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basic approach is to find a termination function that 

maps the values of  the program variables into some 

well-founded set, such that the value of the termination 

function is repeatedly reduced throughout the 

computation. All too often, the termination functions 

required are difficult to find and are of  a complexity out 

of  proportion to the program under consideration. 

Multisets (bags) over a given well-founded set S are 

sets that admit multiple occurrences of  elements taken 

from S. The given ordering on S induces an ordering on 

the f'mite multisets over S. This multiset ordering is 

shown to be well-founded. The multiset ordering 

enables the use of  relatively simple and intuitive 

termination functions in otherwise difficult termination 

proofs. In particular, the multiset ordering is used to 

prove the termination of production systems, programs 

defined in terms of sets of  rewriting rules. 
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1. Introduction 

The use of  well-founded sets for proving that pro- 

grams terminate has been suggested by Floyd [2]. A well- 
founded set (S, >) consists of  a set of  elements S and an 

ordering > defined on the elements, such that there can 

be no infinite descending sequences of  elements. The 

idea is to find a well-founded set and a termination 
function that maps the values of the program variables 

into that set, such that the value of  the termination 

function is repeatedly decreased throughout the compu- 

tation. Since, by the nature of  the set, that value cannot 

decrease indefinitely, the program must terminate. The 

well-founded sets most frequently used for this purpose 

are the natural numbers under the "greater-than" order- 

ing and n-tuples of  natural numbers under the lexico- 

graphic ordering. 

In this paper, we define and illustrate a class of  

orderings on multisets. Multisets, sometimes called bags, 
are like sets, but allow multiple occurrences of  identical 

elements. For  example, (3, 3, 3, 4, 0, 0} is a multiset of  

natural numbers; it is identical to the multiset (0, 3, 3, 0, 

4, 3} but distinct from {3, 4, 0). 

The ordering > on any given well-founded set S can 

be extended to form a well-founded ordering >~ on the 

finite multisets over S. In this ordering, M >>- M', for 

two finite multisets M and M' over S, if M' can be 

obtained from M by replacing one or more elements in 

M by any finite number of  elements taken from S, each 

of  which is smaller than one of  the replaced elements. In 

particular, a multiset is reduced by replacing an element 

with zero elements, i.e. by deleting it. Thus if S is the set 

of  natural numbers 0, 1, 2 . . . .  with the > ordering, then 

under the corresponding multiset ordering >> over S, the 

multiset (3, 3, 4, 0} is greater than each of the three 

multisets {3, 4}, {3, 2, 2, 1, 1, 1, 4, 0}, and {3, 3, 3, 3, 2, 

2}. In the first case, two elements have been removed; in 

the second case, an occurrence of 3 has been replaced 

by two occurrences of  2 and three occurrences of  1; and 

in the third case, the element 4 has been replaced by two 

occurrences each of  3 and 2, and in addition the element 

0 has been removed. The empty multiset ( ) is clearly 

smaller than any other multiset. 

As an example of the use of  a multiset ordering for 

a proof  of  termination, consider the following trivial 

program to empty a shunting yard of all trains: 

loop until the shunting yard  is empty 

select a train 

if the train consists o f  only a single car 

then remove it f rom the yard 

else split it into two shorter trains 

fi 
repeat 

This program is nondeterministic, as it does not indicate 

which train is to be selected nor how the train is to be 

split. 
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Let trains(yard) be the number of  trains in the yard, 

and cars(yard) be the total number  of  cars in the yard. 

For  any train E yard, let cars(train) be the number of  

cars it contains. We present two proofs of  termination. 

I f  we take the set of  natural numbers as our well- 

founded set, then we are led to the selection of  the 

termination function 

y( yard) = 2. cars(yard) - trains(yard). 

(See Ill.) This solution uses the fact that "splitting" 

conserves the number of  cars in the yard. Splitting a 

train into two increases trains(yard) by 1, thereby de- 

creasing the current value of  the termination function 

•(yard) by 1. Removing a one-car train from the yard 

decreases 2. cars(yard) by 2 and increases -trains(yard) 
by l, thereby decreasing ~(yard) by 1. 

I f  we use multisets of  natural numbers as our well- 

founded set, then the function 

T(yard) = { cars(train): train E yard } 

demonstrates the termination of  the shunting program. 

That  is, for any configuration of  the yard, T(yard) de- 

notes the multiset containing the length of  each of  the 

trains in the yard. Each iteration of  the program loop 

dear ly  decreases the value of  ~(yard) under the multiset 

ordering: removing a train from the yard reduces the 

multiset by removing one element; splitting a train re- 

places one element with two smaller ones, corresponding 

to the two shorter trains. 

Programs are sometimes written in the form of  a 

production system. The following system of  three rewrite 

rules is an example: 

white, red--~ red, white 

blue, red ~ red, blue 

blue, white --~ white, blue. 

This program solves the "Dutch national flag" problem: 

Assuming that we have a series of  marbles, colored red, 
white, or blue and placed side by side in no particular 

order, then the above program will rearrange the marbles 

so that all the red marbles are on the left, all blue marbles 

are on the right, and all white marbles are in the middle. 

The first rule, for example, states that if anywhere in the 

series there is an adjacent pair of  marbles, the left one 

white and the right one red, then they should be ex- 

changed so that the red marble is on the left and the 

white one is on the right. 

The three rules may be applied in any order and to 

any pair of  marbles matching a left-hand side of  a rule. 

The program terminates when no rule can be applied. 

Clearly, if  no rule can be applied, the marbles are in the 

desired order, since nowhere does a red marble have 

anything but a red marble to its immediate left (or else 

one of  the first two rules could be applied), and nowhere 

does a blue marble have anything but a blue marble to 

its right (or else one of  the last two rules could be 

applied). The only thing we need to ascertain is that the 
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program will not run indefinitely, never reaching a situ- 

ation when no rule can be applied; in other words, we 

must prove that the above production system terminates. 

There are several ways of  proving the termination of  

the program. The three given here all use the following 

ordering on colors: 

blue is greater than white and white is greater than red. 

It follows from the transitivity of  orderings that blue is 

also greater than red. 
The first method counts the total number  of  "inver- 

sions" of  marbles, i.e. the number of  pairs of  marbles a 

and b (not necessarily adjacent), such that a appears to 

the left of  b and the color of  a is greater than the color 

of  b. For  example, if five marbles are arranged blue, red, 
white, red, blue, then there are four inversions: blue-red, 
blue-white, blue-red, and white-red. Thus, the well- 

founded set is the set of  natural numbers under their 

standard > ordering, and the termination function counts 

the number of  inversions by summing, for each marble, 

the number of  marbles with a greater color to its left. 

Each of  the rules, when applied, eliminates one inversion 

by exchanging the positions of  one inverted pair, without 

generating any additional inversions, thereby decreasing 

the value of  the termination function by one. 

