted to distinguish them [2]. Redundancy may also be necessary
to prevent attackers from exploiting algebraic properties of the encryption
method. Proofs certify designs, but many attacks are directed against im-
plementation flaws.

I have applied the inductive method to the three variants of the Otway-
Rees protocol described here, to a recursive generalization of it, to two vari-
ants of Yahalom, to a simplified version of Woo-Lam [2], and to Needham-
Schroeder (both shared- and public-key [21] versions).® Proofs are highly
automated: one command can generate tens or hundreds of inferences, and
small changes to protocols involve only small changes to proof scripts.

Bolignano [6] is developing a similar method. The similarity is most
obvious in the realm of message analysis. His reduction relations for sets of
messages are plainly related to my operators parts, analz and synth. Instead
of formalizing traces, he precisely models the states of A, B and the spy,
though the effect is similar. He has proved theorems concerning the Otway-
Rees protocol using Coq [7].

The inductive approach is a valuable addition to the protocol analyzer’s
toolkit. A combination of tools may yield the best results. Using a belief
logic during the design phase helps ensure freshness properties. Using a
model-checker can find simple attacks quickly. Finally, the inductive ap-
proach allows deeper properties to be investigated with a modest amount of
effort.

5Proof scripts are distributed with Isabelle, which can be obtained by ftp from URL
ftp://ftp.cl.cam.ac.uk/ml/index.html; see subdirectory HOL/Auth.
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