Proving the Regularity of the Minimal Probability

 of Ruin via a Game of Stopping and ControlErhan Bayraktar
University of Michigan

joint work with
Virginia R. Young, University of Michigan

$K \alpha \rho \lambda o \beta \alpha \sigma i, \Sigma A M O \Sigma$, June 2010

Probability of Lifetime Ruin with Stochastic Consumption

Probability of Lifetime Ruin with Stochastic Consumption

- Consumption rate follows a geometric Brownian motion given

$$
d c_{t}=c_{t}\left(a d t+b d B_{t}^{c}\right), \quad c_{0}=c>0
$$

Probability of Lifetime Ruin with Stochastic Consumption

- Consumption rate follows a geometric Brownian motion given

$$
d c_{t}=c_{t}\left(a d t+b d B_{t}^{c}\right), \quad c_{0}=c>0
$$

- The individual invests in a risky asset whose price at time t, S_{t}, follows geometric Brownian motion given by

$$
d S_{t}=S_{t}\left(\mu d t+\sigma d B_{t}^{S}\right), \quad S_{0}=S>0
$$

Probability of Lifetime Ruin with Stochastic Consumption

- Consumption rate follows a geometric Brownian motion given

$$
d c_{t}=c_{t}\left(a d t+b d B_{t}^{c}\right), \quad c_{0}=c>0
$$

- The individual invests in a risky asset whose price at time t, S_{t}, follows geometric Brownian motion given by

$$
d S_{t}=S_{t}\left(\mu d t+\sigma d B_{t}^{S}\right), \quad S_{0}=S>0
$$

- Assume that B^{c} and B^{S} are correlated Brownian motions with correlation coefficient $\rho \in[-1,1]$.

Probability of Lifetime Ruin with Stochastic Consumption

- Consumption rate follows a geometric Brownian motion given

$$
d c_{t}=c_{t}\left(a d t+b d B_{t}^{c}\right), \quad c_{0}=c>0
$$

- The individual invests in a risky asset whose price at time t, S_{t}, follows geometric Brownian motion given by

$$
d S_{t}=S_{t}\left(\mu d t+\sigma d B_{t}^{S}\right), \quad S_{0}=S>0
$$

- Assume that B^{c} and B^{S} are correlated Brownian motions with correlation coefficient $\rho \in[-1,1]$.
- The wealth dynamics

$$
d W_{t}=\left(r W_{t}+(\mu-r) \pi_{t}-c_{t}\right) d t+\sigma \pi_{t} d B_{t}, \quad W_{0}=w>0
$$

Probability of Lifetime Ruin with Stochastic Consumption

Probability of Lifetime Ruin with Stochastic Consumption

- Minimizing the probability of lifetime ruin is our objective

$$
\psi(w, c)=\inf _{\pi \in \mathcal{A}} \mathbf{P}^{w, c}\left(\tau_{0}<\tau_{d}\right)
$$

Probability of Lifetime Ruin with Stochastic Consumption

- Minimizing the probability of lifetime ruin is our objective

$$
\psi(w, c)=\inf _{\pi \in \mathcal{A}} \mathbf{P}^{w, c}\left(\tau_{0}<\tau_{d}\right)
$$

- $\tau_{0}=\inf \left\{t \geq 0: W_{t} \leq 0\right\}$.

Probability of Lifetime Ruin with Stochastic Consumption

- Minimizing the probability of lifetime ruin is our objective

$$
\psi(w, c)=\inf _{\pi \in \mathcal{A}} \mathbf{P}^{w, c}\left(\tau_{0}<\tau_{d}\right)
$$

- $\tau_{0}=\inf \left\{t \geq 0: W_{t} \leq 0\right\}$.
- τ_{d} is exponentially distributed with parameter λ (Time of death).

Our Goal

ψ given is decreasing and convex with respect to w, increasing with respect to c and is the unique classical solution of the following HJB equation

$$
\begin{align*}
& \lambda v=(r w-c) v_{w}+a c v_{c}+\frac{1}{2} b^{2} c^{2} v_{c c} \\
& +\min _{\pi}\left[(\mu-r) \pi v_{w}+\frac{1}{2} \sigma^{2} \pi^{2} v_{w w}+\sigma \pi b c \rho v_{w c}\right] \tag{1}\\
& v(0, c)=1 \text { and } v(w, 0)=0
\end{align*}
$$

Our Goal

ψ given is decreasing and convex with respect to w, increasing with respect to c and is the unique classical solution of the following HJB equation

$$
\begin{align*}
& \lambda v=(r w-c) v_{w}+a c v_{c}+\frac{1}{2} b^{2} c^{2} v_{c c} \\
& +\min _{\pi}\left[(\mu-r) \pi v_{w}+\frac{1}{2} \sigma^{2} \pi^{2} v_{w w}+\sigma \pi b c \rho v_{w c}\right] \tag{1}\\
& v(0, c)=1 \text { and } v(w, 0)=0
\end{align*}
$$

The optimal investment strategy π^{*} is given in feedback form by

$$
\pi_{t}^{*}=-\frac{(\mu-r) \psi_{w}\left(W_{t}^{*}, c_{t}\right)+\sigma b \rho c_{t} \psi_{w c}\left(W_{t}^{*}, c_{t}\right)}{\sigma^{2} \psi_{w w}\left(W_{t}^{*}, c_{t}\right)}
$$

in which W^{*} is the optimally controlled wealth process.

