Proving Transaction and System-level Properties of
Untimed SystemC TLM Designs™

Daniel GroBe!+2

Hoang M. Le!

Rolf Drechsler!

nstitute of Computer Science, University of Bremen, 28359 Bremen, Germany
%Institute of Computer Science, Albert-Ludwigs-University, 79110 Freiburg im Breisgau, Germany
{grosse,hle,drechsle} @informatik.uni-bremen.de

Abstract—Electronic System Level (ESL) design manages the
enormous complexity of todays systems by using abstract models.
In this context Transaction Level Modeling (TLM) is state-of-the-
art for describing complex communication without all the details.
As ESL language, SystemC has become the de facto standard.
Since the SystemC TLM models are used for early software
development and as reference for hardware implementation
their correct functional behavior is crucial. Admittedly, the
best possible verification quality can be achieved with formal
approaches. However, formal verification of TLM models is a
hard task. Existing methods basically consider local properties or
have extremely high run-time. In contrast, the approach proposed
in this paper can verify “true” TLM properties, i.e. major TLM
behavior like for instance the effect of a transaction and that the
transaction is only started after a certain event can be proven.

Our approach works as follows: After a fully automatic
SystemC-to-C transformation, the TLM property is mapped to
monitoring logic using C assertions and finite state machines. To
detect a violation of the property the approach uses a BMC-based
formulation over the outermost loop of the SystemC scheduler.
In addition, we improve this verification method significantly
by employing induction on the C model forming a complete
and efficient approach. As shown by experiments state-of-the-art
proof techniques allow proving important non-trivial behavior of
SystemC TLM designs.

I. INTRODUCTION

System-on-Chips (SoCs) combine hardware and embedded
software on a single chip. Developing such complex systems
within todays time-to-market constraints requires to build
abstract models for architectural exploration and early software
development. This procedure has been systematized resulting
in the so-called Electronic System Level (ESL) design [1].
For ESL design SystemC [2], [3] has become the de facto
standard. In particular, the concept of Transaction Level Mod-
eling (TLM), which enables the description of communication
in terms of abstract operations (transactions), improved the
success of SystemC. The simulation of SystemC TLM models
is orders of magnitudes faster in comparison to RTL. Fur-
thermore, TLM allows interoperability between models from
different IP vendors.

SystemC is a C++ class library and provides modules,
ports, interfaces and channels as the fundamental modeling
components whereas the functionality is described by pro-
cesses. In addition, the SystemC library also includes an event-

*This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project SANITAS under contract
no. 01M3088.

driven simulation kernel. Essentially, the simulation kernel
executes the processes non-preemptive and manages their
parallel execution by using delta-cycles.

Clearly, an abstract SystemC TLM model provides the
first formalization of the design specification. This first TLM
model is usually untimed and will be successively refined
by adding timing information to a timed TLM model, which
in turn is refined down to RTL. Hence, it is very important
revealing potential bugs already at TLM. However, this func-
tional verification task is difficult [4]. Methods commonly
applied at TLM rely on simulation (see e.g. [5], [6], [7])
and therefore cannot guarantee the functional correctness. The
existing formal verification approaches for SystemC TLM
designs mainly check properties local to processes or have
extremely high run-time (more details are discussed in the
related work section). Hence, they cannot be used to verify
major TLM behavior such as the start of a transaction after a
certain event. In contrast, the approach proposed in this paper
makes the following contributions:

« Verification of “true” TLM properties
In addition to simple safety properties the user can check
the effect of transactions and the causal dependency be-
tween events and transactions. The Property Specification
Language (PSL) is used to formulate a property.

o Adjustment of temporal resolution
The approach allows to specify the sampling rate of the
temporal operators, e.g. the user can focus on certain
events or start/end of specific transactions.

o Automated verification method

The approach performs a fully automatic SystemC-to-C
transformation. Then, monitoring logic for the property
is automatically embedded into the C model. This moni-
toring logic uses C assertions and Finite State Machines
(FSMs). To verify the property, the verification method
of Bounded Model Checking (BMC) is employed on the
C model.

« Efficiency and completeness
An induction-based verification method working on the
level of C is proposed for the generated models, making
the approach complete and much more efficient.

For different SystemC TLM designs we report the verifi-
cation of properties describing important behavior at TLM

which has not been possible before. Moreover, the experiments
demonstrate that complete proofs can be carried out efficiently
using induction.

This paper is structured as follows: In Section II related
work is discussed. The preliminaries are provided in Sec-
tion III. Section IV introduces the TLM property checking
approach. First, the model generation from a SystemC TLM
design is explained. Then, the property language and the cre-
ation of respective monitors are introduced. In the last part of
this section the BMC-based verification technique is presented.
Section V describes the induction-based verification method
for the transformed models. The experimental evaluation is
given in Section VI. Finally, the paper is summarized and
ideas for future work are outlined.

