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ABSTRACT 

A common tool for proving the termination of programs is the well-founded set, a 

set ordered in such a way as to admit no infinite descending sequences. The basic 

approach is to find a termination functio~ that maps the values of the program vari- 

ables into some well-founded set, such that the value of the termination function is 

continually reduced throughout the computation. All too often, the termination func- 

tions required are difficult to find and are of a complexity out of proportion to the 

program under consideration. However, by providing more sophisticated well-founded 

sets, the corresponding termination functions can be simplified. 

Given a well-founded set S, we consider ~Itisets over S, "sets" that admit 

multiple occurrences of elements taken from S. We define an ordering on all finite 

multisets over S that is induced by the given ordering on S. This multiset ordering 

is shown to be well-founded. The value of the multiset ordering is that it permits 

the use of relatively simple and intuitive termination functions in otherwise dif- 

ficult termination proofs. In particular, we apply the multiset ordering to prove 

the termination of production systems, programs defined in terms of sets of rewriting 

rules. 
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I. INTRODUCTION 

The use of well-founded sets for proving that programs terminate has been sug- 

gested by Floyd [1967]. A well-founded set consists of a set of elements S and a 

transitive and irreflexive ordering > defined on the elements such that there can be 

no infinite descending sequences of elements. The idea is to find a well-founded set 

and a termination function that maps the values of the program variables into that 

set such that the value of the termination function is continually reduced throughout 

the computation. Since, by the nature of the set, the value cannot decrease indefin- 

itely, the program must terminate. 

The well-founded sets most frequently used for this purpose are the natural num- 

bers under the "greater-than" ordering and n-tuples of natural numbers under the lexi- 

cographic ordering. In practice using these conventional orderings often leads to 

complex termination functions that are difficult to discover. For example, the termi- 

nation proofs of programs involving stacks and production systems are often quite 

complicated and require much more subtle orderings and termination functions. Finding 

an appropriate ordering and termination function for such programs is a well-known 

challenge among researchers in the field of program verification. In this paper, we 

introduce a powerful ordering that can sometimes make the task of proving termination 

easier. 

II. THE MULTISET ORDERING 

For a given partially-ordered set (S,>), we consider multisets (sometimes called 

"bags") over S, i.e. unordered collections of elements that may have multiple occur- 

rences of identical elements. For example, {3,3,3,4,0,0} is a multiset of natural 

numbers; it is identical to the multiset {0,3,3,0,4,3}, but distinct from {3,4,0}. 

We denote by~(S) the set of all finite multisets with elements taken from the set S. 

For a partially-ordered set (S,>), the ~lt~set ordering ~ on~(S) is defined 

as follows: 

M ~> M' 

if for some multisets %,Yg~(S), where {}#XC_M, 

M' = (M~X)WY 

and 

(VyeY) (~xEX) x>y. 

In words, a multiset is reduced by the removal of at least one element (those in X) 

and their replacement with any finite number - possibly zero - of elements (those in 

Y), each of which is smaller than one of the elements that have been removed. Thus, 

if S is the set N of natural numbers 0,1,2,... with the > ordering, then under the 

corresponding multiset ordering >> over N, the multiset {3,3,4,0} is greater than 

each of the three multisets {3,4}, {3,2,2,1,1,1,4,0}, an~ {3,3,3,3,2,2}. In the 
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first case, two elements have been removed; in the second case, an occurrence of 3 

has been replaced by two occurrences of 2 and three occurrences of i; and in the third 

case, the element 4 has been replaced by two occurrences each of 3 and 2, and in ad- 

dition the element 0 has been removed. The empty multiset {} is clearly smaller than 

any other multiset. 

The multiset ordering is in fact a partial ordering, i.e. if > is irreflexive 

and transitive, then >~ also is. We have the 

THEORm~: The m~Itiset ordering (~(S),~ ) over (S,>) is we~l-founded, 

if and only if (S,>) is. 