For  the second method, suppose that there are n 

marbles. The well-founded set we use is the set of  n- 

tuples of  colors. Such tuples are ordered lexicographi- 
cally: They are reduced if some component is reduced 

without changing any component to its left. The termi- 

nation function simply yields the tuple containing the 

colors of  the marbles in order, from left to right. To 

prove termination, we note that whenever one of  the 

rules is applied to two marbles, only the values of  the 

two corresponding components of  the tuple change. By 

the nature of  the lexicographic ordering, we need only 

consider the change in the left component, and indeed it 

is reduced in its color: I f  it was white, then now it is red, 
and if it was blue, then now it is either red or white. 

The third solution illustrates the use of  multiset or- 

derings. Each of  the n positions in the series is assigned 

a number, beginning with n - 1 at the left and going 

down to 0 for the rightmost position. We take the mul- 

tisets of  pairs of  the form (position, color) as the well- 

founded set. The position-color pairs are ordered lexi- 

cographically: We say that a pair is greater than another 

if  it has a higher position number  than the Other or if  it 

has the same position number but a greater color. For  

each marble, the termination function yields one pair, 

giving its position and color. When a rule is applied to 

the marbles at positions i and i - 1, it decreases the value 

of  the multiset by decreasing the color of  the marble at 

position i. The fact that the color at position i - 1 is 

increased does not matter, since any pair with position i 

is lexicographically greater than any pair with position 

i - l, regardless of  the colors. 

These two examples have demonstrated how multiset 

orderings may be used in termination proofs. These 
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proofs, however, did not have a clear advantage over the 
alternative proofs using the more common "greater- 

than" relation on the natural numbers and lexicographic 

ordering on n-tuples. In practice, the use of  these con- 

ventional orderings may lead to complex termination 

functions that are difficult to discover. For example, the 

termination proofs of  programs involving stacks and 

production systems are often quite complicated and re- 

quire much more subtle orderings and termination func- 

tions. Finding an appropriate ordering and termination 

' function for such programs is a well-known challenge 

among researchers in the field of  program verification. 

In the remainder of  this paper, we shall demonstrate 

how the multiset ordering can sometimes permit the use 

of  relatively simple and intuitive termination functions 

in otherwise difficult termination proofs. 

In Section 2 we rigorously define the multiset order- 

ing and prove that it is well-founded. In Section 3 we 

apply the multiset ordering to a number of  termination 

proofs of  programs. Then in Section 4 we use the multiset 

ordering to prove the termination of  production systems. 

2. The Multiset Ordering 

A partially-ordered set (S, >-) consists of  a set S and 

a transitive and irreflexive binary relation >- on elements 

of  S. For  example, both the set Z of  all integers and the 

set N of  nonnegative integers are ordered by the "greater- 

than" relation >. In general the ordering may be partial: 

For  two distinct elements a and b of  the set, we may have 

neither a >- b nor b >- a. 

A partially-ordered set (S, >-) is said to be well- 

founded if  there can be no infinite descending sequences 

of  elements s~ >~ sz >- . . .  from the set S. Thus, the set 

(N, >)  is well-founded, since any descending sequence 

of  natural numbers cannot go beyond 0. On the other 

hand, the set (Z, >)  is not well-founded. 

For a given partially-ordered set (S, >), we consider 

multisets over S, i.e. unordered collections of  elements 

that may have multiple occurrences of  identical elements. 

We denote by J / (S)  the set of  all f'mite multisets with 

elements taken from the set S and associate an ordering 

>>- on J / (S)  that is induced by the given ordering >- on 

S. 

In the following definition, as well as in the rest of  

this paper, set operators will denote their multiset ana- 

logs: The equality A --- B of  two multisets, for example, 

means that any element occurring exactly n times in A, 

also occurs exactly n times in B, and vice versa. The 

union of  two multisets A U B is a multiset containing m 

+ n occurrences of  any element occurring m times in A 

and n times in B. For  example, the union of  the multisets 

{2, 2, 4} and (2, 0, 0) is {2, 2, 4, 2, 0, 0). 

For  a partially-ordered set (S, >), the multiset order- 
ing >>- on ..~'(S) is defined as follows: 

M >>- M' 
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if  for some multisets X, Y E J//(S), where { ) ~ X _ M, 

M ' = ( M - X )  U Y 

and 

(vy  e Y)(3x ~ x )  x > y. 

In words, a multiset is reduced by the removal of  at least 

one element (those in X) and their replacement with any 

finite number--possibly zero- -  of  elements (those in Y), 

each of  which is smaller than one of  the elements that 

have been removed. 

We must first show that >>- is in fact a partial 

ordering, i.e. if  >- is irreflexive and transitive, then >>- is 

also: 

(1) To show irreflexivity, we must show that there 

can be no multiset M such that M >>~ M. Suppose that 

M >>- M; then there would be some nonempty finite 

multiset X ___ M such that (Vy E X)(3x  ~ X )x  • y. In 

other words, for every element of  X there would be a 

distinct element of  X greater than it, which is impossible 

for a finite X. 

(2) To show transitivity of  >>-, consider the following 

irreflexive relation >>-' on multisets in ~/(S): M >>-' 

(M - {x}) U Yi f  (Vy E Y)x  >y .  In other words, a finite 

multiset is reduced in the relation >>-' by replacing a 

single element with zero or more smaller elements. Note 

that the multiset ordering >>- is the (irreflexive) transitive 

closure of  the relation >>-', i.e. M >>- M' if and only if M' 

can be obtained from M by replacing elements in M one 

by one. It follows that >>- is transitive. 

We have the following theorem. 

Tt-IEOREM. The multiset ordering (~(S) ,  >>-) over 

(S, >-) is well-founded if and only if(S, >-) is well-founded. 
PROOF. 

(1) "Only i f"  part. I f (S,  >) is not well-founded, then 

there exists an infinite descending sequence Sa > s2 ~- 

sa ~ . . .  o f  elements in S. The corresponding sequence 

of  singletons {sl} >>- {s2) >>- {s3} >>- ..- forms an infi- 

nite descending sequence of  elements in J/(S),  and 

(J/(S), >>-) is therefore not well-founded. 

(2) " I f "  part. Assume that (S, >-) is well-founded. 

Let S' = S U {1)  be S extended with a least element 

_1_; i.e. for every element s ~ S, s >- Z in the ordering on 

S'. Clearly S' is well-founded if S is. Now suppose that 

(~(S) ,  >>-) is not well-founded; therefore there exists an 

intinite descending sequence M1 >>" Me >>" Ms >>- --- of  

multisets from J/(S).  We derive a contradiction by con- 

structing the following tree. Each node in the tree is 

labeled with some element' of  S'; at each stage of  the 

construction, the set of  all leaf nodes in the tree forms a 

multiset in ~ (S ' ) .  

