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Abstract

Background: Hepcidin concentrations measured by 

various methods differ considerably, complicating inter-

pretation. Here, a previously identified plasma-based 

candidate secondary reference material (csRM) was modi-

fied into a serum-based two-leveled sRM. We validated 

its functionality to increase the equivalence between 

methods for international standardization.

Methods: We applied technical procedures developed by 

the International Consortium for Harmonization of Clini-

cal Laboratory Results. The sRM, consisting of lyophilized 

serum with cryolyoprotectant, appeared commutable 

among nine different measurement procedures using 16 

native human serum samples in a first round robin (RR1). 

Harmonization potential of the sRM was simulated in RR1 

and evaluated in practice in RR2 among 11 measurement 

procedures using three native human plasma samples. 

Comprehensive purity analysis of a candidate primary RM 

(cpRM) was performed by state of the art procedures. The 

sRM was value assigned with an isotope dilution mass 

spectrometry-based candidate reference method cali-

brated using the certified pRM.

Results: The inter-assay CV without harmonization was 

42.1% and 52.8% in RR1 and RR2, respectively. In RR1, 

simulation of harmonization with sRM resulted in an 

inter-assay CV of 11.0%, whereas in RR2 calibration with 

the material resulted in an inter-assay CV of 19.1%. Both 

the sRM and pRM passed international homogeneity cri-

teria and showed long-term stability. We assigned values 

to the low (0.95 ± 0.11 nmol/L) and middle concentration 

(3.75 ± 0.17 nmol/L) calibrators of the sRM.

Conclusions: Standardization of hepcidin is possible with 

our sRM, which value is assigned by a pRM. We propose 

the implementation of this material as an international 

calibrator for hepcidin.
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Introduction

Hepcidin is a liver-produced peptide hormone, which 

regulates systemic iron levels by counteracting the cel-

lular iron exporter ferroportin [1, 2]. Disorders of iron 

metabolism often arise in combination with alterations in 

hepcidin levels. Therefore, hepcidin is considered a pow-

erful diagnostic tool as well as a target of therapy. Conse-

quently, many hepcidin measurement procedures (MPs) 

have been developed to quantify hepcidin concentrations 

in biological fluids, largely based on either mass spectro-

metry (MS) or immunochemistry (IC) [2].

Our previous round robin (inter-laboratory) studies 

(RRs) revealed hepcidin levels in the same clinical sample 

differed by a factor up to 9.1 between MPs, leading to non-

equivalent results of results, complicating interpretation 

[3–5]. This hampers implementation of hepcidin MPs into 

clinical practice and for research purposes. Better agree-

ment between hepcidin results obtained by various MPs 

will enable the establishment of global uniform reference 

intervals and decision limits, i.e. for guidance in oral iron 

therapy and diagnosis of iron refractory iron deficiency 

anemia [2, 6, 7]. Therefore, ideally, all hepcidin MPs need 

to be standardized. This allows a patient sample being 

traceable to the internationally recognized Système Inter-

national (SI) via a calibration hierarchy of calibrators and 

MPs, and the establishment of a ‘true value’ by defin-

ing the measurand in SI units [8]. For standardization a 

primary reference material (pRM) is needed, which is a 

compound of well-characterized purity used to prepare 

a calibrator for a reference MP (RMP) [8]. This calibrated 

RMP is used to assign a value to a secondary reference 

material (sRM), as a sRM is matrix-based material which 

can be used for the calibration of routine MPs worldwide 

[9, 10]. However, until now no reference materials exist for 

hepcidin.

In case solely a sRM is developed, only harmoniza-

tion can be achieved, which is a lower category of trace-

ability leading to equalized results worldwide. In our 

previous hepcidin harmonization study [5], we applied 

technical procedures to achieve efficient harmonization 

according to those recently developed by the International 

Consortium for Harmonization of Clinical Laboratory 

Results (ICHCLR) [10–12]. Harmonization appeared tech-

nically achievable and lyophilized human plasma with 

cryolyoprotectant (CLP), which improves stability, was 

identified as a commutable candidate sRM (csRM). More-

over, simulation studies showed that calibration with this 

csRM reduced the inter-method coefficient of variation 

(CV) from 28.6% to 7.7% [5].

Here, we report results for making standardization 

of worldwide hepcidin MPs possible by (i) modifying the 

previous identified csRM, producing a large batch of a 

two-leveled (i.e. covering low and middle concentration 

range of hepcidin) sRM consisting of lyophilized human 

serum with CLP for international use, confirming its com-

mutability and estimating the sRM harmonization poten-

tial in a first RR study (RR1) by mathematical simulation, 

(ii) testing the sRM harmonization potential in practice 

in a small second RR study (RR2) and (iii) establishing a 

traceability chain allowing standardized results through 

value assignment of our sRM with a candidate RMP that 

relies on calibration with a pRM of well-characterized 

purity.

Materials and methods

Overview study design

The study was comprised of a stepwise approach towards standardi-

zation.

First, we produced a sRM, which is a modification of our pre-

vious identified csRM [5]. Here, we used serum instead of plasma, 

produced a two-leveled calibrator, covering both the low and mid-

dle range of hepcidin concentrations, and tested all included serum 

samples for HIV, hepatitis B and C. We assessed commutability and 

the harmonization potential of this modified material in RR1. Next, 

the sRM harmonization potential was tested in practice in RR2. We 

assessed the analytical performance of participating MPs in both 

studies, as harmonization is solely possible for MPs with good ana-

lytical performance.

To reach standardization, we established a traceability chain to 

the SI units through value assignment of the sRM with a candidate 

RMP calibrated with a pRM. Commercially obtained synthetic hep-

cidin was used as candidate pRM (cpRM). Amino-acid analysis and 

comprehensive impurity analysis of the cpRM, performed by liquid 

chromatography high-resolution tandem MS, were performed for 

value assignment [13].

Both the sRM and pRM were tested for homogeneity and stability.

Measurement procedures

MPs were selected to represent a variety of methodological 

approaches as described previously [5]. For RR1 nine MPs agreed to 

participate (4 MS- and 5 IC-based), and 11 MPs (8 MS- and 3 IC-based) 

for RR2. Relevant MP approaches and their participation in RR1 or/

and RR2 are illustrated in Table 1.
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Collection and preparation of native samples and the sRM

For RR1, we collected 16 native human serum samples, covering the low 

(0.6–1.2 nmol/L), middle (2.6–7.9 nmol/L) and high (8.0–12.8 nmol/L) 

range of hepcidin concentrations in humans (Supplementary Table 1), 

measured by our validated in-house MP (MS-1, Table 1) [14]. Samples, 

all negative for HIV, hepatitis B and hepatitis C, were obtained from 

phlebotomized iron-depleted patients with hereditary hemochroma-

tosis and healthy volunteers (see Supplementary Material), and were 

stored at −80 °C until sample set preparation.

Within 6  weeks after collection, the 16  serum samples were 

used to produce the sRM, as well as to prepare sample sets for 

each participating method, as previously described [5], based on 

technical procedures developed by the ICHCLR [12]. Each sample 

set consisted of (i) 16 individual samples with low (n = 5), middle 

(n = 6) and high (n = 5) hepcidin concentrations to assess commut-

ability of the sRM, (ii) mixtures of the individual samples to prepare 

a linearity panel to assess analytical performance of each MP and 

(iii) two-leveled sRM made of native samples with low and middle 

hepcidin concentrations (Supplementary Table 1). Due to ethical 

issues (i.e. collecting high volume samples from acutely and chroni-

cally inflamed patients), we did not produce a calibrator for the high 

hepcidin concentration range.