II. RELATED WORK

One of the first formal approaches for SystemC TLM verifi-
cation has been introduced in [8]. However, the design entry of
this method is UML and only during the construction of the de-
rived FSM some properties can be checked. Another approach
has been proposed in [9]. A formal model can be extracted in
terms of communicating state machines and can be translated
into an input language for several verification tools. Simple
properties on very small designs have been verified with this
approach. The authors of [10] translate a SystemC design into
Petri nets and then apply CTL model checking. However, the
resulting Petri nets become very large even for small SystemC
descriptions as the experiments have shown. In [11] a tech-
nique has been presented that allows CTL model checking for
SystemC TLM designs, but one has to follow a very restricted
modeling style while specifying the system. The approach
of [12] translates a SystemC TLM design into Promela. The
Promela model is then checked by the model checker SPIN.
The translation is entirely manual and properties related to
events and transactions are not considered. A translation of
untimed SystemC TLM to the process algebra LOTOS is
proposed in [13]. However, the focus of the work is to compare
two possible LOTOS encodings, property checking is not
discussed. In [14] an approach mapping SystemC designs into
UPPAAL timed automata has been proposed. It differs from
our approach in particular regarding the expressiveness of the
properties. The work in [15] presented an approach combining
static and dynamic Partial Order Reduction (POR) techniques
to detect deadlocks and simple safety property violations. [16]
proposed a static POR technique for state space exploration of
SystemC designs using model checking, but property checking
was not considered. The limitations of both approaches are that
representative inputs need to be provided and the absence of
corner-case errors cannot be proven.

Recently, a fundamental work has been published [17]
which defines a trace semantic for SystemC covering also ab-
stract models. Furthermore, a PSL [18] oriented language has
been introduced which additionally includes new primitives
to allow expressing software aspects like for example pre- or
post-conditions. We use the introduced PSL primitives in this
work. The respective details are discussed in Section IV.

ITI. PRELIMINARIES
A. Bounded Model Checking and Induction

BMC has been introduced by Biere et al. in [19] and gained
popularity very fast. For a LTL formula ¢ the basic idea of
BMC is to search for counter-examples to ¢ in executions of
the system whose length is bounded by k time steps. More
formally, this can be expressed as:

k—1
BMCk = I(So) N /\ T(SZ, Si+1) A\ _‘g0k7
=0

where I(sp) denotes the predicate for the initial states, T
denotes the transition relation and —¢* constraints that the
property ¢ is violated by an execution of length k. In case
of simple safety properties of the form AGp where p is a
propositional formula, the violation of the property reduces to
\i_o i, where p; is the propositional formula p at time step
1. The overall problem formulation is then transformed into
an instance of SAT. If this instance is satisfiable a counter-
example of length k has been found. Usually, BMC is applied
by iteratively increasing k until a counter-example for the
property has been found or the resources are exceeded. One
of the possibilities to make BMC complete, i.e. to prove a
property, is to apply induction-based methods as proposed
in [20], [21]. For verifying safety properties the basic idea
is to show that, if p holds after k£ time steps, then it must also
hold after the (k + 1)-th step. For completeness, a constraint
requiring the states of an execution path to be unique has to
be added.

CBMC [22] is an implementation of BMC for C programs
applying loop unwinding. In particular, CBMC adds unwind-
ing assertions for the unwound loops. If such an assertion is
violated, not all possible execution paths of the program have
been checked. Hence, the corresponding loop is unwound once
more. User-input can be modeled by means of built-in non-
deterministic choice functions. CBMC supports assertions and
assumptions embedded in the program code. Assertions are
checked for all execution paths of the program that satisfy the
assumptions.

B. SystemC Basics

In the following only the essential aspects of SystemC are
described. SystemC provides a single language to model and
execute hardware and software systems on various levels of
abstraction. SystemC has been implemented as a C++ class
library, which includes an event-driven simulation kernel. The
structure of the system is described with ports and modules,
whereas the behavior is described in processes which are
triggered by events and communicate through channels. A
process gains the runnable status when one or more events of
its sensitivity list has been notified. If more than one process
is runnable, the simulation kernel selects an arbitrary process
and gives this process the control. The execution of a process
is non-preemptive, i.e. the kernel receives the control back if
the process has finished its execution or suspends itself by
calling wait().

The simulation semantics of SystemC can be summarized
as follows [3]: First, the system is elaborated, i.e. instantiation
of modules and binding of channels and ports. Then, there are
the following steps to process:

1) Initialization: processes are made runnable.

2) Evaluation: A runnable process is executed or resumes
its execution. In case of immediate notification, a waiting
process becomes runnable immediately. This step is
repeated until no more processes are runnable.

3) Update: Updates of signals and channels are performed.

4) Delta notification phase: If there are delta notifications,
the waiting processes are made runnable, and then it is
continued with Step 2.

5) If there are timed notifications, the simulation time is
advanced to earliest one, the waiting processes are made
runnable, and it is continued with Step 2, otherwise the
simulation is stopped.

In this paper we focus on untimed SystemC TLM designs,
thus timed notifications and simulation time are irrelevant.
Furthermore, dynamic process creation and recursion are not
allowed. Moreover, we assume that a SystemC design repeat-
edly receives input from the environment/user. The simpler,
special case, where a design receives some inputs, processes
them and then terminates, is not explicitly discussed for the
sake of simplicity.

IV. TLM PROPERTY CHECKING

This section presents the property checking approach to
verify transaction and system-level properties of untimed
SystemC TLM designs. Before we give the details, first a
simple but conceptually representative SystemC TLM model
is discussed. Moreover, this model also serves as running
example throughout the rest of this paper.

Example 1: The SystemC TLM program shown in Figure 1
models a simple communication between an initiator and a
target using an internal event (declared in Line 19). The
example has two processes: initiate (Line 13) from the initiator
and increase (Line 26) from the target. The target is connected
to the initiator through a port (Line 35). The process increase
waits for the notification of the internal event e before it
increases the variable number. The event e will be notified
when the function activate (Line 25) of the target is called
from the process initiate (Line 13) through the port.