Outline of the Proof

Outline of the Proof

- Dimension Reduction. We reduce the dimension of the problem from two variables to one and obtain another problem which also is a ruin minimization problem.

Outline of the Proof

- Dimension Reduction. We reduce the dimension of the problem from two variables to one and obtain another problem which also is a ruin minimization problem.
- Approximation. We, then, construct a regular sequence of convex functions that converges uniformly to the value function that we obtain after the dimension reduction.

Outline of the Proof

- Dimension Reduction. We reduce the dimension of the problem from two variables to one and obtain another problem which also is a ruin minimization problem.
- Approximation. We, then, construct a regular sequence of convex functions that converges uniformly to the value function that we obtain after the dimension reduction.
- Convex Duality. We construct this sequence by taking the Legendre transform of a controller-and-stopper problem of Karatzas.

Outline of the Proof

- Dimension Reduction. We reduce the dimension of the problem from two variables to one and obtain another problem which also is a ruin minimization problem.
- Approximation. We, then, construct a regular sequence of convex functions that converges uniformly to the value function that we obtain after the dimension reduction.
- Convex Duality. We construct this sequence by taking the Legendre transform of a controller-and-stopper problem of Karatzas.
- Analysis of the Controller and Stopper Problem.

Dimension Reduction

Dimension Reduction

It turns out that $\psi(w, c)=\phi(w / c)$

Dimension Reduction

It turns out that $\psi(w, c)=\phi(w / c)$ in which
ϕ is the unique classical solution of the following HJB equation on \mathbb{R}_{+}:

$$
\begin{align*}
\lambda f=(\tilde{r} z-1) f^{\prime}+ & \frac{1}{2} b^{2}\left(1-\rho^{2}\right) z^{2} f^{\prime \prime}+ \\
& \min _{\tilde{\pi}}\left[(\mu-r-\sigma b \rho) \tilde{\pi} f^{\prime}+\frac{1}{2} \sigma^{2} \tilde{\pi}^{2} f^{\prime \prime}\right], \tag{2}
\end{align*}
$$

$$
f(0)=1 \text { and } \lim _{z \rightarrow \infty} f(z)=0
$$

in which $\tilde{r}=r-a+b^{2}+(\mu-r-\sigma b \rho) \rho b / \sigma$.

Interpretation of the Reduced Problem

Consider two (risky) assets with prices $\tilde{S}^{(1)}$ and $\tilde{S}^{(2)}$ following the diffusions

$$
d \tilde{S}_{t}^{(1)}=\tilde{S}_{t}^{(1)}\left(\tilde{r} d t+b \sqrt{1-\rho^{2}} d \tilde{B}_{t}^{(1)}\right)
$$

and

$$
d \tilde{S}_{t}^{(2)}=\tilde{S}_{t}^{(2)}\left(\tilde{\mu} d t+\sqrt{b^{2}\left(1-\rho^{2}\right)+\sigma^{2}} d \tilde{B}_{t}^{(2)}\right)
$$

in which $\tilde{\mu}=\mu-r+\sigma b \rho+\tilde{r}$.

Interpretation of the Reduced Problem

Consider two (risky) assets with prices $\tilde{S}^{(1)}$ and $\tilde{S}^{(2)}$ following the diffusions

$$
d \tilde{S}_{t}^{(1)}=\tilde{S}_{t}^{(1)}\left(\tilde{r} d t+b \sqrt{1-\rho^{2}} d \tilde{B}_{t}^{(1)}\right)
$$

and

$$
d \tilde{S}_{t}^{(2)}=\tilde{S}_{t}^{(2)}\left(\tilde{\mu} d t+\sqrt{b^{2}\left(1-\rho^{2}\right)+\sigma^{2}} d \tilde{B}_{t}^{(2)}\right)
$$

in which $\tilde{\mu}=\mu-r+\sigma b \rho+\tilde{r}$. Also, $\tilde{B}^{(1)}$ and $\tilde{B}^{(2)}$ are correlated standard Brownian motions with correlation coefficient

$$
\tilde{\rho}=\frac{b \sqrt{1-\rho^{2}}}{\sqrt{b^{2}\left(1-\rho^{2}\right)+\sigma^{2}}}
$$

Interpretation of the Reduced Problem

Interpretation of the Reduced Problem

- Suppose an individual has wealth Z_{t} at time t, consumes at the constant rate of 1 , and wishes to invest in these two assets in order to minimize her probability of lifetime ruin.

Interpretation of the Reduced Problem

- Suppose an individual has wealth Z_{t} at time t, consumes at the constant rate of 1 , and wishes to invest in these two assets in order to minimize her probability of lifetime ruin.
- With a slight abuse of notation, let $\tilde{\pi}_{t}$ be the dollar amount that the individual invests in the second asset at time t; then, $Z_{t}-\tilde{\pi}_{t}$ is the amount invested in the first asset at time t.