In order to produce the sRM, low level samples were pooled 

and homogenized with addition of CLP at RT for approximately 1 h 

forming the low concentration calibrator. Likewise for middle level 

samples forming the middle concentration calibrator. All vials were 

lyophilized in a freeze-dryer (Zirbus Technology, Tiel, The Nether-

lands) for 63 h (Supplementary Table 2).

For RR2, we prepared a sample set consisting of six native sam-

ples (i.e. duplicate low-, middle- and high hepcidin concentration 

samples) and the two-leveled sRM. Samples, used for both assess-

ment of harmonization potential, and analytical performance of 

participating MPs, were obtained from leftover heparin plasma of 

intensive care patients and from a phlebotomy of an iron-depleted 

hereditary hemochromatosis patient (see Supplementary Material). 

As in RR1, hepcidin concentrations were measured by MS-1 (Table 1) 

and samples were stored at −80 °C until sample set preparation.

Table 1: Methodological approaches of participating hepcidin MPs.

Participant 

code RR1

  Participant 

code RR2

  MP   Extraction   Standard   Manufacturer 

standard

  Reference

MS-1   MS-1   MALDI-TOF MS   WCX   Heavy-isotope labeled 

synthetic hepcidin-25

  Peptide Inst. 

(Japan)

  [14]

N/A   MS-2   UPLC-MS/MS   Reversed phase  Heavy-isotope labeled 

synthetic hepcidin-25

  Manufactured 

in-house

  [15]

MS-3   MS-3   LC-MS/MS   Reversed phase  Heavy-isotope labeled 

synthetic hepcidin-25

  Peptide Inst. 

(Japan)

  [16]

MS-4   MS-4   LC-MS/MS   SPE-Oasis HLB   Heavy-isotope labeled 

synthetic hepcidin-25

  Peptide Int. (USA)   [17]

MS-5   MS-5   LC-MS/MS   HLB SPE   Heavy-isotope labeled 

synthetic hepcidin-25

  Peptide Inst. 

(Japan)

  [18]

N/A   MS-6   LC-MS/MS   SPE-Oasis MAX   Heavy-isotope labeled 

synthetic hepcidin-25

  Peptide Inst. 

(Japan)

  [19]

N/A   MS-7   LC-MS/MS   Precipitation 

with ACN/TFA

  Heavy-isotope labeled 

synthetic hepcidin-25

  Peptide Inst. 

(Japan)

  [20]

N/A   MS-8   UHPLC-MS/MS   SPE-Oasis 

uElution HLB

  Heavy-isotope labeled 

synthetic hepcidin-25

  Peptide Inst. 

(Japan)

  a

IC-1   N/A   cELISA   None   Synthetic hepcidin-25   Peptide Int. (USA)   [21]

IC-3   IC-3   cELISA (kit-

commercially)

  None   Synthetic hepcidin-25   Peptide Int. (USA)   b

IC-4   IC-4   cELISA (test-

automated)

  None   Synthetic hepcidin-25   Peptide Int. (USA)   c

IC-5   IC-5   cELISA   None   Synthetic hepcidin-25   Bachem, Germany   [22]d

IC-6   N/A   Direct-sandwich 

CL ELISA

  None   Synthetic hepcidin-25   Bachem/Peptide 

Inst. (Japan)

  e

RR, round robin; MP, measurement procedure; MS, mass spectrometry-based MP; IC, immunochemical-based MP; MALDI, matrix-assisted 

laser desorption/ionization; TOF, time of flight; LC, liquid chromatography; c, competitive; ELISA, enzyme-linked immunosorbent assay; CL, 

chemiluminescence; WCX, weak-cation exchange; HLB, hydrophilic lipophilic balanced reversed phase; N/A, not applicable, because these 

assays solely participated in one RR. Two procedures (MS-2 and IC-2) were not ready to measure the samples at the time of sample send-out 

for RR1. aNo reference available; a laboratory-developed MP for hepcidin-25 by Laboratory for the Analysis of Medicines, University of Liège, 

Liège, Belgium. bNo reference available; Intrinsic Hepcidin IDxTM Kit (product #ICE-007) – commercially available competitive ELISA from 

Intrinsic LifeSciences, La Jolla, USA. cNo reference available; Intrinsic Hepcidin IDxTM Test – automated competitive ELISA from Intrinsic 

LifeSciences, La Jolla, USA. dHepcidin 25 bioactive HS Kit (product #EIA-5782) commercially available assay from DRG Diagnostics, Marburg, 

Germany. eNo reference available; a second-generation MP based on the assay described in Butterfield et al. [23] developed by ELISA of 

Corgenix Inc., Broomfield, USA.
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Sample sets for RR1 and RR2, including the two-leveled 

sRM, were shipped on dry ice and participating laboratories were 

requested to prepare the samples according to provided instructions 

and to measure, in triplicates, each sample within one run.

Ethics

The study was approved by the Ethics Committee and the Board of 

Directors of the Radboudumc, Nijmegen, The Netherlands, and has 

been conducted in accordance with the Declaration of Helsinki. Both 

patients and volunteers signed informed consent prior to blood col-

lection and all samples were blinded and randomized.

Use of leftover patient plasma in this study conformed to the 

code for proper secondary use of human tissue in the Netherlands.

Statistics

Exclusion of outlier results and analytical performance of MPs were 

assessed as previously described (see Supplementary Material) [5]. 

All statistical analyses were performed with SAS 9.4.

Commutability of the sRM: To validate commutability in RR1 of the 

modified sRM, we performed regression analysis with the results of 

16 native samples and sRM for each method (y-axis) and the mean of 

all methods (x-axis), and assessed whether mean results of both cali-

brator samples were within the 95% prediction interval of the regres-

sion line of the mean of the individual samples [24].

Equivalence between MPs without harmonization: Linear regres-

sion was performed between the results of each of the MPs (y-axis) 

and the mean results of all MPs (x-axis), summarized in terms of the 

Pearson correlation coe�cient r, the intercept a and slope b of the 

ordinary least squares (OLS) regression line, to explore the degree 

of equivalence without harmonization. Equivalence without harmo-

nization was quantified as the mean inter-assay CV (%), calculated 

from the logarithmically transformed means of the results of the 

native samples (RR1: n = 16; RR2: n = 3).

Harmonization with the sRM: In RR1, the e�ect of harmonization 

on the equivalence between methods using the sRM was mathemati-

cally simulated by value reassignment based on regression of the 

results of the sRM samples per MP against the respective mean result 

of all MPs. The inter-assay dispersion in these simulated results was 

then expressed as the inter-assay CV (%) after harmonization with 

the sRM (see Supplementary Material).

In RR2, participants received two sets of identical samples, 

which allowed both prospective and retrospective calibration meth-

ods (see Supplementary Material). The between MP dispersion in the 

calibrated results was then expressed as the inter-assay CV (%).