Obviously, already this simple example shows that deriving
a formal model as basis for property checking is non-trivial.
Moreover, the sample points for the temporal operators have to
be defined, a convenient property specification language has to
be identified as well as an appropriate verification method has
to be found. The solutions to these questions are introduced in
the following subsections. Before they are presented the over-
all flow of our approach is illustrated in Figure 2. At first, the
model generation is performed which basically transforms the
SystemC TLM model to C and integrates an abstracted static
SystemC scheduler (see Section IV-A). Then, the monitoring
logic for a concrete TLM property is built and embedded
into the C model. This task including the property language

1 class activate_if : virtual public sc_interface {
2 public:
3 virtual void activate() = 0;
4 1
5
6 class initiator : public sc_module {
7 public:
8 sc_port<activate_if> port;
9 SC_HAS_PROCESS(initiator);
10 initiator(sc_module_name name) : sc_module(name) {
11 SC_THREAD(initiate);
12
13 void initiate() { port—>activate(); }
14 };
15
16 class target : public activate_if, public sc_module {
17 public:
18 int number;
19 sc_event e;
20 SC_HAS_PROCESS (target);
21 target(sc_module_name name) : sc_module(name) {
22 number = 0;
23 SC_THREAD(increase);
24 }
25 void activate() { e.notify(SC_ZERO_TIME); }
26 void increase() {
27 wait(e);
28 number++;
29 }
30
31
32 int sc_main (int argc , char xargv[]) {
33 initiator initiator_inst(”Initiator”);
34 target target_inst("Target”);
35 initiator_inst.port(target_inst);
36 sc_start();
37 return O;
38 }

Fig. 1. Simple SystemC TLM program

and mappings for the different variants of TLM properties are
discussed in Section I'V-B. Finally, the BMC-based verification
method and the necessary formalization to search for property
violations is detailed in Section IV-C.

A. Model Generation

As suitable formal model we have chosen C. On the one
hand the transformation process is manageable and can be
automated (as done in this work). On the other hand we can
leverage available model checkers.

The transformation into a C model consists of three steps,
which will be demonstrated for Example 1. At the beginning
of the first step, we identify the static elaborated structure of
the design (that means the module hierarchy, the processes and
the port bindings). Afterwards the object-oriented features of
SystemC/C++ are translated back into plain C. Member vari-
ables, member functions and constructors of each object are
transformed to global variables and global functions. The port
bindings are resolved already, thus all function calls through
a port can now be replaced by calls of actual functions. The

SystemC
TLM model

{ transformed

TLM
C model M { property }

@eneranon

transformed

C model with
monitoring

logic M p

BMC on C model

Property

found verified

Fig. 2. Overall Flow

result of the first step for Example 1 is shown in Figure 3. For
example, the transformed code for the target module is shown
between Line 6 and Line 18. The first two lines define two
global variables, which were member variables of the module
before (Line 18 and Line 19, respectively). The remaining
lines show the transformed constructor target_inst_init and
two former member functions target_inst_activate and tar-
get_inst_increase. At the beginning the of main function, the
two transformed constructors are called (Line 21 and Line 22).
That corresponds to the instantiation of the two modules in
sc_main.

The second step generates the static scheduler implement-
ing the non-preemptive simulation semantics of SystemC. A
counter for the number of runnable processes runnable_count
is added. For each process a global variable indicating the
status of the process is generated (RUNNING, RUNNABLE,
WAITING, or TERMINATED). The delta cycle loop and the
evaluation loop are also inserted into the main() function.
In the body of the evaluation loop, non-deterministic choice,
i.e. which runnable process is to be executed next, is im-
plemented. This non-deterministic choice allows a C model
checker to explore all interleavings implicitly. In case the
design contains only immediate notifications, the delta cycle

1 void initiator_inst_init() { }

2 void initiator_inst_initiate() {

3 target_inst_activate();

4 }

5

6 int target_inst_number;

7 sc_event target_inst_e;

8

9 void target_inst_init() {

10 target_inst_number = 0;
11}
12 void target_inst_activate() {
13 target_inst_e.notify(SC_ZERO_TIME);
14
15 void target_inst_increase() {
16 wait(target_inst_e);
17 target_inst_number++;
18 }
19
20 int main(int argc , char xargv([]) {
21 initiator_inst_init();
22 target_inst_init();
23 sc_start();
24 return 0;
25}
Fig. 3. Result of the first step

1 while (runnable_count > 0) { / delta cycle loop

2 while (runnable_count > 0) { // evaluation loop

3 choose_one_runnable_process();

4 runnable_count——;

5 if (process initiate is chosen) {

6 initiator_inst_initiate_status = RUNNING:;

7 initiator_inst_initiate();

8 }

9 if (process increase is chosen) {
10 target_inst_increase_status = RUNNING;
11 target_inst_increase();

12 }
13 }
14 }
Fig. 4. Scheduler implementation

loop is unnecessary and can thus be removed. The handling of
events completes the scheduler and is considered in the next
and last step. In Example 1 the call of sc_start (Line 36) is
replaced with the code in Figure 4. Note that implementation
details of non-deterministic choice of runnable processes are
unnecessary to understand the transformation and thus are
removed.