Interpretation of the Reduced Problem

- Suppose an individual has wealth Z_{t} at time t, consumes at the constant rate of 1 , and wishes to invest in these two assets in order to minimize her probability of lifetime ruin.
- With a slight abuse of notation, let $\tilde{\pi}_{t}$ be the dollar amount that the individual invests in the second asset at time t; then, $Z_{t}-\tilde{\pi}_{t}$ is the amount invested in the first asset at time t.
- The function ϕ is again a minimum probability of lifetime ruin!

$$
\phi(z)=\inf _{\tilde{\pi} \in \tilde{\mathcal{A}}} \tilde{\mathbb{P}}^{z}\left(\tilde{\tau}_{0}<\tau_{d}\right)
$$

An Approximating Sequence

- Consider the hitting time $\tilde{\tau}_{M}$ defined by and $\tilde{\tau}_{M}=\inf \left\{t \geq 0: Z_{t} \geq M\right\}$, for $M>0$.

An Approximating Sequence

- Consider the hitting time $\tilde{\tau}_{M}$ defined by and $\tilde{\tau}_{M}=\inf \left\{t \geq 0: Z_{t} \geq M\right\}$, for $M>0$.
- Let us define the auxiliary problem

$$
\phi_{M}(z)=\inf _{\tilde{\pi} \in \tilde{\mathcal{A}}} \tilde{\mathbb{P}}^{z}\left(\tilde{\tau}_{0}<\left(\tilde{\tau}_{M} \wedge \tau_{d}\right)\right)
$$

An Approximating Sequence

- The modified minimum probability of lifetime ruin ϕ_{M} is continuous on \mathbb{R}_{+}and is decreasing, convex, and \mathcal{C}^{2} on $(0, M)$.

An Approximating Sequence

- The modified minimum probability of lifetime ruin ϕ_{M} is continuous on \mathbb{R}_{+}and is decreasing, convex, and \mathcal{C}^{2} on $(0, M)$.
- Additionally, ϕ_{M} is the unique solution of the following HJB equation on $[0, M]$:

An Approximating Sequence

- The modified minimum probability of lifetime ruin ϕ_{M} is continuous on \mathbb{R}_{+}and is decreasing, convex, and \mathcal{C}^{2} on $(0, M)$.
- Additionally, ϕ_{M} is the unique solution of the following HJB equation on $[0, M]$:

$$
\begin{aligned}
& \lambda f=(\tilde{r} z-1) f^{\prime}+\frac{1}{2} b^{2}\left(1-\rho^{2}\right) z^{2} f^{\prime \prime}+ \\
& \quad \min _{\tilde{\pi}}\left[(\mu-r-\sigma b \rho) \tilde{\pi} f^{\prime}+\frac{1}{2} \sigma^{2} \tilde{\pi}^{2} f^{\prime \prime}\right], \\
& \quad f(0)=1, \quad f(M)=0 .
\end{aligned}
$$

An Approximating Sequence

- The modified minimum probability of lifetime ruin ϕ_{M} is continuous on \mathbb{R}_{+}and is decreasing, convex, and \mathcal{C}^{2} on $(0, M)$.
- Additionally, ϕ_{M} is the unique solution of the following HJB equation on $[0, M]$:

$$
\begin{aligned}
& \lambda f=(\tilde{r} z-1) f^{\prime}+\frac{1}{2} b^{2}\left(1-\rho^{2}\right) z^{2} f^{\prime \prime}+ \\
& \quad \min _{\tilde{\pi}}\left[(\mu-r-\sigma b \rho) \tilde{\pi} f^{\prime}+\frac{1}{2} \sigma^{2} \tilde{\pi}^{2} f^{\prime \prime}\right], \\
& \quad f(0)=1, \quad f(M)=0 .
\end{aligned}
$$

- Furthermore, on \mathbb{R}_{+}, we have

$$
\lim _{M \rightarrow \infty} \phi_{M}(z)=\phi(z)
$$

A Controller and Stopper Problem

A Controller and Stopper Problem

Define a controlled stochastic process Y^{α} by

$$
\begin{aligned}
d Y_{t}^{\alpha}=Y_{t}^{\alpha}[(\lambda-\tilde{r}) d & \left.t+\frac{\mu-r-\sigma b \rho}{\sigma} d \hat{B}_{t}^{(1)}\right] \\
& +\alpha_{t}\left[b \sqrt{1-\rho^{2}} d t+d \hat{B}_{t}^{(2)}\right]
\end{aligned}
$$

A Controller and Stopper Problem

Define a controlled stochastic process Y^{α} by

$$
\begin{aligned}
d Y_{t}^{\alpha}=Y_{t}^{\alpha}[(\lambda-\tilde{r}) d & \left.t+\frac{\mu-r-\sigma b \rho}{\sigma} d \hat{B}_{t}^{(1)}\right] \\
& +\alpha_{t}\left[b \sqrt{1-\rho^{2}} d t+d \hat{B}_{t}^{(2)}\right]
\end{aligned}
$$

Admissible strategies, $\mathcal{A}(y):\left(\alpha_{t}\right)_{t \geq 0}$ that satisfy the integrability condition $\mathbb{E}\left[\int_{0}^{t} \alpha_{s}^{2} d s\right]<\infty$, and $Y_{t}^{\alpha} \geq 0$ almost surely, for all $t \geq 0$.

