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Proximal Algorithms in Statistics and
Machine Learning
Nicholas G. Polson, James G. Scott and Brandon T. Willard

Abstract. Proximal algorithms are useful for obtaining solutions to difficult
optimization problems, especially those involving nonsmooth or compos-
ite objective functions. A proximal algorithm is one whose basic iterations
involve the proximal operator of some function, whose evaluation requires
solving a specific optimization problem that is typically easier than the orig-
inal problem. Many familiar algorithms can be cast in this form, and this
“proximal view” turns out to provide a set of broad organizing principles
for many algorithms useful in statistics and machine learning. In this paper,
we show how a number of recent advances in this area can inform modern
statistical practice. We focus on several main themes: (1) variable splitting
strategies and the augmented Lagrangian; (2) the broad utility of envelope (or
variational) representations of objective functions; (3) proximal algorithms
for composite objective functions; and (4) the surprisingly large number of
functions for which there are closed-form solutions of proximal operators.
We illustrate our methodology with regularized Logistic and Poisson regres-
sion incorporating a nonconvex bridge penalty and a fused lasso penalty. We
also discuss several related issues, including the convergence of nondescent
algorithms, acceleration and optimization for nonconvex functions. Finally,
we provide directions for future research in this exciting area at the intersec-
tion of statistics and optimization.

Key words and phrases: Bayes MAP, shrinkage, sparsity, splitting, Kur-
dyka–Łojasiewicz, nonconvex, envelopes, regularization, ADMM, optimiza-
tion, Divide and Concur.

1. INTRODUCTION

1.1 Proximal Algorithms for Optimization

Optimization problems that involve a trade-off be-
tween model fit and model complexity sit at the heart
of modern statistical practice. They arise, for example,
in sparse regression (Tibshirani, 1996), spatial smooth-
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ing (Tibshirani et al., 2005), covariance estimation
(Witten, Tobshirani and Hastie, 2009), image process-
ing (Geman and Reynolds, 1992; Geman and Yang,
1995; Rudin, Osher and Faterni, 1992), nonlinear curve
fitting (Tibshirani, 2014), Bayesian MAP inference
(Polson and Scott, 2012), multiple hypothesis testing
(Tansey et al., 2014) and shrinkage/sparsity-inducing
prior regularization problems (Green et al., 2015).

The goal of this paper is to introduce researchers in
statistics and machine learning to the large body of lit-
erature on proximal algorithms for solving such opti-
mization problems. By a proximal algorithm, we mean
an algorithm whose steps involve evaluating a proximal

operator related to some term in the objective func-
tion. Both of these concepts will be defined precisely
in the next section, but the basic idea is simple. Eval-
uating a proximal operator requires solving a specific
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optimization subproblem that is (one hopes) easier than
the original problem of interest. By iteratively solv-
ing such subproblems, a proximal algorithm converges
on the solution to the original problem. Chrétien and
Hero III (2000) provide a general relation between EM
and proximal point (PP) algorithms and show that the
latter can provide dramatic improvements in rates of
convergence.

The early foundational work in this area dates to
the study of iterative fixed-point algorithms in Ba-
nach spaces (Von Neumann, 1951; Brègman, 1967;
Hestenes, 1969; Martinet, 1970; Rockafellar, 1976).
As these techniques matured, they became widely used
in several different fields. As a result, they have been
referred to by a diverse set of names, including prox-
imal gradient, proximal point, alternating direction
method of multipliers (ADMM) (Boyd et al., 2011),
divide and concur (DC), Frank–Wolfe (FW), Douglas–
Rachford splitting, operator splitting and alternating
split Bregman (ASB) methods. The field of image pro-
cessing has developed most of these ideas indepen-
dently of statistics—for example, in the form of to-
tal variation (TV) de-noising and half-quadratic (HQ)
optimization (Geman and Yang, 1995; Geman and
Reynolds, 1992; Nikolova and Ng, 2005). Many other
widely-known methods—including, for example, fast
iterative shrinkage thresholding (FISTA), expectation
maximization (EM), majorization-minimization (MM)
and iteratively reweighed least squares (IRLS)—also
fall into the proximal framework.

Recently there has been a spike of interest in prox-
imal algorithms, with a handful of recent broad sur-
veys appearing in the last few years (Cevher, Becker
and Schmidt, 2014; Komodakis and Pesquet, 2014;
Combettes and Pesquet, 2011; Boyd et al., 2011). In-
deed, the use of specific proximal algorithms has be-
come commonplace in statistics and machine learn-
ing (e.g., Bien, Taylor and Tibshirani, 2013; Tibshirani,
2014; Tansey et al., 2014). However, there has not been
a real focus on the general family of approaches that
underly these algorithms, with specific attention to the
issues of most direct interest to statisticians. Our re-
view is designed to fill this gap.

The rest of the paper proceeds as follows. Section 1.2
provides notation and basic properties of proximal op-
erators and envelopes. Section 2 describes the proximal
operator and Moreau envelope. Section 3 describes the
basic proximal algorithms and their extensions. Sec-
tion 4 describes common algorithms and techniques,
such as ADMM and Divide and Concur, that rely on
proximal algorithms. Section 5 discusses envelopes

and how proximal algorithms can be viewed as enve-
lope gradients. Section 6 considers the general prob-
lem of composite operator optimization and shows how
to compute the exact proximal operator with a gen-
eral quadratic envelope and a composite regularization
penalty. Section 7 illustrates the methodology with ap-
plications to logistic and Poisson regression with fused
lasso penalties. A bridge regression penalty illustrates
the nonconvex case and we apply our algorithm to
the prostate data of Hastie, Tibshirani and Friedman
(2009). Finally, Section 8 concludes with directions for
future research, while Appendix A discusses conver-
gence results for both convex and nonconvex cases to-
gether with Nesterov acceleration.

We also include several useful summaries in table
form. Table 1 lists commonly used proximal operators,
Table 2 documents several examples of half-quadratic
envelopes, and Table 3 provides convergence rates for
a variety of algorithms.

1.2 Notation

In this paper we consider optimization problems of
the form

minimize F(x) := l(x) + φ(x),(1)

where l(x) is a measure of fit depending implicitly on
some observed data y, and φ(x) is a regularization
term that imposes structure or effects a favorable bias-
variance trade-off. Often l(x) is a smooth function and
φ(x) is nonsmooth—like a lasso or bridge penalty—so
as to induce sparsity. We will assume that l and p are
convex and lower semi-continuous except when explic-
itly stated to be nonconvex.

We will pay particular attention to composite penal-
ties of the form φ(Bx), where B is a matrix corre-
sponding to some constraint or structural penalty, such
as the discrete difference operator in fused lasso or
polynomial trend filtering. We use x = (x1, . . . , xd)

to denote a d-dimensional parameter of interest, y an
n-vector of outcomes, A a fixed n × d matrix whose
rows are covariates (or features) a⊤

i , and B a fixed
k × d matrix, b a prior mean or target for shrinkage,
and γ > 0 a regularization parameter that will trace
out a solution path. Observations are indexed by i, pa-
rameters by j , and iterations of an algorithm by t . Un-
less stated otherwise, all vectors are column vectors.
Putting these together, this paper treats general com-
posite objectives of the form

F(x) :=
n

∑

i=1

l
(

yi, a
⊤
i x

)

+ γ

k
∑

j=1

φ
(

[Bx − b]j
)

.(2)
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TABLE 1
Sources: Chaux et al. (2007), Hu, Li and Yang (2015)

Type φ(x) proxγφ(y)

Laplace ω‖x‖ sgn(x)max(‖x‖ − ω,0)

Gaussian τ‖x‖2 x/(2τ + 1)

Group-sparse, ℓp κ‖x‖p sgn(x)ρ,
ρ s.t. ρ + pκρp−1 = ‖x‖

... p = 4/3 x + 4κ
321/3 ((χ − x)1/3 − (χ + x)1/3)

χ =
√

x2 + 256κ3/729
... p = 3/2 x + 9κ2 sgn(x)(1 −

√

1 + 16|x|/(9κ2))/8
... p = 3 sgn(x)(

√
1 + 12κ|x| − 1)/(6κ)

... p = 4 (
χ+x
8κ

)1/3 − (
χ−x
8κ

)1/3

χ =
√

x2 + 1/(27κ)

Gamma, Chi −κ lnx + ωx 1
2 (x − ω +

√

(x − ω)2 + 4κ)

Double–Pareto γ log(1 + |x|/a)
sgn(x)

2 {|x| − a +
√

(a − |x|)2 + 4d(x)},
d(x) = (a|x| − γ )+

Huber dist.
{

τx2, |x| ≤ ω/
√

2τ ,
ω

√
2τ |x| − ω2/2, otherwise

{

x
2τ+1 , |x| ≤ ω(2τ + 1)/

√
2τ ,

x − ω
√

2τ sgn(x), |x| > ω(2τ + 1)/
√

2τ
ω, τ ∈ (0,+∞)

Max-entropy dist. ω|x| + τ |x|2 + κ|x|p sgn(x)proxκ|·|p/(2τ+1)(
1

2τ+1 max(|x| − ω,0))

2 �= p ∈ (1,+∞),
ω,τ, κ ∈ (0,+∞)

Smoothed-laplace dist. ω|x| − ln(1 + ω|x|) sgn(x)
ω|x|−ω2−1+

√
|ω|x|−ω2−1|2+4ω|x|

2ω

Exponential dist.
{

ωx, x ≥ 0,
+∞, x < 0

{

x − ω, x ≥ ω,
0, x < ω

Uniform dist.

⎧

⎨

⎩

−ω, x < −ω,
x, |x| ≤ ω,
ω, x > ω

{

x − ω, x ≥ ω,
0, x < ω

Triangular dist.