To assess whether the achieved inter-assay CV is adequate, 

equivalence of MPs was placed in the context of the biological vari-

ation of hepcidin. Therefore we calculated limits for total allowable 

error (TEa) with TEa(%) = 1.65 (f1*CV
I
) + f2(CV

I
2 + CV

G
2)1/2, in which CV

I
 

is the between-day intra-individual CV, CV
G
 is the inter-individual 

variation and f1 and f2 are factors for optimum (0.25 and 0.125), desir-

able (0.5 and 0.250), and minimum (0.75 and 0.375) TEa [25]. Values 

for CV
I
 (48.8%) and CV

G
 (154.1%) were derived from Murphy et al. [26].

Characterization of the sRM

Homogeneity was tested according to ISO13528 by means of dupli-

cate measurements of 12 randomly selected low- and middle-concen-

trations calibrator samples by MS-1 [27]. Prior to use, the sRM was 

reconstituted with 0.30 mL deionized water, followed by leaving the 

vial at room temperature for 15  min, and subsequent careful mix-

ing for 20 min (roller bench, 3.5 rpm). In the absence of between-lab 

variation data from external proficiency testing, and as within-lab 

between-run variation is always smaller than between-lab variation, 

we used data on between-run reproducibility from control charts of 

MS-1 for calculations on homogeneity, i.e. SD of 0.157 nM for the low 

concentration calibrator (lowest control level 2.34 nM, CV 6.70%) and 

SD 0.557 nM for the middle concentration calibrator (highest control 

level 10.1 nM, CV 5.50%).

Stability was studied by comparing hepcidin concentrations in 

aliquots stored at −20, 4 and 20 °C. Measurements took place by MS-1 

at baseline, after 1 month, 6 months, 1, 1.5 and 2 years of storage, and 

will be continued annually for the next 5 years. Significant changes 

in time concerning the value of the sRM, that exceeds the precision of 

MS-1, were considered as an instability. Statistical analysis was done 

using analysis of variance (ANOVA) and Bonferroni’s multiple com-

parison test.

Characterization of the pRM

Synthetic human hepcidin-25  was purchased from Anaspec (Sera-

ing, Belgium). Characterization of the cpRM was performed at the 

French Metrology Institute LNE (Laboratoire national de métrolo-

gie et d’essais). Hepcidin mass quantity was determined by amino 

acid analysis using isotope-dilution liquid-chromatography MS 

(ID-LC/MS) using a triple quadrupole MS (Waters Xevo TQ-MS, see 

 Supplementary Material).

Since peptide impurities can positively bias amino acid analy-

sis results, impurity identification and quantification was performed 

on a high resolution quadrupole-orbitrap MS (Thermo Q-Exactive 

Focus, Waltham, MA, USA) according to the procedure described 

previously [13]. Impurities were quantified on three hepcidin vials 

from Anaspec, stored at −20 °C and measured at three di�erent time 

points (along an 8-month period). The average total impurity content 

determined by the q-orbitrap MS was subtracted from the amount 

determined by amino acid analysis using the TQ-MS.

Homogeneity testing was performed on randomly selected vials 

belonging to a single batch. Seven measurement replicates were per-

formed on each vial by MS-1. Uncertainty associated to homogeneity 

was calculated by ANOVA.

Stability testing was performed by comparing impurity pro-

files, measured by ID-LC/MS, over an 8-month period. Impurities 

stability data were analyzed by regression analysis (see Supple-

mentary Material).

Value assignment of sRM

Value assignment of the sRM was performed in two parts using a 

validated Weak-Cation-eXchange MALDI-Time of Flight – MS (WCX 

MALDI-TOF MS) assay as a candidate RMP (MS-1) [14]. In the first 

part, we reassigned the value of the internal standard of MS-1 
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(heavy hepcidin+40, Peptide Institue, [Japan]) using the certified 

pRM. Secondly, we used this adjusted internal standard to assign a 

value to the sRM. Details are described in the Supplementary Mate-

rial. Statistical analysis was done using ANOVA.

Results

Production and validation of the sRM

In total, 1198 vials of both the low and middle concentra-

tions calibrators were produced. Together they form sRM, 

consisting of lyophilized serum with CLP. The material 

was validated in RR1 by nine MPs with good analytical 

performance, assessed in terms of mutual correlations 

(Supplementary Table 3), linearity and reproducibility 

(Supplementary Table 4), which allows harmonization 

technically. Mean intra-assay variation appeared higher at 

low hepcidin concentrations (7.4%) compared to middle 

(3.4%) and high (2.9%) concentrations. In accordance 

with previous studies [3–5], the occurrence of large dis-

crepancies in regression slopes (Supplementary Table 4) 

and in absolute hepcidin levels (Supplementary Table 5) 

despite high MPs correlations suggests calibration, not 

heterogeneity of the measurand, as a major cause of the 

current lack of equivalence between assays.

Without harmonization, the inter-assay CV between 

MPs in RR1 was calculated to be 42.1% (Table 2), of which 

92.4% could be attributed to the lack of calibration (Sup-

plementary Table 6). Mathematical simulation of harmo-

nization of 16 native samples with the sRM revealed a 

significant improvement of equivalence between MPs, as 

the inter-assay CV decreased to 11.0% (Table 2).

To assess whether the achieved inter-assay CV is 

adequate for the biological variation of hepcidin, we 

used the criterion of TEa, combining bias and impreci-

sion. Based on previous reported intra-individual CV and 

inter-individual CV of hepcidin, TEa of 40.3% (optimum), 

80.7% (desirable) and 121.0% (minimum) were calculated 

[26]. The higher the biological variation of a measurand, 

the higher the allowable bias after harmonization. Without 

harmonization, results of only half of the MPs were within 

the optimum TEa limits for hepcidin (Figure 1A). After cal-

ibration with the sRM, all simulated results were within 

the limits for the optimum TEa, which illustrates the 

decreased bias and the significant improvement in equiv-

alence between the different MPs (Figure 1B).

In addition, commutability of the sRM was con-

firmed as for all MPs the mean of the triplicate meas-

urements of the calibrator samples were within the 95% 

prediction interval of the regression line of the results 

of the 16 native samples for each MP and the mean of 

all MPs (Supplementary Figure 1). This corroborates the 

previously validated commutability of the now slightly 

modified sRM [5].

With respect to homogeneity testing, for the middle- and 

low-concentrations calibrators we found SDs of 0.098  nM 

and 0.041 nM, respectively, indicating that both passed the 

criteria as defined by ISO13528 [27]. The sRM was found to 

remain stable for at least 2 years at −20, 4 and 20 °C.

Harmonization potential of the sRM in 
practice

Next, we assessed the harmonization potential of the sRM 

in practice in RR2 among 11 MPs with good analytical 

performance in terms of reproducibility (Supplementary 

Table  7), as shown previously (RR1, [5]). Again, prior to 

harmonization large discrepancies in absolute hepcidin 

levels were found (Supplementary Table 8).

Without harmonization, the inter-assay CV between 

assays in RR2 was calculated to be 52.8%, which decreased 

to 19.1% after calibration with the sRM (Table 2). As in 

RR1, we placed these results in the context of biological 

variation of hepcidin using the TEa, and again all the 

results were within the limits or on the cut-off point of the 

optimum TEa after harmonization with the sRM illustrat-

ing decreased bias and significant improvement in equiv-

alence between MPs (Figure 1C and D).

Value assignment of the sRM using a pRM

Characterization of the pRM

The average peptide mass fraction of hepcidin in the 

pRM was determined by combining results of triplicate 

Table 2: The effect of the sRM on inter-assay CV after mathematical 

simulation of calibration (RR1) or in practice (RR2).