Begin with a root node with children corresponding 

to each element of  M1. Since M1 >>- Ms, there must exist 

multisets X and Y, such that { } # X _ Ma, M2 = 

(Mx - X) U Y, and (Vy E Y)(3x  E X)x  >~ y. Then for 

each y E Y, add a child labeled y to the corresponding 

x. In addition, grow a child ± from each of  the elements 

of  X. (Since X is nonempty, growing ± ensures that even 
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if Y is empty, at least one node is added to the tree. Since 
Y is fmite, the nodes corresponding to X each have a 

rmite number of children.) Repeat the process for 
M2 >>- ]143, M3 >>- )1'/4, and so on. 

Since at least one node is added to the tree for each 

multiset M~ in the sequence, were the sequence infinite, 
the tree corresponding to the sequence would also be 

infinite. But by Konig's Infinity Lemma, an infinite tree 

(with a finite number of children for each node) must 

have an infinite path. On the other hand, by our con- 

struction, all paths in the tree are descending in the well- 

founded ordering ~ on S', and must be finite. Thus we 

have derived a contradiction, implying that the sequence 

M~, M2, M3, . . .  cannot be infinite. [] 

Remark. If  (S, ~-) is totally ordered, then for any 

two multisets M, M' E Jt/(S), one may decide whether 

M >>- M' by first sorting the elements of both M and M' 

in descending order (with respect to the relation ~)  and 

then comparing the two sorted sequences lexicographi- 

cally. For example, to compare the multisets {3, 3, 4, 0) 

and {3, 2, 1, 2, 0, 4), one may compare the sorted 

sequences (4, 3, 3, 0) and (4, 3, 2, 2, 1, 0). Since (4, 3, 3, 

0) is lexicographically greater than (4, 3, 2, 2, 1, 0), it 
follows that (3, 3, 4, 0) >> {3, 2, 1, 2, 0, 4). 

Remark. l f  (S, ~-) is o f  order type a, then the multiset 

ordering (~/(S), >~) over (S, >) is of order type ~o ~. This 

follows from the fact that there exists a mapping ~p from 

J/(S) onto o~" that is one-to-one and order-preserving, 

i.e. if M >>- M' for M, M' E J/(S), then the ordinal ~k(M) 

is greater than ~M' ) .  That mapping is 

~ M )  = y, ,0~ ~m), 
m E M  

where Y, denotes the natural (i.e. commutative) sum of  
ordinals and ¢p is the one-to-one order-preserving map- 

ping from S onto a. 

Remark. Consider the case where there is a bound 

k on the number of replacement elements, i.e. restrict the 

ordering >>- by taking the (irreflexive) transitive closure 

of the relation M >>-' M' which holds if  I Y] < k when 

M' = (M - X)  U Y. Any termination proof  using this 
bounded multiset ordering over IV may be translated into 

a proof  using (IV, >). This may be done, for example, 
using the order-preserving function 

~b(M) = Y, k n 
ruEM 

which maps multisets over the natural numbers into the 

natural numbers by summing the number k n for every 

natural number n in a multiset M. 

We turn now to consider nested multisets, by which 

we mean that the elements of the multisets may belong 

to some base set S, or may be multisets of elements of S, 

or may be multisets containing both elements of S and 

multisets of elements of S, and so on. For example, 

{{1, l}, ({0}, 1, 2), 0} 
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is a nested multiset. More formally, given a partially- 

ordered set (S, ~-), a nested multiset over S is either an 

element of S, or else it is a fmite multiset of nested 

multisets over S. We denote by J/*(S) the set of nested 
multisets over S. 

We det'me now a nested multiset ordering >>-* on 

J/*(S); it is a recursive version of the standard multiset 

ordering. For two elements M, M' E J/*(S), we say that 

M>>-* M' 

if 
(i) M, M' E S and M • M' (two elements of the 

base set are compared using ~); or else 

(ii) M ~ S and M' E S (any multiset is greater 
than any element of  the base set), or else 

(iii) M, M' ~ S, and for some X, Y E ./#*(S), where 
( ) ~ X C _ M ,  

M ' = ( M - X )  U Y and ( r y e  Y ) ( 3 x E X ) x > > - * y .  

For example, the nested multiset 

((1, 1}, ((0}, 1, 2), 0} 

is greater than 

{ (1, 0, 0}, 5, { {0}, l, 2}, 0}, 

since { 1, 1} is greater than both {1, 0, 0} and 5. The 

same nested multiset 

({1, 1}, ({0), 1, 2}, O} 

is also greater than 

{{{ ), l, 2}, {5, 5, 2}, 5}, 

since { {0), 1, 2} is greater than each of  the three elements 
{{ }, 1, 2}, (5, 5, 2}, and 5. 

Let .~/i(S) denote the set of all nested multisets of  
depth i. In other words, ..//°(S) = S and JZi+I(S) contains 

the multisets whose elements are taken from ~/°(S), 

./#1(S) . . . . .  J//~(S), with at least one element taken from 

./t/i(S). Thus the set .//f*(S) is the infinite union of the 

disjoint sets J[°(S), .//1(S), Jt/2(S) . . . . .  The following 
property holds: 

PROPERTY. For two nested multisets, M and M', i f  

the depth of  M is greater than the depth of  M', then 
M>>-* M'. 

In other words, the nested multisets in ./#~(S) are all 

greater than those in JZ2(S) under the ordering >>-*, for 

any i > f  By the antisymmetry of >>-*, it follows that if 

M >>-* M', then the depth of M' cannot be greater than 
the depth of M. 

PROOF. This property may be proved by induction 

on the depth of  M. It holds vacuously for M of depth 0. 

For the inductive step, assume that nested multisets of 

depth i are greater than nested multisets of  depth less 

than i; we must show that a nested multiset M of depth 

i + 1 is greater than any nested multiset M' of lesser 

depth. If  the depth of M' is 0, then M' E S while M ~ S, 

and therefore M >>-* M', as desired. If  the depth of  M' 

is less than i + 1 but greater than 0, then each of  the 
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elements in M' is of depth less than i. The nested multiset 

M, on the other hand, is of depth i + 1 and must 
therefore contain some element of depth i. By the induc- 
tive hypothesis, that element is greater than each of the 

elements in M'. Again it follows that M >~* M'. [] 

The relation >>-* is a partial ordering; it can be shown 

to be both irreflexive and transitive. The following theo- 

rem gives the condition under which it is well-founded: 

THEOREM. The nested multiset ordering (J~r*(S), 

>>-*) over (S, >) is well-founded if and only if (S, >) is 
well-founded. 

PROOF. 

(1) "Only i f"  part. If(S, >) is not well-founded, then 

there exists an infinite descending sequence sl > s2 > 

sa > .-- of elements in S. This sequence is also an infinite 

descending sequence of elements in d/*(S) under >>-*, 

and (.riP'(S), >>-*) is therefore not well-founded. 