⎧

⎨

⎩

− ln(x − ω) + ln(−ω), x ∈ (ω,0),
− ln(ω̂ − x) + ln(ω̂), x ∈ (0, ω̂),
+∞, otherwise

⎧

⎪

⎨

⎪

⎩

x+ω+
√

|x−ω|2+4
2 , x < 1/ω,

x+ω̂−
√

|x−ω̂|2+4
2 , x > 1/ω̂

ω ∈ (−∞,0], ω̂ ∈ (0,∞)

Weibull dist.
{−κ lnx + ωxp, x > 0,

+∞, x ≤ 0
π s.t. pωπp + π2 − xπ = κ

p ∈ (1,+∞) ω, κ ∈ (−∞,0]

GIG dist.
{−κ lnx + ωx + ρ/x, x > 0,

+∞, x ≤ 0
π s.t. π3 + (ω − x)π2 − κπ = ρ

ω,κ,ρ ∈ (−∞,0]

For example, lasso can be viewed as a simple sta-
tistical model with the negative log-likelihood from
y = Ax +ε, where ε is a standard normal measurement
error, corresponding to the norm l(x) = ‖Ax − y‖2,
and each parameter xj has independent Laplace priors
corresponding to the regularization penalty φ(x) = |x|.
To keep the notation light, we overload the symbols
l and φ: they can refer either to the overall loss and
penalty terms [as in equation (1)] or to the individual

component-wise terms that are added to produce the
overall loss or penalty [as in equation (2)]. We have
taken care to ensure that their meaning will always be
clear in context.

We also use the following conventions: sgn(x) is the
algebraic sign of x, and x+ = max(x,0); ιC(x) is the
set indicator function taking the value 0 if x ∈ C and
∞ if x /∈ C; R+ = [0,∞), R++ = (0,∞), and R is the
extended real line R∪ {−∞,∞}.
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TABLE 2
Minimizers for the multiplicative form are σ(t) =

{

φ′′(0+), if t=0,
φ′(t)/t, if t �=0 and for additive form σ(t) = ct − φ′(t). See Nikolova and Ng (2005)

Penalty Minimizer

φ(t) = mins{Q(t, s) + ψ(s)} Q(t, s) = 1
2
t2s Q(t, s) = (t − s)2

|t |α , α ∈ (1,2] α|t |α−2
√

α + t2 1√
α+t2

ct − t√
α+t2

|t |
α − log(1 + |t |

α ) 1
α(α+|t |) ct − t

α(α+|t |)
⎧

⎨

⎩

t2

2 , |t | ≤ α,

α|t | − α2

2 , |t | > α

{

1, |t | ≤ α,
α
|t | , |t | > α

{

(c − 1)t, |t | ≤ α,
ct − α sgn(t), |t | > α

log(cosh(αt)) α
tanh(αt)

t ct − α tanh(αt)

− 1
1+|x|

{−2, for t = 0,
sgn (t)

t (|t |+1)2 , otherwise ct − sgn (t)

(|t |+1)2

− 1
1+√

x

{−∞, for t = 0,
1

2t3/2(
√

t+1)2 , otherwise ct − 1
2
√

t(
√

t+1)2

Further preliminaries. We now briefly introduce
several useful concepts and definitions to be described
further in subsequent sections. First, splitting is a key
tool that exploits an equivalence between an uncon-
strained optimization problem and a constrained one
that includes a latent or slack variable z. For example,
suppose that the original problem is

minimize
x

l(x) + φ(Bx).

To apply splitting to this problem, we formulate the
equivalent problem

minimize
x,z

l(x) + φ(z)

subject to Bx = z,

so that the objective is split into two terms involving
separate sets of primal variables.

The convex conjugate of l(x), l⋆(z), is defined as

l⋆(λ) = sup
x

{

λ⊤x − l(x)
}

.

The conjugate function l⋆(λ) is the point-wise supre-
mum of a family of affine (and therefore convex) func-
tions in z; it is convex even when l(x) is not. But if l(x)

is convex (and closed and proper), then we also have
that l(x) = supλ{λ⊤x − l⋆(λ)}, so that l and l⋆ are dual
to one another. If l(x) is differentiable, the maximizing
value of λ is λ̂(x) = ∇l(x).

The convex conjugate is our first example of an en-

velope, which is a way of representing functions in
terms of a pointwise extremum of a family of func-
tions indexed by a latent variable. Another example is

TABLE 3
See Duckworth (2014)

Error rate

Algorithm Convex Strongly convex Per-iteration cost

Accelerated gradient descent O(1/
√

ε) O(log(1/ε)) O(n)

Proximal gradient descent O(1/ε) O(log(1/ε)) O(n)

Accelerated proximal gradient descent O(1/
√

ε) O(log(1/ε)) O(n)

ADMM O(1/ε) O(log(1/ε)) O(n)

Frank-wolfe/conditional gradient algorithm O(1/ε) O(1/
√

ε) O(n)

Newton’s method O(log log(1/ε)) O(n3)

Conjugate gradient descent O(n) O(n2)

L-BFGS Between O(log(1/ε)) and O(log log(1/ε)) O(n2)
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a quadratic envelope, where we represent l as

l(x) = inf
z

{

1

2
x⊤�(z)x − η(z)⊤x + ψ(z)

}

for some �,η,ψ . We will draw heavily on the use of
envelope (or variational) representations of functions.

A function g(x) is said to majorize another function
f (x) at x0 if g(x0) = f (x0) and g(x) ≥ f (x) for all
x �= x0. If the same relation holds with the inequality
sign flipped, g(x) is said to be a minorizing function
for f (x).

The subdifferential of a function f at the point x is
defined as the set

∂f (x) =
{

v : f (z) ≥ f (x) + v⊤(z − x),

∀z, x ∈ dom(f )
}

.

Any such element is called a subgradient. If the func-
tion is differentiable, then the subdifferential is a sin-
gleton set comprising the ordinary gradient from dif-
ferential calculus.

Finally, a ρ-strong convex function satisfies

f (x) ≥ f (z) + u⊤(x − z) + ρ

2
‖x − z‖2

2

where u ∈ ∂f (z),

while a ρ-smooth function satisfies

f (x) ≤ f (z) + ∇f (z)⊤(x − z) + ρ

2
‖x − z‖2

2 ∀x, z.

2. PROXIMAL OPERATORS AND MOREAU

ENVELOPES

2.1 Basic Properties

Our perspective throughout this paper will be to view
a proximal algorithm as taking a gradient-descent step
for a suitably defined envelope function. By construct-
ing different envelopes, one can develop new optimiza-
tion algorithms. We build up to this perspective by first
discussing the basic properties of the proximal opera-
tor and its relationship to the gradient of the standard
Moreau envelope.

Let f (x) be a lower semi-continuous function, and
let γ > 0 be a scalar. The Moreau envelope f γ (x) and
proximal operator proxγf (x) with parameter γ are de-
fined as

f γ (x) = inf
z

{

f (z) + 1

2γ
‖z − x‖2

2

}

≤ f (x),

(3)

prox
γf

(x) = argmin
z

{

f (z) + 1

2γ
‖z − x‖2

2

}

.

Intuitively, the Moreau envelope is a regularized ver-
sion of f . It approximates f from below and has the
same set of minimizing values (Rockafellar and Wets,
1998, Chapter 1G). The proximal operator specifies the
value that solves the minimization problem defined by
the Moreau envelope. It balances the two goals of min-
imizing f and staying near x, with γ controlling the
trade-off. Table 1 provides an extensive list of closed-
form solutions.

Parikh and Boyd (2013) provide several interesting
interpretations of the proximal operator. Each one pro-
vides some intuition about why proximal operators
might be useful in optimization. We highlight three of
these interpretations here.

First, the proximal operator behaves similarly to a
gradient-descent step for the function f . There are
many ways of motivating this connection, but one sim-
ple way is to consider the Moreau envelope f γ (x). Ob-
serve that the Moreau derivative is

∂f γ (x) = ∂ inf
z

{

f (z) + 1

2γ
‖z − x‖2

2

}

= 1

γ

[

x − ẑ(x)
]

,

where ẑ(x) = proxγf (x) is the value that achieves the
minimum. Hence,

prox
γf

(x) = x − γ ∂f γ (x).

Thus, evaluating the proximal operator can be viewed
as a gradient-descent step for the Moreau envelope,
with γ as a step-size parameter.

Second, the proximal operator generalizes the no-
tion of the Euclidean projection. To see this, consider
the special case where f (x) = ιC(x) is the set indica-
tor function of some convex set C. Then proxf (x) =
argminz∈C ‖x − z‖2

2 is the ordinary Euclidean pro-
jection of x onto C. This suggests that, for other
functions, the proximal operator can be thought of as
a generalized projection. A constrained optimization
problem minx∈C f (x) has an equivalent solution as
an unconstrained proximal operator problem. Proximal
approaches are, therefore, directly related to convex re-
laxation and quadratic majorization, through the addi-
tion of terms like ρ

2 ‖x − v‖2 to an objective function,
where ρ might be a constant that bounds an operator
or the Hessian of a function. We can choose where
these quadratic terms are introduced, which variables
the terms can involve, and the order in which optimiza-
tion steps are taken. The envelope framework high-
lights such choices, leading to many distinct and fa-
miliar algorithms.

Finally, there is a close connection between proximal
operators and fixed-point theory, in that proxγf (x⋆) =
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x⋆ if and only if x⋆ is a minimizing value of f (x). To
see this informally, consider the proximal minimization

algorithm, in which we start from some point x0 and
repeatedly apply the proximal operator:

xt+1 = prox
γf

(

xt ) = xt − γ∇f γ (

xt ).

At convergence, we reach a minimum point x⋆ of
the Moreau envelope, and thus a minimum of the
original function. At this minimizing value, we have
∇f γ (x⋆) = 0, and thus proxγf (x⋆) = x⋆.

Another key property of proximal operators is the
Moreau decomposition for the proximal operator of f ⋆,
the dual of f :

x = prox
λf

(x) + λprox
f ⋆/λ

(λx),

(4)
(

I − prox
λf

)

(x) = λprox
f ⋆/λ

(λx).

