
Programming J.J. Homing

Languages Editor

Proving Termination
with Multiset
Orderings
Nachum Dershowitz and Zohar Manna
Stanford University and
The Weizmann Institute of Science

A common tool for proving the termination of

programs is the well-founded set, a set ordered in such a

way as to admit no infmite descending sequences. The

basic approach is to find a termination function that

maps the values of the program variables into some

well-founded set, such that the value of the termination

function is repeatedly reduced throughout the

computation. All too often, the termination functions

required are difficult to find and are of a complexity out

of proportion to the program under consideration.

Multisets (bags) over a given well-founded set S are

sets that admit multiple occurrences of elements taken

from S. The given ordering on S induces an ordering on

the f'mite multisets over S. This multiset ordering is

shown to be well-founded. The multiset ordering

enables the use of relatively simple and intuitive

termination functions in otherwise difficult termination

proofs. In particular, the multiset ordering is used to

prove the termination of production systems, programs

defined in terms of sets of rewriting rules.

Key Words and Phrases: program correctness,

program termination, program verification, well-founded

orderings, well-founded sets, multisets, bags, production

systems, term rewriting systems, tree replacement

systems, reduction rules

CR Categories: 5.24, 5.7

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This research was supported in part by the United States Air Force
Office of Scientific Research under Grant AFOSR-76-2909 (sponsored
by the Rome Air Development Center, Griffiss Air Force Base, NY),
by the National Science Foundation under Grant MCS 76-83655, and
by the Advanced Research Projects Agency of the Department of
Defense under Contract MDA 903-76-C-0206.

Authors' present addresses: N. Dershowitz, Department of Com-
puter Science, University of Illinois at Urbana-Champaign, Urbana,
IL 61801; Z. Manna, Computer Science Department, Stanford Uni-
versity, Stanford, CA 94305.
© 1979 A C M 0001-0782/79/0800--0465 $00.75.

465

1. Introduction

The use of well-founded sets for proving that pro-

grams terminate has been suggested by Floyd [2]. A well-
founded set (S, >) consists of a set of elements S and an

ordering > defined on the elements, such that there can

be no infinite descending sequences of elements. The

idea is to find a well-founded set and a termination
function that maps the values of the program variables

into that set, such that the value of the termination

function is repeatedly decreased throughout the compu-

tation. Since, by the nature of the set, that value cannot

decrease indefinitely, the program must terminate. The

well-founded sets most frequently used for this purpose

are the natural numbers under the "greater-than" order-

ing and n-tuples of natural numbers under the lexico-

graphic ordering.

In this paper, we define and illustrate a class of

orderings on multisets. Multisets, sometimes called bags,
are like sets, but allow multiple occurrences of identical

elements. For example, (3, 3, 3, 4, 0, 0} is a multiset of

natural numbers; it is identical to the multiset (0, 3, 3, 0,

4, 3} but distinct from {3, 4, 0).

The ordering > on any given well-founded set S can

be extended to form a well-founded ordering >~ on the

finite multisets over S. In this ordering, M >>- M', for

two finite multisets M and M' over S, if M' can be

obtained from M by replacing one or more elements in

M by any finite number of elements taken from S, each

of which is smaller than one of the replaced elements. In

particular, a multiset is reduced by replacing an element

with zero elements, i.e. by deleting it. Thus if S is the set

of natural numbers 0, 1, 2 with the > ordering, then

under the corresponding multiset ordering >> over S, the

multiset (3, 3, 4, 0} is greater than each of the three

multisets {3, 4}, {3, 2, 2, 1, 1, 1, 4, 0}, and {3, 3, 3, 3, 2,

2}. In the first case, two elements have been removed; in

the second case, an occurrence of 3 has been replaced

by two occurrences of 2 and three occurrences of 1; and

in the third case, the element 4 has been replaced by two

occurrences each of 3 and 2, and in addition the element

0 has been removed. The empty multiset () is clearly

smaller than any other multiset.

As an example of the use of a multiset ordering for

a proof of termination, consider the following trivial

program to empty a shunting yard of all trains:

loop until the shunting yard is empty

select a train

if the train consists o f only a single car

then remove it f rom the yard

else split it into two shorter trains

fi
repeat

This program is nondeterministic, as it does not indicate

which train is to be selected nor how the train is to be

split.

Communications August 1979
of Volume 22
the ACM Number 8

Let trains(yard) be the number of trains in the yard,

and cars(yard) be the total number of cars in the yard.

For any train E yard, let cars(train) be the number of

cars it contains. We present two proofs of termination.

I f we take the set of natural numbers as our well-

founded set, then we are led to the selection of the

termination function

y(yard) = 2. cars(yard) - trains(yard).

(See Ill.) This solution uses the fact that "splitting"

conserves the number of cars in the yard. Splitting a

train into two increases trains(yard) by 1, thereby de-

creasing the current value of the termination function

•(yard) by 1. Removing a one-car train from the yard

decreases 2. cars(yard) by 2 and increases -trains(yard)
by l, thereby decreasing ~(yard) by 1.

I f we use multisets of natural numbers as our well-

founded set, then the function

T(yard) = { cars(train): train E yard }

demonstrates the termination of the shunting program.

That is, for any configuration of the yard, T(yard) de-

notes the multiset containing the length of each of the

trains in the yard. Each iteration of the program loop

dear ly decreases the value of ~(yard) under the multiset

ordering: removing a train from the yard reduces the

multiset by removing one element; splitting a train re-

places one element with two smaller ones, corresponding

to the two shorter trains.

Programs are sometimes written in the form of a

production system. The following system of three rewrite

rules is an example:

white, red--~ red, white

blue, red ~ red, blue

blue, white --~ white, blue.

This program solves the "Dutch national flag" problem:

Assuming that we have a series of marbles, colored red,
white, or blue and placed side by side in no particular

order, then the above program will rearrange the marbles

so that all the red marbles are on the left, all blue marbles

are on the right, and all white marbles are in the middle.

The first rule, for example, states that if anywhere in the

series there is an adjacent pair of marbles, the left one

white and the right one red, then they should be ex-

changed so that the red marble is on the left and the

white one is on the right.

The three rules may be applied in any order and to

any pair of marbles matching a left-hand side of a rule.

The program terminates when no rule can be applied.

Clearly, if no rule can be applied, the marbles are in the

desired order, since nowhere does a red marble have

anything but a red marble to its immediate left (or else

one of the first two rules could be applied), and nowhere

does a blue marble have anything but a blue marble to

its right (or else one of the last two rules could be

applied). The only thing we need to ascertain is that the

466

program will not run indefinitely, never reaching a situ-

ation when no rule can be applied; in other words, we

must prove that the above production system terminates.

There are several ways of proving the termination of

the program. The three given here all use the following

ordering on colors:

blue is greater than white and white is greater than red.