Equivalence (inter-assay CV, %)   RR1  RR2

Before calibration with sRM   42.1  52.8

After calibration with sRM   11.0  19.1

MP, measurement procedure; CV, coefficient of variation; sRM, 

secondary reference material; RR, round robin. Equivalence after 

calibration with the sRM calculated as the inter-assay CV (%) after 

value reassignment of the 16 native samples using OLS regression 

equations of the produced sRM set (RR1) or calculated as the inter-

assay CV (%) of calibrated measurements (RR2).
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6      Diepeveen et al.: A hepcidin standardization study

hydrolyses performed on 3 different days (Supplementary 

Table 9). Results were consistent among hydrolysis repli-

cates (RSD 4.1%) and between quantified amino acids (RSD 

1.8%). This value was corrected by subtracting peptidic 

impurities quantified by high resolution MS, as previously 

described [13]. Relative abundances of major identified 

impurities, all structurally related to hepcidin-25 (N- and 

C-terminal truncated forms and modified forms, e.g. oxida-

tion), are shown in Supplementary Table 10.

Impurities were quantified at 3 different time points, 

covering an 8-month stability period. No significant trend 

(99% confidence level) was detected in the impurity mass 

fraction values. At the end of the testing period, the mate-

rial was analyzed with ID-LC/MS and no new impurities 

were detected. The material is therefore stable at −20 °C. 

The pRM was considered sufficiently homogeneous, as the 

calculated uncertainty associated with heterogeneity of 

the vials was 1.65%. Combined with the uncertainty from 

amino acid analysis, impurity quantification and mate-

rial heterogeneity, the final expanded uncertainty was 

obtained. Hepcidin mass fractions were converted into 

mass quantity of hepcidin per vial by taking the gravi-

metrically measured reconstitution volume (0.5  mL) into 

account and correcting for peptidic impurities, leaving 

Figure 1: The effect of calibration with the sRM in RR1 and RR2, including the criterion of TEa.

MP results before (A) and after (B) simulation of calibration with the sRM in RR1, and before (C) and after (D) calibration with the sRM in RR2, 

including the criterion of TEa. The data points above each other represent the measurement of the samples (n = 16 in RR1, n = 3 in RR2) by all 

different MPs. Because of the absence of a true value, the x-axis represents the mean results of the samples for all MPs. The y-axis shows 

the bias, i.e. the difference, between the results of the native samples of each MP and the mean of all MPs. The lines represent limits for 

optimum (large dashes), desirable (solid line) and minimum (small dashes) TEa.
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the certified hepcidin mass quantity value assigned to the 

pRM to be 72.9 ± 3.9 µg (k = 2). The certified uncertainty is 

the expanded uncertainty with a coverage factor 2 corre-

sponding to a level of confidence of about 95% estimated 

in accordance with ISO/IEC Guide 98-3 [28].

Value assignment of the sRM

Using value assigned pRM, and MS-1 as the provi-

sional RMP, we assigned values to the low- and mid-

dle-concentrations calibrators of the sRM which are 

0.95 ± 0.11  nmol/L and 3.75 ± 0.17  nmol/L, respectively 

(k = 1). These values differ approximately a factor 2 with 

the all method mean determined in RR1 (2.38 ± 1.22 nmol/L 

and 7.03 ± 3.15 nmol/L).

Discussion and conclusions

Previous RR studies showed the need for standardiza-

tion of hepcidin MPs, as hepcidin concentrations meas-

ured by various methods differ considerably, hampering 

implementation of these MPs into clinical practice and for 

research purposes [3–5]. Therefore, we created all items 

needed to establish traceability to SI, i.e. a commutable 

two-leveled sRM made of lyophilized serum with CLP, with 

a value assigned by a candidate RMP calibrated calibrated 

with a pRM.

We showed, both by mathematical simulation (RR1) 

and in practice (RR2), that the use of the sRM to cali-

brate hepcidin MPs with good analytical performance 

can achieve a reduction of the inter-method CV that is 

within the optimum TEa, i.e. the inter-assay CV based 

on hepcidin’s biological variation [26, 29]. We currently 

assessed TEa on limited data on a relatively high hep-

cidin between-day biological variability (48.8%) [26]. 

However, published [29–32] and our unpublished obser-

vations (L. Diepeveen) corroborate these data. Neverthe-

less expansion of data on between-day variability might 

be needed to achieve a more accurate estimation of the 

TEa that is better suited to assess the achievements of 

global standardization.

We found that inter-assay CVs before and after cali-

bration differed slightly between RR1 (before: 42.1%, after: 

11.0%) and RR2 (before: 52.8%, after: 19.1%). These differ-

ences may be explained by (i) varying numbers of meas-

ured samples (RR1: n = 16, RR2: n = 3), (ii) the use of pro- or 

retrospective calibration and iii) variation in methodology 

of participating MPs (RR1: 4 MS, RR2: 8 MS) and associ-

ated differences in analytical performance.

We show that the sRM improves calibration bias, 

which was found to be the major contributor to measure-

ment inaccuracy. It is conceivable to further reduce the 

inter-assay CV by improvement of other factors contrib-

uting to inaccurate measurements like analytical charac-

teristics of MPs and heterogeneity of the measurand. The 

latter could be caused by differences in detection of the 

smaller hepcidin isoforms [5, 14]. Bioactive hepcidin-25 

can be measured specifically by MS methods in contrast to 

most IC methods, which measure total hepcidin concen-

trations that include potential isoforms [2, 21]. Isoforms 

are increasingly present in patients with elevated hepci-

din-25 levels (e.g. sepsis or chronic kidney disease). As 

defining the measurand is a requisite for standardization 

[6, 8], it is important that the value assignment of the sRM 

was performed by a MS method, assuring specific quanti-

fication of the defined measurand hepcidin-25, traceable 

to SI units (nmol/L).

We have produced two calibrators with respective 

concentrations of 0.95 ± 0.11 nmol/L and 3.75 ± 0.17 nmol/L 

(k = 1). Production of a third, high concentration calibra-

tor will further improve future standardization. However, 

this requires samples with high hepcidin levels originat-

ing from inflamed patients leading to ethical difficulties. 

Moreover, the provisional cRMP used in our study should 

be replaced by a validated RMP [8].

Usage of the sRM by clinical and research laborato-

ries, and commercial providers of ELISA kits, will allow 

the standardization of hepcidin MPs worldwide. We 

anticipate that standardization of calibration will have 

a significant impact on the success of hepcidin as a bio-

marker as it allows the definition and application of gen-

erally accepted uniform reference intervals and decision 

limits, facilitating medical research and its translation to 

the clinic [7]. Standardization might become especially 

advantageous for using hepcidin in the diagnosis of iron 

refractory iron deficiency anemia to predict the effective-

ness of oral iron supplementation to replenish deficient 

body iron stores [2].