The Moreau identity allows one to easily alter steps
within a proximal algorithm so that some computations
are performed in the dual (or primal) space. Applica-
tions of this identity can also succinctly explain the re-
lationship between a number of different optimization
algorithms, as described in Section 6.

All three of these ideas—taking gradient-descent
steps, projecting points onto constraint regions, and
finding fixed points of suitably defined operators—
arise routinely in many classical optimization algo-
rithms. It is therefore easy to imagine that the prox-
imal operator, which relates to all these ideas, could
also prove useful.

2.2 Simple Examples of Proximal Operators

Many intermediate steps in statistical optimization
problems can be written very concisely in terms of
proximal operators of log-likelihoods or penalty func-
tions. However, this conciseness is practically useful
only if the proximal operator can be evaluated in closed
form or at modest computational cost. Here are two
simple examples where this holds.

First, Figure 1 shows a simple proximal operator
and Moreau envelope. The solid black line shows the
function f (x) = |x|, and the dotted line shows the
corresponding Moreau envelope f 1(x) with param-
eter γ = 1. The grey line shows the function |x| +
(1/2)(x − x0)

2 for x0 = 1.5, whose minimum (shown
as a red cross) defines the Moreau envelope and prox-
imal operator. This point has ordinate proxf (x0) = 0.5
and abscissa f 1(x0) = 1, and is closer than x0 to the
overall minimum at x = 0. The blue circle shows the

FIG. 1. A simple example of the proximal operator and Moreau

envelope. The solid black line shows the function f (x) = |x|,
and the dotted line shows the corresponding Moreau enve-

lope with parameter γ = 1. The grey line shows the function

|x| + (1/2)(x − x0)2 for x0 = 1.5, whose minimum (shown as a

red cross) defines the Moreau envelope and proximal operator.

point (x0, f
1(x0)), emphasizing the point-wise con-

struction of the Moreau envelope in terms of a simple
optimization problem.

Let φ(x) = λ‖x‖1 and consider the proximal oper-
ator proxγφ(x). In this case the proximal operator is
clearly separable in the components of x, and the prob-
lem that must be solved for each component is

minimize
z∈R

{

λ|z| + γ

2
(z − x)2

}

.

This problem has solution

ẑ = prox
λ|x|/γ

(x) = sgn(x)
(

|x| − λ/γ
)

+

(5)
= Sλ/γ (x),

the soft-thresholding operator with parameter λ/γ .
As a second example, quadratic terms of the form

l(x) = 1
2x⊤Px + q⊤x + r(6)

are very common in statistics. They correspond to
conditionally Gaussian sampling models and arise in
weighted least squares problems, in ridge regression
and in EM algorithms based on scale-mixtures of nor-
mals. For example, if we assume that we observe data
(y|x) ∼ N(Ax,�−1), then l(x) = (y − Ax)⊤�(y −
Ax)/2 or

P = A⊤�A, q = −A⊤�y, r = y⊤�y/2

in the general form given above (6). If l(x) takes this
form, its proximal operator (with parameter 1/γ ) may
be directly computed as

prox
l/γ

(x) = (P + γ I)−1(

γ x − q
)

,

assuming the relevant inverse exists.
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3. PROXIMAL ALGORITHMS: SIMPLE EXAMPLES

3.1 The Proximal Gradient Method

We note by way of Introduction that starting at a
point x0 and iteratively applying the proximal opera-
tor of some function f is the most basic proximal al-
gorithm for finding the minimum of that function. It
is usually called the proximal point method or, simply,
proximal iteration. It is not widely useful, since taking
proximal points steps is typically no easier than simply
minimizing f directly.

One of the simplest nontrivial proximal algorithms
is the proximal-gradient method, which provides an
important starting point for the more advanced tech-
niques we describe in subsequent sections. Suppose as
in (2) that the objective function is F(x) = l(x)+φ(x),
where l(x) is differentiable but φ(x) is not. An archety-
pal case is that of a generalized linear model with a
nondifferentiable penalty designed to encourage spar-
sity. The proximal gradient method is well suited for
such problems. It has only two basic steps which are
iterated until convergence:

(1) Gradient step. Define an intermediate point vt

by taking a gradient step with respect to the differen-
tiable term l(x):

vt = xt − γ∇l
(

xt ).

(2) Proximal operator step. Evaluate the proximal
operator of the nondifferentiable term φ(x) at the in-
termediate point vt :

xt+1 = prox
γφ

(

vt ) = prox
γφ

{

xt − γ∇l
(

xt )}.(7)

This can be motivated in several ways. We outline
what is perhaps the most transparent motivation for
statisticians by showing that the proximal gradient is
an MM (majorize/minimize) algorithm.

Suppose that l(x) has a Lipschitz-continuous gradi-
ent with modulus γl . This allows us to construct a ma-
jorizing function for l(x), and therefore for the whole
objective. Whenever γ ∈ (0,1/γl], we have the ma-
jorization

l(x) + φ(x) ≤ l(x0) + (x − x0)
⊤∇l(x0)

+ 1

2γ
‖x − x0‖2

2 + φ(x),

with equality at x = x0. Simple algebra shows that the
optimum value of the right-hand side is

x̂ = argmin
x

{

φ(x) + 1

2γ
‖x − u‖2

2

}

,

where

u = x0 − γ∇l(x0).

Thus, to find the minimum of the majorizing function,
we perform precisely the two steps prescribed by the
proximal gradient-method: (1) form the intermediate
point u taking the gradient-descent step for l(x) from
x0, and (2) evaluate the proximal operator of φ at this
point u.

The fact that we may write this method as an MM
algorithm leads to the following basic convergence re-
sult. Suppose that:

1. l(x) is convex with domain R
n.

2. ∇l(x) is Lipschitz continuous with modulus γl ,
that is,

∥

∥∇l(x) − ∇l(z)
∥

∥

2 ≤ γl‖x − z‖2 ∀x, z.

3. φ is closed and convex, ensuring that proxγφ

makes sense.
4. the optimal value is finite and obtained at x⋆.

If these conditions are met, then the proximal gradient
method converges at rate 1/t with fixed step size γ =
1/γl (Beck and Teboulle, 2010).

The proximal gradient method can also be inter-
preted as a means for finding the fixed point of a
“forward–backward” operator derived from the stan-
dard optimality conditions from subdifferential calcu-
lus. For this reason the method is sometimes referred
to as forward–backward splitting. This has connections
(not pursued here) with the forward–backward method
for solving partial differential equations. We refer the
reader to Parikh and Boyd (2013) for details.

3.2 Iterative Shrinkage Thresholding

Consider the proximal gradient method applied to
a quadratic-form log-likelihood (6), as in a weighted
least squares problem, with a penalty function φ(x).
Then ∇l(x) = A⊤�Ax−A⊤�y, and the proximal gra-
dient method becomes

xt+1 = prox
γ tφ

{

xt − γ tA⊤�
(

Axt − y
)}

.

This algorithm has been widely studied under the name
of IST, or iterative shrinkage thresholding (Figueiredo
and Nowak, 2003). Its primary computational costs at
each iteration are as follows: (1) multiplying the cur-
rent iterate xt by A, and (2) multiplying the resid-
ual Axt − y by A⊤�. Typically, the proximal oper-
ator for φ will be simple to compute, as in the case
of a quadratic or ℓ1-norm/Lasso penalty discussed in
the previous section. Thus, the evaluation of the proxi-
mal operator will contribute a negligible amount to the
overall complexity of the algorithm.
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3.3 Proximal Newton

As we have described, the proximal gradient method
is a generalization of classical gradient approaches. It
uses only first-order information about the smooth term
l(x). However, one can naturally use higher-order ex-
pansions to construct different envelopes that take into
account second-order information about l, leading to
improvements analogous to the manner in which New-
ton’s method improves upon gradient descent. Con-
sider a family of functions of the form

FH (x, z) = l(z) + ∇l(z)⊤(x − z)

+ 1
2(x − z)⊤Hz(x − z),

and use this to define an envelope in the manner of (3).
Then we can calculate the generalized proximity oper-
ator

prox
FH

(z) = z −
(

γ −1I + Hz

)−1∇l(z).(8)

Instead of directly using the Hessian, Hz = ∇2l(z),
approximations can be employed, leading to quasi-
Newton-style approaches. As we will soon describe,
the second-order bound, and approximations to the
Hessian, are one way to interpret the half-quadratic
(HQ) approach, as well as introduce quasi-Newton
methods into the proximal framework. Proximal New-
ton methods are even possible for some nonconvex
problems, as in Chouzenoux, Pesquet and Repetti
(2014) and Appendix D.

3.4 Nesterov Acceleration

A useful feature of proximal algorithms is the abil-
ity to use acceleration techniques (Nesterov, 1983), of-
ten referred to as Nesterov acceleration. Acceleration
leads to nondescent algorithms that can provide sub-
stantial increases in efficiency versus their nonacceler-
ated counterparts.

The idea of acceleration is to add an intermediate
“momentum” variable z, prior to evaluating the for-
ward and backward steps:

zt+1 = xt + θt+1
(

θ−1
t − 1

)(

xt − xt−1)

,

xt+1 = prox
γ −1φ

(

zt+1 − γ −1∇l
(

zt+1))

,

where standard choices are θt = 2/(t + 1) and
θt+1(θ

−1
t − 1) = (t − 1)/(t + 2).

When φ is convex, the proximal problem is strongly
convex, and advanced acceleration techniques can be
used (Zhang, Saha and Vishwanathan, 2010; Meng and
Chen, 2011).

4. REDUNDANCY, SPLITTING AND THE

AUGMENTED LAGRANGIAN

4.1 Overview

In this section we show how the splitting tech-
nique described in the Introduction leads to many well-
known proximal algorithms. As a running example,
consider the problem of minimizing l(x)+φ(x), where
we apply the splitting strategy to formulate the equiva-
lent problem

minimize
x,z

l(x) + φ(z)

(9)
subject to x − z = 0.