It follows from the transitivity of orderings that blue is

also greater than red.
The first method counts the total number of "inver-

sions" of marbles, i.e. the number of pairs of marbles a

and b (not necessarily adjacent), such that a appears to

the left of b and the color of a is greater than the color

of b. For example, if five marbles are arranged blue, red,
white, red, blue, then there are four inversions: blue-red,
blue-white, blue-red, and white-red. Thus, the well-

founded set is the set of natural numbers under their

standard > ordering, and the termination function counts

the number of inversions by summing, for each marble,

the number of marbles with a greater color to its left.

Each of the rules, when applied, eliminates one inversion

by exchanging the positions of one inverted pair, without

generating any additional inversions, thereby decreasing

the value of the termination function by one.

For the second method, suppose that there are n

marbles. The well-founded set we use is the set of n-

tuples of colors. Such tuples are ordered lexicographi-
cally: They are reduced if some component is reduced

without changing any component to its left. The termi-

nation function simply yields the tuple containing the

colors of the marbles in order, from left to right. To

prove termination, we note that whenever one of the

rules is applied to two marbles, only the values of the

two corresponding components of the tuple change. By

the nature of the lexicographic ordering, we need only

consider the change in the left component, and indeed it

is reduced in its color: I f it was white, then now it is red,
and if it was blue, then now it is either red or white.

The third solution illustrates the use of multiset or-

derings. Each of the n positions in the series is assigned

a number, beginning with n - 1 at the left and going

down to 0 for the rightmost position. We take the mul-

tisets of pairs of the form (position, color) as the well-

founded set. The position-color pairs are ordered lexi-

cographically: We say that a pair is greater than another

if it has a higher position number than the Other or if it

has the same position number but a greater color. For

each marble, the termination function yields one pair,

giving its position and color. When a rule is applied to

the marbles at positions i and i - 1, it decreases the value

of the multiset by decreasing the color of the marble at

position i. The fact that the color at position i - 1 is

increased does not matter, since any pair with position i

is lexicographically greater than any pair with position

i - l, regardless of the colors.

These two examples have demonstrated how multiset

orderings may be used in termination proofs. These

Communications August 1979

of Volume 22
the ACM Number 8

proofs, however, did not have a clear advantage over the
alternative proofs using the more common "greater-

than" relation on the natural numbers and lexicographic

ordering on n-tuples. In practice, the use of these con-

ventional orderings may lead to complex termination

functions that are difficult to discover. For example, the

termination proofs of programs involving stacks and

production systems are often quite complicated and re-

quire much more subtle orderings and termination func-

tions. Finding an appropriate ordering and termination

' function for such programs is a well-known challenge

among researchers in the field of program verification.

In the remainder of this paper, we shall demonstrate

how the multiset ordering can sometimes permit the use

of relatively simple and intuitive termination functions

in otherwise difficult termination proofs.

In Section 2 we rigorously define the multiset order-

ing and prove that it is well-founded. In Section 3 we

apply the multiset ordering to a number of termination

proofs of programs. Then in Section 4 we use the multiset

ordering to prove the termination of production systems.

2. The Multiset Ordering

A partially-ordered set (S, >-) consists of a set S and

a transitive and irreflexive binary relation >- on elements

of S. For example, both the set Z of all integers and the

set N of nonnegative integers are ordered by the "greater-

than" relation >. In general the ordering may be partial:

For two distinct elements a and b of the set, we may have

neither a >- b nor b >- a.

A partially-ordered set (S, >-) is said to be well-

founded if there can be no infinite descending sequences

of elements s~ >~ sz >- . . . from the set S. Thus, the set

(N, >) is well-founded, since any descending sequence

of natural numbers cannot go beyond 0. On the other

hand, the set (Z, >) is not well-founded.

For a given partially-ordered set (S, >), we consider

multisets over S, i.e. unordered collections of elements

that may have multiple occurrences of identical elements.

We denote by J / (S) the set of all f'mite multisets with

elements taken from the set S and associate an ordering

>>- on J / (S) that is induced by the given ordering >- on

S.

In the following definition, as well as in the rest of

this paper, set operators will denote their multiset ana-

logs: The equality A --- B of two multisets, for example,

means that any element occurring exactly n times in A,

also occurs exactly n times in B, and vice versa. The

union of two multisets A U B is a multiset containing m

+ n occurrences of any element occurring m times in A

and n times in B. For example, the union of the multisets

{2, 2, 4} and (2, 0, 0) is {2, 2, 4, 2, 0, 0).

For a partially-ordered set (S, >), the multiset order-
ing >>- on ..~'(S) is defined as follows:

M >>- M'

467

if for some multisets X, Y E J//(S), where {) ~ X _ M,

M ' = (M - X) U Y

and

(vy e Y)(3x ~ x) x > y.

In words, a multiset is reduced by the removal of at least

one element (those in X) and their replacement with any

finite number--possibly zero- - of elements (those in Y),

each of which is smaller than one of the elements that

have been removed.

We must first show that >>- is in fact a partial

ordering, i.e. if >- is irreflexive and transitive, then >>- is

also:

(1) To show irreflexivity, we must show that there

can be no multiset M such that M >>~ M. Suppose that

M >>- M; then there would be some nonempty finite

multiset X ___ M such that (Vy E X)(3x ~ X)x • y. In

other words, for every element of X there would be a

distinct element of X greater than it, which is impossible

for a finite X.

(2) To show transitivity of >>-, consider the following

irreflexive relation >>-' on multisets in ~/(S): M >>-'

(M - {x}) U Yi f (Vy E Y)x >y . In other words, a finite

multiset is reduced in the relation >>-' by replacing a

single element with zero or more smaller elements. Note

that the multiset ordering >>- is the (irreflexive) transitive

closure of the relation >>-', i.e. M >>- M' if and only if M'

can be obtained from M by replacing elements in M one

by one. It follows that >>- is transitive.

We have the following theorem.

Tt-IEOREM. The multiset ordering (~(S) , >>-) over

(S, >-) is well-founded if and only if(S, >-) is well-founded.
PROOF.

(1) "Only i f" part. I f (S, >) is not well-founded, then

there exists an infinite descending sequence Sa > s2 ~-

sa ~ . . . o f elements in S. The corresponding sequence

of singletons {sl} >>- {s2) >>- {s3} >>- ..- forms an infi-

nite descending sequence of elements in J/(S), and

(J/(S), >>-) is therefore not well-founded.

(2) " I f " part. Assume that (S, >-) is well-founded.

Let S' = S U {1) be S extended with a least element

1; i.e. for every element s ~ S, s >- Z in the ordering on

S'. Clearly S' is well-founded if S is. Now suppose that

(~(S) , >>-) is not well-founded; therefore there exists an

intinite descending sequence M1 >>" Me >>" Ms >>- --- of

multisets from J/(S). We derive a contradiction by con-

structing the following tree. Each node in the tree is

labeled with some element' of S'; at each stage of the

construction, the set of all leaf nodes in the tree forms a

multiset in ~ (S ') .