Proof: The "only if" part is trivial. For the "if" part, assume that (S,~) is 

well-founded. Let S' = S U {~} be S extended with a least element i, i.e. for every 

element sES, s>~ in the ordering on S'. Clearly S' is well-founded if S is. Now~ 

suppose that (~(S),>>) is not well-founded; therefore, there exists an infinite 

descending sequence MI~>M2>>M3~... of multisets of~(S). We derive a contradiction 

by constructing the following tree. Each node in the tree is labelled with some 

element of S'; at each stage of the construction, the set of all terminal nodes in 

the tree forms a multiset in ~(S'). 

Begin with a root node with children corresponding to each element of 

MI~ Then since MI)$M 2, there must exist multisets X and Y, such that 

{}#XC_MI, M2=(MI~X)UY , and (VysY) ~x~X)x>y. Then for each ycZ, add a 

child labelled y to the corresponding x. In addition, grow a child .L 

from each of the elements of X. (Since X is nonempty, growing.Len- 

sures that even if Y is empty, at least one node is added to the tree. 

Since Y is finite, the nodes corresponding to X each have a finite 

number of children.) Repeat the process for M2~M 3, M3~M 4, and so on. 

Since at least one node is added to the tree for each multiset M i in the sequence, 

were the sequence infinite, the tree corresponding to the sequence would also be. 

But by Konig's Infinity Lemma, an infinite tree (with a finite number of children for 

each node) must have an infinite path. On the other hand, by our construction, all 

paths in the tree are descending in the well-founded ordering ~ on S', and must be 

finite. Thus, we have derived a contradiction, implying that the sequence 

MI,M2,M3,... cannot be infinite. 

Remarks: 

O If (S,>) is totally ordered, then for any two multisets M,M' ~(S), one may 

decide whether M>>M' by first sorting the elements of both M and M' in descending 

order (with respect to the relation >) and then comparing the two sorted sequences 

lexicographically. 

• If (S,~) is of order type ~, then the multiset ordering ~(S),~ ) over (S,>) is 

of order type ~. 
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• Consider the special case where there is a bound k on the number of replacement 

elements, i.e. take the (irreflexive) transitive closure of the relation M ~M' which 

holds if M'=(M,X)UY and IYI < k. Any termination proof using this boanded multiset 

ordering over N may be translated into a proof using (N, >). This may be done using, 

for example, the order-preserving function 

(M) = E k n 
n~M 

which maps multisets over the natural numbers into the natural numbers by summing the 

number k n for every number n in a multiset M. 

We turn now to consider nested nr~Itisets, by which we mean that the elements of 

the multisets may belong to some base set S, or may be multisets containing both ele- 

ments of S and multisets of elements of S, and so on. For example, {{i,i}, {{0},1,2},0} 

is a nested multiset. More formally, given a partially-ordered set (S,>), a nested 

multiset over S is either an element of S, or else it is a finite multiset of nested 

multisets over S. We denote by ~*(S) the set of nested multisets over S. 

We define now a nested multiset ordering >~* on ~*(S); it is a recursive version 

of the standard multiset ordering. For two elements M,M's~*(S), we say that 

if 

• M,M' gS and M~M' 

(two elements of the base set are compared using >), or else 

• M~S and M' sS 

(any multiset is greater than any element of the base set), or else 

• M~M'ES, and for some X,YE~*(S), where {}#%_CM, 

M '= (M.X)UY 

and 

(YyEz) ~x~x) x ~ y .  

For example, the nested multiset {{1,1},{{0},1,2},0} is greater than {{1,0,0},5, 

{{0},1,2},0}, since{l,l} is greater than both {i,0,0} and 5. The same nested multiset 

{{i,i}, {{0},1,2},0} is also greater than {{{},1,2},{5,5,2},5}, since {{0},1,2} is 

greater than each of the three elements {{},1,2}, {5,5,2}, and 5. 