The advantage of such a variable-splitting approach
is that now the fit and penalty terms are decoupled in
the objective function of the primal problem. A stan-
dard tactic for exploiting this fact is to write down and
solve the dual problem corresponding to the original
(primal) constrained problem. This is sometimes re-
ferred to as dualization. Many well-known references
exist on this topic (e.g., Bertsekas, 2011). For this rea-
son we focus on problem formulation and algorithms
for solving (9), avoiding standard material on duality
or optimality conditions.

4.2 Dual Ascent, the Augmented Lagrangian and

Scaled Form

Consider first the ordinary Lagrangian of prob-
lem (9):

L(x, z, λ) = l(x) + φ(z) + λ⊤(x − z),

with Lagrange multiplier λ. The dual function is
g(λ) = infx,z L(x, z, λ), and the dual problem is to
maximize g(λ).

Let p⋆ and d⋆ be the optimal values of the primal
and dual problems, respectively. Assuming that strong
duality holds, the optimal values of the primal and dual
problems are the same. Moreover, we may recover a
primal-optimal point (x⋆, z⋆) from a dual-optimal point
λ⋆ using the fact that

(

x⋆, z⋆) = argmin
x,z

L
(

x, z, λ⋆)

⇐⇒ 0 ∈ ∂x,zL
(

x⋆, z⋆, λ⋆).

The idea of dual ascent is to solve the dual problem
using gradient ascent, exploiting the fact that

∇g(λ) = ∇λL(x̂λ, ẑλ, λ),

where

(x̂λ, ẑλ) = argmin
x,z

L(x, z, λ).



PROXIMAL ALGORITHMS 567

Thus, the required gradient is simply the residual for
the primal constraint: ∇λL(x, z, λ) = x − z. Therefore,
dual ascent involves iterating two steps:

(

xt+1, zt+1) = argmin
x,z

L
(

x, z, λt ),

λt+1 = λt + αt

(

xt+1 − zt+1)

for appropriate step size αt .
An obvious issue with dual ascent for problem (9) is

that the update in x and z must be done jointly, rather
than one at a time. This is rarely practical for problems
of this form. But a discussion of dual ascent is an im-
portant starting point for building up to more realistic
algorithms.

We also note that in the case where g is not differ-
entiable, it is possible to replace the gradient with the
negative of a subgradient of −g, leading to dual sub-
gradient ascent; see Shor (1985).

Augmented Lagrangian and the method of multi-

pliers. Take problem (9) as before, with Lagrangian
L(x, z, λ) = l(x)+φ(z)+λ⊤(x − z). The augmented-
Lagrangian approach (also known as the method of
multipliers) seeks to stabilize the intermediate steps
of dual ascent by adding a ridge-like term to the La-
grangian:

Lγ (x, z, λ) = l(x) + φ(z) + λ⊤(x − z) + γ

2
‖x − z‖2

2,

where γ is a scale or step-size parameter. One way of
viewing this augmented Lagrangian is as the standard
Lagrangian for the equivalent problem

minimize
x,z

l(x) + φ(z) + γ

2
‖x − z‖2

2

subject to x − z = 0.

We can see that this is equivalent to the original be-
cause, for any primal-feasible x and z, the new objec-
tive takes the same value as the original objective, and
thus has the same minimum. The dual function cor-
responding to this augmented Lagrangian is gγ (λ) =
infx,z Lγ (x, z, λ), which is differentiable and strongly
convex under mild conditions. (The ordinary dual func-
tion need not be either of these things, which is a key
advantage of using the augmented Lagrangian.)

The method of multipliers is to use dual ascent for
the modified problem, iterating

(

xt+1, zt+1) = argmin
x,z

Lγ

(

x, z, λt ),

λt+1 = λt + γ
(

xt+1 − zt+1)

.

Thus, the dual-variable update does not change com-
pared to standard dual ascent. But the joint (x, z) up-
date has a regularization term added to it, whose mag-
nitude depends upon the tuning parameter γ . Notice
that the step size γ is used in the dual-update step.

Scaled form. Many proximal algorithms have more
concise updates when the dual variable λ is expressed
in scaled form. Specifically, rescale the dual variable as
u = γ −1λ. We can rewrite the augmented Lagrangian
in terms of u as

Lγ (x, z, u)

= l(x) + φ(z) + γ u⊤(x − z) + γ

2
‖x − z‖2

2

= l(x) + φ(z) + γ

2
‖r + u‖2

2 − γ

2
‖u‖2

2,

where r = x − z is the primal residual. This leads to
the following dual-update formulas:

(

xt+1, zt+1)

= argmin
x,z

{

l(x) + φ(z) + γ

2

∥

∥x − z + ut
∥

∥

2
2

}

,

ut+1 = ut +
(

xt+1 − zt+1)

.

Bregman iteration. The augmented Lagrangian
method for solving ℓ1-norm problems is called “Breg-
man iteration” in the compressed-sensing literature.
Here the goal is to solve the exact-recovery problem
via basis pursuit:

minimize
x

‖x‖1

subject to Ax = y,

where y is measured, x is the unknown signal, and A is
a known “short and fat” sensing matrix (meaning more
coordinates of x than there are observations).

The scaled-form augmented Lagrangian correspond-
ing to this problem is

Lγ (x, u) = ‖x‖1 + γ

2
‖Ax − y + u‖2

2 − γ

2
‖u‖2

2,

with steps

xt+1 = argmin
x

{

‖x‖1 + γ

2

∥

∥Ax − zt
∥

∥

2
2

}

,

zt+1 = y + zt − Axt+1,

where we have redefined zt = y − ut compared to the
usual form of the dual update. Thus, each intermediate
step of the Bregman iteration is like a lasso regression
problem. (This algorithm also has an alternate deriva-
tion in terms of Bregman divergences, hence its name.)
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4.3 ADMM

The alternating-direction method of multipliers (or
ADMM) is a proximal algorithm that combines three
ideas for solving problems like (9): splitting, the aug-
mented Lagrangian, and alternating-direction updates.
Recall that the scaled-form augmented Lagrangian for
this problem is

Lγ (x, z, u)

= l(x) + φ(z) + γ

2
‖x − z + u‖2

2 − γ

2
‖u‖2

2.

ADMM is similar to dual ascent for this problem, ex-
cept that we optimize the Lagrangian in x and z in-
dividually, rather than jointly, in each pass. (Hence,
“alternating direction.”) For our problem, the updates
become

xt+1 = argmin
x

{

l(x) + γ

2

∥

∥x − zt + ut
∥

∥

2
2

}

= prox
l/γ

(

zt − ut ),

zt+1 = argmin
z

{

φ(z) + γ

2

∥

∥xt+1 − z + ut
∥

∥

2
2

}

= prox
φ/γ

(

xt+1 + ut ),

ut+1 = ut + xt+1 − zt+1.

The first two steps are to evaluate the proximal opera-
tors of l and φ, respectively.

4.4 Divide and Concur

Divide and Concur (e.g., Gravel and Elser, 2008) is
another type of splitting strategy that provides a gen-
eral approach to statistical models that require opti-
mization of a sum of J + 1 composite functions of the
form

minimize
x

J
∑

j=1

lj (Ajx) + φ(x).

In Divide and Concur, we add slack variables zj

for j ∈ {1, . . . , J + 1} to divide the problem together,
with equality constraints so that the solutions concur.
Specifically, we form the equivalent constrained opti-
mization problem

minimize
x,z

J+1
∑

j=1

lj (zj )

subject to zj = Ajx,

where lJ+1 = φ and AJ+1 = I . This can be solved us-
ing an iterative proximal splitting algorithm (e.g., mul-
tiple ADMM, split Bregman). For example, under
ADMM (Parikh and Boyd, 2013) the updates are

xt+1
j = prox

λlj◦Aj

(

x̄t − uk
j

)

,

ut+1
j = ut

j + xt+1
j − x̄t+1,

where x̄t = 1
J+1

∑J+1
j=1 xt

j .
Divide and Concur methods provide a natural ap-

proach to hierarchical models or to very large prob-
lems—for example, where each lj corresponds to a
negative log-likelihood for a subset of the data stored
on one machine. In this case, DC allows the overall
problem to be broken into many tractable, indepen-
dently computable subproblems via splitting. Only the
intermediate solutions to these subproblems, rather ev-
ery subset of the actual data, need to be broadcast be-
tween machines.

4.5 Other Forms of Redundancy

Other redundant parameterizations are certainly pos-
sible, beyond the basic splitting strategy considered
here. For example, consider the case of an exponential-
family model for outcome y with cumulant-generating
function ψ(z) and with natural parameter z:

p(y) = p0(y) exp
{

yz − ψ(z)
}

.

There is a unique Bregman divergence associated with
every exponential family. It corresponds precisely to
the relationship between the natural parameterization
and the mean-value parameterization. There is a corre-
sponding class of Bregman proximal point algorithms.

In a generalized linear model, the natural parameter
for outcome yi is a linear regression on covariates, zi =
a⊤
i x. In this case l(x) may be written as

l(x) =
N

∑

i=1

li(x) where li(x) = ψ
(

a⊤
i x

)

− yi

(

a⊤
i x

)

,

up to an additive constant not depending on x. Now
introduce slack variables zi = a⊤

i x. This leads to the
equivalent primal problem

min
x,z

N
∑

i=1

{

ψ(zi) − yizi

}

+ φ(x)

subject to Ax − z = 0.

For example, in a Poisson model (yi |μi) ∼ Pois(μi),
μi = exp(θi) with natural parameter θi = a⊤

i x. The cu-
mulant generating function is b(θ) = exp(θ), and thus
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d(μ) = μ logμ − μ. After simplification, the diver-
gence Dd(y,μ) = μ − y logμ + (μ − y). The opti-
mization problem can then be split as

min
x,z

N
∑

i=1

(zi − yi log zi) + φ(x)

subject to a⊤
i x = log zi .