Begin with a root node with children corresponding

to each element of M1. Since M1 >>- Ms, there must exist

multisets X and Y, such that { } # X _ Ma, M2 =

(Mx - X) U Y, and (Vy E Y)(3x E X)x >~ y. Then for

each y E Y, add a child labeled y to the corresponding

x. In addition, grow a child ± from each of the elements

of X. (Since X is nonempty, growing ± ensures that even

Communications August 1979
of Volume 22
the ACM Number 8

if Y is empty, at least one node is added to the tree. Since
Y is fmite, the nodes corresponding to X each have a

rmite number of children.) Repeat the process for
M2 >>-]143, M3 >>-)1'/4, and so on.

Since at least one node is added to the tree for each

multiset M~ in the sequence, were the sequence infinite,
the tree corresponding to the sequence would also be

infinite. But by Konig's Infinity Lemma, an infinite tree

(with a finite number of children for each node) must

have an infinite path. On the other hand, by our con-

struction, all paths in the tree are descending in the well-

founded ordering ~ on S', and must be finite. Thus we

have derived a contradiction, implying that the sequence

M~, M2, M3, . . . cannot be infinite. []

Remark. If (S, ~-) is totally ordered, then for any

two multisets M, M' E Jt/(S), one may decide whether

M >>- M' by first sorting the elements of both M and M'

in descending order (with respect to the relation ~) and

then comparing the two sorted sequences lexicographi-

cally. For example, to compare the multisets {3, 3, 4, 0)

and {3, 2, 1, 2, 0, 4), one may compare the sorted

sequences (4, 3, 3, 0) and (4, 3, 2, 2, 1, 0). Since (4, 3, 3,

0) is lexicographically greater than (4, 3, 2, 2, 1, 0), it
follows that (3, 3, 4, 0) >> {3, 2, 1, 2, 0, 4).

Remark. l f (S, ~-) is o f order type a, then the multiset

ordering (~/(S), >~) over (S, >) is of order type ~o ~. This

follows from the fact that there exists a mapping ~p from

J/(S) onto o~" that is one-to-one and order-preserving,

i.e. if M >>- M' for M, M' E J/(S), then the ordinal ~k(M)

is greater than ~M') . That mapping is

~ M) = y, ,0~ ~m),
m E M

where Y, denotes the natural (i.e. commutative) sum of
ordinals and ¢p is the one-to-one order-preserving map-

ping from S onto a.

Remark. Consider the case where there is a bound

k on the number of replacement elements, i.e. restrict the

ordering >>- by taking the (irreflexive) transitive closure

of the relation M >>-' M' which holds if I Y] < k when

M' = (M - X) U Y. Any termination proof using this
bounded multiset ordering over IV may be translated into

a proof using (IV, >). This may be done, for example,
using the order-preserving function

~b(M) = Y, k n
ruEM

which maps multisets over the natural numbers into the

natural numbers by summing the number k n for every

natural number n in a multiset M.

We turn now to consider nested multisets, by which

we mean that the elements of the multisets may belong

to some base set S, or may be multisets of elements of S,

or may be multisets containing both elements of S and

multisets of elements of S, and so on. For example,

{{1, l}, ({0}, 1, 2), 0}

468

is a nested multiset. More formally, given a partially-

ordered set (S, ~-), a nested multiset over S is either an

element of S, or else it is a fmite multiset of nested

multisets over S. We denote by J/*(S) the set of nested
multisets over S.

We det'me now a nested multiset ordering >>-* on

J/*(S); it is a recursive version of the standard multiset

ordering. For two elements M, M' E J/*(S), we say that

M>>-* M'

if
(i) M, M' E S and M • M' (two elements of the

base set are compared using ~); or else

(ii) M ~ S and M' E S (any multiset is greater
than any element of the base set), or else

(iii) M, M' ~ S, and for some X, Y E ./#*(S), where
() ~ X C _ M ,

M ' = (M - X) U Y and (r y e Y) (3 x E X) x > > - * y .

For example, the nested multiset

((1, 1}, ((0}, 1, 2), 0}

is greater than

{ (1, 0, 0}, 5, { {0}, l, 2}, 0},

since { 1, 1} is greater than both {1, 0, 0} and 5. The

same nested multiset

({1, 1}, ({0), 1, 2}, O}

is also greater than

{{{), l, 2}, {5, 5, 2}, 5},

since { {0), 1, 2} is greater than each of the three elements
{{ }, 1, 2}, (5, 5, 2}, and 5.

Let .~/i(S) denote the set of all nested multisets of
depth i. In other words, ..//°(S) = S and JZi+I(S) contains

the multisets whose elements are taken from ~/°(S),

./#1(S) J//~(S), with at least one element taken from

./t/i(S). Thus the set .//f*(S) is the infinite union of the

disjoint sets J[°(S), .//1(S), Jt/2(S) The following
property holds:

PROPERTY. For two nested multisets, M and M', i f

the depth of M is greater than the depth of M', then
M>>-* M'.

In other words, the nested multisets in ./#~(S) are all

greater than those in JZ2(S) under the ordering >>-*, for

any i > f By the antisymmetry of >>-*, it follows that if

M >>-* M', then the depth of M' cannot be greater than
the depth of M.

PROOF. This property may be proved by induction

on the depth of M. It holds vacuously for M of depth 0.

For the inductive step, assume that nested multisets of

depth i are greater than nested multisets of depth less

than i; we must show that a nested multiset M of depth

i + 1 is greater than any nested multiset M' of lesser

depth. If the depth of M' is 0, then M' E S while M ~ S,

and therefore M >>-* M', as desired. If the depth of M'

is less than i + 1 but greater than 0, then each of the

Communications August 1979

of Volume 22
the ACM Number 8

elements in M' is of depth less than i. The nested multiset

M, on the other hand, is of depth i + 1 and must
therefore contain some element of depth i. By the induc-
tive hypothesis, that element is greater than each of the

elements in M'. Again it follows that M >~* M'. []

The relation >>-* is a partial ordering; it can be shown

to be both irreflexive and transitive. The following theo-

rem gives the condition under which it is well-founded:

THEOREM. The nested multiset ordering (J~r*(S),

>>-*) over (S, >) is well-founded if and only if (S, >) is
well-founded.

PROOF.

(1) "Only i f" part. If(S, >) is not well-founded, then

there exists an infinite descending sequence sl > s2 >

sa > .-- of elements in S. This sequence is also an infinite

descending sequence of elements in d/*(S) under >>-*,

and (.riP'(S), >>-*) is therefore not well-founded.