A Controller and Stopper Problem

A Controller and Stopper Problem

The controller-and-stopper problem

$$
\hat{\phi}_{M}(y)=\sup _{\alpha \in \mathcal{A}(y)} \inf _{\tau} \hat{\mathbb{E}}^{y}\left[\int_{0}^{\tau} e^{-\lambda t} Y_{t}^{\alpha} d t+e^{-\lambda \tau} u_{M}\left(Y_{\tau}^{\alpha}\right)\right]
$$

A Controller and Stopper Problem

The controller-and-stopper problem

$$
\hat{\phi}_{M}(y)=\sup _{\alpha \in \mathcal{A}(y)} \inf _{\tau} \hat{\mathbb{E}}^{y}\left[\int_{0}^{\tau} e^{-\lambda t} Y_{t}^{\alpha} d t+e^{-\lambda \tau} u_{M}\left(Y_{\tau}^{\alpha}\right)\right]
$$

Here "payoff function" u_{M} for $y \geq 0$ is given by

$$
u_{M}(y):=\min (M y, 1)
$$

Continuation Region

Continuation Region

$$
D=\left\{y \in \mathbb{R}_{+}: \hat{\phi}_{M}(y)<u_{M}(y)\right\},
$$

Continuation Region

$$
D=\left\{y \in \mathbb{R}_{+}: \hat{\phi}_{M}(y)<u_{M}(y)\right\}
$$

- There exist $0 \leq y_{M} \leq 1 / M \leq y_{0} \leq \infty$ such that $D=\left(y_{M}, y_{0}\right)$

Continuation Region

$$
D=\left\{y \in \mathbb{R}_{+}: \hat{\phi}_{M}(y)<u_{M}(y)\right\}
$$

- There exist $0 \leq y_{M} \leq 1 / M \leq y_{0} \leq \infty$ such that $D=\left(y_{M}, y_{0}\right)$
- Suppose that $y_{1}>0$ is such that $\hat{\phi}_{M}\left(y_{1}\right)=u_{M}\left(y_{1}\right)$. First, suppose that $y_{1} \leq 1 / M$; then, because $\phi_{M}(0)=0$ and because $\hat{\phi}_{M}$ is non-decreasing, concave, and bounded above by the line $M y$ it must be that $\hat{\phi}_{M}(y)=M y$ for all $0 \leq y \leq y_{1}$. Thus, if $y_{1} \leq 1 / M$ is not in D, then the same is true for $y \in\left[0, y_{1}\right]$.

Continuation Region

$$
D=\left\{y \in \mathbb{R}_{+}: \hat{\phi}_{M}(y)<u_{M}(y)\right\}
$$

- There exist $0 \leq y_{M} \leq 1 / M \leq y_{0} \leq \infty$ such that $D=\left(y_{M}, y_{0}\right)$
- Suppose that $y_{1}>0$ is such that $\hat{\phi}_{M}\left(y_{1}\right)=u_{M}\left(y_{1}\right)$. First, suppose that $y_{1} \leq 1 / M$; then, because $\phi_{M}(0)=0$ and because $\hat{\phi}_{M}$ is non-decreasing, concave, and bounded above by the line $M y$ it must be that $\hat{\phi}_{M}(y)=M y$ for all $0 \leq y \leq y_{1}$. Thus, if $y_{1} \leq 1 / M$ is not in D, then the same is true for $y \in\left[0, y_{1}\right]$.
- Finally, suppose that $y_{1} \geq 1 / M$; then, because $\hat{\phi}_{M}$ is non-decreasing, concave, and bounded above by the horizontal line 1 it must be that $\hat{\phi}_{M}(y)=1$ for all $y \geq y_{1}$. Thus, if $y_{1} \geq 1 / M$ is not in D, then the same is true for $y \in\left[y_{1}, \infty\right)$.

Viscosity Solutions

$g \in \mathcal{C}^{0}\left(\mathbb{R}_{+}\right)$is a viscosity supersolution (respectively, subsolution) if

$$
\begin{aligned}
\max & {\left[\lambda g\left(y_{1}\right)-y_{1}-(\lambda-\tilde{r}) y_{1} f^{\prime}\left(y_{1}\right)-m y_{1}^{2} f^{\prime \prime}\left(y_{1}\right)\right.} \\
& -\max _{\alpha}\left[b \sqrt{1-\rho^{2}} \alpha f^{\prime}\left(y_{1}\right)+\frac{1}{2} \alpha^{2} f^{\prime \prime}\left(y_{1}\right)\right] \\
& \left.g\left(y_{1}\right)-u_{M}\left(y_{1}\right)\right] \geq 0
\end{aligned}
$$

(respectively, ≤ 0) whenever $f \in \mathcal{C}^{2}\left(\mathbb{R}_{+}\right)$and $g-f$ has a global minimum (respectively, maximum) at $y=y_{1} \geq 0$. (ii) g is a viscosity solution of if it is both a viscosity super- and subsolution.