(2) " I f "  part. In order to show that (J/*(S), >>-*) is 

well-founded, it suffices to show that each ~ i ( s )  is itself 

well-founded under >>-*. For if it were assumed that 

~/*(S) were not well-founded, then there would exist an 

infinite descending sequence of  nested multisets M~ >>-* 

Ms >~* .... By the above property (and the antisymmetry 

of  >>-*), the depth of any nested multiset Mk+l in the 
sequence cannot be greater than the depth of its prede- 

cessor Mk. Since that sequence is infinite, it must have 

an infinite subsequence of nested multisets all of the 

same depth i, which contradicts the well-foundedness of 
~i(s). 

We prove that each (Jgi(s), >~*) is well-founded by 

induction on i: The ordering >>-* on sg°(S) -- S is simply 

the ordering > on S, and it follows that (Jg°(S), >>-*) is 

well-founded. For the inductive step, assume that each 

(J#(S), >>-*), j < i, is well-founded, and note that each 
of the elements of  ~/i(s)  is a member of the union of 

Jg°(S), .Atl(S) ..... ./gi-l(s). By the induction hypothesis, 

each of these .A#(S) is well-founded under >>-*; therefore 

their union is also well-founded under >>-*. Since the 

ordering >>-* on two nested multisets from ~'Z(S) is 

exactly the standard multiset ordering over that well- 

founded union, and since a multiset ordering is well- 

founded if the ordering on the elements is, it follows that 

~/~(S) is also well-founded under >>-*. [] 

Remark. If  (S, >) is totally ordered, then two nested 

multisets over S may be compared by first recursively 

sorting them at all levels and then comparing them 
lexicographically. 

Remark. We have seen above that for (S, >) of 

order type a, the multiset ordering (J//(S), >>-) is of  order 

type w ~. In a similar manner, it can be shown that the 
order type of (Jgi(s), >>-*) is 

~o~o'" *° i i times, 

the limit of  which is the ordinal co--provided that a is 
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an ordinal less than Eo. Thus i f (S ,  >) is o f  order type less 
than co, then (sg*(S), >>-*) is o f  order type co. (Gentzen 
[3] used an eo ordering to prove the termination of  his 

normalization procedure for proofs in arithmetic.) 

In the following two sections we apply the multiset 

ordering to problems of  termination, first proving the 

termination of conventional programs, and then proving 
the termination of production systems. 

3. Termination of Programs 

The following basic theorem is commonly used to 
prove the termination of programs: 

THEOREM (Floyd). A program P with variables £ 

ranging over a domain D terminates if and only if there 
exist 

(i) a set o f  labels ~Sf cutting all the loops in P, 

(ii) a well-founded set (W, >), and 

(iii) a termination function T mapping ~ ×  b into W, 
such that whenever control traverses a path f rom one label 

to another, the value of  the termination function ZL(X ) 
decreases for  the current label L and value of  £. 

The justification is straightforward: 

If  the program does not terminate, then there exists 

an infmite sequence of label-value pairs (L1, dl), (L2, dz), 

.... corresponding to the sequence of labels through which 

control passes during a nonterminating computation and 

the values of the variables at those points. Since the 

function ~- decreases with each traversal of a path, it 

follows that  'I'Ll(d1) > TL2(d2) ~" ..- forms an infinite 
descending sequence in the set W, contradicting its well- 

foundedness. 
On the other hand, if the program does terminate, 

then the set (ZP x /3, >p) is well-founded, where the 

relation >-p is defined so that (L, d) >p (L', d ' )  if the 

program can reach the label L with the value d before it 

reaches L'  with the value d'. Thus, if zL(£) returns the 

pair (L, £), then with each traversal of a path, the current 

value of  ~'L(x) decreases. 

In the following examples, we prove the termination 

of programs using multiset orderings as the well-founded 

set. 

Example 1. Counting tips of  binary trees. Consider 

a simple program to count the number of t ips--leaf 

nodes (without descendents)--in a binary tree. Each tree 

y that is not a tip has two subtrees, left(y) and right(y). 
The program is 

S := (t) 

c : = 0  

loop until S = ( ) 

y := head(S) 

if tip(y) then S := tail(S) 

e : = c +  1 

else S := left(y) o right(y) o tail(S) 

fi 
repeat  

It employs a stack S and terminates when S is empty. At 
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that point, the variable c is to contain the total number  

of  tip nodes in the given tree t. 

Initially the given tree is placed in the stack. With 

each iteration the subtree at the top of  the stack is tested 

to determine whether it is a tip: if  it is, then it is removed 

from the stack and the count is incremented by 1; if  it is 

not a tip, then it is replaced in the stack by its two 

subtrees, so that the number  of  tips in each subtree may 

be counted. 

The termination of  this program may be proved using 

the well-founded set (N, >). The appropriate termination 

function is 

• (S) = ~ nodes(s), 
s E S  

where nodes(s) is the total number, of  nodes in the subtree 

s - - n o t  just the tip nodes. To show that the value of  

decreases with each loop iteration, we must consider two 

cases: I f  y = head(S) is a tip node, then that node is 

removed from the stack, and the sum is decreased by 1. 

I f  y is not a tip, then it is replaced by its two subtrees, 

left(y) and right(y). Buty  contains one node - - the  r o o t - -  

more than left(y) and right(y) combined, and again the 

sum is decreased. 

Using the multiset ordering over trees, we can prove 

termination with the simple termination function 

• (S) = ( s : s  ~ s } ,  

giving the multiset of  trees appearing in the stack. The 

trees themselves are ordered by the natural  well-found 

subtree ordering, i.e. any tree is greater than its subtrees. 

Thus removal  of  a tree from the stack decreases r in the 

multiset ordering by removing an element, and the re- 

placement of  a tree with two smaller subtrees decreases 

r by replacing one element in the multiset with two 

smaller elements. 

This example is similar to the shunting yard example. 

In general, any program in which elements are repeat- 

edly removed from a stack, queue, bag, etc., and replaced 

with any number  of  smaller elements (in some well- 

founded ordering) can be shown to terminate with the 

corresponding multiset ordering. 

Example 2. McCarthy's 91-function. The following 

is a contrived program to compute the simple function 

f ( x ) = / f x > 1 0 0  t h e n x -  10 else 91, 

over the set of  integers Z, in a round-about  manner.  

Though this program is short, the proof  of  its correctness 

and termination are nontrivial, and for this reason it is 

often used to illustrate proof  methods. 

The program is: 

n : =  1 

g : = x  

loop L: a s s e r t f ( x )  = i f ( z ) ,  n ~ l 

if z >  1 0 0 t h e n n : = n -  1 

z : = z - l O  
else n : = n +  1 

z : = z + l l  

fi 

unt i l  n = 0 

repeat 

assert z = f ( x ) .  