(2) " I f " part. In order to show that (J/*(S), >>-*) is

well-founded, it suffices to show that each ~ i (s) is itself

well-founded under >>-*. For if it were assumed that

~/*(S) were not well-founded, then there would exist an

infinite descending sequence of nested multisets M~ >>-*

Ms >~* By the above property (and the antisymmetry

of >>-*), the depth of any nested multiset Mk+l in the
sequence cannot be greater than the depth of its prede-

cessor Mk. Since that sequence is infinite, it must have

an infinite subsequence of nested multisets all of the

same depth i, which contradicts the well-foundedness of
~i(s).

We prove that each (Jgi(s), >~*) is well-founded by

induction on i: The ordering >>-* on sg°(S) -- S is simply

the ordering > on S, and it follows that (Jg°(S), >>-*) is

well-founded. For the inductive step, assume that each

(J#(S), >>-*), j < i, is well-founded, and note that each
of the elements of ~/i(s) is a member of the union of

Jg°(S), .Atl(S)/gi-l(s). By the induction hypothesis,

each of these .A#(S) is well-founded under >>-*; therefore

their union is also well-founded under >>-*. Since the

ordering >>-* on two nested multisets from ~'Z(S) is

exactly the standard multiset ordering over that well-

founded union, and since a multiset ordering is well-

founded if the ordering on the elements is, it follows that

~/~(S) is also well-founded under >>-*. []

Remark. If (S, >) is totally ordered, then two nested

multisets over S may be compared by first recursively

sorting them at all levels and then comparing them
lexicographically.

Remark. We have seen above that for (S, >) of

order type a, the multiset ordering (J//(S), >>-) is of order

type w ~. In a similar manner, it can be shown that the
order type of (Jgi(s), >>-*) is

~o~o'" *° i i times,

the limit of which is the ordinal co--provided that a is

469

an ordinal less than Eo. Thus i f (S , >) is o f order type less
than co, then (sg*(S), >>-*) is o f order type co. (Gentzen
[3] used an eo ordering to prove the termination of his

normalization procedure for proofs in arithmetic.)

In the following two sections we apply the multiset

ordering to problems of termination, first proving the

termination of conventional programs, and then proving
the termination of production systems.

3. Termination of Programs

The following basic theorem is commonly used to
prove the termination of programs:

THEOREM (Floyd). A program P with variables £

ranging over a domain D terminates if and only if there
exist

(i) a set o f labels ~Sf cutting all the loops in P,

(ii) a well-founded set (W, >), and

(iii) a termination function T mapping ~ × b into W,
such that whenever control traverses a path f rom one label

to another, the value of the termination function ZL(X)
decreases for the current label L and value of £.

The justification is straightforward:

If the program does not terminate, then there exists

an infmite sequence of label-value pairs (L1, dl), (L2, dz),

.... corresponding to the sequence of labels through which

control passes during a nonterminating computation and

the values of the variables at those points. Since the

function ~- decreases with each traversal of a path, it

follows that 'I'Ll(d1) > TL2(d2) ~" ..- forms an infinite
descending sequence in the set W, contradicting its well-

foundedness.
On the other hand, if the program does terminate,

then the set (ZP x /3, >p) is well-founded, where the

relation >-p is defined so that (L, d) >p (L', d ') if the

program can reach the label L with the value d before it

reaches L' with the value d'. Thus, if zL(£) returns the

pair (L, £), then with each traversal of a path, the current

value of ~'L(x) decreases.

In the following examples, we prove the termination

of programs using multiset orderings as the well-founded

set.

Example 1. Counting tips of binary trees. Consider

a simple program to count the number of t ips--leaf

nodes (without descendents)--in a binary tree. Each tree

y that is not a tip has two subtrees, left(y) and right(y).
The program is

S := (t)

c : = 0

loop until S = ()

y := head(S)

if tip(y) then S := tail(S)

e : = c + 1

else S := left(y) o right(y) o tail(S)

fi
repeat

It employs a stack S and terminates when S is empty. At

Co mmu n ica t i o n s . August 1979

of Volume 22
the A C M N u m b e r 8

that point, the variable c is to contain the total number

of tip nodes in the given tree t.

Initially the given tree is placed in the stack. With

each iteration the subtree at the top of the stack is tested

to determine whether it is a tip: if it is, then it is removed

from the stack and the count is incremented by 1; if it is

not a tip, then it is replaced in the stack by its two

subtrees, so that the number of tips in each subtree may

be counted.

The termination of this program may be proved using

the well-founded set (N, >). The appropriate termination

function is

• (S) = ~ nodes(s),
s E S

where nodes(s) is the total number, of nodes in the subtree

s - - n o t just the tip nodes. To show that the value of

decreases with each loop iteration, we must consider two

cases: I f y = head(S) is a tip node, then that node is

removed from the stack, and the sum is decreased by 1.

I f y is not a tip, then it is replaced by its two subtrees,

left(y) and right(y). Buty contains one node - - the r o o t - -

more than left(y) and right(y) combined, and again the

sum is decreased.

Using the multiset ordering over trees, we can prove

termination with the simple termination function

• (S) = (s : s ~ s } ,

giving the multiset of trees appearing in the stack. The

trees themselves are ordered by the natural well-found

subtree ordering, i.e. any tree is greater than its subtrees.

Thus removal of a tree from the stack decreases r in the

multiset ordering by removing an element, and the re-

placement of a tree with two smaller subtrees decreases

r by replacing one element in the multiset with two

smaller elements.

This example is similar to the shunting yard example.

In general, any program in which elements are repeat-

edly removed from a stack, queue, bag, etc., and replaced

with any number of smaller elements (in some well-

founded ordering) can be shown to terminate with the

corresponding multiset ordering.

Example 2. McCarthy's 91-function. The following

is a contrived program to compute the simple function

f (x) = / f x > 1 0 0 t h e n x - 10 else 91,

over the set of integers Z, in a round-about manner.

Though this program is short, the proof of its correctness

and termination are nontrivial, and for this reason it is

often used to illustrate proof methods.

The program is:

n : = 1

g : = x

loop L: a s s e r t f (x) = i f (z) , n ~ l

if z > 1 0 0 t h e n n : = n - 1

z : = z - l O
else n : = n + 1

z : = z + l l

fi

unt i l n = 0

repeat

assert z = f (x) .

470

The predicates f (x) = fn(z) and n ___ l, in the a s s e r t

clause at the head of the loop, are loop invariants; they

hold whenever control is at label L. When the program

terminates, the variable z contains the value off(x), since

the loop is exited if control reaches the until clause with

n = 0; at that point, f (x) = f ° (z) = z.

Using the conventional well-founded set (N, >), Katz

and Manna [6] prove the termination of this program

with the termination function

~,(n, z) = - 2 . z + 21.n + 2.max(Il l , x)

at L.

For an alternative proof of termination, we consider

the following well-founded partial-ordering > on the

integers:

a > b if and only if a < b _ < I I I .

