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Abstract

We consider optimization problems over the Stiefel manifold whose objective function is the
summation of a smooth function and a nonsmooth function. Existing methods for solving this
kind of problems can be classified into three classes. Algorithms in the first class rely on infor-
mation of the subgradients of the objective function and thus tend to converge slowly in practice.
Algorithms in the second class are proximal point algorithms, which involve subproblems that
can be as difficult as the original problem. Algorithms in the third class are based on operator-
splitting techniques, but they usually lack rigorous convergence guarantees. In this paper, we
propose a retraction-based proximal gradient method for solving this class of problems. We
prove that the proposed method globally converges to a stationary point. Iteration complexity
for obtaining an ǫ-stationary solution is also analyzed. Numerical results on solving sparse PCA
and compressed modes problems are reported to demonstrate the advantages of the proposed
method.

Keywords— Manifold Optimization; Stiefel Manifold; Nonsmooth; Proximal Gradient Method; Itera-
tion Complexity; Semi-smooth Newton Method; Sparse PCA; Compressed Modes

1 Introduction

Optimization over Riemannian manifolds has recently drawn a lot of attention due to its applications in many
different fields, including low-rank matrix completion [18, 76], phase retrieval [10, 73], phase synchronization
[17, 57], blind deconvolution [47], and dictionary learning [23, 72]. Manifold optimization seeks to minimize an
objective function over a smooth manifold. Some commonly encountered manifolds include the sphere, Stiefel
manifold, Grassmann manifold, and Hadamard manifold. The recent monograph by Absil et al. [4] studies
this topic in depth. In particular, it studies several important classes of algorithms for manifold optimization
with smooth objective, including line-search method, Newton’s method, and trust-region method. There are
also many gradient-based algorithms for solving manifold optimization problems, including [79, 68, 69, 56,
49, 87]. However, all these methods require computing the derivatives of the objective function and do not
apply to the case where the objective function is nonsmooth.

In this paper, we focus on a class of nonsmooth nonconvex optimization problems over the Stiefel manifold
that takes the form

min F (X) := f(X) + h(X), s.t., X ∈M := St(n, r) = {X : X ∈ R
n×r, X⊤X = Ir}, (1.1)

where Ir denotes the r×r identity matrix (r ≤ n). Throughout this paper, we make the following assumptions
about (1.1):
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Assumption 1.1. (i) f is smooth, possibly nonconvex, and its gradient ∇f is Lipschitz continuous with
Lipschitz constant L.

(ii) h is convex, possibly nonsmooth, and is Lipschitz continuous with constant Lh.

Note that here the smoothness, Lipschitz continuity and convexity are interpreted when the function in
question is considered as a function in the ambient Euclidean space.

We restrict our discussions in this paper to (1.1) because it already finds many important applications in
practice. In the following we briefly mention some representative applications of (1.1). For more examples
of manifold optimization with nonsmooth objectives, we refer the reader to [3].

Example 1. Sparse Principal Component Analysis. Principal Component Analysis (PCA), pro-
posed by Pearson [63] and later developed by Hotelling [46], is one of the most fundamental statistical tools
in analyzing high-dimensional data. Sparse PCA seeks principal components with very few nonzero compo-
nents. For given data matrix A ∈ R

m×n, the sparse PCA that seeks the leading r (r < min{m,n}) sparse
loading vectors can be formulated as

minX∈Rn×r −Tr(X⊤A⊤AX) + µ‖X‖1
s.t. X⊤X = Ir,

(1.2)

where Tr(Y ) denotes the trace of matrix Y , the ℓ1 norm is defined as ‖X‖1 =
∑

ij |Xij |, µ > 0 is a weighting
parameter. This is the original formulation of sparse PCA as proposed by Jolliffe et al. in [50], where the
model is called SCoTLASS and imposes sparsity and orthogonality to the loading vectors simultaneously.
When µ = 0, (1.2) reduces to computing the leading r eigenvalues and the corresponding eigenvectors of
A⊤A. When µ > 0, the ℓ1 norm ‖X‖1 can promote sparsity of the loading vectors. There are many numerical
algorithms for solving (1.2) when r = 1. In this case, (1.2) is relatively easy to solve because X reduces
to a vector and the constraint set reduces to a sphere. However, there has been very limited literature for
the case r > 1. Existing works, including [94, 25, 70, 51, 58], do not impose orthogonal loading directions.
As discussed in [51], “Simultaneously enforcing sparsity and orthogonality seems to be a hard (and perhaps
questionable) task.” We refer the interested reader to [95] for more details on existing algorithms for solving
sparse PCA. As we will discuss later, our algorithm can solve (1.2) with r > 1 (i.e., imposing sparsity and
orthogonality simultaneously) efficiently.