Let hi(s) denote the set of all nested multisets of depth i. In other words 

~0(S)=~ and ~i+I(s) contains the multisets whose elements are taken from ~0(S), 

~I(s) ..... ~i(s), with at least one element taken from ~i(s). Thus, the set ~*(S) 

is the infinite union of the disjoint sets ~O(s),~(S),~(S) ..... The following 

property holds: 

For two nested multisets, M and M r, if the depth of M is greater 

than the depth of M', then M ~M'. 
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In other words, themultisets of~i(s) are all greater than themultisets of~(S), under 

the ordering ~*, for any j<i. 

The relation ~>* is a partial ordering; it can be shown to be both irreflexive 

and transitive. The following theorem gives the condition under which it is well- 

founded: 

THEOREM: The nested multiset ordering ~*(S),~*) over (S~) is well- 

founded, if and only if (S,>) is well-founded. 

In order to show that (~*(S), ~*) is well-founded, it suffices to show that each 

~i(s) is itself well-founded under ~>*. This may be proved by induction on i. 

Remark: It can be shown that if (S,~) is of order type less than ~0' then (~*(S), ~*) 

is of order type s 0. (Gentzen [1938] used in E 0 ordering to prove the termination of 

his normalization procedure for proofs in arithmetic.) [] 

In the following two sections, we shall apply the multiset ordering to problems 

of termination, first proving the termination of conventional programs, and then 

proving the termination of production systems. 

III. TERMINATION OF PROGRAMS 

In the following examples, we shall prove the termination of programs using 

multiset orderings as the well-founded set. 

EXAMPLE i: Counting tips of binary trees. 

Consider a simple program to count the number of tips - terminal nodes (without 

descendents) - in a full binary tree. Each tree y that is not a tip has two subtrees, 

left(y) and right(y). The program is 

S := (tJ 

c:=O 

loop until S=() 

y := head(S) 

if tip(y) then S := tail(S) 

c := c÷J 

else S := left(y).right(y).tail(S) 

fi 

repeat. 

It employes a stack S and terminates when S is empty. At that point, the variable c 

is to contain the total number of tip nodes in the given tree t. The termination of 

this program may be proved using the well-founded set (Ng>). The appropriate termina- 

tion function is 

~(S) = ~ nodes(s), 
ssS 

where nodes(s) is the total number of nodes in the subtree s - not just the tip nodes. 

Using the multiset ordering over trees, we can prove termination with the simple 
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termination function 

~(S) = {s : ssS}, 

giving the multiset of trees appearing in the stack. The trees themselves are 

ordered by the natural well-founded subtree ordering, i.e. any tree is greater than 

its subtrees. Thus, removal of a tree from the stack decreases T in the multiset 

ordering by removing an element, and the replacement of a tree with two smaller sub- 

trees decreases r. 

In general, any program in which elements are repeatedly removed from a stack, 

queue, bag, etc. and replaced with any number of smaller elements (in some well- 

founded ordering) can be shown to terminate with the corresponding multiset ordering. 

EXAMPLE 2: McCarthy rs 91-function 

The following is a contrived program to compute the simple function 

f(x) = if x>100 then x-10 else 91 

over the set of integers g, in a round-about manner. Though this program is short, 

the proof of its correctness and termination are nontrivial, and for this reason it 

is often used to illustrate proof methods. 

The program is: 

n::l 

Z := X 

lo__qo_p_ L: assert f(x)=/(z), n>_l 

if z>lO0 then n := n-I 

z :=z-lO 

else n := n+l 

z := z+11 

fi 

until n=O 

repeat 

assert z=f (x) . 

The predicates f(x)=~n(z) and n>_l are loop invariants. The loop is exited if control 

reaches the until clause with n=O; at that point f(x)=9(z)=z. 

Consider the following well-founded partial-ordering > on the integers: 

a>b if and only if a<b<lll. 

(This is the same ordering on integers as in the familiar structural-induction proof, 

due to Rod Burstall, of the recursive version of this program.) As the well-founded 

set, we use the set (~(Z),~) of all multisets of integers, under the corresponding 

multiset ordering. The appropriate termination function T at L yields a multiset in 

~(Z), and is defined as 
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T(n,z) = {z,f(z) ..... ~f~-l(z)}. 