(This is the same ordering on integers as in the familiar

structural-induction proof, due to Rod Burstall, o f the

recursive version of this program.) As the well-founded

set, we use the set (Jg(Z), >>-) o f all multisets o f integers,

under the corresponding multiset ordering. The appro-

priate termination function ~" at L yields a multiset in

.//g(Z), and is defined as

"r(n, z) = (z,f(z) f n - l (z)) .

We must sl~ow that for each loop iteration this func-

tion decreases. There are three cases to consider:

(1) z > 100 at L. In this case, the then branch of the

conditional is executed and both n and z are decre-

mented. When control returns to L (assuming that the

loop has not been exited), we have, in terms of the old

values of n and z,

~-(n- 1, z - 10)= (z - lO, f (z - 10) f " - 2 (z - 10)).

Since z > lO0, we have f (z) = z - lO, and therefore

1"(n- 1, z - 10)= (f(z),f2(z) fn-l(z)}.

Thus, the value of the termination function ~" has been

decreased by removing the element z from the original

multiset (z, f(z) fn-l(z)).

(2) 90 ~ z ~ 100 at L. In this case, the else branch

is taken and both n and z are incremented, yielding

• (n + 1, z + 11)

= {z + l l , f (z + l l) , f2(z + 11) f"(z + 11)).

Since z + 11 > I00, we h a v e f (z + 11) = z + 1 and

f2(z + 11) =f(z + 1). Furthermore, either z + 1 = 101

or else z + 1 _ 100, and in both cases f (z + 1) = 91 =

f(z) and consequentlyf2(z + 11) = f (z) . Thus we get

~'(n + 1, z + 11) = (z + 11, z + 1,f(z) f n - l (z)) .

S i n c e z < z + l < z + l l _ < l l l , w e h a v e z > z + l l a n d

z > z + 1. Accordingly, the multiset has been reduced by

replacing the element z with the two smaller elements,

z + l l a n d z + 1.

(3) z < 90 at L. The else branch is taken and we

have

C o m m u n i c a t i o n s Augus t 1979
o f V o l u m e 22
the A C M N u m b e r 8

r (n + 1, z + 11)

= {z + l l , f (z + 1 l) , f2(z + 11) f n (z + 11)}.

Since z + 11 _< 100, we h a v e f (z + 11) = 91 and

f 2 (z + I1) = f (9 1) = 91 = f (z) , and thus

~'(n + 1, z + 11) ---- (z + 11, 91,f(z) f n - l (z) } .

Again z has been replaced by two smaller elements

(under the > relation), z + 11 and 91.

Example 3. Ackermann ' s function. Ackermann's

function a(m, n) over pairs o f natural numbers is defined

recursively as

a(m, n) ~ if m --- 0 then n + 1

else i fn = 0 then a(m - 1, 1)

else a(m - 1, a(m, n - 1))

tiff.

The following iterative program computes this function:

s := (m)
Z :=71

loop L: assert a(m, n) = a(sk, a(sk-1 a(s2, a(sl, z))...))

y := head(S)

S := tail(S)

i f y = 0 t h e n z : = z + 1

e lse

i fz = 0 then S := (y - l) o S

z : = l

e lse S : = y o (y - I)oS

z : = z - I

tiff
until s = ()
repeat

as se r t z = a(m, n),

where the stack S is o f the form (s~, s2 Sk) for some

k >_ O, head(S) = s~, tail(S) = (s2 Sk), and y o S =

(y, sl Sk). This is achieved by keeping the relation

a(m, n) = a(Sk, a(sk-1 a(s2, a (s l , z)) ...))

invariantly true whenever control is at the head of the

loop. Thus when the stack S is empty, the loop terminates

with a(m, n) = z.

The underlying idea is to apply the recursive defmi-

tion for a(m, n) to the rightmost two elements of the

sequence

Sk, ... , $2, S1, Z.

The three branches of the conditional statement in the

loop correspond to the three cases in the recursive deft-

nition, e.g. if y = s~ # 0 and z # 0, then the sequence

becomes Sk S2, Sl -- 1, Sl, Z -- 1, since a(sl, z) =

a(sl -- 1, a(sa, z -- 1)).

The termination of this program was proved by

Manna and Waldinger [11] using the intermittent-asser-

tion technique. We give here a proof using multisets.

Consider the set N x N of lexicographically-ordered

pairs o f natural numbers and the corresponding multiset

ordering over N x N. Let y = head(S) = sa. The

termination function at L is

471

T(s, z)

= {(sk + 1, 0), (Sk-1 + l, O) (S2 + l, 0), (y , Z)}.

Thus ~'(S, z) yields a multiset containing one pair per

element in the stack S. Note that at L, the stack S is

nonempty, and all the elements in S as well as z are

nonnegative integers.

The proof considers three cases, corresponding to the

three branches of the conditional in the loop:

(1) y = 0. I f the loop is not exited, then the new value

of ~" at L is

• ((s2 sk) , z + 1)
= ((Sk + 1, 0) (S3 + 1, 0), (Sz, Z + 1)}.

This represents a decrease in r under the multiset order-

ing, since the element (y, z) has been removed and the

element (s2 + 1, 0) has been replaced by the smaller (s2,

z + 1).
(2) y # 0 and z ffi 0. In this case we obtain

~((y - 1, s2 Sk), 1)

= {(sk + 1, 0) ($2 + 1, 0), (y -- 1, 1)}.

Thus the element (y, z) has been replaced by the smaller

element (y - 1, 1).

(3) y # 0 and z # 0. Here we have

~-((y, y - 1, s2 sk), z - 1)

= {(Sk + 1, O) (S2 + 1, 0), (y , 0), (y , Z -- 1)}.

The element (y, z) has been replaced by the two smaller

elements (y, 0) and (y, z - 1).

Remark . The previous examples suggest the follow-

ing heuristic for proving termination: Given a program

over a domain (D, >-) that computes some funct ionf(x) ,

if the program has a loop invariant of the form

f (x) = h (f (gx (y)) , f (g 2 (y)) f (g , (y))) ,

then try the multiset ordering (J#(D), >>-), and use the

termination function

• (y) = { g l (y) , g2(y) g,(y)}.

The idea underlying this heuristic is that ~" represents the

set of unevaluated arguments of some recursive expan-

sion of the f u n c t i o n f

4. T e r m i n a t i o n o f P r o d u c t i o n S y s t e m s

A production system 1I (also called a term-rewriting

system) over a set o f expressions E is a (f'mite or infinite)

set of rewriting rules, called productions. Each production

is o f the form

~(,~,/~)---' ~ '(~, •),

where ~r and ~r' are expression schemata containing

variables a, fl ranging over E. (The variables appear-

ing in ,r' must be a subset of those in ,r.) Instantiating

the variables a, fl with expressions a, b in E,
respectively, the rule indicates that an expression

,r(a, b) E E may be replaced by the corresponding

expression ~r'(a, b) E E.