The sRM will be made available to the medical, scien-

tific and pharmaceutical community by Hepcidinanalysis.

com at a fee for the service. We also intend to submit the 

material for review and possible publication in the JCTLM 

Database. We must emphasize that worldwide standardi-

zation can only be achieved if the sRM is implemented as 

the international calibrator for hepcidin.
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Supplemental material 

Supplemental methods 

Samples RR1 

Since RR1 is designed to produce a large batch of two-leveled sRM and as a validation of our 

previous study [1], we recruited 16 individuals instead of 32 that are required for a 

harmonization study according to ICHCLR. [2] These 16 individual serum samples were 

selected to cover the low (0.6-1.2 nmol/L), middle (2.6-7.9 nmol/L) and high (8.0-12.8 

nmol/L) range of hepcidin concentrations in humans, as measured by MS-1 (Table 1). [3] To 

this end, we collected 300 mL whole blood from individuals with low or middle hepcidin 

concentrations by venipuncture in phlebotomy bags (Macopharma VSL7001PD, Tourcoing, 

France) and 50 mL whole blood from individuals with a high hepcidin concentration in five 

10 mL tubes (Becton Dickinson Vacutainer
®
 SST™ II Advance serum Tubes, Franklin Lakes, 

United States). We chose to collect 300 mL whole blood from individuals with low or middle 

hepcidin concentrations to ensure obtaining a minimum of 90 mL serum after processing, in 

order to produce the reference material besides study purposes. We chose to collect 50 mL 

whole blood from individuals with a high hepcidin concentration to ensure obtaining a 

minimum of 10 mL serum for the samples in the high concentration range needed for study 

purposes. Blood collections from phlebotomized iron-depleted HFE-hemochromatosis 

patients and healthy volunteers (age: 18-75 years) took place at the Radboudumc, Nijmegen. 

Collected blood was transported on ice (~5 minutes) and centrifuged at 3450g (4°C) for 8 

minutes. After centrifugation, plasma was pipetted into glass vials to coagulate for 4 hours, 

centrifuged (1570g, 19 minutes, RT) and stored at -80°C until sample set preparation.  
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Within 6 weeks after collection, the 16 native human serum samples were used to produce 

the sRM, consisting of a calibrator for the low range and for the middle range, and to 

prepare sample sets for each participating method, as previously described. [1] Each sample 

set consisted of i) 16 individual samples with low (n=5), middle (n=6) and high (n=5) hepcidin 

concentrations to assess commutability of the sRM, ii) mixtures of the individual samples to 

prepare a linearity panel to assess analytical performance of each participating method and 

iii) the two-leveled sRM made of the individual samples with low and middle hepcidin 

concentrations (Supplemental Table 1). The individual collected serum samples were 

transported on dry ice to the Queen Beatrix Hospital (Winterswijk, the Netherlands), where 

sample sets were prepared on the same day and stored at -80⁰C until shipment. Reference 

material vials were placed in -70°C and lyophilized after three days (Supplemental Table 2). 

Lyophilized material was stored at 2-8°C and shipped with the sample sets on dry ice to the 

participating laboratories within a week after preparation, where the sample sets arrived in 

frozen condition. All labs reported results within 3 weeks after receipt of the samples.  

 

Samples RR2 

To test the sRM harmonization potential in practice heparin plasma samples were needed 

with low, middle and high hepcidin concentrations. To this end, we collected one extra vial 

of blood from a phlebotomy of an iron-depleted hereditary hemochromatosis patient to 

produce a low hepcidin concentration sample for each MP (1.8 nM). A pool with a high 

hepcidin concentration was obtained from leftover heparin plasma samples of intensive care 

patients, once used for diagnostics, to produce a high hepcidin concentration sample for 

each MP (10.9 nM). By mixing both plasma with a low hepcidin concentration and the high 

hepcidin concentration plasma pool in a 50/50 ratio, we prepared a pool with a middle level 
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hepcidin concentration from which we produced a middle hepcidin concentration sample for 

each MP (5.7 nM). All together we prepared a sample set for each participating MP in RR2 

consisting of 6 native samples (i.e. a low-, middle- and high hepcidin concentration sample in 

duplicate) and the sRM. As in RR1, hepcidin concentrations were measured by MS-1 (Table 

1) and samples were stored at -80°C until sample set preparation.  

 

Statistics 

Exclusion of outlier measurements 

Outlier measurements, assessed as previously described [1], were left out of analyses, 

restricted to 2 per method to minimize data manipulation (see Supplemental Table 5 and 8).  

Analytical performance of measurement procedures 

In both RR1 and RR2, reproducibility of the MPs was determined as the intra-assay 

coefficient of variation (CV), based on the logarithmically transformed (LN) results of 

triplicate measurements of the individual samples (RR1; 16, RR2; 3). Since standard 

deviations showed to be approximately proportional to the hepcidin level, logarithmic 

transformation of hepcidin concentrations was applied to stabilize standard deviations along 

the concentration range. The intra-assay CV of each MP was then calculated as 

2
100% exp( ) 1CV     where σ is the standard deviation of the LN-transformed results 

and exp is e
x
. In addition, the intra-assay CV of each MP was calculated separately for the LN-

transformed results of the low, middle and high hepcidin concentrations. Subsequently, we 

calculated the average of these values to compare the intra-assay variation at the three 

different hepcidin concentration levels globally. 
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In RR1, mutual correlations were calculated as the Spearman rank coefficient between each 

pair wise combination of MP, based on the 16 individual samples, and linearity was assessed 

from the linearity panel results plotted against the mixture ratios, expressed as the intercept 

a, slope b and Pearson correlation coefficient (r), as previously described. [1] 

 

Harmonization with the secondary reference material  

In RR1, the effect of harmonization on the equivalence between methods using the sRM was 

mathematically simulated by value reassignment based on the regression of the results of 

the sRM samples per method against the respective mean result of all methods. Assuming 

linearity, warranted by the analyses of linearity of each measurement procedure in RR1, 

linear regression equations were calculated for plots presenting the mean results of the 

calibrator samples for all methods (x-axis) and the respective results for these samples of 

each individual method (y-axis). Using these equations with the actual measured result of 

each of the individual samples before harmonization (Calibrated value= (measured value-

intercept)/slope) simulates calibration with the produced secondary reference material, 

yielding the virtually harmonized results of these individual samples for all methods. The 

dispersion in these simulated results was then expressed as the inter-assay CV (%) after 

harmonization with the sRM, by using 2
100% exp( ) 1CV     where  is the standard 

deviation of the LN-transformed means of the virtually harmonized results and exp is e
x
. At 

this point, the value of the two-leveled sRM was set as the mean measured by participating 

MPs of RR1. 

In RR2, the effect of harmonization on the equivalence between methods using the sRM was 

tested in practice. To this end participants were allowed to use either prospective and 
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retrospective calibration methods. Participants that used the prospective calibration method 

in RR2, measured the first set of samples with their original calibration method. After 

recalibration with the sRM, they measured the second set of samples. Participants that used 

the retrospective method, measured the two-leveled sRM and individual samples in one run. 

The values obtained for the sRM were then used to create a regression analysis using the 

consensus value assigned to the sRM after RR1. All results measured in triplicate with their 

original assay were then recalculated using this regression analysis. 

 

Primary reference material 

Candidate pRM synthetic human hepcidin-25 peptide (amino acid sequence 

DTHFPICIFCCGCCHRSKCGMCCKT) was purchased from Anaspec (Seraing, Belgium). Hepcidin 

amount per vial was quantified by amino acid analysis using isotope-dilution, liquid-

chromatography, mass spectrometry (ID-LC/MS). Briefly, the content of a vial was 

gravimetrically reconstituted in 500 µL of an aqueous solution of 5% acetonitrile, 0.1% 

formic acid and subsamples were mixed with isotopically labelled Phe, Ile and Pro 

(Cambridge Isotope Laboratories, Inc.), as internal standards. After evaporation of the 

solvent, hepcidin was hydrolyzed in a vacuum sealed vessel in presence of HCl in the vapor 

phase. Hydrolysis proceeded for 40h at 130°C. Samples were reconstituted in water before 

analysis. Calibration was performed using solutions of certified reference materials for Phe 

(NMIJ CRM 6014a), Ile (NMIJ CRM 6013-a) and Pro (NMIJ CRM 6016a). These reference 

materials are pure amino acid substances of certified purity, whose mass fraction values are 

traceable to the SI. Peak area ratios of natural : labeled amino acids were plotted against 

their mass ratios to produce the calibration function. The concentration of internal standard 
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was similar in the certified reference materials and sample, and the molar ratio of the 

internal standard to sample was adjusted to be close to 1. 