Example 2. Compressed Modes in Physics. This problem seeks spatially localized (“sparse”)
solutions of the independent-particle Schrödinger’s equation. Sparsity is achieved by adding an L1 regulari-
zation of the wave functions, which leads to solutions with compact support (“compressed modes”). For 1D
free-electron case, after proper discretization, this problem can be formulated as

minX∈Rn×r Tr(X⊤HX) + µ‖X‖1
s.t. X⊤X = Ir,

(1.3)

where H denotes the discretized Schrödinger operator. Note that the L1 regularization reduces to the ℓ1
norm of X after discretization. We refer the reader to [62] for more details of this problem. Note that (1.2)
and (1.3) are different in the way that H and A⊤A have totally different structures. In particular, H is
the discretized Schrödinger Hamiltonian, which is a block circulant matrix, while A in (1.2) usually comes
from statistical data and thus A⊤A is usually dense and unstructured. These differences may affect the
performance of algorithms for solving them.

Example 3. Unsupervised Feature Selection. It is much more difficult to select the discriminative
features in unsupervised learning than supervised learning. There are some recent works that model this
task as a manifold optimization problem in the form of (1.1). For instance, [85] and [74] assume that there
is a linear classifier W which classifies each data point xi (where i = 1, . . . , n) in the training data set to
a class, and by denoting Gi = W⊤xi, [G1, . . . , Gn] gives a scaled label matrix which can be used to define
some local discriminative scores. The target is to train a W such that the local discriminative scores are the
highest for all the training data x1, . . . , xn. It is suggested in [85] and [74] to solve the following model to
find W :

minW∈Rn×r Tr(W⊤MW ) + µ‖W‖2,1
s.t. W⊤W = Ir,

where M is a given matrix computed from the input data, the ℓ2,1 norm is defined as ‖W‖2,1 =
∑n

i=1 ‖W (i, :
)‖2 with W (i, :) being the i-th row of W , which promotes the row sparsity of W , and the orthogonal constraint
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is imposed to avoid arbitrary scaling and the trivial solution of all zeros. We refer the reader to [85] and [74]
for more details.

Example 4. Sparse Blind Deconvolution. Given the observations

y = a0 ⊛ x0 ∈ R
m,

how can one recover both the convolution kernel a0 ∈ R
k and signal x0 ∈ R

m? Here x0 is assumed to have a
sparse and random support and ⊛ denotes the convolution operator. This problem is known as sparse blind
deconvolution. Some recent works on this topic suggest the following optimization formulation to recover a0
and sparse x0 (see, e.g., [90]):

mina,x ‖y − a⊛ x‖22 + µ‖x‖1
s.t. ‖a‖2 = 1.

Note that the sphere constraint here is a special case of the Stiefel manifold; i.e., St(k, 1).
Example 5. Nonconvex Regularizer. Problem (1.1) also allows nonconvex regularizer functions. For

example, instead of using the ℓ1 norm to promote sparsity, we can use the MCP (minimax concave penalty)
function [86], which has been widely used in statistics. The MCP function is nonconvex and is given by

P (x) =

{

λ|x| − x2

2λ , if |x| ≤ γλ,
1
2γλ

2, otherwise,

where λ and γ are given parameters, and x ∈ R. If we replace the ℓ1 norm in sparse PCA (1.2) by MCP, it
reduces to

minX∈Rn×r −Tr(X⊤A⊤AX) + µ
∑

ij P (Xij)

s.t. X⊤X = Ir.
(1.4)

It is easy to see that the objective function in (1.4) can be rewritten as f1(X) + f2(X), with f1(X) =
−Tr(X⊤A⊤AX) + µ(

∑

ij P (Xij)− λ‖X‖1) and f2(X) = µλ‖X‖1. Note that f1 is smooth and its gradient
is Lipschitz continuous. Therefore, (1.4) is an instance of (1.1).