We must show that for each loop iteration this function decreases. There are 

three cases to consider: 

i. z>100 at L: In this case, the then branch of the conditional is executed and 

both n and z are decremented. When control returns to L (assuming that the loop has 

not been exited), we have, in terms of the old values of n and z, 

T(n-l,z-10) = {z-lO,f(z-lO) ..... /-2(z_10)} 

: {f(z),f2(z) ..... /-l(z) }. 

Thus, the value of the termination function ~ has been decreased by removing the 

element z from the original multiset {z,f(z) .... ,fn-l(z)}. 

2. 90<z<100 at L: In this case~ the else branch is taken and both n and z are 

incremented, yielding 

r (n+l, z+ll) = {z+ll,f(z+ll) ,f2 (z+ll),... ,/(z+ll) }. 

Either z+l=101 or else z+ljl00; in both cases f2(z+ll)=f(z+l)=91=f(z). 

Thus, we get 

~(n+l,z+ll) = {z+ll,z+l,f(~),...,/-l(z)} 
Since z<z+I<z+II<III, we have z>z+ll and z>z+l. Accordingly, the multiset has been 

reduced by replacing the element z with the two smaller elements, z+ll and z+l. 

3. z<90 at L: The else branch is taken and we have 

r(n+l,z+ll) = {z+ll,f(z+ll),f2(z+ll),...,/(z+ll)}. 

= {z+ll,91,f(z) ..... •-i (z) }. 

Again z has been replaced by two smaller elements (under the ~ relation), z+ll and 

91. D 

EXAMPLE 3: Ackermann's function. 

The following iterative program computes Ackermann's function a(m,n) over pairs 

of natural numbers: 
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s := ¢~) 

Z "= n 

loop L: assert a(m,n) = a(sk,a(Sk_l,...,a(s2,a(sl,Z))...)) 

y := head(S) 

S := tail(S) 

i_ff y=O then z := z+l 

else 

if z=O then S := (y-l).S 

z:=l 

else S := y'(y-1)'S 

Z := Z-1 

fi fi 

until s=O 

repeat 

assert z = a(m,n), 

where the stack S has k elements Sl,S2,...,8 k. 

To prove termination, consider the set N×N of lexicographica]ly-ordered pairs of 

natural numbers and use the corresponding multiset ordering over N × N. Let y=head(S)=s 1 

The termination function at L is 

(S,z) = { (sk+l , 0), (Sk_l+l, O) ..... (s2+l , 0), (y,z) ]. 

Thus, T(S,z) yields a multiset containing one pair per element in the stack S. Note 

that at L, the stack S is nonempty, and all the elements of S as well as z are non- 

negative. 

The proof considers three cases, corresponding to the three branches of the 

conditional in the loop: 

i. y=O: If the loop is not exited, then the new value of r at L is 

T((s 2 .... ,Sk) ,z+l) = {(Sk+1,0) .... ,(s2+1,0),(s 2,z+l)}. 

This represents a decrease in ~ under the multiset ordering, since the element (y,z) 

has been removed and the element (s2+l,0) has been replaced by the smaller (s2,z+l). 

2. y#0 and z=0: In this case we obtain 

T((y-l,s 2 ..... Sk),l) = {(Sk+l,0 ) ..... (s2+l,0),(y-l,l)}. 

Thus, the element (y,z) has been replaced by the smaller element (y-l,l). 

3. y#0 and z#0: Here we have 

T( (y,y-l,s 2 .... ,Sk) ,z-l) = {(Sk+1,0),...,(s2+1,0),(y,O),(y,z-1)}. 

The element (y,z) has been replaced by the two smaller elements (y,0) and (y,z-l). 