470 

The predicates f ( x )  = fn(z) and n ___ l, in the a s s e r t  

clause at the head of  the loop, are loop invariants; they 

hold whenever control is at label L. When the program 

terminates, the variable z contains the value off(x),  since 

the loop is exited if control reaches the until clause with 

n = 0; at that point, f (x) = f ° ( z )  = z. 

Using the conventional well-founded set (N, >), Katz  

and Manna  [6] prove the termination of  this program 

with the termination function 

~,(n, z) = - 2 . z  + 21.n + 2.max(Il l ,  x) 

at L. 

For  an alternative proof  of  termination, we consider 

the following well-founded partial-ordering > on the 

integers: 

a > b  if  and only if  a < b _ <  I I I .  

(This is the same ordering on integers as in the familiar 

structural-induction proof, due to Rod Burstall, o f  the 

recursive version of  this program.) As the well-founded 

set, we use the set (Jg(Z), >>-) o f  all multisets o f  integers, 

under the corresponding multiset ordering. The appro- 

priate termination function ~" at L yields a multiset  in 

.//g(Z), and is defined as 

"r(n, z) = (z,f(z) . . . . .  f n - l ( z ) ) .  

We must sl~ow that for each loop iteration this func- 

tion decreases. There are three cases to consider: 

(1) z > 100 at L. In this case, the then branch of  the 

conditional is executed and both n and z are decre- 

mented. When  control returns to L (assuming that the 

loop has not been exited), we have, in terms of  the old 

values of  n and z, 

~-(n-  1, z -  10 )=  ( z -  lO, f ( z -  10) . . . . .  f " - 2 ( z -  10)). 

Since z > lO0, we have f (z )  = z - lO, and therefore 

1"(n- 1, z -  10 )=  (f(z),f2(z) ..... fn-l(z)}. 

Thus, the value of  the termination function ~" has been 

decreased by removing the element z from the original 

multiset (z, f(z) . . . . .  fn-l(z)). 

(2) 90 ~ z ~ 100 at L. In this case, the else branch 

is taken and both n and z are incremented, yielding 

• ( n +  1, z +  11) 

= {z + l l , f ( z  + l l ) , f2(z  + 11) . . . . .  f"(z  + 11)). 

Since z + 11 > I00, we h a v e f ( z  + 11) = z + 1 and 

f2(z + 11) =f(z  + 1). Furthermore,  either z + 1 = 101 

or else z + 1 _ 100, and in both cases f (z  + 1) = 91 = 

f(z) and consequentlyf2(z + 11) = f ( z ) .  Thus we get 

~'(n + 1, z + 11) = (z + 11, z + 1,f(z) . . . . .  f n - l ( z ) ) .  

S i n c e z < z + l < z + l l _ < l l l ,  w e h a v e z > z + l l a n d  

z > z + 1. Accordingly, the multiset has been reduced by 

replacing the element z with the two smaller elements, 

z +  l l a n d z +  1. 

(3) z < 90 at L. The else branch is taken and we 

have 
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r ( n +  1, z +  11) 

= {z + l l , f ( z  + 1 l ) , f2(z + 11) . . . . .  f n ( z  + 11)}. 

Since z + 11 _< 100, we h a v e f ( z  + 11) = 91 and 

f 2 ( z  + I1) = f ( 9 1 )  = 91 = f ( z ) ,  and thus 

~'(n + 1, z + 11) ---- (z + 11, 91,f(z)  . . . . .  f n - l ( z ) } .  

Again z has been replaced by two smaller elements 

(under the > relation), z + 11 and 91. 

Example  3. Ackermann ' s  function. Ackermann's  

function a(m, n) over pairs o f  natural  numbers is defined 

recursively as 

a(m, n) ~ if m --- 0 then n + 1 

else i fn  = 0 then a(m - 1, 1) 

else a(m - 1, a(m, n - 1)) 

tiff.  

The following iterative program computes this function: 

s := (m) 
Z :=71 

loop L: assert a(m, n) = a(sk, a(sk-1 . . . . .  a(s2, a(sl, z))...)) 

y := head(S) 

S := tail(S) 

i f y =  0 t h e n z  : = z +  1 

e lse  

i fz  = 0 then  S := ( y  - l ) o S  

z : = l  

e lse  S : = y o ( y -  I )oS  

z : = z - I  

tiff 
until s = ( ) 
repeat 

as se r t  z = a(m, n), 

where the stack S is o f  the form (s~, s2 . . . . .  Sk) for some 

k >_ O, head(S) = s~, tail(S) = (s2 . . . . .  Sk), and y o S  = 

(y,  sl . . . . .  Sk). This is achieved by keeping the relation 

a(m, n) = a(Sk, a(sk-1  . . . . .  a(s2, a (s l ,  z ) )  ...)) 

invariantly true whenever control is at the head of  the 

loop. Thus when the stack S is empty, the loop terminates 

with a(m, n) = z. 

The underlying idea is to apply the recursive defmi- 

tion for a(m, n) to the rightmost two elements of  the 

sequence 

Sk, ... , $2, S1, Z. 

The three branches of  the conditional statement in the 

loop correspond to the three cases in the recursive deft- 

nition, e.g. if  y = s~ # 0 and z # 0, then the sequence 

becomes Sk . . . . .  S2, Sl -- 1, Sl, Z -- 1, since a(sl, z) = 

a(sl -- 1, a(sa, z -- 1)). 

The termination of  this program was proved by 

Manna  and Waldinger [11] using the intermittent-asser- 

tion technique. We give here a proof  using multisets. 

Consider the set N x N of  lexicographically-ordered 

pairs o f  natural  numbers and the corresponding multiset 

ordering over N x N. Let y = head(S)  = sa. The 

termination function at L is 
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T(s, z) 

= {(sk + 1, 0), (Sk-1 + l, O) . . . . .  (S2 + l, 0), (y ,  Z)}. 

Thus ~'(S, z) yields a multiset containing one pair  per 

element in the stack S. Note that at L, the stack S is 

nonempty,  and all the elements in S as well as z are 

nonnegative integers. 

The proof  considers three cases, corresponding to the 

three branches of  the conditional in the loop: 

(1) y = 0. I f  the loop is not exited, then the new value 

of  ~" at L is 

• ((s2 . . . . .  sk) ,  z + 1) 
= ((Sk + 1, 0) . . . . .  (S3 + 1, 0), (Sz, Z + 1)}. 

This represents a decrease in r under the multiset order- 

ing, since the element (y, z) has been removed and the 

element (s2 + 1, 0) has been replaced by the smaller (s2, 

z +  1). 
(2) y # 0 and z ffi 0. In this case we obtain 

~((y  - 1, s2 . . . . .  Sk), 1) 

= {(sk + 1, 0) . . . . .  ($2 + 1, 0), ( y  -- 1, 1)}. 