These same optimization problems arise when one
considers scale mixtures, or convex variational forms
(Palmer et al., 2005, Polson and Scott, 2015). The con-
nection is made explicit by the dual function for a
density and its relationship with scale-mixture decom-
positions. For instance, one can obtain the following
equality for appropriate densities p(x), q(z) and con-
stants μ,κ :

− logp(x) = − sup
z>0

log
(

pN

(

x;μ + κ/z, z−1)

q(z)
)

= inf
z>0

{

z

2
(x − μ − κ/z)2 − log

(√
zq(z)

)

}

,

where pN (x;μ,σ 2) is the density function for a nor-
mal distribution with mean μ and variance σ 2. The
form resulting from this normal scale-mixture envelope
is similar to the half-quadratic envelopes described in
Section 5. Polson and Scott (2015) describe these rela-
tionships in further detail.

5. ENVELOPE METHODS

In this section we describe several types of en-
velopes: the forward–backward (FB) envelope, the
Douglas–Rachford (DR) envelope, the half-quadratic

(HQ) envelope, and the Bregman divergence envelopes.
These all build upon the idea of a Moreau envelope
and lead to analogous proximal algorithms. Within this
framework, various algorithms may be generated in
terms of gradient steps for the corresponding enve-
lope. (For instance, ADMM methods will be viewed
as the gradient step of the dual FB envelope.) Section 6
dissects these envelopes in further detail, shows their
relationship to Lagrangian approaches, and provides a
framework within which they can be derived and ex-
tended.

5.1 Forward–Backward Envelope

Suppose as in (9) that we have to minimize F =
l + φ, under the assumptions that l is strongly con-
vex and possesses a continuous gradient with Lipschitz
constant γl , so that |∇2l(x)| ≤ γl , and that φ is proper
lower semi-continuous and convex.

First, we define the FB envelope, F FB
γ (x), which will

possess some desirable properties (see Patrinos and Be-
mporad, 2013):

F FB
γ (x) := min

v

{

l(x) + ∇l(x)⊤(v − x) + φ(v)

+ 1

2γ
‖v − x‖2

}

= l(x) − γ

2

∥

∥∇l(x)
∥

∥

2 + φγ (

x − γ∇l(x)
)

.

If we pick γ ∈ (0, γ −1
l ), the matrix I − γ∇2l(x) is

symmetric and positive definite. The stationary points
of the envelope F FB

γ (x) are the solutions x⋆ of the orig-
inal problem which satisfy x = proxγφ(x − γ∇l(x)).
This follows from the derivative information

∇F FB
γ (x) =

(

I − γ∇2l(x)
)

Gγ (x),

where Gγ (x) = γ −1(x − Pγ (x)) and Pγ (x) =
proxγφ(x − γ∇l(x)).

With these definitions, we can establish the follow-
ing descent property for gradient steps based on the FB
envelope:

F FB
γ (x) ≤ F(x) − γ

2

∥

∥Gγ (x)
∥

∥

2
,

F
(

Pγ (x)
)

≤ F FB
γ (x) − γ

2
(1 − γ γl)

∥

∥Gγ (x)
∥

∥

2
.

Hence, for γ ∈ (0, γ −1
l ), the envelope value always de-

creases on application of the proximal operator of γφ,
and we can determine the stationary points. See Ap-
pendix A for further details.

5.2 Douglas–Rachford Envelope

Mimicking the forward–backward approach, Patri-
nos, Lorenzo and Alberto (2014) define the Douglas–
Rachford (DR) envelope as

F DR
γ (x) = lγ (x) − γ

2

∥

∥∇lγ (x)
∥

∥

2
2 + φγ (

x − 2γ∇lγ (x)
)

= min
z

{

l
(

x⋆) + ∇l
(

x⋆)⊤(

z − x⋆) + φ(z)

+ 1

2γ

∥

∥z − x⋆
∥

∥

2
}

,

where we recall that lγ is the Moreau envelope of the
function l and x⋆ = proxγ l(x).

This can be interpreted as a backward–backward en-
velope. It is a special case of a FB envelope evaluated
at the proximal operator of γ l, namely,

F DR
γ (x) = F FB

γ

(

prox
γ l

(x)
)

.
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Again, the gradient of this envelope produces a prox-
imal algorithm (see Patrinos, Lorenzo and Alberto,
2014) which converges to the minimum of {l(x) +
φ(x)}. The iterations are

wt+1 = prox
γ l

(

xt ),

zt+1 = prox
γφ

(

2wt − xt ),

xt+1 = xt +
(

zt − wt ).

There are many ways to rearrange the basic DR al-
gorithm. For example, with an intermediate variable,
v = w − x, we could equally well iterate

wt+1 = prox
γ l

(

xt − vt ),

xt+1 = prox
γφ

(

wt + vt ), vt+1 = vt +
(

wt − xt ).

5.3 Half-Quadratic Envelopes

We now provide an illustration of a quasi-Newton
algorithm within the class of Half-Quadratic (HQ) op-
timization problems (Geman and Yang, 1995; Geman
and Reynolds, 1992). This envelope applies to the com-
monly used L2-norm where l(x) = ‖Ax − y‖2, and
can be used in conjunction with some nonconvex φ.
See Nikolova and Ng (2005) for convergence rates and
comparisons of the different algorithms.

The half-quadratic (HQ) envelope is defined by

F HQ(x) = inf
v

{

Q(x, v) + ψ(v)
}

,

where

Q(x, v) = vx2 or (v − x)2,

that is, the function Q(x, v) is “half-quadratic” in the
variable v. In the HQ framework, the term ψ(v) is usu-
ally understood to be the convex conjugate of some
function, for example, ψ(v) = φ⋆(x).

As an initial example, suppose that we wish to mini-
mize the function

F(x) = 1
2‖Ax − y‖2 + γ�(x),

where

�(x) =
d

∑

i=1

φ
((

B⊤x − b
)

i

)

,

and that the penalty is specified in terms of the repre-
sentation φ(x) = F HQ(x). Then we need to minimize
the higher-dimensional function

F(x, v) = 1

2
‖Ax−y‖2 +γ

d
∑

i=1

Q(δi, vi)+γ

d
∑

i=1

ψ(vi),

where δi = (B⊤x − b)i .
This establishes an equivalence between gradient

linearization and quasi-Newton. These algorithms give
the iterative mappings

xt+1 = L
(

v̂
(

xt ))−1
A⊤y

and

xt+1 = xt − L
(

xt )−1∇xF
(

xt ),

respectively, where L(xt ) is a step size function. They
turn out to be identical, with derivative information

∇xF(x) = A⊤Ax − A⊤y + γ

d
∑

i=1

Bi

φ′(‖δi‖)
‖δi‖

B⊤
i x

=
(

A⊤A + γB V(x)B⊤)

x − A⊤y

= L
(

v̂(x)
)

x − A⊤y

for V(x) = diag(v̂(‖δ‖d
i=1)) and L(v̂(x)) = A⊤A +

vB V(x)B⊤.
See Polson and Scott (2015) for further explanation

of the half-quadratic class of penalties.

5.4 Bregman Divergence Envelopes

Many statistical models, such as those generated by
an exponential family distribution, can be written in
terms of a Bregman divergence. One is then faced with
the joint minimization of an objective function of the
form F(x, v) = D(x, v) + φ(x) + ψ(v). To minimize
over (x, v), we can use an alternating Bregman projec-
tion method. To perform the minimization of v given x,
we can make use of the D-Moreau envelope, which is
defined by

φD(x) = inf
v

{

D(x, v) + φ(v)
}

,

where D(x, v) is a Bregman divergence. A key fea-
ture here is that a Bregman divergence satisfies a three-
point law of cosines triangle inequality, which helps to
establish the descent property for proximal algorithms
derived from these envelopes (see Appendix A). Many
commonly used EM, MM and variational EM algo-
rithms in statistics implicitly use envelopes of this type.

6. PROXIMAL ALGORITHMS FOR COMPOSITE

FUNCTIONS

6.1 Overview

Building off the general objective in (1), we now
consider the optimization of a general composite ob-
jective of the form

F(x) := l(x) + φ(Bx)
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or, in split form,

minimize
x,z

l(x) + φ(z)

(10)
subject to Bx = z.

Composite penalties arise in statistical models that ac-
count for structural constraints or spatiotemporal cor-
relations (e.g., Tibshirani and Taylor, 2011; Tibshirani,
2014; Tansey et al., 2014). The most famous examples
of problems in this class are total-variation denoising
(Rudin, Osher and Faterni, 1992) and the fused lasso
(Tibshirani et al., 2005).

We start by noting that many approaches for solving
this problem, including the ones in Section 4, can be
characterized in terms of one of the four general forms
of the objective functions/Lagrangians that result from
appealing to splitting and conjugate functions:

primal F(x) = l(x) + φ(Bx),

split–primal FSP(x, z, λ) = l(x) + φ(z)

+ λ⊤(Bx − w),

primal–dual FPD(x, λ) = l(x) + λ⊤(Bx)

− φ⋆(λ),

split–dual FSD(x, z, λ) = l⋆(z) + φ⋆(λ)

+ x⊤(

−B⊤λ − z
)

.

From a statistical perspective, it is natural to think of
z and λ as latent variables, and of each of these split-
ting/duality strategies as defining a higher-dimensional
objective function. Such ideas are familiar in statistics,
where alternating minimization, iterated conditional
mode (ICM), EM and MM algorithms have a long his-
tory (e.g., Dempster, Laird and Rubin, 1977; Csiszár
and Tusnády, 1984; Besag, 1986). Indeed, Polson and
Scott (2015) show how many such algorithms that ap-
peal to convex conjugacy have a natural EM-like inter-
pretation in terms of missing data.