Remar, k: The previous examples suggest the following heuristic for proving termination: 
/ 

given a program over a domain (D~>) that computes some function f(x), if the program 



196 

has a loop invariant of the form 

f (x) = h (f($1 (y) ) 'f (g2 (y) ) .... 'f(gn (y)) )' 

where the gi are the arguments of occurrences of f in the right-hand side, then try 

the multiset ordering ~(D),>>) and use the termination function 

~(Y) = {gl (y)'g~)'''~'gn (y)L 

The idea underlying this heuristic is that T represents Lhe set of unevaluated 

arguments of some recursive expansion of the function f. 

IV. TERMINATION OF PRODUCTION SYSTEMS 

A production system ~ (also called a terr~-writ~n~ system) over a set of expres- 

sions E is a (finite or infinite) set of rewriting rules, called productions, each of 

the form 

~(~,~,...) ÷ ~'(a,S,...), 

where ~t and ~T are expressions containing variables a,B .... ranging over E. (The 

variables appearing in ~' must be s subset of those in ~°) Such a rule is applied 

in the following manner: given an expression eEE that contains a subexpression 

~(a,b,...), 

(i.e. the variables a,B,.., are instantiated with the expressions a,b,..., respective- 

ly), replace that subexpression with the corresponding expression 

~' (a,b .... ). 

We write e~e', if the expression e' can be derived from e by a single application of 

some rule in ~ to one of the subexpressions of e. 

For example, the following is a production system that differentiates an expres- 

sion, containing + and ", with respect to x: 

I Dx ÷ 1 

Dy + 0 

D(~+~) ÷ (D~ + D~) 

,D,,(~.S) ÷ ((S.D~) + (~.DS)), 

where y can be any constant or any variable other than x. Consider the expression 

D(D(x,x)~). 

We could either apply the third production to the outer D, or else we could apply 

the fourth production in the inner D. In the latter case, we obtain 

D( ( (x'Dx)+(x.~x) )+y) 

which now contains three occurrences of D. At this point, we can still apply the third 

production to the outer D, or we could apply the first production to either one of the 

inner D's. Applying the third production yields 
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(D( (x.Dx)+(x.Dx)÷~) . 

Thus, 

D ( D ( x . x ) + y )  ~ D( ( ( x 'Dx)+(x 'Dx)  )+y) ~ (D( (x .Dx)+(x .Dx)  )+Dy) . 

In general, at each stage in the computation there are many ways to proceed, and 

the choice is made nondeterministically. In our case, all choices eventually lead to 

the expression 

((((l-l)+(x.0))+((1-1)+(x.0)))+0), 

for which no further application of a production is possible. 

A production system ~ terminates over E, if there exist no infinite sequences of 

expressions el,e2,e3,.., such that el~e2~e3~.., and elSE. In other words, given any 

initial expression, execution always reaches a state for which there is no way to 

continue applying productions. The difficulty in proving the termination of a pro- 

duction system, such as the one for differentiation above, stems from the fact that 

while some productions (the first two) may decrease the size of an expression, other 

productions (the last two) may increase its size. Also, a production (the fourth) 

may actually duplicate occurrences of subexpressions. Furthermore, applying a pro- 

duction to a subexpression, not only affects the structure of that subexpression, but 

also changes the corresponding superexpressions, including the top-level expression. 

And a proof of termination must hold for the many different possible sequences 

generated by the nondeterministic choice of productions and subexpressions. 

The following theorem has provided the basis for most of the techniques used for 

proving the termination of production systems: 

THEOREM: A production system over E terminates, if and only if 

there exists a well-founded set (~) and a termination function 

• :E÷W, such that for any e,e'sE 

e~e ' ~mpl~es T (e)~ (e ' ). 

Several researchers have considered the problem of proving the termination of 

production systems. Among them: Gorn [1965] in an early work addresses this issue; 

Iturriaga [1967] gives sufficient conditions under which a class of production systems 

terminates; Knuth and Bendix [1969] define a well-founded ordering based on a 

weighted size for expressions; Manna and Ness [1970] and Lankford [1975] use a 

"monotonic interpretation" that decreases with each application of a production; 

Lipton and Snyder [1977] make use of a "value-preserving" property as the basis for 

a method of proving termination. Recently, Plaisted [July 1978~ Oct. 1978] has ap- 

plied two classes of well-founded orderings on terms to the termination of production 

systems. 