Back to the Continuation Region

Back to the Continuation Region

If $M>1 / \lambda$, then $D=\left(y_{M}, y_{0}\right)$ is non-empty. In particular, $y_{M}<1 / M<\lambda \leq y_{0}$.

Back to the Continuation Region

If $M>1 / \lambda$, then $D=\left(y_{M}, y_{0}\right)$ is non-empty. In particular, $y_{M}<1 / M<\lambda \leq y_{0}$.

- Suppose $M>1 / \lambda$, and suppose that D is empty. Then, for all $y \geq 0$, we have $\hat{\phi}_{M}(y)=u_{M}(y)=\min (M y, 1) . \hat{\phi}_{M}=u_{M}$ is a viscosity solution. Because $M>1 / \lambda$, there exists $y_{1} \in(1 / M, \lambda)$. The value function is identically 1 in a neighborhood of y_{1}, the QVI evaluated at $y=y_{1}$ becomes $\max \left[\lambda-y_{1}, 0\right]=0$, which contradicts $y_{1}<\lambda$. Thus, the region D is non-empty.

Smooth Fit

Smooth Fit

Assume that $M>1 / \lambda$. Let $y_{0}<\infty$. The function $\hat{\phi}_{M}$ satisfies the smooth pasting condition, that is,

Smooth Fit

Assume that $M>1 / \lambda$. Let $y_{0}<\infty$. The function $\hat{\phi}_{M}$ satisfies the smooth pasting condition, that is,

$$
D_{-} \hat{\phi}_{M}\left(y_{0}\right)=0, \quad \text { and } \quad D_{+} \hat{\phi}_{M}\left(y_{M}\right)=M
$$

Smooth Fit

Assume that $M>1 / \lambda$. Let $y_{0}<\infty$. The function $\hat{\phi}_{M}$ satisfies the smooth pasting condition, that is,

$$
D_{-} \hat{\phi}_{M}\left(y_{0}\right)=0, \quad \text { and } \quad D_{+} \hat{\phi}_{M}\left(y_{M}\right)=M
$$

Assume that

$$
D_{+} \hat{\phi}_{M}\left(y_{0}\right)<D_{-} \hat{\phi}_{M}\left(y_{0}\right)
$$

Let

$$
\delta \in\left(D_{+}\left(y_{0}\right) \hat{\phi}_{M}, D_{-} \hat{\phi}_{M}\left(y_{0}\right)\right)
$$

Then the function

$$
\psi_{\varepsilon}(y)=1+\delta\left(y-y_{0}\right)-\frac{\left(y-y_{0}\right)^{2}}{2 \varepsilon}
$$

dominates $\hat{\phi}_{M}$ locally at y_{0}. Since $\hat{\phi}_{M}$ is a viscosity subsolution of we have that

$$
\lambda-y_{0}-(\lambda-\tilde{r}) \lambda \delta+\frac{m \lambda^{2}}{\varepsilon}+\frac{1}{2} b^{2}\left(1-\rho^{2}\right) \frac{\delta^{2}}{\varepsilon} \leq 0
$$

Regularity of the Controller-and-Stopper Problem

Regularity of the Controller-and-Stopper Problem

- $\hat{\phi}_{M}$ is the unique classical solution of the following free-boundary problem:

$$
\begin{aligned}
& \lambda g=y+(\lambda-\tilde{r}) y g^{\prime}+m y^{2} g^{\prime \prime}+\max _{\alpha}\left[b \sqrt{1-\rho^{2}} \alpha g^{\prime}+\frac{1}{2} \alpha^{2} g^{\prime \prime}\right] \text { on } D, \\
& g\left(y_{M}\right)=M y_{M} \text { and } g\left(y_{0}\right)=1 .
\end{aligned}
$$

Regularity of the Controller-and-Stopper Problem

- $\hat{\phi}_{M}$ is the unique classical solution of the following free-boundary problem:

$$
\begin{aligned}
& \lambda g=y+(\lambda-\tilde{r}) y g^{\prime}+m y^{2} g^{\prime \prime}+\max _{\alpha}\left[b \sqrt{1-\rho^{2}} \alpha g^{\prime}+\frac{1}{2} \alpha^{2} g^{\prime \prime}\right] \text { on } D, \\
& g\left(y_{M}\right)=M y_{M} \text { and } g\left(y_{0}\right)=1
\end{aligned}
$$

- The value function for this problem, namely $\hat{\phi}_{M}$, is non-decreasing (strictly increasing on D), concave (strictly concave on D), and \mathcal{C}^{2} on \mathbb{R}_{+}(except for possibly at y_{M} where it is \mathcal{C}^{1}).

Fenchel-Legendre Duality

Fenchel-Legendre Duality

- Define the convex dual

$$
\Phi_{M}(z)=\max _{y \geq 0}\left[\hat{\phi}_{M}(y)-z y\right](* *) .
$$

Fenchel-Legendre Duality

- Define the convex dual

$$
\Phi_{M}(z)=\max _{y \geq 0}\left[\hat{\phi}_{M}(y)-z y\right](* *) .
$$

- We have two cases to consider: (1) $z \geq M$ and (2) $z<M$.