Thus the element (y, z) has been replaced by the smaller 

element ( y -  1, 1). 

(3) y # 0 and z # 0. Here we have 

~-((y, y - 1, s2 . . . . .  sk), z - 1) 

= {(Sk + 1, O) . . . . .  (S2 + 1, 0),  ( y ,  0),  ( y ,  Z -- 1)}. 

The element (y, z) has been replaced by the two smaller 

elements (y, 0) and (y, z - 1). 

Remark .  The previous examples suggest the follow- 

ing heuristic for proving termination: Given a program 

over a domain (D, >-) that computes some funct ionf(x) ,  

if  the program has a loop invariant of  the form 

f ( x )  = h ( f (gx (y ) ) ,  f ( g 2 ( y ) )  . . . . .  f ( g , ( y ) ) ) ,  

then try the multiset ordering (J#(D), >>-), and use the 

termination function 

• ( y )  = { g l (y) ,  g2(y) . . . . .  g,(y)}.  

The idea underlying this heuristic is that ~" represents the 

set of  unevaluated arguments of  some recursive expan- 

sion of  the f u n c t i o n f  

4. T e r m i n a t i o n  o f  P r o d u c t i o n  S y s t e m s  

A production system 1I (also called a term-rewriting 

system) over a set o f  expressions E is a (f'mite or infinite) 

set of  rewriting rules, called productions. Each production 

is o f  the form 

~(,~,/~ . . . .  )---' ~ '(~,  • . . . .  ), 

where ~r and ~r' are expression schemata containing 

variables a, fl . . . .  ranging over E. (The variables appear-  

ing in ,r' must be a subset of  those in ,r.) Instantiating 

the variables a, fl . . . .  with expressions a, b . . . .  in E, 
respectively, the rule indicates that an expression 

,r(a, b . . . .  ) E E may  be replaced by the corresponding 

expression ~r'(a, b . . . .  ) E E. 

A rule is applied in the following manner:  Given an 
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expression e E E that contains a subexpression ~r(a, b, 

...), 7r'(a, b . . . .  ). We write e =* e' i f  the expression e' can 

be derived from e by a single application of  some rule in 

H to one of  the subexpressions of  e. 

For  example, the following is a production system 

that differentiates an expression, containing + a n d . ,  

with respect to x: 

Dx--* 1 ] 
Dy~O 
D(a + fl) ----) (Da + Dfl) [ 
D(a.fl) ~ ((fl. Da) + (a. Dfl)), [ 

where y can be any constant or any variable other than 

x. Consider the expression 

e = D(D(x .x )  + y). 

We could apply either the third production to the outer 

D or the fourth production to the inner D. In the latter 
case, we obtain 

e' = D(((x. Dx) + (x.  Dx)) + y), 

which now contains three occurrences of  D. At this point, 

we can still apply the third production to the outer D, or 

we could apply the first production to either one of  the 

inner D's. Applying the third production yields 

(D((x. Dx) + (x.  Dx)) + Dy). 

Thus 

e" = O(O(x .x )  + y) ~ a ( ( ( x .Ox )  + ( x . a x ) )  + y) 

(D((x. Dx) + (x. Dx)) + Dy). 

In general, at each stage in ihe  computation there are 

many ways to proceed, and the choice is made nonde- 

terministically. In our case, all choices eventually lead to 
the expression 

((((1.  l)  + ( x . 0 ) )  + ( (1 .1 )  + (x .0 ) ) )  + 0), 

for which no further application of  a production is 

possible. 

A production system II  terminates over E if there 

exist no infinite sequences of  expressions el, ez, e3 .... such 

that el ~ e2 ~ e3 ~ - . .  and ei E E. In other words, 

given any initial expression, execution always reaches a 

state for which there is no way to continue applying 

productions. The difficulty in proving the termination of  

a production system, such as the one for differentiation 

above, stems from the fact that while some productions 

(the first two) may decrease the size of  an expression, 

other productions (the last two) may increase its size. 

Also, a production (the fourth) may actually duplicate 

occurrences of  subexpressions. Furthermore, applying a 

production to a subexpression not only affects the struc- 

ture of  that subexpression but also affects the structure 

and size of  higher level superexpressions, including the 

top-level expression. A proof  of  termination must hold 

for the many different possible sequences generated by 

the nondeterministic choice of  productions and sub- 
expressions. 
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The following theorem has provided the basis for 

most of  the techniques used for proving the termination 

of  production systems: 

THEOREM (Manna and Ness). A production system 

over E terminates i f  and only if  there exists a well-founded 

set (W, >) and a termination function r:E----~ IV, such that 

for  any e, e' ~ E, 

e ~ e' implies z(e) > T(e'). 

To see why this theorem is true, suppose that the 

system does not always terminate although e ~ e' implies 

r(e) > T(e') in some well-founded set (W, >). By defini- 

tion, there must be an infinite sequence of  expressions 

ei E E such that ea ~ e2 ~ e3 ~ • • .. In that case, there 

exists an infinite descending sequence z(el) > z(e2) >- 

z(e3) >- • • • in IV, which contradicts the assumption that 

> is a well-founded ordering. It follows that the system 

must terminate. 

On the other hand, if the system does always termi- 

nate, then the set E is well-founded under the ~ order- 

ing, where ~ is the (irreflexive) transitive closure of  the 

relation =*. Letting (W, >)  be (E, ~ )  and • be 

the identity function we clearly have e =* e' implies 

~'(e) = e +=, e' = r(e'). 

Several researchers have considered the problem of  

proving the termination of  production systems. Among 

them: Gorn [4], Knuth and Bendix [7], and Plaisted [12, 

13] define special well-founded orderings for this pur- 

pose; Manna and Ness [10] and Lankford [8] suggest the 

use of  "monotonic" termination functions; Itturiaga [5] 

and Lipton and Snyder [9] give sufficient conditions 

under which certain classes of  production systems ter- 

minate. 

In the following examples, we illustrate the use of  

multisets in proving termination. We begin with a very 

simple example. 

Example 1. Associativity. Consider the set of  arith- 

metic expressions E constructed from some set of atoms 

(symbols) and the single operator +. The production 

system 

over E contains just one production which reparenthe- 

sizes a sum by associating to the right. For example, the 

expression (a + b) + ((c + d) + g) becomes either 

a + (b + ((c + d) + g)) or (a + b) + (c + (d + g)), both 

of  which become a + (b + (c + (d + g))). Since the 

length of  the expression remains constant when the 

production is applied, some other measure is needed to 

prove termination. 