Our Contributions. Due to the needs of the above-mentioned applications, it is highly desirable
to design an efficient algorithm for solving (1.1). In this paper, we propose a proximal gradient method
for solving it. The proposed method, named ManPG (Manifold Proximal Gradient Method), is based on
the proximal gradient method with a retraction operation to keep the iterates feasible with respect to the
manifold constraint. Each step of ManPG involves solving a well-structured convex optimization problem,
which can be done efficiently by the semi-smooth Newton method. We prove that ManPG converges to
a stationary point of (1.1) globally. We also analyze the iteration complexity of ManPG for obtaining an
ǫ-stationary point. Numerical results on sparse PCA (1.2) and compressed modes (1.3) problems show that
our ManPG algorithm compares favorably with existing methods.

Notation. The following notation is adopted throughout this paper. The tangent space to M at point
X is denoted by TXM. We use 〈A,B〉 = Tr(A⊤B) to denote the Euclidean inner product of two matrices
A,B. We consider the Riemannian metric on M that is induced from the Euclidean inner product; i.e,
for any ξ, η ∈ TXM, we have 〈ξ, η〉X = Tr(ξ⊤η). We use ‖X‖F to denote the Frobenius norm of X and
‖A‖op to denote the operator norm of a linear operator A. The Euclidean gradient of a smooth function
f is denoted as ∇f and the Riemannian gradient of f is denoted as grad f . Note that by our choice
of the Riemannian metric, we have grad f(X) = ProjTXM∇f(X), the orthogonal projection of ∇f(X)
onto the tangent space. According to [4], the projection of Y onto the tangent space at X ∈ St(n, r)
is given by ProjTXSt(n,r) = (In − XX⊤)Y + 1

2X(X⊤Y − Y ⊤X). We use Retr to denote the retraction
operation. For a convex function h, its Euclidean subgradient and Riemannian subgradient are denoted by
∂h and ∂̂h, respectively. We use vec(X) to denote the vector formed by stacking the column vectors of X.
The set of r × r symmetric matrices is denoted by Sr. Given an X ∈ Sr, we use vec(X) to denote the
1
2r(r + 1)-dimensional vector obtained from vec(X) by eliminating all super-diagonal elements of X. We
denote Z � 0 if (Z + Z⊤)/2 is positive semidefinite. The proximal mapping of h at point X is defined by
proxh(X) = argminY

1
2‖Y −X‖2F + h(Y ).

Organization. The rest of this paper is organized as follows. In Section 2 we briefly review existing
works on solving manifold optimization problems with nonsmooth objective functions. We introduce some
preliminaries of manifolds in Section 3. The main algorithm ManPG and the semi-smooth Newton method
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for solving the subproblem are presented in Section 4. In Section 5, we establish the global convergence
of ManPG and analyze its iteration complexity for obtaining an ǫ-stationary solution. Numerical results
of ManPG on solving compressed modes problems in physics and sparse PCA are reported in Section 6.
Finally, we draw some concluding remarks in Section 7.

2 Nonsmooth Optimization over Riemannian Manifold

Unlike manifold optimization with a smooth objective, which has been studied extensively in the monograph
[4], the literature on manifold optimization with a nonsmooth objective has been relatively limited. Numerical
algorithms for solving manifold optimization with nonsmooth objectives can be roughly classified into three
categories: subgradient-oriented methods, proximal point algorithms, and operator-splitting methods. We
now briefly discuss the existing works in these three categories.

2.1 Subgradient-oriented Methods

Algorithms in the first category include the ones proposed in [30, 16, 40, 42, 45, 43, 9, 26, 39], which are all
subgradient-oriented methods. Ferreira and Oliveria [30] studied the convergence of subgradient method for
minimizing a convex function over a Riemannian manifold. The subgradient method generates the iterates
via

Xk+1 = expXk
(tkVk),

where expXk
is the exponential mapping at Xk and Vk denotes a Riemannian subgradient of the objective.