For problem (10), the motivation for using the
primal–dual and the split forms (see Esser, Zhang and
Chan, 2010) lies in how they decouple φ from the lin-
ear mapping B; it is precisely the composition of these
functions that poses the difficulty for problems like TV
denoising and the fused lasso. Note that the primal–
dual formulation follows from profiling the slack vari-
able z out of the split–primal objective:

inf
z

L(x, z, λ) = inf
z

{

l(x) + φ(z) + λ⊤(Bx − z)
}

= l(x) + λ⊤Bx − φ⋆(λ),

and the split–dual by a similar argument. These two
formulations are related via the Max–Min inequality
(Boyd and Vandenberghe, 2004):

sup
q

inf
v

F(q, v) ≤ inf
v

sup
q

F(q, v).

In the special case of closed proper convex functions,
we have

min
x

F(x) = min
x

sup
z

FPD(x, λ)

= max
λ

min
x,z

FSP(x, z, λ)

= max
x

min
λ,z

FSD(x, z, λ),

where we exploit the fact that

φ(Bx) = sup
z

{

z⊤Bx − φ⋆(z)
}

whenever φ is convex. FSP(x, z, λ) and FPD(x, λ) are
also related by

min
z≥0

FSP(x, z, λ) = min
z≥0

{

φ(z) + l(x) + λ⊤(Bx − z)
}

= l(x) + λ⊤Bx + min
z≥0

{

φ(z) − λ⊤z
}

= l(x) + λ⊤Bx − φ⋆(λ)

= FPD(x, λ).

6.2 Proximal Solutions

In most statistical problems of form (10), it is typi-
cally the case that closed-form expressions for one or
more of l(x), l⋆(z), φ(z) or φ⋆(λ) will be unavailable
or inefficient to compute. However, exact solutions to
related problems that share the same critical points may
be easily accessible. We now step through several such
approaches for solving (10), explaining how they relate
to the ideas introduced thus far. We highlight whenever
proximal operators enter the analysis. Because prox-
imal operators are so well understood, their presence
in an algorithm is convenient: the properties of proxi-
mal operators and the associated fixed-point theory can
simplify otherwise lengthy constructions and conver-
gence arguments. Moreover, by exploiting the proxi-
mal operator’s known properties, like the Moreau iden-
tity, one can move easily between the different formu-
lations above, and thus between the primal and dual
spaces. It is also worth mentioning that the efficacy of
certain acceleration techniques can depend on which
formulation is used, and therefore implicitly on the
specific proximal steps taken. We refer the reader to
Beck and Teboulle (2014) for further discussion.
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First, proximal operators arise naturally whenever
we augment the Lagrangian for problem (10), which
entails adding a ridge term to the split–primal objec-
tive:

Lρ(x, z, λ) = l(x) + φ(z) + λ⊤(Bx − z)

+ ρ

2
‖Bx − z‖2(11)

= FSP(x, z, λ) + ρ

2
‖Bx − z‖2.

As already detailed, this leads naturally to an ADMM
algorithm whose intermediate iterates involve proximal
operators.

Second, we also are not restricted to using the prox-
imal operators directly implied by one of these four
problem formulations, such as those that appear when
l, l⋆, φ and/or φ⋆ contain quadratic terms. We can also
apply a surrogate or approximation (e.g., an envelope
or majorizer) to certain terms. For example, when exact
solutions to the composite proximal operator are not
available, one can consider “linearizing” ρ

2 ‖Bx − z‖2

with ρ
2λB

‖x − z‖2, where σmax(B
⊤B) < λB , yielding

FSP(x,w, z) + ρ

2
‖Bx − z‖2

≤ FSP(x,w, z) + ρ

2λB

‖x − z‖2.

This approach can be seen as a simple majoriza-
tion and, when combined with the proximal solution
for z, as a forward–backward envelope for the sub-
problem. Implementations of this approach include
the linearized ADMM technique or the split inex-
act Uzawa method, and are described in the context
of Lagrangians by Chen and Teboulle (1994) and
primal–dual algorithms in Chambolle and Pock (2011).
Magnússon et al. (2014) detail splitting methods in
terms of augmented-Lagrangians for nonconvex objec-
tives.

Finally, one can represent one of the terms in the ob-
jective using one of the envelopes described in Sec-
tion 5, in which case the iterates of the resulting
algorithm will involve proximal operators. In fact,
the envelope representation can itself be seen as a
way to encode the iterates in each of a problem’s la-
tent/slack/splitting terms as proximal operators.

An example: The primal–dual. To demonstrate these
ideas, we give an example of how proximal operators
and their properties can be used to derive an algorithm
starting from the primal–dual formulation

max
λ

min
x

{

l(x) + λ⊤(Bx) − φ⋆(λ)
}

.

First, notice that the argmin for the subproblem in x,
l(x) + λ⊤(Bx), can be characterized in terms of the
following fixed point whenever γl > 0:

x⋆ = prox
γl(l(x)+λ⊤Bx)

(

x⋆).

We now use the fact that

prox
g(z)+u⊤z

(q) = prox
g

(q − u),(12)

for a generic function g(z) and variables q , z and u;
this is obtained by completing the square in the defini-
tion of the operator. Appealing to (12) gives

x⋆ = prox
γl(l(x)+λ⊤Bx)

(

x⋆) = prox
γl l

(

x⋆ − γlB
⊤λ

)

.

Now we’re left with only the subproblem in λ:

max
λ

{

l
(

x⋆) + λ⊤(

Bx⋆) − φ⋆(λ)
}

= −min
λ

{

φ⋆(λ) − λ⊤(

Bx⋆) − l
(

x⋆)}.

We can take yet another proximal step, for the mini-
mization of φ⋆(λ) − λ⊤(Bx⋆), in λ with step size γφ .
Using (12) and (4), we find that the argmin satisfies

λ⋆ = prox
γφφ⋆

(

λ⋆ + γφBx⋆).

Using the Moreau decomposition in (4), we can de-
rive yet another strategy. Note that

prox
γφφ⋆

(

λ⋆ + γφBx⋆)

= 1

γφ

(

I − prox
φ/γφ

)

◦
(

γφ

(

λ⋆ + Bx⋆)).

Hence, we can characterize the solution to the primal–
dual problem in terms of fixed points of the following
two operators:

x⋆ = prox
γl l

(

x⋆ − γlB
⊤λ⋆),

(13)

λ⋆ = 1

γφ

(

I − prox
φ/γφ

)

◦
(

γφ

(

λ⋆ + Bx⋆)).

If we separate the last step implied by (13) into two
steps and simplify by setting γl = γφ = 1, we arrive at

x⋆ = prox
l

(

x⋆ − B⊤u⋆),

w⋆ = prox
φ

(

u⋆ + Bx⋆),

u⋆ = u⋆ −
(

w⋆ − Bx⋆).

This has the same basic form of techniques like
ADMM, alternating split Bregman, split inexact Uzawa
and so forth. See Chen, Huang and Zhang (2013) for
more details.
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6.3 Composition in General Quadratic Envelopes

Consider now the most general form of a quadratic
envelope involving a composite penalty function:

F�(x) = inf
z

{

1

2
x⊤�(z)x − η⊤(z)x + φ(Bx)

}

,(14)

where �(z) is symmetric positive definite. Such forms
can arise when one majorizes l(x) using a second-order
approximation of around z. This general quadratic case
in which �(z) is not necessarily diagonal encompasses
the approaches of Geman and Yang (1995), Geman and
Reynolds (1992), and can be addressed with splitting
techniques.

If B⊤B is positive definite, a proximal point solution
can be obtained by setting l(x) = x⊤�(z)x − η⊤x in
(13). The general solution to a quadratic-form proxi-
mal operator (6), together with the split–dual formula-
tion, implies a proximal point algorithm that exploits
the fact that the optimal values satisfy

x⋆ = prox
γl l(x)

(

x⋆ − γlB
⊤z⋆)

=
(

I + γl�
(

z⋆))−1(

x⋆ − γlB
⊤z⋆ + γlη

)

,

z⋆ = 1

γφ

(

I − prox
φ/γφ

)

◦
(

γφ

(

z⋆ + Bx⋆)).

This formulation introduces the subproblem of solv-
ing a system of linear equations. Using the exact solu-
tion to this system would reflect methods that involve
Levenberg–Marquardt steps, quasi-Newton methods
and Tikhonov regularization, and is related to the use
of second-order Taylor approximations to an objec-
tive function. Naturally, the efficiency of computing
exact solutions depends very much on the properties of
I + γl�(z), since the system defined by this term will
need to be solved on each iteration of a fixed-point al-
gorithm. When �(z) is constant, a decomposition can
be performed at the start and reused, so that solutions
are computed quickly at each step. For some matri-
ces, this can mean only O(n) operations per iteration.
In general, however, the post-startup iteration cost is
O(n2).

Other approaches, like those in Chen, Huang and
Zhang (2013) and Argyriou et al. (2011), do not at-
tempt to directly solve the aforementioned system of
equations. Instead they use a forward–backward algo-
rithm on the dual objective, FPD. In particular, we call
attention to the approach of Argyriou et al. (2011).
They show how to evaluate the proximal operator of

φ(Bx) directly, by finding the fixed point of the opera-
tor

Hk = κI + (1 − κ)H,

for κ ∈ (0,1), where

H(v) :=
(

I − prox
γ −1φ

)

(

BA−1η +
(

I − γBA−1B⊤)

v
)

∀v ∈ R
p.

Here 0 < γ < 2/σmax(BA−1B⊤) and A = �(z). The
operator H is understood to be nonexpansive, so, by
Opial’s theorem, one is guaranteed convergence; when
H is a contraction, this convergence is linear. After
finding the fixed point v⋆, one sets x⋆ = A−1(η −
xB⊤v⋆).