A rule is applied in the following manner: Given an

C o m m u n i c a t i o n s Augus t 1979

o f V o l u m e 22

the A C M N u m b e r 8

expression e E E that contains a subexpression ~r(a, b,

...), 7r'(a, b). We write e =* e' i f the expression e' can

be derived from e by a single application of some rule in

H to one of the subexpressions of e.

For example, the following is a production system

that differentiates an expression, containing + a n d . ,

with respect to x:

Dx--* 1]
Dy~O
D(a + fl) ----) (Da + Dfl) [
D(a.fl) ~ ((fl. Da) + (a. Dfl)), [

where y can be any constant or any variable other than

x. Consider the expression

e = D(D(x .x) + y).

We could apply either the third production to the outer

D or the fourth production to the inner D. In the latter
case, we obtain

e' = D(((x. Dx) + (x. Dx)) + y),

which now contains three occurrences of D. At this point,

we can still apply the third production to the outer D, or

we could apply the first production to either one of the

inner D's. Applying the third production yields

(D((x. Dx) + (x. Dx)) + Dy).

Thus

e" = O(O(x .x) + y) ~ a (((x .Ox) + (x . a x)) + y)

(D((x. Dx) + (x. Dx)) + Dy).

In general, at each stage in ihe computation there are

many ways to proceed, and the choice is made nonde-

terministically. In our case, all choices eventually lead to
the expression

((((1. l) + (x . 0)) + ((1 .1) + (x .0))) + 0),

for which no further application of a production is

possible.

A production system II terminates over E if there

exist no infinite sequences of expressions el, ez, e3 such

that el ~ e2 ~ e3 ~ - . . and ei E E. In other words,

given any initial expression, execution always reaches a

state for which there is no way to continue applying

productions. The difficulty in proving the termination of

a production system, such as the one for differentiation

above, stems from the fact that while some productions

(the first two) may decrease the size of an expression,

other productions (the last two) may increase its size.

Also, a production (the fourth) may actually duplicate

occurrences of subexpressions. Furthermore, applying a

production to a subexpression not only affects the struc-

ture of that subexpression but also affects the structure

and size of higher level superexpressions, including the

top-level expression. A proof of termination must hold

for the many different possible sequences generated by

the nondeterministic choice of productions and sub-
expressions.

472

The following theorem has provided the basis for

most of the techniques used for proving the termination

of production systems:

THEOREM (Manna and Ness). A production system

over E terminates i f and only if there exists a well-founded

set (W, >) and a termination function r:E----~ IV, such that

for any e, e' ~ E,

e ~ e' implies z(e) > T(e').

To see why this theorem is true, suppose that the

system does not always terminate although e ~ e' implies

r(e) > T(e') in some well-founded set (W, >). By defini-

tion, there must be an infinite sequence of expressions

ei E E such that ea ~ e2 ~ e3 ~ • • .. In that case, there

exists an infinite descending sequence z(el) > z(e2) >-

z(e3) >- • • • in IV, which contradicts the assumption that

> is a well-founded ordering. It follows that the system

must terminate.

On the other hand, if the system does always termi-

nate, then the set E is well-founded under the ~ order-

ing, where ~ is the (irreflexive) transitive closure of the

relation =*. Letting (W, >) be (E, ~) and • be

the identity function we clearly have e =* e' implies

~'(e) = e +=, e' = r(e').

Several researchers have considered the problem of

proving the termination of production systems. Among

them: Gorn [4], Knuth and Bendix [7], and Plaisted [12,

13] define special well-founded orderings for this pur-

pose; Manna and Ness [10] and Lankford [8] suggest the

use of "monotonic" termination functions; Itturiaga [5]

and Lipton and Snyder [9] give sufficient conditions

under which certain classes of production systems ter-

minate.

In the following examples, we illustrate the use of

multisets in proving termination. We begin with a very

simple example.

Example 1. Associativity. Consider the set of arith-

metic expressions E constructed from some set of atoms

(symbols) and the single operator +. The production

system

over E contains just one production which reparenthe-

sizes a sum by associating to the right. For example, the

expression (a + b) + ((c + d) + g) becomes either

a + (b + ((c + d) + g)) or (a + b) + (c + (d + g)), both

of which become a + (b + (c + (d + g))). Since the

length of the expression remains constant when the

production is applied, some other measure is needed to

prove termination.

Solution 1 (arithmetic). Let the well-founded set be

(N, >). The termination function ~': E ~ N maps expres-

sions into the well-founded set, and is defined recursively

as follows:

r(a + fl) = 2. r(a) + r(fl)

Communications August 1979
of Volume 22
the ACM Number 8

for expressions of the form a +/3, and

r (u) = 1

for any atom u. For example, the value of r for the
expression (a + b) + ((c + d) + g) is 13.

The key point in the proof is that this function pos-

sesses the following two important properties (see [10]):

(1) The value of the termination function r decreases

for the subexpression that the production is applied to;

i.e. for any possible values of a,/3, and 3',

• :((~. + / 3) + 3') > r (~ + (/3 + 3')).

This is so since

• : ((a + /3) + 3') = 2. r(a +/3) + ,:(7)
= 4 . , : (a) + 2 . r08) + r(3'),

while

• : (a + 08 + 3')) = 2. r (a) + ,:08 + 3")

= 2 . , : (a) + 2. , : (/3) + ,:(y),

and ,:(a) is at least 1.

(2) The function r is monoton ic in each operand in

the sense that if

• : (e ,) > ,:(e2),

for some expressions el and e2, then for any expression

e3,

• : (e l + ea) > ,:(ez + ea)

and

• :(Ca + e,) > ,:(ca + e2).

Thus if e ~ e', then some subexpression (a +/3) + 3'

of e has been replaced by a + 08 + 3') to obtain e'. We

have ,:((a + /3) + 3') > ,:(a + 08 + 3')), by the first
property. Therefore, by the monotonicity property, we

obtain

e ~ e' implies r(e) > r(e') ,

and, by the preceding theorem, it follows that the pro-

duction system must terminate.

Solut ion 2 (multisets). For this solution, we use the

multiset ordering over the natural numbers, (J/(N), >>),

and let the termination function r: E -+ J//(PO return the

multiset of the lengths l al of all the subexpressions of

the form a +/3 in e, i.e.

,:(e) = {1 a l: a +/3 in e}.

For example,

• :((a + b) + ((c + d) + g)) = (I, 3, l, 3),

since the left operands of the operator + are a, a + b, c,

and c + d.

Again there are two crucial properties:

(l) The value of the termination function ,: decreases

with each application of a production, i.e.

• :((,~ + / ~) + 3') >> ,:(,, + 08 + 3'))

473

Before an application of the production, the multiset

• : ((a +/3) + 3') includes one occurrence o f [a + /31 and

one o f l a I, along with elements corresponding to the

subexpressions of a,/3, and 3'. After application of the

production, the new multiset ,:(a + 08 + "t)) includes one

occurrence of [a I and one of 1/31, leaving the subexpres-

sions of a, /3, and 3' unchanged. Thus, the element

]a + /31 has been replaced by the smaller element 1/31,

and the multiset has accordingly been decreased.