In the following examples, we illustrate the use of multisets in proving termina- 

tion. We begin with a very simple example. 
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EXAMPLE I: Associativ~ty. 
Consider the set of arithmetic expressions E constructed from some set of atoms 

(symbols) and the single operator +. The production system 

] (a+~)+y ÷ ~+(8+T) t 
over E contains just one production which reparenthesizes a sum by associating to 

the right. For example, the expression (a+b)+((c+d)+g) becomes either a+(b+((c+d)+g)) 
or (a+b)+(c+(d+g)), both of which become a+(b+(c+(d+g))). Since the length of the 

expression remains constant when the production is applied, some other measure is 

needed to prove termination. 

To prove termination, we use the mnltiset ordering over the natural numbers, 

(~(N),>>), and let T:E÷~N) return the multiset of the lengths of all the sub- 

expressions in e to which the production is applicable, i.e. 

T ( e )  = { 1 ( ~ + ~ ) + Y  f : (~+~)+~" i n  e }. 

For example, 

T((a+b)+((c+d)+g)) = {I(a+b)+((c-+d)+9) I, l(c+d)+gl } = {9,5}. 

I. The value of the termination function T decreases with each application of a 

production, i.e. for any possible values of a, B, and y, 

T((a+S) >> T(~+(~+~)). 

Before an application of the production, the multiset T((~+$)+X) includes an occur- 

rence of l(a+~)+yI, along with elements corresponding to the subexpressions of a, B, 

and y. With application of the production, that element is removed; the only element 

that may be added is 18+yI (if 8 is of the form (Bl+S2)) , which is smaller. The 

multiset has accordingly been decreased. 

2. Since the production does not change the length of the expression it is applied 

to, i.e. 

the length of superexpressions containing (a+8)+y is also unchanged. 

The multiset T(e) consists of all the elements in T((a+~)+y) plus the lengths 

of some of their superexpressions and other subexpressions. The only elements in 

T(e) that are changed by the production are those in T((a+8)+X) and they have been 

decreased by the production. Thus, e ~e' implies that ~(e)>> T(e'). o 
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EXAMPLE 2: Differentiation. 

The following system symbolically differentiates an expression with respect to x: 

Z~÷ 1 
÷ 0 

D(~+6) ÷ (D~+D~) 
D(~.6) ÷ ((~.D~) + (~'DB)) 
D(-m) ÷ (-Dm) 
D(~-S) ÷ (D~-O6) 

D(~IS) ÷ ((D~I~) - ((~-D~)/(~+2))) 
D(in ~) ÷ (D~/a) 
D(~+S) ÷ ((O~'(6"(~+(S-I)))) + (((in~)-D6).(~))) 

We present two solutions. The first uses a multiset ordering; the second uses 

nested multisets. 

• Solution I. 

We use the multiset ordering over sequences of natural numbers. The sequences 

are compared under the well-founded stepped lexicographic ordering >, i.e. longer 

sequences are greater than shorter ones (regardless of the values of the individual 

elements), and equal length sequences are compared lexicographically. The termina- 

tion function is 

~(e) = {(dl(m),d2(x) .... ): x is an occurrence of an atom in e}, 

where d.(x) is the distance (number of operators) between x and the ith enclosing D. 

For example, consider the expression 

e = DD(Dy, (y+DDx)), 

or in the tree form (with the D's enumerated for expository purposes), 

/ \  
D 4 Y Y }5 

x 

There are three atoms: y, y, and x. The left atom y contributes the element (0,2,3) 

to the multiset, since there are no operators between D 3 and y, there are two 

operators (- and D3) between D 2 and y, and there are three operators (D2, -, and D3) 

between D I and y. Similarly the other two atoms contribute (2,3) and (0,i,4,5). 