Like the subgradient method in Euclidean space, the stepsize tk is chosen to be diminishing to guarantee
convergence. However, the result in [30] does not apply to (1.1) because it is known that every smooth
function that is convex on a compact Riemannian manifold is a constant [14]. This motivated some more
advanced works on Riemannian subgradient method. Specifically, Dirr et al. [26] and Borckmans et al.
[16] proposed subgradient methods on manifold for the case where the objective function is the pointwise
maximum of smooth functions. In this case, some generalized gradient can be computed and a descent
direction can be found by solving a quadratic program. Grohs and Hosseini [40] proposed a Riemannian
ε-subgradient method. Hosseini and Uschmajew [45] proposed a Riemannian gradient sampling algorithm.
Hosseini et al. [43] generalized the Wolfe conditions and extended the BFGS algorithm to nonsmooth
functions on Riemannian manifolds. Grohs and Hosseini [39] generalized a nonsmooth trust region method to
manifold optimization. Hosseini [42] studied the convergence of some subgradient-oriented descent methods
based on the Kurdyka- Lojasiewicz (K L) inequality. Roughly speaking, all the methods studied in [26, 16,
40, 45, 43, 39, 42] require subgradient information to build a quadratic program to find a descent direction:

ĝ ←− min
g∈conv(W )

‖g‖, (2.1)

where conv(W ) denotes the convex hull of set W = {Gj , j = 1, . . . , J}, Gj is the Riemannian gradient of a
differentiable point around the current iterate X, and J usually needs to be larger than the dimension ofM.
Subsequently, the iterate X is updated by X+ = RetrX(αĝ), where the stepsize α is found by line search.
For high-dimensional problems on the Stiefel manifold St(n, r), (2.1) can be difficult to solve because n is
large. Since subgradient algorithm is known to be slower than the gradient algorithm and proximal gradient
algorithm in Euclidean space, it is expected that these subgradient-based algorithms are not as efficient as
gradient algorithms and proximal gradient algorithms on manifold in practice.

2.2 Proximal Point Algorithms

Proximal point algorithms (PPAs) for solving manifold optimization are also studied in the literature. Fer-
reira and Oliveira [31] extended PPA to manifold optimization, which in each iteration needs to minimize
the original function plus a proximal term over the manifold. However, there are two issues that limit its
applicability. The first is that the subproblem can be as difficult as the original problem. For example,
Bacak et al. [9] suggested to use the subgradient method to solve the subproblem, but they require the
subproblem to be in the form of the pointwise maximum of smooth functions tackled in [16]. The second
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is that the discussions in the literature mainly focus on the Hadamard manifold and exploit heavily the
convexity assumption of the objective function. Thus, they do not apply to compact manifolds such as
St(n, r). Bento et al. [12] aimed to resolve the second issue and proved the convergence of the PPA for
more general Riemannian manifolds under the assumption that the K L inequality holds for the objective
function. In [11], Bento et al. analyzed the convergence of some inexact descent methods based on the K L
inequality, including the PPA and steepest descent method. In a more recent work [13], Bento et al. studied
the iteration complexity of PPA under the assumption that the constraint set is the Hadamard manifold and
the objective function is convex. Nevertheless, the results in [31, 12, 11, 13] seem to be of theoretical interest
only because no numerical results were shown. As mentioned earlier, this could be due to the difficulty in
solving the PPA subproblems.

2.3 Operator Splitting Methods

Operator-splitting methods do not require subgradient information, and existing works in the literature
mainly focus on the Stiefel manifold. Note that (1.1) is challenging because of the combination of two
difficult terms: Riemannian manifold and nonsmooth objective. If only one of them is present, then the
problem is relatively easy to solve. Therefore, the alternating direction method of multipliers (ADMM)
becomes a natural choice for solving (1.1). ADMM for solving convex optimization problems with two
block variables is closely related to the famous Douglas-Rachford operator splitting method, which has a
long history [36, 33, 55, 32, 35, 27]. The renaissance of ADMM was initiated by several papers around
2007-2008, where it was successfully applied to solve various signal processing [24] and image processing
problems [82, 37, 6]. The recent survey paper [21] popularized this method in many areas. Recently, there
have been some emerging interests in ADMM for solving manifold optimization of the form (1.1); see, e.g.,
[53, 52, 89, 78]. However, the algorithms presented in these papers either lack convergence guarantee ([53, 52])
or their convergence needs further conditions that do not apply to (1.1) ([78, 89]).