Fenchel-Legendre Duality

- Define the convex dual

$$
\Phi_{M}(z)=\max _{y \geq 0}\left[\hat{\phi}_{M}(y)-z y\right](* *) .
$$

- We have two cases to consider: (1) $z \geq M$ and (2) $z<M$.
- If $z \geq M$, then $\Phi_{M}(z)=0$ because
$\hat{\phi}_{M}(y) \leq u_{M}(y) \leq M y \leq z y$, from which it follows that the maximum on the right-hand side of $\left({ }^{* *}\right)$ is achieved at $y^{*}=y_{M}$.

Fenchel-Legendre Duality

- Define the convex dual

$$
\Phi_{M}(z)=\max _{y \geq 0}\left[\hat{\phi}_{M}(y)-z y\right](* *) .
$$

- We have two cases to consider: (1) $z \geq M$ and (2) $z<M$.
- If $z \geq M$, then $\Phi_{M}(z)=0$ because
$\hat{\phi}_{M}(y) \leq u_{M}(y) \leq M y \leq z y$, from which it follows that the maximum on the right-hand side of $\left({ }^{* *}\right)$ is achieved at $y^{*}=y_{M}$.
- When $z<M, y^{*}=I_{M}(z)$ maximizes $\left({ }^{* *}\right)$, in which I_{M} is the inverse of $\hat{\phi}_{M}^{\prime}$ on $\left(y_{M}, y_{0}\right]$.

Fenchel-Legendre Duality

Fenchel-Legendre Duality

- For $z<M$ we have

$$
\Phi_{M}(z)=\hat{\phi}_{M}\left[I_{M}(z)\right]-z I_{M}(z) .
$$

Fenchel-Legendre Duality

- For $z<M$ we have

$$
\Phi_{M}(z)=\hat{\phi}_{M}\left[I_{M}(z)\right]-z I_{M}(z) .
$$

- Which implies

$$
\begin{aligned}
\Phi_{M}^{\prime}(z) & =\hat{\phi}_{M}^{\prime}\left[I_{M}(z)\right] I_{M}^{\prime}(z)-I_{M}(z)-z I_{M}^{\prime}(z) \\
& =z I_{M}^{\prime}(z)-I_{M}(z)-z I_{M}^{\prime}(z)=-I_{M}(z)
\end{aligned}
$$

Fenchel-Legendre Duality

- For $z<M$ we have

$$
\Phi_{M}(z)=\hat{\phi}_{M}\left[I_{M}(z)\right]-z I_{M}(z)
$$

- Which implies

$$
\begin{aligned}
\Phi_{M}^{\prime}(z) & =\hat{\phi}_{M}^{\prime}\left[I_{M}(z)\right] I_{M}^{\prime}(z)-I_{M}(z)-z I_{M}^{\prime}(z) \\
& =z I_{M}^{\prime}(z)-I_{M}(z)-z I_{M}^{\prime}(z)=-I_{M}(z)
\end{aligned}
$$

- Taking one more derivative

$$
\Phi_{M}^{\prime \prime}(z)=-I_{M}^{\prime}(z)=-1 / \hat{\phi}_{M}^{\prime \prime}\left[I_{M}(z)\right]
$$

Fenchel-Legendre Duality

Fenchel-Legendre Duality

Letting $y=I_{M}(z)=-\Phi_{M}^{\prime}(z)$ in the partial differential equation for $\hat{\phi}_{M}$ we get

Fenchel-Legendre Duality

Letting $y=I_{M}(z)=-\Phi_{M}^{\prime}(z)$ in the partial differential equation for $\hat{\phi}_{M}$ we get

$$
\begin{aligned}
\lambda \hat{\phi}_{M}\left[I_{M}(z)\right] & =\operatorname{IM}(z)+(\lambda-\tilde{r}) I_{M}(z) \hat{\phi}_{M}^{\prime}\left[I_{M}(z)\right]+I_{M}^{2}(z) \hat{\phi}_{M}^{\prime \prime}\left[I_{M}(z)\right] \\
& -\frac{1}{2} b^{2}\left(1-\rho^{2}\right) \frac{\left(\hat{\phi}_{M}^{\prime}\left[I_{M}(z)\right]\right)^{2}}{\hat{\phi}_{M}^{\prime \prime}\left[I_{M}(z)\right]} .
\end{aligned}
$$

Fenchel-Legendre Duality

Letting $y=I_{M}(z)=-\Phi_{M}^{\prime}(z)$ in the partial differential equation for $\hat{\phi}_{M}$ we get

$$
\begin{aligned}
\lambda \hat{\phi}_{M}\left[I_{M}(z)\right] & =I_{M}(z)+(\lambda-\tilde{r}) I_{M}(z) \hat{\phi}_{M}^{\prime}\left[I_{M}(z)\right]+m I_{M}^{2}(z) \hat{\phi}_{M}^{\prime \prime}\left[I_{M}(z)\right] \\
& -\frac{1}{2} b^{2}\left(1-\rho^{2}\right) \frac{\left(\hat{\phi}_{M}^{\prime}\left[I_{M}(z)\right]\right)^{2}}{\hat{\phi}_{M}^{\prime \prime}\left[I_{M}(z)\right]} .
\end{aligned}
$$