At the beginning of the last step of the transformation, all
function calls are inlined. After that the remaining function
calls are notify() and wait(). The handling of events is mapped
to the handling of Boolean flags. For each event £ a Boolean
flag E_notified is generated and for each process P, that will be
waiting for the notification of E at some point, a Boolean flag
P_waiting_E is added. After each potential context switch (a
call of wait()), a label (resume point) is inserted. The execution
of the corresponding process can be resumed later by jumping

if (target_inst_e_notified) {
target_inst_e_notified = false;
if (target_inst_increase_waiting_target_inst_e) {
target_inst_increase_waiting_target_inst_e = false;
target_inst_increase_status = RUNNABLE;
runnable_count++;

}

0NN N AW~

Fig. 5. Delta notification

if (target_inst_increase_current_resume_point==1)
goto target_inst_increase_resume_point_1;
target_inst_increase_waiting_target_inst_e = true;
target_inst_increase_status = WAITING;
target_inst_increase_current_resume_point = 1;
goto target_inst_increase_end;
target_inst_increase_resume_point_1: ;
target_inst_number++;
target_inst_increase_status = TERMINATED;
target_inst_increase_end: ;

—_
SOOI AW~

Fig. 6. The inlined call of target_inst_increase

to this label. For each process we also need a variable to
keep track of its current resume point. The notifications of
an event E and the waits on E are modeled as follows. Each
notification raises the flag E_notified and the status of any
process P currently waiting for E (flag P_waiting_E) becomes
runnable immediately for immediate notification, and at the
delta notification phase for delta notification. The code in
Figure 5 models the delta notification phase and is to be
inserted after the evaluation loop. Each call of wait(E) in the
process P is replaced with the following: the process status is
set to waiting, P_waiting_EF is raised, the current resume point
of P is set accordingly and P is interrupted by jumping to the
end of the process (see Line 6 of Figure 6). Figure 6 shows
the inlined code for the call target_inst_increase(). There is
only one resume point in this process defined on Line 7. The
first two lines implement the resuming of the process. Line 3-6
show the implementation of wait(target_inst_e).

In the remainder of this paper we denote the transformed C
model as M.

B. Property Language and Monitor Generation

For property specification we use PSL [18] which initially
was not designed for property specification at high level of
abstraction. In [17] additional primitives have been introduced
— coming from the software world — which are well suited for
TLM property specification. Besides basic atomic primitives
we use the following:

o func_name:entry - start of a function/transaction

o func_name:exit - end of a function/transaction
o event_name.notified - notification of an event

e func_name:non—negative integer - return value and pa-
rameters of a function/transaction

It is left to define the temporal sampling rate as well as the

supported temporal operators. As default temporal resolution

we sample at start/end of any transaction and at notification
of any event. PSL clock expressions' can be used to change
the temporal resolution, e.g. to sample only at notification of a
certain event. As temporal operators we allow always and next
. Both have similar semantics as GG and X in LTL, however
the “time” advances with respect to the specified (default)
temporal resolution.

In the following we discuss different useful types of prop-
erties and the generation of monitoring logic by means of C
assertions. The task of the monitoring logic is to detect the
violation of the property. The properties — simple safety up
to system-level properties — can be translated to appropriate
assertions as described below. After its generation the monitor-
ing logic becomes a part of the model. For the model including
the monitor for a property P we use the notation Mp (see also
Figure 2). Then, we have to define when a property holds.

Definition 1: The property P holds in the original design
or in the transformed model M, respectively, iff no assertions
fail in any execution of Mp.

Now the different types of properties and the respective
monitoring logic are explained.

1) Simple Safety Properties: This type of properties con-
cern values of variables of the TLM model at any time during
the execution, e.g. the values of some certain variables should
always satisfy a given constraint. Generally, this property type
can be expressed by a C logical expression. To verify those
properties we only need to insert assertions right after the lines
of code that change the value of at least one variable involved.
As an example see the property depicted at the top of Figure 7
specified for a FIFO.

2) Transaction Properties: This type of properties can be
used to reason about a transaction effect, e.g. checking whether
a request or a response (both are parameters or return value
of some functions) is invalid or whether a transaction is
successful. Monitoring logic for these properties is created
by inserting assertions before/after the body of corresponding
inlined function calls. For example, the property “the memory
read transaction always operates on a valid address” for a TLM
bus can be formulated in a transaction property as shown in
the middle of Figure 7.

3) System-level Properties: These properties focus on the
order of occurrences of event notifications and transactions,
e.g. a given transaction should only begin after a certain event
has been notified. We implement the monitoring logic using
FSMs. Each state of the FSM corresponds with one position
in the order specified by the property. Code for transitions
of the FSM is inserted right after event notifications, begin
or end of transactions (depending on the property). The FSM
also has one state indicating the violation of the property. Our
assertion is that this state is never reached. As example see the
lower part of Figure 7. The first system-level property has been
specified for Example 1 and states that after the transaction
activate has finished the event is notified which causes the

'In the considered TLM models there are no clocks. We only use the clock
expression syntax to define sampling points.