Thus, 

r(e) = {(0,2,3), (2,3), (0,1,4,5)}. 

Applying the production 

D(~.S) ~ ((S.D~) + (~,DB)), 

to e, yields e' = D(((y+DDx).DDy) + (Dy.D(y+DDx))). In the tree form (with the 

labelling of the D's retained), we have 
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+ 

/ \ 12 
~4 ~3 Y /+ 
~5 y Y \~4 

x 

and accordingly 

T(e') = {(3),(0,1,5),(0,1,4),(0,3),(1,4),(0,1,3,6)}, 

Thus, T(e) ~ T(e'), since the element (0,1,4,5) has been replaced by five shorter 

sequences and by the lexicographically smaller (0,1,3,6). 

In general, applying any of the productions decreases r, and the productions 

only affect the sequences in T(e) corresponding to the atoms of the subexpression 

that they are applied to. Therefore, for any application of a production, e ~ e' 

implies T(e)~ T(e'). 

• Solution 2. 

For the alternative solution, we use nested multisets. Note that the arguments 

to D are reduced in length by each production. One would therefore like to prove 

termination using the well-founded set ~(N),>>) and a termination function that 

yields the multiset containing the length of the arguments to each occurrence of D, 

i.e. 

~(e) = {f~f: D~ in el. 

The value of this function is decreased by the application of a production, i.e. 

~(~)>>T(~') for each of the productions ~-~'. The problem is that the size of 

superexpressions increases, since l~'I>i~I; applying a production to a subexpression 

of e will therefore increase T(e). 

To overcome this problem, we need a termination function that takes the nested 

structure of the expression into consideration and gives more significance to more 

deeply nested subexpressions. Fortunately, this is exactly what nested multisets 

can do for us. 

Let the well-founded set be the nested multisets over the natural numbers, 

(~(N),>>*), and let the termination function T:E-~*(N) yield lal for each occurrence 

of D~, while preserving the nested structure of the expression. For example, the 

arguments of the six occurrences of D in the expression D(D(Dx'Dy)+~j)/Dx are 

D(Dx.Dy)+iTd, Dx. ZhJ, x, y, y, and x. They are of lengths 9, 5, I, i, i, and i, respec- 

tively. Considering the nested depths of the D's, the structure of the expression is 
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Thus, for 

e: D (~ (~ .~ )+~ ) ID~  
i 

we have ' , 

~(e )  = { { 9 , { 5 , { l } , { i } } , { i } } , { l } } .  

For each production ~->~', we have T (~)>> *T(~') under the nested multiset order- 

ing. It remains to ascertain what happens to the value of ~ for superexpressions. 

The crucial point here is that the termination function gives greater weight to the 

more deeply nested D's by placing their length at a greater depth in the nested 

multiset. The effect of the productions on lower-level expressions is therefore 

more significant than their effect on higher-level expressions, and the decrease in 

T for the subexpression to which the production is applied overshadows any increase 

in the length of a superexpression. 

Consider, for example, 

D(D(x.x)+y) ~ D( ( ( x -~ )+ (x -Dx) )+y ) .  

The value of ~ for the expression on the left is {{6,{3}}}, while for the right-hand 

side expression it is {{ii,{I},{i}}}. Note that this represents a decrease in the 

nested multiset ordering over N, despite the fact that the element 6, corresponding 

to the length of the top-level argument, has been increased to ii. This is the case 

since the production has replaced the element {3} in the multiset {6,{3}} by two 

occurrences of the smaller {i}, and {3} is also greater than ii - or any number for 

that matter - on account of its greater depth. 

Thus, e-~e ' implies r(e)>>*T(e'). 

In this section, we have illustrated the use of multiset and nested multiset 

ordering in proofs of termination of production systems, by means of examples. 

Along similar lines, using these orderings, one can give general theorems which 

express sufficient conditions for the termination of broad classes of production 

systems. 
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