Rewrite this equation in terms of Φ_{M} to get

$$
\lambda \Phi_{M}(z)=(\tilde{r} z-1) \Phi_{M}^{\prime}(z)-m \frac{\left(\Phi_{M}^{\prime}(z)\right)^{2}}{\Phi_{M}^{\prime \prime}(z)}+\frac{1}{2} b^{2}\left(1-\rho^{2}\right) z^{2} \Phi_{M}^{\prime \prime}(z)
$$

Fenchel-Legendre Duality

Letting $y=I_{M}(z)=-\Phi_{M}^{\prime}(z)$ in the partial differential equation for $\hat{\phi}_{M}$ we get

$$
\begin{aligned}
\lambda \hat{\phi}_{M}\left[I_{M}(z)\right] & =I_{M}(z)+(\lambda-\tilde{r}) I_{M}(z) \hat{\phi}_{M}^{\prime}\left[I_{M}(z)\right]+m I_{M}^{2}(z) \hat{\phi}_{M}^{\prime \prime}\left[I_{M}(z)\right] \\
& -\frac{1}{2} b^{2}\left(1-\rho^{2}\right) \frac{\left(\hat{\phi}_{M}^{\prime}\left[I_{M}(z)\right]\right)^{2}}{\hat{\phi}_{M}^{\prime \prime}\left[I_{M}(z)\right]} .
\end{aligned}
$$

Rewrite this equation in terms of Φ_{M} to get

$$
\lambda \Phi_{M}(z)=(\tilde{r} z-1) \Phi_{M}^{\prime}(z)-m \frac{\left(\Phi_{M}^{\prime}(z)\right)^{2}}{\Phi_{M}^{\prime \prime}(z)}+\frac{1}{2} b^{2}\left(1-\rho^{2}\right) z^{2} \Phi_{M}^{\prime \prime}(z)
$$

Also obtain the boundary conditions $\Phi_{M}(M)=0$ and $\Phi_{M}(0)=1$.

Fenchel-Legendre Duality

Letting $y=I_{M}(z)=-\Phi_{M}^{\prime}(z)$ in the partial differential equation for $\hat{\phi}_{M}$ we get

$$
\begin{aligned}
\lambda \hat{\phi}_{M}\left[I_{M}(z)\right] & =I_{M}(z)+(\lambda-\tilde{r}) I_{M}(z) \hat{\phi}_{M}^{\prime}\left[I_{M}(z)\right]+m I_{M}^{2}(z) \hat{\phi}_{M}^{\prime \prime}\left[I_{M}(z)\right] \\
& -\frac{1}{2} b^{2}\left(1-\rho^{2}\right) \frac{\left(\hat{\phi}_{M}^{\prime}\left[I_{M}(z)\right]\right)^{2}}{\hat{\phi}_{M}^{\prime \prime}\left[I_{M}(z)\right]} .
\end{aligned}
$$

Rewrite this equation in terms of Φ_{M} to get

$$
\lambda \Phi_{M}(z)=(\tilde{r} z-1) \Phi_{M}^{\prime}(z)-m \frac{\left(\Phi_{M}^{\prime}(z)\right)^{2}}{\Phi_{M}^{\prime \prime}(z)}+\frac{1}{2} b^{2}\left(1-\rho^{2}\right) z^{2} \Phi_{M}^{\prime \prime}(z)
$$

Also obtain the boundary conditions $\Phi_{M}(M)=0$ and $\Phi_{M}(0)=1$. Thanks to a verification theorem $\Phi_{M}=\phi_{M}$.

The Scheme for the proofs

The Scheme for the proofs

- Show that $\hat{\phi}_{M}$ is a viscosity solution of the quasi-variational inequality.

The Scheme for the proofs

- Show that $\hat{\phi}_{M}$ is a viscosity solution of the quasi-variational inequality.
- Prove a comparison result for this quasi-variational inequality.

The Scheme for the proofs

- Show that $\hat{\phi}_{M}$ is a viscosity solution of the quasi-variational inequality.
- Prove a comparison result for this quasi-variational inequality.
- Show that $\hat{\phi}_{M}$ is \mathcal{C}^{2} and strictly concave in the continuation region.

The Scheme for the proofs

- Show that $\hat{\phi}_{M}$ is a viscosity solution of the quasi-variational inequality.
- Prove a comparison result for this quasi-variational inequality.
- Show that $\hat{\phi}_{M}$ is \mathcal{C}^{2} and strictly concave in the continuation region.
- Show that smooth pasting holds for the controller-and-stopper problem.

The Scheme for the proofs

The Scheme for the proofs

- Conclude that the convex dual, namely Φ_{M}, of $\hat{\phi}_{M}$ (via the Legendre transform) is a \mathcal{C}^{2} solution of ϕ_{M} 's HJB on $[0, M]$ with $\Phi_{M}(z)=0$ for $z \geq M$.

The Scheme for the proofs

- Conclude that the convex dual, namely Φ_{M}, of $\hat{\phi}_{M}$ (via the Legendre transform) is a \mathcal{C}^{2} solution of ϕ_{M} 's HJB on $[0, M$] with $\Phi_{M}(z)=0$ for $z \geq M$.
- Show via a verification lemma that the minimum probability of ruin ϕ_{M} defined in equals Φ_{M}.