Simple safety property:

// the number of processed blocks never exceeds the number of blocks which have been read

always (num_block_processed <= num_block_read)

Transaction property:

// the memory read transaction always operates on a valid address

always (0 <= mem_read:1 && mem_read:1 <= MAX_ADDR)

System-level property:
// Two properties for running Example 1

always (target_inst.activate:exit —>next (target_inst.e.notified && next target_inst.increase:exit))
always (target_inst.e.notified —>next (target_inst.increase:exit && target_inst.number == 1))

Fig. 7.

execution of the function increase to end. The second system-
level property additionally defines the expected value of the
integer number of the target.

The next section gives a detailed presentation on verifying
the C model using BMC. Recall that the C model M p at hand
has been automatically generated and the monitoring logic for
P has also been embedded automatically.

C. BMC-based Verification

First of all we explain the notion of states and how the
transition relation is formed with respect to the transformed
SystemC TLM model including the assertions, i.e. Mp. The
basic idea is to view the current values of the variables as a
state s and each iteration of the outermost loop of the scheduler
— which is either the evaluation loop or the delta cycle loop —
as the transition relation 7. In the following we will also refer
to this outermost loop as the main loop (see also Figure 4).
Each execution of the model can be formalized as a path,
which is a sequence of states s[g..,] = S051...5n satisfying the
condition

path(sjo..n)) = /\ T(8i,8i41)-

0<i<n

Note that the path can be infinite, in that case n = co.

The property P holds in the original design, iff the general
property “no assertions fail” holds in M p, which also means
no assertion failure during each iteration of the main loop, or
in other words during each transition 7'(s;, $;4+1)-

Definition 2: A transition without assertion failure is called
safe and written as safe(s;, $i+1)-

Thus, for the property to hold, every sequence of states of an
execution must satisfy as well the condition

allSafe(s[o..n)) = /\ safe(s;, Sit1)-

0<i<n

The need for safe transitions instead of the conventional
safe states is explained as follows. The transition relation in
our context is defined by the main loop. Therefore, a state and
its successor state are defined at the start and at the end of
each iteration of the main loop, respectively. When an assertion
fails, the execution is immediately stopped somewhere in the

Several example properties

middle of an iteration. We already left the last state but have
not reached the next one yet. It follows that the need for
safe transitions is directly implied by the way the monitoring
logic is generated. On the other hand, if we want to use the
notion of safe states, the monitoring logic must be modified
as follows. We would need to add one more Boolean flag
indicating whether the property is already found to be violated.
Then, each assertion would be replaced with a piece of code,
that raises the flag and jumps to the end of the evaluation loop,
where the flag is asserted to be false. However, this extension
makes the model and its state space bigger, thus using safe
transitions is actually better.

Let I be the characteristic predicate for all initial states,
which are reachable states before entering the main loop —
note that there can be more than one initial state because some
variables are uninitialized or modeled as inputs, and thus have
a non-deterministic value. Then, the BMC problem can be
formulated as proving that there exists an execution path of
length k, starting from an initial state, and containing unsafe
transitions. This is encoded in the following formula:

Jsg...5k. (I(so) A path(sp. k) A ﬂallSafe(s[ouk]))

Now BMC checks the formula for increasing £ starting from
zero. In the experiments (see Section VI-A) we show that this
already gives good results. At our level of abstraction, for a
fixed value of k checking the above formula is equivalent to
verify the program M’IE, which is Mp with the main loop
unwound k times. If a trace is returned, the formula is proven
to hold for that fixed value of k, and the property P is proven
to be false. Otherwise, the property holds up to k. Recall
that as mentioned above a SystemC design repeatedly receives
input from the environment/user. Hence, for a complete proof
the property has to hold for all values of k. In principle,
we do not need to check a transition more than one time,
thus we can stop increasing k if it reaches the number of
states. However, this becomes infeasible very fast. Hence, we
devise a method using induction where we derive much better
terminating conditions. The main advantages of the induction-
based method are that much better run-times are achieved and
the method is complete, i.e. properties are proven not only up
to a certain bound £ but under all circumstances.

1 k = some constant which can be greater than zero
2 while true do

3 if not CPROVER(MY,) then

4 return Trace cjg. x]

g if CPROVER(Z?Il(si,l = s; M[i] assume(newState(i));) assert(!(runnable_count > O));) then

6 return frue

, if CPROVER (5 = non_det; Zf=1 (si—1 = ;M pli] assume(newState(i));) Mp[k + 1]) then

8 return frue
9 k=k+1
10 end

Algorithm 1.

High-level strengthened induction with depth for transformed SystemC TLM model including monitoring logic

V. INDUCTION-BASED TLM PROPERTY
CHECKING

This section introduces the induction-based method which
forms a complete and efficient approach to prove transac-
tion and system-level properties. Traditional induction-based
techniques (like e.g. [20]) addressed safety state properties in
the context of circuits, whereas our general property safe for
Mp involves a transition (a pair of states) and our level of
abstraction is higher. Nevertheless, the underlying ideas give
a good starting point.

First, we only need to check each transition once, thus
only paths, where all states except the last one are different,
need to be considered. Second, after the base case is proved
(i.e. no counter-example of length up to k exists), we check
two terminating conditions: the “forward” condition and the
inductive step. The forward condition checks whether a path
of length (k + 1) starting from an initial state exists. The
inductive step checks if a path with k first safe transitions and
a last unsafe one exists. If no such paths exist, we can stop and
conclude that the property P holds. In summary, the forward
condition checks the satisfiability of

I(s0) A loopFree(sy.)
and the inductive step checks the satisfiability of
loopF'ree(sy. 1)) A allSafe(s)o. k) N safe(sk, ski1)
where

loopF'ree(so..x]) = path(sp. k) A /\
0<i<j<k

8; # S;.