Stability testing was performed by comparing impurity profiles, measured by ID-LC/MS, over 

an 8-month period. The variation of each impurity mass fraction in time was subject to 

regression analysis. The tratio, calculated as the slope of the regression line divided by its 

uncertainty, was compared with the critical value of a two tailed t-distribution for a 0.01 

significance level (tcritial). The alternative hypothesis that the slope was significantly different 

from zero was rejected when tratio < tcritical, indicating the absence of a significant trend and 

therefore stability. 

 

Value assignment of the sRM 

Value assignment of the sRM was performed in two parts using a validated Weak-Cation-

eXchange MALDI-Time of Flight – mass spectrometry (WCX MALDI-TOF MS) assay as 

candidate RMP (MS-1) [4]. 

In the first part, we reassigned the value of the internal standard of MS-1 (heavy hepcidin
+40

, 

Peptide Inst. (JP)) using the certified pRM. To this end, the internal standard (Lot No. 221-

006221) was reconstituted according to the manual of Peptide Institute. The pRM, synthetic 

hepcidin-25, was reconstituted according to instructions provided by LNE (France). In every 

run, we added 10 µL of the internal standard (100 µM) and 20 µL of the pRM (52.1 µM) 

gravimetrically to 10 mL 20% acetonitril as first dilution step. Secondly, in quadruplicate, we 

added 10 µL diluted material to 50 µL blanc plasma, from an iron-depleted juvenile 

hemochromatosis patient for dilution to nM measurement range. We used blanc plasma to 



7 

 

avoid oxidation of hepcidin in both the internal standard and the pRM. This was followed by 

the regular WCX MALDI-TOF MS protocol. In total 8 different runs were performed for value 

reassignment of the internal standard using pRM. 

In the second part, we used this adjusted heavy hepcidin internal standard to assign a value 

to the sRM. Both the low and middle concentrations calibrator, consisting of individual 

serum samples, were placed at room temperature for 1 hour prior to reconstitution, which 

was done gravimetrically in 300 µL deionized water. In every run, we diluted the internal 

standard (0.1 mM) gravimetrically by addition of 10 µL to 10 mL 20% acetonitril. Secondly, 

we added 10 µL diluted internal standard to 50 µL sRM gravimetrically and in quadruplicate. 

This was followed by the regular WCX MALDI-TOF MS protocol. In total 4 different runs were 

performed by MS-1 as candidate RMP to assign a value to the sRM. 

Statistical analysis was done using ANOVA.   
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Supplemental Table 1. Overview of sample set RR1. 

CLP, cryolyoprotectant; M, mixture; L, linearity panel sample 

a. 16 native human serum samples from either hemochromatosis patients or healthy 

volunteers: 5 low, 6 middle and 5 high hepcidin concentrations samples.  

Sample Type Sample 

nr. 

Description  Hepcidin 

concentration 

(nmol/L) 
e
 

Individual 

samples 
a
 

1 Subject 1 0.6  

2 Subject 2 1.1  

3 Subject 3 1.2  

4 Subject 4 1.1  

5 Subject 5 1.1  

6 Subject 6 2.6  

7 Subject 7 7.9  

8 Subject 8 4.4  

9 Subject 9 6.3  

10 Subject 10 2.7  

11 Subject 11 3.0  

12 Subject 12 12.8  

13 Subject 13 8.5  

14 Subject 14 11.3  

15 Subject 15 9.7  

16 Subject 16 8.0  

Mixtures 
b
 17 M1/L1 (sample nr 1-4)  

18 M2 (sample nr 5-8)  

19 M3 (sample nr 9-12)  

20 M4/L5 (sample nr 13-16)  

21 M5 (sample nr 1-16)  

Linearity panel 
c
 22 L2 (75%/25% M1/M4)  

23 L3 (50%/50% M1/M4)  

24 L4 (25%/75% M1/M4)  

Reference 

material 
d
 

25 Lyophilized serum with CLP.  

Low: pooled sample nr 1-5 

 

26 Lyophilized serum with CLP. 

Middle: pooled sample nr 6-11 
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b. Each mixture consists of 4 individual samples, except for M5 which consists of all 

samples. The individual samples each mixture consists of are described between the 

brackets.  

c. The samples of the linearity panel consist of mixture samples M1 and M4 in different 

ratios. L1 has a ratio of 100/0 of M1/M4 and is therefore equal to M1. The same applies 

to L5, in which the ratio 0/100 of M1/M4 is used, and therefore equals M4.  

d. The two-leveled reference material consists of 2 vials; a calibrator for the lower 

concentration range, made of the 5 samples with low hepcidin concentrations, and for 

the middle range, made of the 6 samples with middle hepcidin concentrations. 

e. Determined with MS-1. [4] 
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Supplemental Table 2. Lyophilization procedure of the secondary reference material. 

Phase Nr Temperature in °C Time (min) 

Freeze temperature (FT) 01 -40 60 

Main drying (MD) 01 -40 120 

 02 -30 60 

 03 -30 1080 

 04 20 2100 

 05 20 60 

Second Drying (SD) 01 20 60 

 02 20 240 

Total duration in hours/days   63 h/2.6 d 
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Supplemental Table 3. Analytical characteristics of hepcidin MPs participating in RR1, in 

terms of spearman rank correlation coefficients between the MPs of the 16 individual 

samples. 

MS-1 MS-3 MS-4 MS-5 IC-1 IC-3 IC-4 IC-5 IC-6 

MS-1 1.000         

MS-3 0.993 1.000        

MS-4 0.978 0.984 1.000       

MS-5 0.979 0.994 0.991 1.000      

IC-1 0.990 0.985 0.972 0.976 1.000     

IC-3 0.987 0.985 0.960 0.970 0.988 1.000    

IC-4 0.985 0.996 0.988 0.996 0.976 0.974 1.000   

IC-5 0.958 0.964 0.935 0.958 0.968 0.979 0.950 1.000  

IC-6 0.989 0.993 0.981 0.990 0.991 0.982 0.985 0.974 1.000 

MP, measurement procedure; MS, mass spectrometry-based MP; IC, immunochemical-

based MP.  
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Supplemental Table 4. Analytical characteristics of hepcidin MPs participating in RR1, in 

terms of reproducibility and linearity. 