(2) Since the production does not change the length

of the expression it is applied to, i.e.

I~1 = I¢1 ,

the length of superexpressions containing (a +/3) + Y is

also unchanged.

The only elements in ,:(e) that are changed by the

production are those in ,:((a +/3) + 3'), and they have

been decreased by the production. Thus, e ~ e' implies

that r(e) >> r(e') .

E x a m p l e 2. Dif ferentiat ion. The following system

symbolically differentiates an expression with respect to

x:

Dx---~ 1

Dy --, O
D(a + 13) --'-) (Da + Dfl)

D (a . f l) ---) ((f l . D a) + (a . D f l))

D (- a) --'-) (- D a)

D(a - fl) ~ (Da - Dfl)

D(a/fl) ----) ((Dalfl) - ((a. Dfl)l(fl t 2)))
D(ln a) ---* (D a / a) .

D (a t f l) ~ ((D a . (f l . (a t ([t - 1)))) +

(((In a). Dfl). (a t fl)))"

Solut ion 1 (ari thmetic) . Take (N, >) as the well-

founded set. Let the termination function ,::E ~ N be

defined by

• : (~ ®/3) = ,:(~) + %e) ,

where ® is any of the binary operators + , . , - , and 1',

, :(Da) = ,:(a) 2,

• : (- a) = r (a) + 1,

r0n a) = r(a) + 1,

and

• : (u) = 4,

for any atom u.

(1) For each of the nine productions rr ~ rr', the

value of ,: decreases, i.e. ,:(rr) > ,:(~r'). For example,

• :(D(alfl)) -- (,:(a) + ":(/3)) 2

= ,:(a) 2 + r08) = + 2. ,:(a).,:08),

while

• : (((O a l f l) - ((a . Dfl)108 t 2))))
= ,:(a) = + ,:08) = + r (a) + 2 . , : (8) + 4.

This is a decrease, since ,:(a), ,:08) --> 4 and therefore

Communicat ions August 1979
of Volume 22
the ACM Number 8

2. ~(a). 0-(fl) _> 4.0"(a) + 4. r(fl) > ~'(a) + 2. ~'(fl) + 4.

(2) z is monotonic in each operand, for each of the

operators, e.g. if z(e~) is greater than z(ez), then r(e~. e3)

= r(el) + ~'(e3) is greater than ~'(e2. e3) = z(e2) + ~'(e3), for

any e3.

It follows that e ==* e' implies r(e) > "r(e').

Solution 2 (rnultisets). To prove termination, we use

the multiset ordering over sequences of natural numbers.

The sequences are compared under the well-founded

stepped lexicographic ordering ~, i.e. longer sequences

are greater than shorter ones (regardless of the values of

the individual elements), and equal length sequences are

compared lexicographically. The termination function is

T(e) = ((dl(u), d2(u)):
u is an occurrence of an atom in e},

where d,-(u) is the distance (number of operators) between

u and the ith D enclosing it.

For example, consider the expression

e = DD(Dy. (y + DDx)),

or in tree form (with the D's enumerated for expository

purposes),

D 1

/

D~

! , / \ o ,
D~

7(

There are three atoms: y, y, and x. The left atom 2
contributes the element (0, 2, 3) to the multiset, since

there are no operators between Da and y, there are two

operators (. and D3) between Dz and y, and there are

three operators (D2, • , and D3) between D, and y.' Sim-

ilarly the other two atoms contribute (2, 3) and (0, 1, 4,

5). Thus

~'(e) = {(0, 2, 3), (2, 3), (0, 1, 4, 5)}.

Applying the production

D(a.f l) --> ((/8. Da) + (a. Dfl))

to e yields

e' = D(((y + n D x) . DDy) + (Dy. D (y + DDx))).

In tree form (with the labeling of the D's retained), we

have

474

Dl

/

/+\o,
x D5

X

and accordingly.

z(e') = ((3), (0, 1, 5), (0, 1, 4), (0, 3), (1, 4), (0, 1, 3, 6)}.

Thus r(e) >>- z(e'), since the element (0, 1, 4, 5) has been

replaced by five shorter sequences and by the lexico-

graphically smaller (0, 1, 3, 6).

In general, the following two properties hold:

(1) Applying any of the productions decreases z.

Consider, for example, what happens to the multiset r(e)

when the production

D(a. fl) ~ ((/8. Da) + (a. Dfl))

is applied to some subexpression of e. Let u be an atom

occurring in a. Applying the production results in re-

placing the sequence s = (dl(u), d2(u)) corresponding

to u, with two sequences, s' and s", corresponding to the

occurrences of u in Da and a, respectively. But s is

greater than both s' and s" in the stepped-lexicographic

ordering: the sequence s" is shorter than s, since there is

one less D above u; the sequence s' is of the same length

as s, but is lexicographically less, since a D has been

pushed closer to u, while the distance from u to nearer
D's remains unchanged. Similarly, the sequences corre-

sponding to the atoms in fl are replaced by two smaller

sequences.

(2) The productions only affect the sequences in T(e)

corresponding to the atoms of the subexpression that

they are applied to.
Therefore, for any application of a production,

e ~ e' implies z(e) >)- ~(e').

Solution 3 (nested multisets). Note that the argu-

ments to D are reduced in length by each production.

One would therefore like to prove termination using the

well-founded set (~¢/(N), >>) and a termination function

that yields the multiset containing the lengths of the

arguments of each occurrence of D, i.e. z(e) = (l~l:O~
in e}. The value of this function is decreased by the

application of a production, i.e. z(~r) >> r(~r') for each of

the productions ~r ~ 7r'. The problem is that the length

of superexpressions increases, since I~'1 > I~1; applying

a production to a subexpression of e may therefore

increase ~'(e).
To overcome this problem, we need a termination

function that takes the nested structure of the expression

Communications August 1979
of Volume 22
the ACM Number 8

into consideration and gives more significance to more

deeply nested subexpressions. Fortunately, this is exactly

what nested multisets can do for us.

Let the well-founded set be the nested multisets over

the natural numbers, (J#*(N), >>*), and let the termi-

nation function T:E---) J//*(N) yield l al for each occur-
rence of Dc~, while preserving the nested structure of the
expression)

~'(,~ ® #) = ~'(,~) u T(#)

z(Da) = {{I,~1) u ~(a)},
r (- a) = T(ln a) = T(a),

and

~'(u) = {),

for any atom u. For example, the arguments of the six
occurrences of D in the expression D(D(Dx.Dy) +

Dy) /Dx are D(Dx.Dy) + Dy, Dx.Dy, x, y, y, and x.