Now, to make induction possible at our level of abstraction,
the main challenge is the embedding of the constraints into the
transformed C model. Conceptually, new variables sg, s1, ...
are needed to capture the state s after each iteration of the main
loop and the constraints can then be imposed by means of as-
sumptions®. For example, the constraint loopFree(sy.) can

2C model checkers typically support an assumption concept, i.e. assertions
are checked for all execution paths of the program that satisfy the assumptions.

be emulated by inserting the statement assume(newState(i));
after the ¢-th unwound iteration of the main loop with

newState(i) = (s! = s;_1) && ... && (s! = sp).

For a precise description of the algorithm, we use the inter-
pretation of C programs as strings. As defined earlier, M, is
Mp with the main loop unwound k times. Let Mp[i] be the
code fragment of the i-th unwound iteration of the main loop
of Mlp and let 4 be the string concatenation operator. Then,
we have
k
M} = Mp[1]Mp[2]...Mp[k] = > Mpli].
i=1

Additionally, we define Ml as the resulting program after each
assertion related to P in Mp is substituted by an assumption.
The introduced notation applies for M and M3 as well. We
end up with a high-level strengthened induction with depth
shown in Algorithm 1, which has a similar structure as the
Algorithm 3 and 4 of [20], but the level of the induction
differs significantly. The base case is checked in the first if-
statement (Line 3). The second if-statement (Line 5) checks
the forward condition. The assertion at the end of Line 5
is the unwinding assertion for the main loop. The last if-
statement (Line 7) is the inductive step. The first arbitrary
state is emulated by the statement s = non_det, which assigns
non-deterministic values to the variables and thus allows the
model checker to examine all possible values implicitly. The
underlying C model checker is invoked to verify the assertions
in the passed parameter by the call CPROVER, which returns
true if no assertions are violated and false otherwise, in this
case a violating trace can be extracted.

As a final note, our approach can deal with nested loops,
which are commonly present in our transformed models. The
outermost loop is handled explicitly as described above. The
other loops must be unwound up to at least their run-time
bounds before applying our approach. Those run-time bounds
can be determined with the aid of unwinding assertions [22].
Also note that unbounded loops can still have a finite run-time
bound due to the simulation semantics of SystemC and our
transformation method. As an example, consider the infinite

if (t_current_resume_point==1)
goto resume_point_1;
// begin of the first unwound iteration
body1;
t_waiting_e = true;
t_status = WAITING;
t_current_resume_point = 1;
goto t_end;
t_resume_point_1:
10 body2;
11 // end of the first unwound iteration
12 // begin of the second unwound iteration
13 bodyl;
14 t_waiting_e = true;
15 t_status = WAITING;
16 t_current_resume_point = 1;
17 goto t_end;

O 00 JIONWNBWN—

18 body2;
19 // end of the second unwound iteration
20 t_end: ;
Fig. 8. The infinite SC_THREAD loop unwound

loop while (true) { bodyl; wait(e); body2; } commonly used
in a SC_THREAD. It only needs to be unwound twice. In
its first execution, the SC_THREAD performs bodyl; then
suspends itself because of waif(e). Any further execution
resumes exactly after the wait statement, performs body2;
then bodyl; and is suspended again by wait(e). Figure 8
shows the transformation with two unwound iterations for a
SC_THREAD named .

VI. EXPERIMENTS

The proposed approach has been implemented and evalu-
ated on different TLM designs. The model checker CBMC
v3.3 [22] with Boolector v1.2 [23] as the underlying SMT
solver has been used to verify the generated C models. The
proposed approach has been built on top of CBMC, i.e. un-
winding and the transformations for induction are performed
before giving the problem to CBMC. The internal slicer
of CBMC is activated to remove subformulas, which are
irrelevant for the properties. All experiments have been carried
out on a 3GHz Intel Xeon system with 4 GB RAM running
Linux.

In the first part of the experiments we present the results
for the BMC-based verification approach. Then, in the second
part we give the results for the induction-based method as
introcuded in Section V.

A. BMC-based Verification

The first design is the simple_fifo TLM example included in
the official SystemC distribution. The original design consists
of a consumer module and a producer module communi-
cating over a FIFO channel. Both modules have their own
SC_THREAD. We modified the design so that the producer
writes an infinite sequence of arbitrary characters into the
FIFO. The SystemC model (the generated C model) has
approximately 80 (150) lines of code. We considered the
following properties of the FIFO:

TABLE I
RESULTS FOR CORRECTED FIFO

1 consumer + 1 producer
48 chars | 64 chars | 80 chars
P1 26.37s 51.55s 67.69s
P2 25.97s 49.39s 64.96s
P3 38.23s 67.92s 105.02s
P4 28.04s 54.60s 72.98s
2 consumers + 1 producer
Pl 178.18s 302.42s 492.24s
P2 170.28s 351.68s 468.60s
P3 250.40s 515.42s 677.92s
P4 194.75s 400.92s 530.50s
1 consumer + 2 producers
P1 438.25s 919.20s | 1193.58s
P2 | 429.45s 920.38s | 1191.10s
P3 617.08s | 1280.24s | 1690.12s
P4 | 479.66s 969.02s | 1275.94s
TABLE I