 Reproducibility 

 

Regression relationship compared to all MPs mean 

MP Intra-assay CV, % 
a 

r 
b 

r 
c 

Slope (95% CI) Intercept (95% CI) 

MS-1 5.4 0.996 0.997 0.631 (0.605-0.657) -0.530 (-0.787- -0.273) 

MS-3 3.0 0.999 0.998 0.958 (0.921-0.995) 0.220 (-0.144-0.584) 

MS-4 4.2 0.987 0.981 0.476 (0.413-0.538) 2.103 (1.421-2.784) 

MS-5 2.7 0.995 0.996 0.688 (0.655-0.722) 0.238 (-0.091-0.568) 

IC-1 6.3 0.990 0.995 0.781 (0.736-0.826) 0.226 (-0.220-0.671) 

IC-3 7.8 0.989 0.997 1.970 (1.874-2.067) -0.314 (-1.292-0.665) 

IC-4 5.8 0.993 0.996 1.595 (1.510-1.680) -1.018 (-1.852- -0.183) 

IC-5 5.7 0.994 0.985 1.084 (0.975-1.192) -0.243 (-1.309-0.824) 

IC-6 2.8 0.996 0.993 0.793 (0.741-0.846) -0.386 (-0.904-0.132) 

MP, measurement procedure; MS, mass spectrometry-based MP; IC, immunochemical-

based MP; CV, coefficient of variation. 

a. Reproducibility, expressed as the intra-assay CV, calculated from the SD of the 

logarithmically transformed results of the 16 individual samples measured in triplicate 

(Supplemental Table 5). 

b. Linearity is assessed by the linearity panel samples (Supplemental Table 1), expressed as 

the Pearson correlation coefficient r. 

c. Pearson correlation coefficient r of the regression relationship between results of each 

individual measurement procedure with the all measurement procedures mean. 
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Supplemental Table 5. Raw results of triplicate measurements of all samples for RR1 obtained by the participating MPs. 

 

MP 

IC-1 IC-3 IC-4 IC-5 IC-6 MS-1 MS-3 MS-4 MS-5 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Sample MM SD 

1.13 0.15 1.47 0.23 1.77 0.25 1.13 0.15 1.07 0.06 0.57 0.06 1.37 0.06 2.67 0.15 1.13 0.06 1 1.37 0.59 

2 2.45 0.90 2.23 0.31 4.07 0.55 3.03 0.15 2.80 0.26 1.67 0.06 1.10 0.10 2.60 0.10 ND ND 2.10 0.10 

3 3.02 1.27 2.63 0.06 5.50 0.60 3.77 0.06 3.07 0.12 1.77 0.06 1.27 0.06 2.87 0.06 3.97 0.06 2.33 0.06 

4 2.66 1.11 2.27 0.15 4.83 0.25 3.43 0.21 2.53 0.06 1.63 0.06 1.30 0.10 2.67 0.15 3.50 0.44 1.77 0.06 

5 2.33 1.03 1.90 0.17 4.47 0.83 2.73 0.21 2.57 0.06 1.40 0.00 1.10 0.00 2.13 0.06 3.03 0.21 1.60 0.00 

6 4.52 1.52 3.57 0.06 7.00 0.53 6.77 0.55 4.40 0.00 3.57 0.06 2.37 0.12 5.00 0.17 4.23 0.38 3.77 0.06 

7 11.40 5.40 8.00 0.00 23.17 1.19 16.27 0.21 12.90 0.17 8.30 0.30 6.47 0.21 11.50 0.36 7.50 0.10 8.53 0.21 

8 8.77 4.22 7.30 0.44 17.57 1.36 13.40 0.26 9.77 0.40 6.90 0.10 4.53 0.25 8.03 0.21 5.47 0.12 5.97 0.15 

9 10.91 5.17 8.57 0.47 22.27 0.12 16.10 0.36 10.93 0.15 7.57 0.12 6.33 0.35 10.93 0.40 7.70 0.26 7.80 0.10 

10 5.04 2.15 4.27 0.12 9.97 0.67 6.27 0.06 5.47 0.25 3.67 0.15 2.43 0.15 5.00 0.10 4.53 0.12 3.77 0.12 

11 5.81 2.41 5.00 0.17 10.73 0.21 8.43 0.15 5.83 0.21 4.10 0.10 2.90 0.10 6.23 0.12 4.60 0.26 4.50 0.00 

12 18.49 8.48 14.70 0.30 35.07 1.42 29.40 1.95 20.17 2.06 15.53 0.31 10.93 0.31 17.20 0.10 10.23 0.38 13.17 0.32 

13 11.99 5.17 9.80 0.10 23.07 0.59 17.87 0.93 11.33 0.12 9.23 0.15 7.10 0.17 11.80 0.10 8.80 0.20 8.87 0.12 

14 17.17 7.76 13.10 0.40 32.43 0.76 26.60 0.87 20.03 0.06 12.23 0.21 10.50 0.00 16.77 0.21 10.77 0.06 12.13 0.15 

15 14.08 6.61 11.90 0.66 27.60 0.36 22.63 0.85 12.13 0.12 11.13 0.15 8.97 0.25 14.20 0.30 8.80 0.20 9.33 0.21 

16 11.62 5.56 10.07 0.21 24.23 1.47 15.20 0.72 13.67 1.10 8.50 0.20 6.67 0.31 11.33 0.35 7.23 0.21 7.67 0.25 

17 2.25 0.67 2.00 0.17 3.23 0.25 2.73 0.21 2.60 0.00 1.67 0.06 1.03 0.06 2.50 0.10 2.67 0.15 1.83 0.06 

18 6.46 2.71 5.73 0.29 12.47 1.63 9.00 0.46 5.73 0.06 5.10 0.20 3.27 0.06 6.40 0.17 5.40 0.56 5.03 0.12 

19 9.22 3.92 6.63 0.25 17.00 1.35 12.87 0.55 11.67 0.21 6.87 0.23 5.37 0.23 9.50 0.35 5.70 0.10 7.37 0.46 

20 13.13 6.11 10.83 0.40 27.00 2.10 17.63 0.15 14.63 0.21 10.10 0.20 8.50 0.10 12.97 0.15 7.83 0.25 8.67 0.15 

21 7.60 3.03 6.47 0.25 13.70 1.47 10.77 0.58 8.73 0.31 5.30 0.26 4.30 0.17 7.83 0.06 5.77 0.15 5.53 0.06 

22 5.14 2.04 4.97 0.15 9.63 0.40 6.07 0.15 6.00 0.10 3.77 0.06 2.43 0.06 5.17 0.25 4.37 0.31 3.83 0.06 
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MP 

IC-1 IC-3 IC-4 IC-5 IC-6 MS-1 MS-3 MS-4 MS-5 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

23 7.76 3.31 6.23 0.06 14.50 0.98 11.67 0.25 8.00 0.10 6.00 0.35 4.33 0.35 7.97 0.25 5.33 0.31 5.80 0.00 

24 10.33 4.17 8.37 0.59 19.30 1.47 14.47 0.31 10.83 0.49 8.23 0.61 6.67 0.06 10.67 0.12 7.10 0.10 7.37 0.25 

25 2.38 1.22 1.83 0.06 5.03 2.16 3.13 0.25 2.17 0.21 1.47 0.06 0.90 0.00 2.20 0.17 3.00 0.10 1.70 0.10 

26 7.03 3.15 5.33 0.21 13.20 0.61 10.80 0.66 8.07 0.21 4.83 0.21 3.80 0.10 7.07 0.23 5.03 0.21 5.10 0.17 

MM, mean of all methods; SD; standard deviation; MP, measurement procedure; MS, mass spectrometry-based MP; IC, immunochemical-

based MP; ND, not determined; RR, round robin.  