Solution 1 (arithmetic). Let the well-founded set be 

(N, >). The termination function ~': E ~ N maps expres- 

sions into the well-founded set, and is defined recursively 

as follows: 

r(a + fl) = 2. r(a) + r(fl) 
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for expressions of  the form a +/3, and 

r ( u )  = 1 

for any atom u. For example, the value of r for the 
expression (a + b) + ((c + d) + g) is 13. 

The key point in the proof is that this function pos- 

sesses the following two important properties (see [10]): 

(1) The value of the termination function r decreases  

for the subexpression that the production is applied to; 

i.e. for any possible values of a,/3, and 3', 

• :((~. + / 3 )  + 3') > r (~  + (/3 + 3')). 

This is so since 

• : ( (a  + /3 )  + 3') = 2. r(a +/3) + ,:(7) 
= 4 . , : ( a )  + 2 .  r08)  + r(3'), 

while 

• : (a  + 08 + 3')) = 2.  r (a)  + ,:08 + 3") 

= 2 . , : ( a )  + 2. , : ( /3)  + ,:(y), 

and ,:(a) is at least 1. 

(2) The function r is monoton ic  in each operand  in 

the sense that if 

• : (e , )  > ,:(e2), 

for some expressions el and e2, then for any expression 

e3, 

• : (e l  + ea) > ,:(ez + ea) 

and 

• :(Ca + e,) > ,:(ca + e2). 

Thus if e ~ e', then some subexpression (a +/3) + 3' 

of  e has been replaced by a + 08 + 3') to obtain e'. We 

have ,:((a + /3) + 3') > ,:(a + 08 + 3')), by the first 
property. Therefore, by the monotonicity property, we 

obtain 

e ~ e' implies r(e) > r(e') ,  

and, by the preceding theorem, it follows that the pro- 

duction system must terminate. 

Solut ion 2 (multisets).  For this solution, we use the 

multiset ordering over the natural numbers, (J/(N), >>), 

and let the termination function r: E -+ J//(PO return the 

multiset of  the lengths l al of  all the subexpressions of  

the form a +/3  in e, i.e. 

,:(e) = {1 a l: a +/3  in e}. 

For  example, 

• :((a + b) + ((c + d) + g)) = (I, 3, l, 3), 

since the left operands of the operator + are a, a + b, c, 

and c + d. 

Again there are two crucial properties: 

(l)  The value of the termination function ,: decreases  

with each application of  a production, i.e. 

• :((,~ + / ~ )  + 3') >> ,:(,, + 08 + 3')) 
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Before an application of  the production, the multiset 

• : ((a +/3)  + 3') includes one occurrence o f [ a  + /31  and 

one o f  l a I, along with elements corresponding to the 

subexpressions of  a,/3, and 3'. After application of the 

production, the new multiset ,:(a + 08 + "t)) includes one 

occurrence of  [ a I and one of 1/31, leaving the subexpres- 

sions of a, /3, and 3' unchanged. Thus, the element 

]a + /31 has been replaced by the smaller element 1/31, 

and the multiset has accordingly been decreased. 

(2) Since the production does not change the length 

of  the expression it is applied to, i.e. 

I~1 = I¢1 ,  

the length of  superexpressions containing (a +/3) + Y is 

also unchanged. 

The only elements in ,:(e) that are changed by the 

production are those in ,:((a +/3)  + 3'), and they have 

been decreased by the production. Thus, e ~ e' implies 

that r(e)  >> r(e') .  

E x a m p l e  2. Dif ferentiat ion.  The following system 

symbolically differentiates an expression with respect to 

x:  

Dx---~ 1 

Dy --, O 
D(a + 13) --'-) (Da + Dfl) 

D ( a . f l )  ---) ( ( f l . D a )  + ( a . D f l ) )  

D ( - a )  --'-) ( - D a )  

D(a - fl) ~ (Da - Dfl) 

D(a/fl) ----) ((Dalfl) - ((a. Dfl)l(fl t 2))) 
D(ln a)  ---* ( D a / a )  . 

D ( a  t f l )  ~ ( ( D a . ( f l . ( a  t ([t - 1)))) + 

(((In a). Dfl). (a t fl)))" 

Solut ion  1 (ari thmetic) .  Take (N, >)  as the well- 

founded set. Let the termination function ,::E ~ N be 

defined by 

• : ( ~  ®/3 )  = ,:(~) + %e) ,  

where ® is any of the binary operators + , . ,  - ,  and 1', 

, :(Da) = ,:(a) 2, 

• : ( - a )  = r ( a )  + 1, 

r0n  a) = r(a) + 1, 

and 

• : (u )  = 4, 

for any atom u. 

(1) For each of  the nine productions rr ~ rr', the 

value of  ,: decreases, i.e. ,:(rr) > ,:(~r'). For example, 

• :(D(alfl)) -- (,:(a) + ":(/3)) 2 

= ,:(a) 2 + r08) = + 2.  ,:(a).,:08), 

while 

• : ( ( ( O a l f l )  - ( (a .  Dfl)108 t 2)))) 
= ,:(a) = + ,:08) = + r ( a )  + 2 . , : ( 8 )  + 4.  

This is a decrease, since ,:(a), ,:08) --> 4 and therefore 
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2. ~(a). 0-(fl) _> 4.0"(a) + 4. r(fl) > ~'(a) + 2. ~'(fl) + 4. 

(2) z is monotonic in each operand, for each of  the 

operators, e.g. if z(e~) is greater than z(ez), then r(e~. e3) 

= r(el) + ~'(e3) is greater than ~'(e2. e3) = z(e2) + ~'(e3), for 

any e3. 

It follows that e ==* e' implies r(e) > "r(e'). 

Solution 2 (rnultisets). To prove termination, we use 

the multiset ordering over sequences of natural numbers. 

The sequences are compared under the well-founded 

stepped lexicographic ordering ~, i.e. longer sequences 

are greater than shorter ones (regardless of the values of 

the individual elements), and equal length sequences are 

compared lexicographically. The termination function is 

T(e) = ((dl(u), d2(u) .... ): 
u is an occurrence of an atom in e}, 

where d,-(u) is the distance (number of operators) between 

u and the ith D enclosing it. 

For example, consider the expression 

e = DD(Dy. (y  + DDx)), 

or in tree form (with the D's enumerated for expository 

purposes), 

D 1 

/ 

D~ 

! , / \ o ,  
D~ 

7( 

There are three atoms: y, y, and x. The left atom 2 
contributes the element (0, 2, 3) to the multiset, since 

there are no operators between Da and y, there are two 

operators (. and D3) between Dz and y, and there are 

three operators (D2, • ,  and D3) between D, and y.' Sim- 

ilarly the other two atoms contribute (2, 3) and (0, 1, 4, 

5). Thus 

~'(e) = {(0, 2, 3), (2, 3), (0, 1, 4, 5)}. 

Applying the production 

D(a.f l)  --> ((/8. Da) + (a. Dfl)) 

to e yields 

e' = D(((y  + n D x ) .  DDy) + (Dy. D ( y  + DDx))). 