RESULTS FOR DISPROVING P1 ON ORIGINAL FIFO

77.65s
190.05s

2c.+1p.
le +2p.

e The number of elements in the FIFO never ex-
ceeds the limit - Pl: always (0 <= num_elements &&
num_elements <= max)

o After a write transaction, the FIFO is not empty - P2:
always (write:exit —>num_elements > 0)

o If the FIFO is full, the next event notified is read_event
- P3: default clock = read_event.notified || write_event.
notified; always (num_elements == max —>next
read_event.notified)

o After a notification of read_event, the next 10 (the FIFO
size) notifications includes at least one notification of
write_event - P4: default clock = read_event.notified ||
write_event.notified; always (read_event.
notified —>next_e[1:10] write_event.notified)

The design malfunctioned as soon as we tried to connect
more consumers or producers to the FIFO channel. We fixed
the implementation and proved the properties on the corrected
design. Since the BMC-based method from Section IV-C is
incomplete, the properties can only be verified for a fixed
number of inputs. The results are shown in Table 1. Each sub-
column gives the run-times required to verify each property
for the bounded input of 48, 64 and 80 arbitrary characters,
respectively. As can be seen the run-times increase with the
number of characters. Moreover, adding another consumer or
producer also results in higher run-times.

Table II shows the run-times needed by CBMC to disprove
P1 on the original FIFO with 2 consumers and 1 producer,
and with 1 consumer and 2 producers, respectively. In both
cases, 48 characters are written into the FIFO.

As another SystemC model we considered the chain bench-
mark presented in [13]. This benchmark consists of a chain of
m modules communicating through transactions. Each module
has a SC_THREAD, which waits for an internal event before

TABLE III

COMPARISON ON chain BENCHMARK

m CBMC | [13] w/o sched. | [13] w. sched.
5 1.01s 1.40s 1.80s
9 5.14s 2.08s 7.28s
13 25.86s 11.71s 118.78s
17 92.07s 166.73s 2443.77s
19 | 180.01s 686.93s | not completed
21 | 383.92s 3201.33s | not completed
TABLE IV

RESULTS FOR CORRECTED FIFO USING INDUCTION

le+1p 2c.+1p le.+2p

BS IS BS 1S BS 1S
P1 | 0.01s 1.09s | 0.01s 2.04s | 0.01s 2.50s
P2 | 0.01s 0.92s | 0.01s 1.93s | 0.01s 2.35s
P3 | 0.77s | 11.90s | 4.49s | 48.18s | 7.66s | 59.07s
P4 | 0.55s 8.22s | 1.41s | 18.24s | 3.20s | 39.39s

initiating a transaction with the next module. This transaction
notifies the internal event of the next module, so that this
module can start a transaction with the after next, and so
on, until the last module completes its transaction. No “real”
property is checked in the benchmark, instead the whole model
state space is explored. The results are shown in Table III
The first column gives the number of modules/processes in
the chain. The column “CBMC” provides our results, while
the results from [13] using the encoding without and with a
non-preemptive scheduler respectively’ can be seen in the last
two columns. The results show that our approach can handle
a large number of processes and scales much better than [13].

B. Induction-based Verification

We applied our induction-based method to the FIFO design
discussed in the previous section. The results shown in Ta-
ble IV are obtained without the restriction to loop-free paths.
The sub-columns "BS” and ”IS” give the run-time of the base
step and the inductive step, respectively. Significant improve-
ments over the BMC-based method with respect to run-time
can be observed. Furthermore, using induction, the proofs are
complete, i.e. the properties are verified for unbounded input
where arbitrary characters are repeatedly written into the FIFO.

The last design considered in this paper is our TLM
implementation of a part of a JPEG encoder [24] consisting
of eight modules: a simple bus, two memory slaves, a reader,
a zig-zag scanner, a run-length encoder, an output module,
and a controller coordinating the encoding process. The input
of the design are quantized DCT 8x8 pixel blocks and the
output are run-length encoded sequences. The SystemC model
(the generated C model) has approximately 200 (450) lines of
code. We successfully verified the following properties using
induction:

o All memory accesses are successful, i.e. mem_read and

mem_write of the bus always return true - P5: always (
mem_write:0 && mem_read:0)

3Their experiments were done on a 2GHz AMD Opteron system with 4GB
RAM running Linux.

TABLE V
RESULTS FOR RLE ENCODER DESIGN

BS IS
P5 0.01s 5.17s
P6 0.01s 5.41s
P7 | 85.82s | 218.90s

o As specified in [24], while encoding the 8x8 block, if 16
consecutive zeros are encountered, a pair (15, 0) should
be written to the output, instead of waiting for a non-zero
value. Therefore, the first parameter of the write method
of the output module should always be less than or equal
to 15 - P6: always (write:1 <= 15)

o The synchronization between the threads implies, that
after the completion of each scan transaction, the next
scan should always follow after two other transactions -
P7: default clock = read_block:exit || zigzag_scan:exit
|| rle_encode:exit; always (zigzag_scan:exit —>next[3]
zigzag_scan:exit)

The results are given in Table V. Again, the efficiency of
the induction-based method can be observed and the proofs
are complete, i.e. the properties are proven for any number of
input blocks and arbitrary blocks’ contents.