Sample number 1-16 represent the individual native human serum samples, as sample number 17-24 represent the mixture and linearity 

samples and sample number 25-26 the calibrator samples (Table 1 provides information regarding the design of the samples). The shaded 

results were identified as outliers and were thus left out of the analyses. These samples were identified by normalizing the mean result of each 

sample for every measurement procedure against the mean result of all methods and expressed as the ratio mean/selected measurement 

procedures’ mean     . Subsequently the relative deviation (%) for each of the samples from the mean normalized results for that specific 

measurement procedure (calculated as 
                     ) was determined. The number of outlier samples or measurement errors, defined 

as having a ratio below 60% or above 140%, identified in this manner and left out of the analyses was restricted to 2 per MP to prevent data 

manipulation. MP MS-2 and IC-2 are missing as they were not ready to measure the samples at the time of sample send-out. 
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Supplemental Table 6. Relative contributions of the assessed analytical characteristics of the 

9 participating MPs in RR1 to the equivalence without harmonization. 

Analytical characteristic of the 

method 

Mean CV (%) Contribution to the 

equivalence (%) 
f
 

Imprecision 
a
  4.8 1.3 

Non-linearity 
b
 5.9 2.0 

Differences in calibration 
c
 40.5 92.4 

Heterogeneity 
d
 8.7 4.3 

Equivalence without harmonization 
e
 42.1 100.0 

CV, coefficient of variation. 

a. Mean CV of the imprecision was calculated as the arithmetic mean of the intra-assay 

CVs.  

b. Mean CV of non-linearity was calculated as the arithmetic mean of the CVs for linearity, 

which represent the deviation of each individual linearity panel sample from the 

regression line with correlation coefficient r. By applying the sum of squares  of these 

deviations, we could calculate the concerned CVs.  

c. Contribution of differences in calibration (CVC) were calculated from the other CVs for 

equivalence without harmonization (CVT), imprecision (CVR), non-linearity (CVL) and 

heterogeneity (CVH) using the formula CVC =                               . 

d. The contribution of heterogeneity represents the CV that remains after harmonization, 

i.e. the achievable equivalence, by calculation of the inter-assay CV after value 

reassignment of the 16 individual samples using the mean of all methods. 

e. The degree of equivalence without harmonization is expressed as the inter-assay CV.  
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f. The relative contributions can be calculated from the squared CVs of each characteristic 

as a percentage of the squared CV of the current equivalence. 
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Supplemental Table 7. Reproducibility of MPs participating in RR2. 

 

 

 

 

 

 

 

 

 

 

MP, measurement procedure; CV, coefficient of variation; RR, round robin. 

The presented intra-assay CVs are calculated using the mean of the duplicate measurement 

of the 3 individual sample CVs.  

 

  

MP Intra-assay CV  

MS-1 4.5 % 

MS-2 5.4 % 

MS-3 4.0 % 

MS-4 5.3 % 

MS-5 2.7 % 

MS-6 4.7 % 

MS-7 3.3 % 

MS-8 1.4 % 

IC-3 5.0 % 

IC-4 10.9 % 

IC-5 9.2 % 
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Supplemental Table 8. Raw results of triplicate measurements of all samples for RR2 obtained by the participating MPs. 

 MP 

IC-3 IC-4 IC-5 MS-1 MS-2 MS-3 MS-4 MS-5 MS-6 MS-7 MS-8 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Sample MM SD                       

1 3.32 2.04 8.23 0.60 4.87 0.67 3.70 0.30 1.83 0.12 1.73 0.15 3.20 0.20 2.20 0.10 1.33 0.06 2.47 0.06 2.03 0.06 4.90 0.10 

2 9.26 4.69 20.43 0.78 13.13 1.32 11.53 1.25 5.67 0.06 9.87 0.70 8.73 0.25 5.80 0.10 4.57 0.06 6.87 0.21 4.77 0.23 10.50 0.10 

3 16.19 7.97 34.87 0.91 22.97 1.59 20.83 1.60 10.97 0.46 17.63 0.47 14.87 0.12 11.87 0.91 8.40 0.10 11.90 0.85 6.77 0.06 17.03 0.15 

MM, mean of all methods; SD, standard deviation; MP, measurement procedure; MS, mass spectrometry-based MP; IC, immunochemical-

based MP; RR, round robin.  

The shaded results were identified as outliers and were thus left out of the analyses. These samples were identified by normalizing the mean 

result of each sample for every measurement procedure against the mean result of all methods and expressed as the ratio mean/selected 

measurement procedures’ mean     . Subsequently the relative deviation (%) for each of the samples from the mean normalized results for 

that specific measurement procedure (calculated as 
                     ) was determined. The number of outlier samples or measurement 

errors, defined as having a ratio below 60% or above 140%, identified in this manner and left out of the analyses was restricted to 2 per MP to 

prevent data manipulation.  
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Supplemental Table 9. Amino acid analysis results and final mass fraction assignment of 

hepcidin pRM. 

Hepcidin mass fraction in reconstituted vial (µg/g) 

   Quantification amino acid 

Day Rep. Phe Ile Pro 

1 1 148 159 156 

2 155 159 159 

3 158 165 162 

2 1 154 154 153 

2 157 159 156 

3 163 167 159 

3 1 159 158 156 

2 154 161 172 

3 140 142 163 

Single mass fraction (µg/g) 154 158 160 

Combined mass fraction (µg/g)
a
 157.3 ± 5.6 

Impurity-corrected mass fraction 

(µg/g)
a
 

148.5 ± 6.3 

Hepcidin mass quantity per vial (µg)
b
 72.9 ± 3.9 

a. Mass fraction and associated expanded uncertainty (k=2). 
 

b. Mass quantity of hepcidin per vial and calculated expanded uncertainty (k=2) considering 

amino acid analysis, impurity correction and material heterogeneity.  
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Supplemental Table 10. Identified peptidic impurities and their relative amount to hepcidin-

25 by high resolution mass spectrometry analysis.  

Peptide impurity RT (min) 
Monoisotopic 

mass (Da) 

Amount relative to 

hepcidin 1-25 (%) 

H1-25 (Thr-2 O-sulfonation) 19.21 2866.98 0.5% 

H1-25(+150.1) 22.02 2937.13 0.6% 

H1-24 17.88 2685.98 0.6% 

H2-25 16.84 2672.00 0.9% 

H1-25 (oxd Met-21) 15.15 2803.02 1.3% 

H3-25 17.05 2570.95 0.3% 

H1-25 (Gly20->Glu) 16.79 2859.05 1.0% 

H5-25 (N-term acetylated) 16.99 2911.04 0.3% 

Total impurity content (%)   5.6% 

Standard uncertainty (%)     1.1% 

RT, retention time. 

All major identified impurities are structurally related to hepcidin-25 (N- and C- terminal 

truncated forms and modified forms, e.g. oxidation). Therefore H1-25 represents the whole 

hepcidin peptide, with modifications explained between brackets, H1-24 represents hepcidin 

with one amino acid missing at the C-terminal, H3-25 is missing two amino acids at the N-

terminal and H5-25 missess four amino acids at the N-terminal. [5] 
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Supplemental Figure 1. Commutability plots of each MP of RR1 against the mean of all MPs.  

The mean of the triplicate measurements of the 16 individual samples (blue stars) and 

calibrator samples (red diamond) of each MP (y-axis) are plotted against the corresponding 

mean results of all methods (x-axis). The regression line (blue) is presented with its 95% 

prediction interval of the individual samples (blue dotted lines).  
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