The Scheme for the proofs

- Conclude that the convex dual, namely Φ_{M}, of $\hat{\phi}_{M}$ (via the Legendre transform) is a \mathcal{C}^{2} solution of ϕ_{M} 's HJB on $[0, M]$ with $\Phi_{M}(z)=0$ for $z \geq M$.
- Show via a verification lemma that the minimum probability of ruin ϕ_{M} defined in equals Φ_{M}.
- Show that $\lim _{M \rightarrow \infty} \phi_{M}$ is a viscosity solution of the HJB equation for ϕ.

The Scheme for the proofs

- Conclude that the convex dual, namely Φ_{M}, of $\hat{\phi}_{M}$ (via the Legendre transform) is a \mathcal{C}^{2} solution of ϕ_{M} 's HJB on $[0, M]$ with $\Phi_{M}(z)=0$ for $z \geq M$.
- Show via a verification lemma that the minimum probability of ruin ϕ_{M} defined in equals Φ_{M}.
- Show that $\lim _{M \rightarrow \infty} \phi_{M}$ is a viscosity solution of the HJB equation for ϕ.
- Show that $\lim _{M \rightarrow \infty} \phi_{M}$ is smooth.

The Scheme for the proofs

- Conclude that the convex dual, namely Φ_{M}, of $\hat{\phi}_{M}$ (via the Legendre transform) is a \mathcal{C}^{2} solution of ϕ_{M} 's HJB on $[0, M]$ with $\Phi_{M}(z)=0$ for $z \geq M$.
- Show via a verification lemma that the minimum probability of ruin ϕ_{M} defined in equals Φ_{M}.
- Show that $\lim _{M \rightarrow \infty} \phi_{M}$ is a viscosity solution of the HJB equation for ϕ.
- Show that $\lim _{M \rightarrow \infty} \phi_{M}$ is smooth.
- Show that $\lim _{M \rightarrow \infty} \phi_{M}=\phi$ on \mathbb{R}_{+}and that ϕ is the unique smooth solution of the corresponding HJB.

The Scheme for the proofs

- Conclude that the convex dual, namely Φ_{M}, of $\hat{\phi}_{M}$ (via the Legendre transform) is a \mathcal{C}^{2} solution of ϕ_{M} 's HJB on $[0, M]$ with $\Phi_{M}(z)=0$ for $z \geq M$.
- Show via a verification lemma that the minimum probability of ruin ϕ_{M} defined in equals Φ_{M}.
- Show that $\lim _{M \rightarrow \infty} \phi_{M}$ is a viscosity solution of the HJB equation for ϕ.
- Show that $\lim _{M \rightarrow \infty} \phi_{M}$ is smooth.
- Show that $\lim _{M \rightarrow \infty} \phi_{M}=\phi$ on \mathbb{R}_{+}and that ϕ is the unique smooth solution of the corresponding HJB.
- A verification theorem shows that $\psi(w, c)=\phi(w / c)$.

References

References

(1) Proving the Regularity of the Minimal Probability of Ruin via a Game of Stopping and Control. Available on ArxiV.

References

(1) Proving the Regularity of the Minimal Probability of Ruin via a Game of Stopping and Control. Available on ArxiV.
(2) Correspondence between Lifetime Minimum Wealth and Utility of Consumption, Finance and Stochastics, 2007, Volume 11 (2) 213-236.

References

(1) Proving the Regularity of the Minimal Probability of Ruin via a Game of Stopping and Control. Available on ArxiV.
(2) Correspondence between Lifetime Minimum Wealth and Utility of Consumption, Finance and Stochastics, 2007, Volume 11 (2) 213-236.
(3) Minimizing the Probability of Lifetime Ruin under Borrowing Constraints, Insurance Mathematics and Economics, 2007, 41: 196-221.

References

(1) Proving the Regularity of the Minimal Probability of Ruin via a Game of Stopping and Control. Available on ArxiV.
(2) Correspondence between Lifetime Minimum Wealth and Utility of Consumption, Finance and Stochastics, 2007, Volume 11 (2) 213-236.
(3) Minimizing the Probability of Lifetime Ruin under Borrowing Constraints, Insurance Mathematics and Economics, 2007, 41: 196-221.
(4) Maximizing Utility of Consumption Subject to a Constraint on the Probability of Lifetime Ruin, Finance and Research Letters, (2008), 5 (4), 204-212.

References

(1) Proving the Regularity of the Minimal Probability of Ruin via a Game of Stopping and Control. Available on ArxiV.
(2) Correspondence between Lifetime Minimum Wealth and Utility of Consumption, Finance and Stochastics, 2007, Volume 11 (2) 213-236.
(3) Minimizing the Probability of Lifetime Ruin under Borrowing Constraints, Insurance Mathematics and Economics, 2007, 41: 196-221.
(4) Maximizing Utility of Consumption Subject to a Constraint on the Probability of Lifetime Ruin, Finance and Research Letters, (2008), 5 (4), 204-212.
(5) Optimal Investment Strategy to Minimize Occupation Time, Annals of Operations Research, 2010, 176 (1), 389-408.

Thanks for your attention!