They are of lengths 9, 5, 1, 1, 1, and 1, respectively.

Considering the nested depths of the D's, the structure

of the expression is

D(D(Dx. Dy)+Dy)/ Dx

Thus for

we have

e = D(D(Dx.Dv) + Dy)/Dx,
} t \ \ ~ \

I ~l \\ \ \ \
~-(e) = { (9, {5, { l) , (l)) , {1)) , {'1)).

(1) For each production ~r ---) ~r', we have 0-(~r) >>*

T(Tr') under the nested multiset ordering. Consider, for
example, the production

D(ot.fl) --) ((fl. Da) + (ot. Dfl)),

and let ~'(a) and z(fl) stand for the list of elements of the

multisets ~'(a) and ~'(fl), respectively. Applying ~ to the
two sides of the production yields

T(D(a.fl)) = ({la'/~l, ~('~), ~Ge)))

and

r((fl. DcO + (c~. Dfl))

= {~'~), {I'~I, ~'(~)), ~'(~), {I/¢I, ~(#)))

This clearly is a decrease in J/g*(N) regardless of the

exact form of a and fl, since {{ a . fl {, l"(a), r(fl) } is greater

than (1~1, ~(c0) or (1#1, ~'q~)) and is also greater than

each of the elements in T(a) and r(fl).

Consider, for example,

D(x. Dy) =~ ((x. DD.v) + (Dy. Dx)).

~An alternative solution would be to let ~(Da) = {0-(d)} and
• (~) = { z } .

475

We have

z(D(x .Dy)) = {{4, {1)}),

while

• (((x.DDy) + (Dy.Dx))) = ((2, (l)) , {l) , (l)) .

This is a decrease in the nested multiset ordering, since

{4, {1)} is greater than both {2, (1}} and {1}. A similar

argument applies to all of the other productions.

(2) It remains to ascertain what happens to the value

of z for superexpressions. The crucial point here is that

the termination function gives greater weight to the more

deeply nested D's by placing their lengths at a greater

depth in the nested multiset. The decrease in r for the

subexpression to which the production is applied over-

shadows any increase in the length of a superexpression.

Consider, for example,

D(D(x.x) + y) ~ D(((x. Dx) + (x. Dx)) + y),

The value of T for the expression on the left is

((6, {3})), while for the right-hand side expression it is

((11, (1 }, (1 } } }. Note that this represents a decrease in

the nested multiset ordering over N, despite the fact that

the element 6, corresponding to the length of the top-

level expression, has been increased to 11. This is the

case since the production has replaced the element (3}

in the multiset (6, (3} } by two occurrences of the smaller

{ 1}, and {3} is also greater than 11--or any number for

that matter--on account of its greater depth.

Thus, e ~ e' implies r(e) >>* r(e').

In this section, we have illustrated the use of multiset
and nested multiset orderings in proofs of termination of

production systems. Along similar lines, using these or-

derings, one can give general theorems which express

sufficient conditions for the termination of broad classes
of production systems.

Acknowledgments. We thank R.S. Boyer, J. Doner,

C. Goad, J. McCarthy, S. Ness, A. Pnueli, A. Pridor, W.

Sherlis, and R. Weyhrauch for stimulating discussions

and the referees for their helpful comments.

Received June 1978; revised November 1978

References

1. Dijkstra, E.W. A small note on the additive composition of
variant functions. Note EWD592, Burroughs Corp., Neunen, The
Netherlands, 1976.
2. Floyd, R.W. Assigning meanings to programs. Proc. Symp. in
Applied Math., Vol. 19, Amer. Math. Soc., Providence, R.I., pp. 19-
32.

3. Gentzen, G. New version of the consistency proof for elementary
number theory (1938). In The Collected Papers of Gerhart Gentzen,
M.E. Szabo, Ed., North-Holland, Amsterdam, 1969, pp. 252-286.
4. Gorn, S. Explicit definitions and linguistic dominoes. Proc. Conf.
on Syst. and Comptr. Sci., London, Ontario, Sept. 1965, pp. 77-115.
5. Iturriaga, R. Contributions to mechanical mathematics. Ph.D.
Th., Carnegie-Mellon U., Pittsburgh, Pa., May 1967.
6. Katz, S.M. and Manna, Z. A closer look at termination. Acta
Inform. 5, 4 (1975), 333-352.

Communications August 1979

of Volume 22
the ACM Number 8

7. Knuth, D.E. and Bendix, P.B. Simple word problems in universal
algebras. In Computational Problems in Universal Algebras, J. Leech,
Ed., Pergamon Press, Oxford, 1969, pp. 263-297,
8. Lankford, D.S. Canonical algebraic simplification in
computational logic. Memo ATP-25, Automatic Theorem Proving
Project, U. of Texas, Austin, Texas, May 1975.
9. Lipton, R.J. and Snyder, L. On the halting of tree replacement
systems. Proc. Conf. on Theoret. Comptr. Sci., Waterloo, Ontario,
Aug. 1977, pp. 43~16.
10. Manna, Z. and Ness, S. On the termination of Markov
algorithms. Proc. Third Hawaii Int. Conf. on Syst. Sci., Honolulu,
Hawaii, Jan. 1970, pp. 789-792.
!1. Manna, Z. and Waldinger, R.J. Is SOMETIME sometimes better
than ALWAYS? Intermittent assertions in proving program
correctness. Comm. ACM 21, 2 (Feb. 1978), 159-172.
12. Plaisted, D. Well-founded orderings for proving the termination
of rewrite rules. Memo R-78-932, Dept. of Comptr. Sci., U. of
Illinois, Urbana, IlL, July 1978.
13. ~laisted, D. A recursively defined ordering for proving
termination of term rewriting systems. Memo R-78-943, Dept. of
Comptr. Sci., U. of Illinois, Urbana, I11., Oct. 1978.

Operating R. Stockton Gaines

Systems Editor

Secure Personal
Computing in an
Insecure Network

Dorothy E. Denning
Purdue University

A method for implementing secure personal

computing in a network with one or more central

facilities is proposed. The method employs a public-key

encryption device and hardware keys. Each user is

responsible for his own security and need not rely on

the security of the central facility or the communication

links. A user can safely store confidential files in the

central facility or transmit confidential data to other

users on the network.

Key Words and Phrases: personal computing,

security, privacy, networks, public-key encryption

CR Categories: 2.12, 6.20

476

I. Introduction

Within the next ten years many of us will have

personal computers linked to a central facility. The

central facility (CF) will offer many attractive features:

long-term storage, text editors, language processors, spe-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This work was supported in part by National Science Foundation
Grant MCS77-04835.

Author's address: D.E. Denning, Computer Science Department,
Purdue University, West Lafayette, IN 47907.
© 1979 ACM 0001-0782/79/0800-0476 $00.75

Communications August 1979
of Volume 22
the ACM Number 8