7. APPLICATIONS

7.1 Logit Loss Plus Lasso Penalty

To illustrate our approach, we simulate observations
from the model

(yi |pi) ∼ Binom(mi,pi),

pi = logit−1(

a⊤
i x

)

,

where i = 1, . . . ,100, a⊤
i is a row vector of A ∈

R
100×300, x ∈ R

300. The A matrix is simulated from
N(0,1) variates and normalized column-wise. The sig-
nal x is also simulated from N(0,1) variates, but with
only 10% of entries being nonzero.

Here mi are the number of trials and yi the number of
successes. The composite objective function for sparse
logistic regression is then given by

argmin
x

n
∑

i=1

{

mi log
(

1 + eaT
i x)

− yia
⊤
i x

}

+ λ

p
∑

j=1

|xj |.

To specify a proximal gradient algorithm, all we need
is an envelope such as those commonly used in Vari-
ational Bayes. In this example, we use the simple
quadratic majorizer with Lipschitz constant given by
‖A⊤A‖2/4 = σmax(A)/4, and a penalty coefficient λ

set to 0.1σmax(A).
Figure 2 shows the (adjusted) objective values per

iteration with and without Nesterov acceleration. We
can see the nondescent nature of the algorithm and the
clear advantage of adding acceleration.
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FIG. 2. (Adjusted) objective values for iterations of the proximal gradient method, with and without acceleration, applied to a logistic

regression problem with an ℓ1-norm penalty.

7.2 Logit Fused Lasso

To illustrate a logit fused lasso problem, we compare
a Geman–Reynolds inspired quadratic envelope for the
multinomial logit loss and a fused lasso penalty with
the standard Lipschitz-bounded gradient step. We de-
fine the following quantities:

�(v) = 2
n

∑

i=1

miλ
(

a⊤
i v

)

aia
⊤
i

= 2A⊤ diag
(

m · λ(Av)
)

A,

η⊤ = 2
n

∑

i=1

(yi − mi/2)a⊤
i ,

where λ(v) = 1
2v

( 1
1+e−v − 1

2). Now we compute xt ,
conditional on w, for the envelope

n
∑

i=1

{

mi log
(

1 + eaT
i x)

− yia
⊤
i x

}

+
∥

∥D(1)x
∥

∥

1

= min
w

{

1

2
x⊤�(w)x − η⊤x + c(w) + γ

∥

∥D(1)x
∥

∥

1

}

.

To do this, we employ the Picard–Opial composite
method of Argyriou et al. (2011).

Simulations were performed in a similar fashion as
Section 7.2 but with N = 100, M = 400, m = 2 and
where D(1)x has a fused lasso construction consisting
of first-order differences of x. Figure 3 show the objec-
tive values for iterations of each formulation. With the

use of second-order information, we have extremely
fast convergence to the solution.

For data preconditioning, we perform the following
decompositions: A = U�V ⊤, the singular value de-
composition (SVD), �−1(v) = 1

2A−1D−1A−⊤, where
D = diag(m ·λ(Av)). This implies that one SVD of A,
or generalized inverse, is required to compute all future
�−1(v), thus providing computational savings.

7.3 Poisson Fused Lasso

To illustrate an objective that is not Lipschitz but still
convex, we use a Poisson regression example with a
fused lasso penalty. We simulated a signal given from
the model

(y|x) ∼ Pois
(

exp(Ax)
)

,

φ(x) =
∥

∥D(1)x
∥

∥

1 =
p

∑

j=1

|xj − xj−1|.

In our simulation, the true sparse parameter vector x

has 10% nonzero signals from N(0,1). The design ma-
trix A ∈ R

100×300 is also generated from N(0,1), then
column normalized.

In sum, we have a negative log-likelihood and regu-
larization penalty of the composite form

F(x) =
n

∑

i=1

exp
(

a⊤
i x

)

− yia
⊤
i x +

p
∑

j=1

|xj − xj−1|

=
n

∑

i=1

exp
(

a⊤
i x

)

− yia
⊤
i x +

∥

∥D(1)x
∥

∥

1,
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FIG. 3. Objective values for iterations of two proximal composite formulations applied to a multinomial logistic regression problem with a

composite ℓ1-norm penalty. Both are run until the same numeric precision is reached.

where ai are the column vectors of A and D(1)x is the
matrix operator of first-order differences in x. Since
the Poisson loss function is not Lipschitz but still con-
vex, we replace the constant gradient step with a back-
tracking line search. This can be accomplished with a
back-tracking line search step.

Figure 4 shows the objective value results for each
method, with and without acceleration. An alternative
approach is given by Green (1990), who describes an

implementation of an EM algorithm for penalized like-
lihood estimation.

7.4 L2-Norm Loss Plus Lq -Norm Penalty for

0 < q < 1

A common nonconvex penalty is the Lq -norm for
0 < q < 1. There are a number of ways of developing a
proximal algorithm to solve such problems. The prox-
imal operator of Lq -norm has a closed-form, multi-

FIG. 4. (Adjusted) objective values for iterations of the proximal gradient method, with and without acceleration, applied to a Poisson

regression problem with a fused ℓ1-norm penalty.
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valued solution, and convergence results are available
for proximal methods in Marjanovic and Solo (2013)
and Attouch, Bolte and Svaiter (2013). For this exam-
ple, we choose the former approach.

The regularization problem involves finding the min-
imizer of an L2-norm loss with an Lq -norm penalty for
0 < q < 1, so that

x̂
q
λ := argmin

x

{

1

2
‖y − Ax‖2 + λ

p
∑

j=1

|xi |q
}

.

The component-wise, set-valued proximal Lq -norm
operator is given by

prox
λφq

(v) =

⎧

⎨

⎩

0, if |v| < hλ,
{

0, sgn(v)xλ

}

, if |v| = hλ,
sgn(v)x̂, if |v| > hλ,

where

bλ,q =
(

2λ(1 − q)
)1/(2−q)

,

hλ,q = bλ,q + λqb
q−1
λ,q ,

x̂ + λqx̂q−1 = |v|, x̂ ∈
(

bλ,q , |x|
)

.

Attouch, Bolte and Svaiter (2013) describe how the
objective for this problem is a Kurdyka–Łojasiewicz
(KL) function, which provides convergence results for
an inexact (multi-valued proximal operator) forward–
backward algorithm given by

xt+1 ∈ prox
λγt‖·‖p

(

xt − γt

(

A⊤Axt − A⊤b
))

.

Interestingly, the KL convergence results for forward–
backward splitting on appropriate nonconvex contin-
uous functions bounded below imply that the solu-
tion choice for multi-valued proximal maps—as in the
Lq -norm case—does not affect the convergence prop-
erties. See Appendix D for more information.

An alternative approach is the variational representa-
tion of the Lq -norm; however, this does not satisfy the
convergence conditions of Allain, Idier and Goussard
(2006) within the half-quadratic framework.

Marjanovic and Solo (2013) detail how cyclic de-
scent can be used to apply the proximal operator in a
per-coordinate fashion under a squared-error loss. The
cyclic descent method is derived from the following al-
gebra. First, a single solution to the squared-error loss
minimization problem can be given for a component i

of x, by

0 = ∇i l(x) = A⊤
i (Ax − y)

= A⊤
i (Aixi + A−ix−i − y),

where Ai is column i of A, and A−i, x−i have col-
umn/element i removed. Applied to a quadratic ma-
jorization scheme, we find that at iteration t

xt+1
i = A⊤

i (y − A−ix
t+1
i )

A⊤
i Ai

= A⊤
i r t

‖Ai‖2
+ xt

i

with y − Axt = r t . In a similar fashion to gradient
descent, this involves O(n) operations for updates of
A⊤

i r t , so one cycle is O(np).
We simulate a data vector y ∈ R

n from a regression
model

y = Ax + σε where ε ∼ N(0,1)

with an underlying sparse parameter value x ∈ R
d with

n = 100, d = 256, in which the true sparse x has 5%
nonzero signals generated from N(0,1). The design
matrix A ∈ R

100×256 is also generated from N(0,1),
then column normalized. We set the signal-to-noise
ratio at 16.5 to match the simulated example from
Marjanovic and Solo (2013), which gives σ = 0.0369.

Figure 5 plots the mean squared error (MSE) ver-
sus the log-regularization penalty and the power in the
Lq -norm penalty. Essentially, this consists of contours
of log10(MSE(x̂)) on a plot of 0 < q < 1 versus the
amount of regularization log10(λ). One interesting fea-
ture of this model is that the estimated regression co-
efficients x̂

q
λ can jump to sparsity as 0 < q < 1, and

this will be illustrated in a regularized path for the next
example.

7.5 Prostate Data

As a practical example of our methodology, we con-
sider the prostate cancer data set, which examines the
relationship between the level of a prostate specific
antigen and a number of clinical factors. The variables
are log cancer volume (lcavol), log prostate weight
(lweight), age (age), log of the amount of benign
prostatic hyperplasia (lbph), seminal vesicle inva-
sion (svi), log of capsular penetration (lcp), Gleason
score (gleason) and percent of Gleason scores 4 or 5
(pgg45).

A common regularized approach is to use lasso and
elastic net; see Tibshirani (1996) and in Zou and Hastie
(2005), respectively. Alternatively, we fit the regular-
ization path using

x̂
q
λ := argmin

x

{

1

2
‖y − Ax‖2 + λ

p
∑

j=1

|xi |q
}

.

We can use the exact proximal operator for the
Lq -norm and solve the harder nonconvex problem.
Figure 6 shows the regularization path. The major dif-
ference is, again, in the jumps to a sparse solution.
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FIG. 5. Penalty weight, λ, vs. MSE and q for an L2-norm error with an Lq -norm penalty, 0 < q < 1, estimated via cyclic descent and

proximal solutions.

FIG. 6. Proximal results for the prostate data example under the

Lq -norm penalty.

8. DISCUSSION

Proximal algorithms are a widely used approach for
solving optimization problems. They provide an ele-
gant extension of classical gradient descent method
and have properties that—much like EM or MM
algorithms—can be used to derive many different ap-
proaches for solving a given problem.