In tree form (with the labeling of the D's retained), we 

have 
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Dl 

/ 

/+\o, 
x D5 

X 

and accordingly. 

z(e') = ((3), (0, 1, 5), (0, 1, 4), (0, 3), (1, 4), (0, 1, 3, 6)}. 

Thus r(e) >>- z(e'), since the element (0, 1, 4, 5) has been 

replaced by five shorter sequences and by the lexico- 

graphically smaller (0, 1, 3, 6). 

In general, the following two properties hold: 

(1) Applying any of the productions decreases z. 

Consider, for example, what happens to the multiset r(e) 

when the production 

D(a. fl) ~ ((/8. Da) + (a. Dfl)) 

is applied to some subexpression of e. Let u be an atom 

occurring in a. Applying the production results in re- 

placing the sequence s = (dl(u), d2(u) .. . .  ) corresponding 

to u, with two sequences, s' and s", corresponding to the 

occurrences of u in Da and a, respectively. But s is 

greater than both s' and s" in the stepped-lexicographic 

ordering: the sequence s" is shorter than s, since there is 

one less D above u; the sequence s' is of the same length 

as s, but is lexicographically less, since a D has been 

pushed closer to u, while the distance from u to nearer 
D's remains unchanged. Similarly, the sequences corre- 

sponding to the atoms in fl are replaced by two smaller 

sequences. 

(2) The productions only affect the sequences in T(e) 

corresponding to the atoms of the subexpression that 

they are applied to. 
Therefore, for any application of a production, 

e ~ e' implies z(e) >)- ~(e'). 

Solution 3 (nested multisets). Note that the argu- 

ments to D are reduced in length by each production. 

One would therefore like to prove termination using the 

well-founded set (~¢/(N), >>) and a termination function 

that yields the multiset containing the lengths of  the 

arguments of  each occurrence of D, i.e. z(e) = (l~l:O~ 
in e}. The value of this function is decreased by the 

application of  a production, i.e. z(~r) >> r(~r') for each of 

the productions ~r ~ 7r'. The problem is that the length 

of superexpressions increases, since I~'1 > I~1; applying 

a production to a subexpression of e may therefore 

increase ~'(e). 
To overcome this problem, we need a termination 

function that takes the nested structure of the expression 
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into consideration and gives more significance to more 

deeply nested subexpressions. Fortunately, this is exactly 

what nested multisets can do for us. 

Let the well-founded set be the nested multisets over 

the natural numbers, (J#*(N), >>*), and let the termi- 

nation function T:E---) J//*(N) yield l al for each occur- 
rence of Dc~, while preserving the nested structure of the 
expression) 

~'(,~ ® #) = ~'(,~) u T(#) 

z(Da) = {{I,~1) u ~(a)}, 
r ( - a )  = T(ln a) = T(a), 

and 

~'(u) = { ), 

for any atom u. For example, the arguments of the six 
occurrences of D in the expression D(D(Dx.Dy)  + 

Dy) /Dx are D(Dx.Dy)  + Dy, Dx.Dy,  x, y, y, and x. 

They are of lengths 9, 5, 1, 1, 1, and 1, respectively. 

Considering the nested depths of the D's, the structure 

of the expression is 

D(D(Dx. Dy)+Dy)/ Dx 

Thus for 

we have 

e = D(D(Dx.Dv)  + Dy)/Dx,  
} t \ \ ~ \ 

I ~l \\ \ \ \ 
~-(e) = { (9, {5, { l ) ,  ( l ) ) ,  {1 ) ) ,  {'1) ). 

(1) For each production ~r ---) ~r', we have 0-(~r) >>* 

T(Tr') under the nested multiset ordering. Consider, for 
example, the production 

D(ot.fl) --) ((fl. Da) + (ot. Dfl)), 

and let ~'(a) and z(fl) stand for the list of elements of the 

multisets ~'(a) and ~'(fl), respectively. Applying ~ to the 
two sides of the production yields 

T(D(a.fl)) = ({la'/~l, ~('~), ~Ge))) 

and 

r((fl. DcO + (c~. Dfl)) 

= {~'~), {I'~I, ~'(~)), ~'(~), {I/¢I, ~(#))) 

This clearly is a decrease in J/g*(N) regardless of the 

exact form of a and fl, since {{ a .  fl {, l"(a), r(fl) } is greater 

than (1~1, ~(c0) or (1#1, ~'q~)) and is also greater than 

each of the elements in T(a) and r(fl). 

Consider, for example, 

D(x. Dy) =~ ((x. DD.v) + (Dy. Dx)). 

~An alternative solution would be to let ~(Da) = {0-(d)} and 
• (~) = { z } .  
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We have 

z(D(x .Dy))  = {{4, {1)}), 

while 

• (((x.DDy) + (Dy.Dx))) = ((2, ( l ) ) ,  {l) ,  ( l ) ) .  

This is a decrease in the nested multiset ordering, since 

{4, {1)} is greater than both {2, (1}} and {1}. A similar 

argument applies to all of the other productions. 

(2) It remains to ascertain what happens to the value 

of z for superexpressions. The crucial point here is that 

the termination function gives greater weight to the more 

deeply nested D's by placing their lengths at a greater 

depth in the nested multiset. The decrease in r for the 

subexpression to which the production is applied over- 

shadows any increase in the length of a superexpression. 

Consider, for example, 

D(D(x.x) + y) ~ D(((x. Dx) + (x. Dx)) + y), 

The value of T for the expression on the left is 

((6, {3})), while for the right-hand side expression it is 

(( 11, (1 }, ( 1 } } }. Note that this represents a decrease in 

the nested multiset ordering over N, despite the fact that 

the element 6, corresponding to the length of the top- 

level expression, has been increased to 11. This is the 

case since the production has replaced the element (3} 

in the multiset (6, (3} } by two occurrences of the smaller 

{ 1}, and {3} is also greater than 11--or any number for 

that matter--on account of its greater depth. 

Thus, e ~ e' implies r(e) >>* r(e'). 

In this section, we have illustrated the use of multiset 
and nested multiset orderings in proofs of termination of 

production systems. Along similar lines, using these or- 

derings, one can give general theorems which express 

sufficient conditions for the termination of broad classes 
of production systems. 
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A method for implementing secure personal 

computing in a network with one or more central 

facilities is proposed. The method employs a public-key 

encryption device and hardware keys. Each user is 

responsible for his own security and need not rely on 

the security of  the central facility or the communication 

links. A user can safely store confidential files in the 

central facility or transmit confidential data to other 

users on the network. 
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I. Introduction 

Within the next ten years many of us will have 

personal computers linked to a central facility. The 

central facility (CF) will offer many attractive features: 

long-term storage, text editors, language processors, spe- 
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