VII. CONCLUSIONS

We have presented an efficient property checking approach
for untimed SystemC TLM designs. The approach consists of
three steps: the fully automated transformation of SystemC
to C, the generation and embedding of monitoring logic for
a TLM property, and the verification of the transformed C
models. For the verification task, a BMC formulation over
the outermost loop of the scheduler has been developed.
Furthermore, we improved the BMC-based technique with
respect to efficiency and completeness by performing induc-
tion at the level of C programs. The experiments show that
complete proofs of important TLM properties can be carried
out efficiently. The large state spaces of SystemC designs,
which also consist of all possible inputs and interleavings, are
fully explored by our approach.

For future work we see possible enhancements by in-
corporating some light-weight static partial order reduction
techniques into the generated scheduler to prune unnecessary
interleavings. Furthermore, we would like to investigate the
use of abstractions. For the verification of a property with
fine temporal granularity, providing sound abstractions for the
model behavior at the start/end of irrelevant transactions or
at the notification of unrelated events would reduce the model
size and its state space. Abstraction is also needed to deal with
library code. In addition, we also want to evaluate the use of
other C model checkers and to extend our approach to handle
timed SystemC TLM constructs. This extension is a necessary
next step towards the formal verification for designs using the
TLM-2 library.

[1]

[2

—

[3

—

[4]
[5

=

[6

=

[7]

[8

[t}

[9]

[10]

(11]

(12]

REFERENCES

B. Bailey, G. Martin, and A. Piziali, ESL Design and Verification:
A Prescription for Electronic System Level Methodology. — Morgan
Kaufmann/Elsevier, 2007.

Functional Specification for SystemC 2.0, Synopsys Inc., CoWare Inc.,
and Frontier Design Inc., http://www.systemc.org.

IEEE Standard SystemC Language Reference Manual, IEEE Std. 1666,
2005.

M. Y. Vardi, “Formal techniques for SystemC verification,” in Design
Automation Conf., 2007, pp. 188-192.

A. Habibi and S. Tahar, “On the extension of SystemC by System Ver-
ilog assertions,” in Canadian Conference on Electrical and Computer
Engineering, 2004, pp. 1869-1872.

W. Ecker, V. Esen, M. Hull, T. Steininger, and M. Velten, “Requirements
and concepts for transaction level assertions,” in Int’l Conf. on Comp.
Design, 2006, pp. 286-293.

N. Bombieri, F. Fummi, and G. Pravadelli, “Incremental ABV for
functional validation of TL-to-RTL design refinement,” in Design,
Automation and Test in Europe, 2007, pp. 882-887.

A. Habibi and S. Tahar, “Design for verification of SystemC transaction
level models,” in Design, Automation and Test in Europe, 2005, pp.
560-565.

M. Moy, F. Maraninchi, and L. Maillet-Contoz, “LusSy: an open tool
for the analysis of systems-on-a-chip at the transaction level,” Design
Automation for Embedded Systems, pp. 73—104, 2006.

D. Karlsson, P. Eles, and Z. Peng, “Formal verification of SystemC
designs using a petri-net based representation,” in Design, Automation
and Test in Europe, 2006, pp. 1228-1233.

B. Niemann and C. Haubelt, “Formalizing TLM with communicating
state machines,” in Forum on specification and Design Languages, 2006,
pp. 285-293.

C. Traulsen, J. Cornet, M. Moy, and F. Maraninchi, “A SystemC/TLM
semantics in promela and its possible applications,” in SPIN, 2007, pp.
204-222.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

C. Helmstetter and O. Ponsini, “A comparison of two SystemC/TLM
semantics for formal verification,” in ACM & IEEE International Con-
ference on Formal Methods and Models for Codesign, 2008, pp. 59—68.
P. Herber, J. Fellmuth, and S. Glesner, “Model checking SystemC
designs using timed automata,” in IEEE/ACM/IFIP International Con-
ference on Hardware/Software Codesign and System Synthesis, 2008,
pp- 131-136.

S. Kundu, M. Ganai, and R. Gupta, “Partial order reduction for scalable
testing of SystemC TLM designs,” in Design Automation Conf., 2008,
pp- 936-941.

N. Blanc and D. Kroening, “Race analysis for SystemC using model
checking,” in Int’l Conf. on CAD, 2008, pp. 356-363.

D. Tabakov, M. Vardi, G. Kamhi, and E. Singerman, “A temporal
language for SystemC,” in Int’l Conf. on Formal Methods in CAD, 2008,
pp- 1-9.

Accellera Property Specification Language Reference Manual, version
1.1, http://www.pslsugar.org, 2005.

A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in Tools and Algorithms for the Construction
and Analysis of Systems, 1999, pp. 193-207.

M. Sheeran, S. Singh, and G. Stilmarck, “Checking safety properties
using induction and a SAT-solver,” in Int’l Conf. on Formal Methods in
CAD, 2000, pp. 108-125.

P. Bjesse and K. Claessen, “SAT-based verification without state space
traversal,” in Int’l Conf. on Formal Methods in CAD, 2000, pp. 372-389.
E. M. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Tools and Algorithms for the Construction and Analysis
of Systems, 2004, pp. 168-176.

R. Brummayer and A. Biere, “Boolector: An efficient SMT solver for
bit-vectors and arrays,” in Tools and Algorithms for the Construction
and Analysis of Systems, 2009, pp. 174-177.

ISO, ISO/IEC 10918-1:1994: Information technology — Digital com-
pression and coding of continuous-tone still images: Requirements and
guidelines. International Organization for Standardization, 1994.