For readers interest in further historical details, we
recommend Beck and Sabach (2015), who provide
a historical perspective on iterative shrinkage algo-
rithms by focusing mainly on the Weiszfeld algorithm
(Weiszfeld, 1937) for computing an ℓ1 median. The
split Lagrangian methods described here were origi-
nally developed by Hestenes (1969) and Rockafellar
(1974). More recently, there is work being done to ex-
tend the range of applicability of these methods outside
of the class of convex functions to the broader class of
functions satisfying the Kurdyka–Łojasiewicz inequal-
ity (Attouch, Bolte and Svaiter, 2013).

The purpose of our review has been to describe and
apply proximal algorithms to some archetypical opti-
mization problems that arise in statistics. These prob-
lems often involve composite functions that are rep-
resentable by a sum of a linear or quadratic enve-
lope, together with a function that has a closed-form
proximal operator that is easy to evaluate. Many pa-
pers demonstrate the efficacy and breadth of applica-
tion of this approach: for example, Micchelli et al.
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(2013) and Micchelli, Shen and Xu (2011) study proxi-
mal operators for composite operators for L2-norm and
ℓ1-norm/TV denoising models; Argyriou et al. (2011)
describe numerical advantages of the proximal opera-
tor approach versus traditional fused lasso implemen-
tations; and Chen, Huang and Zhang (2013) provide a
further class of fixed-point algorithms that advance the
proximal approach in the composite setting.

Another nice property of proximal algorithms is
the ease with which acceleration techniques can be
applied. The most common approach involves Nes-
terov acceleration; see Nesterov (1983) and Beck and
Teboulle (2004), who introduce a momentum term
for gradient-descent algorithms applied to nonsmooth
composite problems. Attouch and Bolte (2009), Noll
(2014) provide further convergence properties for non-
smooth functions. O’Donoghue and Candes (2015) use
adaptive restart to improve the convergence rate of ac-
celerated gradient schemes. Meng and Chen (2011)
modify Nesterov’s gradient method for strongly con-
vex functions with Lipschitz continuous gradients.
Allen-Zhu and Orecchia (2014) provide a simple in-
terpretation of Nesterov’s scheme as a two-step algo-
rithm with gradient-descent steps which yield proximal
(forward) progress coupled with mirror-descent (back-
ward) steps with dual (backward) progress. By linearly
coupling these two steps they improve convergence.
Giselsson and Boyd (2014) also show how precondi-
tioning can help with convergence for ill-conditioned
problems.

There are a number of directions for future research
on proximal methods in statistics, for example, ex-
ploring the use of Divide and Concur methods for
exponential-family mixed models and studying the re-
lationship between proximal splitting and variational
Bayes methods in graphical models. Another interest-
ing area of research involves combining proximal steps
with MCMC algorithms (Pereyra, 2013). Of course,
the proximal methods developed here are not designed
to provide standard errors and the advantage of MCMC
methods is the ability to assess uncertainty through the
full posterior distribution.

APPENDIX A: PROXIMAL GRADIENT

CONVERGENCE

We now outline convergence results for the proximal
gradient solution, given by (4), to the fixed point prob-
lem

x⋆ = prox
φ/λ

(

x − ∇l(x)/λ
)

,

when l and φ are convex, lower semi-continuous
and ∇l is Lipschitz continuous. We also assume that
proxφ/λ is nonempty and can be evaluated indepen-
dently in each component.

Recalling the translation property of proximal oper-
ators stated in (12), we can say

x⋆ = prox
φ/λ

(

x − ∇l(x)/λ
)

= prox
(φ(z)+λ∇l(x)⊤z)/λ

(x)

= argmin
z

{

φ(z) + ∇l(x)⊤(z − x) + λ

2
‖x − z‖2

}

.

By the proximal operator’s minimizing properties, its
solution x⋆ satisfies

φ
(

x⋆) + ∇l(x)⊤
(

x⋆ − x
)

+ λ

2

∥

∥x − x⋆
∥

∥

2 ≤ φ(x),

providing a quadratic minorizer for F(w) in the form
of

l(w) + φ
(

x⋆) + ∇l(w)⊤
(

x⋆ − w
)

+ λ

2

∥

∥w − x⋆
∥

∥

2

≤ l(w) + φ(w) ≡ F(w).

The Lipschitz continuity of ∇l(x), that is,

l(x) ≤ l(w) + ∇l(w)⊤(x − w) + γ

2
‖x − w‖2,

also gives us a quadratic majorizer

F(x) ≡ l(x) + φ(x)

≤ l(w) + φ(x) + ∇l(w)⊤(x − w)

+ γ

2
‖x − w‖2,

which, when evaluated at x = x⋆ and combined with
our minorizer, yields

(λ − γ )1
2

∥

∥x⋆ − w
∥

∥

2 ≤ F(w) − F
(

x⋆).

Thus, if we want to ensure that the objective value will
decrease in this procedure, we need to fix λ ≥ γ . Fur-
thermore, functional characteristics of l and φ, such
as strong convexity, can improve the bounds in the
steps above and guarantee good- or optimal-decreases
in F(w) − F(x⋆).

Finally, when we compound up the errors we obtain
a O(1/k) convergence bound. This can be improved by
adding a momentum term that includes the first deriva-
tive information.

These arguments can be extended to Bregman diver-
gences by way of the general law of cosines inequality:

Dφ(x, z) = Dφ(x,w) + Dφ(w, z)

−
(

∇φ(z) − ∇φ(w)
)⊤

(x − w),

so that Dφ(x, z) ≥ Dφ(x,w) + Dφ(w, z) where w =
argminv Dφ(v, z).



PROXIMAL ALGORITHMS 579

APPENDIX B: NESTEROV ACCELERATION

A powerful addition is Nesterov acceleration. Con-
sider a convex combination, with parameter θ , of up-
per bounds for the proximal operator inequality z = x

and z = x⋆. We are free to choose variables z = θx +
(1 − θ)x+ and w. If φ is convex, φ(θx + (1 − θ)x+) ≤
θφ(x) + (1 − θ)φ(x+), then we have

F
(

x+)

− F ⋆ − (1 − θ)
(

F(x) − F ⋆)

= F
(

x+)

− θF ⋆ − (1 − θ)F (x)

≤ λ
(

x+ − w
)⊤(

θx⋆ + (1 − θ)x − x+)

+ λ

2

∥

∥x+ − w
∥

∥

2

= λ

2

(
∥

∥w − (1 − θ)x − θx⋆
∥

∥

2

−
∥

∥x+ − (1 − θ)x − θx⋆
∥

∥

2)

= θ2λ

2

(
∥

∥u − x⋆
∥

∥

2 −
∥

∥u+ − x⋆
∥

∥

2)

,

where w is given in terms of the intermediate steps

θu = w − (1 − θ)x,

θu+ = x+ − (1 − θ)x,

introducing a sequence θt with iteration subscript, t .
The second identity, θu = x − (1 − θ)x−, then yields
an update for w as the current state x plus a momentum
term, depending on the direction (x − x−), namely,

w = (1 − θt )x + θtu = x − θt−1(1 − θt )
(

x − x−)

.

APPENDIX C: QUASI-CONVEX CONVERGENCE

Consider an optimization problem minx∈X l(x)

where l is quasi-convex, continuous and has a non-
empty set of finite global minima. Let xt be generated
by the proximal point algorithm

xt ∈ argmin
{

l(x) + λt

2

∥

∥x − xt
∥

∥

2
}

.

Papa Quiroz and Oliveira (2009) show that these iter-
ates converge to the global minima, although the proxi-
mal operator at each step may be set-valued, due to the
nonconvexity of l. A function l is quasi-convex when

l
(

θx + (1 − θ)z
)

≤ max
(

l(x), l(z)
)

,

which accounts for a number of nonconvex functions
like |x|q , when 0 < q < 1, and functions involving ap-
propriate ranges of log(x) and tanh(x). In this setting,
using the level-sets generated by the sequence, that is,

U = {x ∈ dom(l) : l(x) ≤ inft l(xt )}, one finds that U

is a nonempty closed convex set and that xt is a Fe-
jér sequence of finite length,

∑

t ‖xt+1 − xt‖ < ∞,
and that it converges to a critical point of l as long as
min{l(x) : x ∈ R

d} is nonempty.

APPENDIX D: NONCONVEX:

KURDYKA–ŁOJASIEWICZ (KL)

A locally Lipschitz function l : Rd →R satisfies KL
at x⋆ ∈ R

d if and only if ∃η ∈ (0,∞) and a neighbor-
hood U of x⋆ and a concave κ : [0, η] → [0,∞) with
κ(0) = 0, κ ∈ C1, κ ′ > 0 on (0, η) and for every x ∈ U

with l(x⋆) < l(x) < l(x⋆) + η we have

κ ′{l(x) − l
(

x⋆)} dist
(

0, ∂l(x)
)

≥ 1,

where dist(0,A) := supx∈A ‖x‖2.
The KL condition guarantees summability and there-

fore a finite length of the discrete subgradient trajec-
tory. Using the KL properties of a function, one can
show convergence for alternating minimization algo-
rithms for problems like

min
x,z

L(x, z) := l(x) + Q(x, z) + φ(z),

where ∇Q is Lipschitz continuous (see Attouch et al.,
2010, Attouch, Bolte and Svaiter, 2013). A typical ap-
plication involves solving minx∈Rd {l(x) + φ(x)} via
the augmented Lagrangian

L(x, z) = l(x) + φ(z) + λ⊤(x − z) + ρ

2
‖x − z‖2,

where ρ is a relaxation parameter.
A useful class of functions that satisfy KL is one that

possesses uniform convexity

l(z) ≥ l(x) + u⊤(z − x) + K‖z − x‖p,

where

p ≥ 1 ∀u ∈ ∂l(x).

Then l satisfies KL on dom(l) for κ(s) = pK−1/ps1/p .
For explicit convergence rates in the KL setting, see

Frankel, Garrigos and Peypouquet (2015).
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