Here we briefly describe the SOC method (Splitting method for Orthogonality Constrained problems)
presented in [53]. The SOC method aims to solve

min J(X), s.t., X ∈M

by introducing an auxiliary variable P and considering the following reformulation:

min J(P ), s.t., P = X,X ∈M. (2.2)

By associating a Lagrange multiplier Λ to the linear equality constraint, the augmented Lagrangian function
of (2.2) can be written as

Lβ(X,P ; Λ) := J(P )− 〈Λ, P −X〉+
β

2
‖P −X‖2F ,

where β > 0 is a penalty parameter. The SOC algorithm then generates its iterates as follows:

P k+1 := argminP Lβ(P,Xk; Λk),
Xk+1 := argminX Lβ(P k+1, X; Λk), s.t., X ∈M,
Λk+1 := Λk − β(P −X).

Note that the X-subproblem corresponds to the projection onto M, and the P -subproblem is an uncon-
strained problem whose complexity depends on the structure of J . In particular, if J is smooth, then the
P -subproblem can be solved iteratively by the gradient method; if J is nonsmooth and has an easily compu-
table proximal mapping, then the P -subproblem can be solved directly by computing the proximal mapping
of J .

The MADMM (manifold ADMM) algorithm presented in [52] aims to solve the following problem:

min
X,Z

f(X) + g(Z), s.t., Z = AX, X ∈ St(n, r), (2.3)

where f is smooth and g is nonsmooth with an easily computable proximal mapping. The augmented
Lagrangian function of (2.3) is

Lβ(X,Z; Λ) := f(X) + g(Z)− 〈Λ, Z −AX〉+
β

2
‖Z −AX‖2F
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and the MADMM algorithm generates its iterates as follows:

Xk+1 := argminX Lβ(X,Zk; Λk), s.t., X ∈ St(n, r),
Zk+1 := argminZ Lβ(Xk+1, Z; Λk),
Λk+1 := Λk − β(Zk+1 −AXk+1).

Note that the X-subproblem is a smooth optimization problem on the Stiefel manifold, and the authors
suggested to use the Manopt toolbox [20] to solve it. The Z-subproblem corresponds to the proximal
mapping of function g.

As far as we know, however, the convergence guarantees of SOC and MADMM are still missing in the
literature. Though there are some recent works that analyze the convergence of ADMM for nonconvex
problems [78, 89], their results need further conditions that do not apply to (1.1) and its reformulations (2.2)
and (2.3).

More recently, some other variants of the augmented Lagrangian method are proposed to deal with (1.1).
In [22], Chen et al. proposed a PAMAL method which hybridizes an augmented Lagrangian method with the
proximal alternating minimization method [7]. More specifically, PAMAL solves the following reformulation
of (1.1):

min
X,Q,P

f(P ) + h(Q), s.t., Q = X,P = X,X ∈ St(n, r). (2.4)

By associating Lagrange multipliers Λ1 and Λ2 to the two linear equality constraints, the augmented La-
grangian function of (2.4) can be written as

Lβ(X,Q,P ; Λ1,Λ2) := f(P ) + h(Q)− 〈Λ1, Q−X〉 − 〈Λ2, P −X〉+
β

2
‖Q−X‖2F +

β

2
‖P −X‖2F ,

where β > 0 is a penalty parameter. The augmented Lagrangian method for solving (2.4) is then given by

(Xk+1, Qk+1, P k+1) := argminX,Q,P Lβ(X,Q, P ; Λk
1 ,Λ

k
2), s.t., X ∈ St(n, r),

Λk+1
1 := Λk

1 − β(Qk+1 −Xk+1),

Λk+1
2 := Λk

2 − β(P k+1 −Xk+1).

(2.5)

Note that the subproblem in (2.5) is still difficult to solve. Therefore, the authors of [22] suggested to
use the proximal alternating minimization method [7] to solve the subproblem in (2.5) inexactly. They
named the augmented Lagrangian method (2.5) with subproblems being solved by the proximal alternating
minimization method as PAMAL. They proved that under certain conditions, any limit point of the sequence
generated by PAMAL is a KKT point of (2.4). It needs to be pointed out that the proximal alternating
minimization procedure involves many parameters that need to be tuned in order to solve the subproblem
inexactly. Our numerical results in Section 6 indicate that the performance of PAMAL significantly depends
on the setting of these parameters.

In [93], Zhu et al. studied another algorithm called EPALMAL for solving (1.1) that is based on the
augmented Lagrangian method and the PALM algorithm [15]. The difference between EPALMAL and
PAMAL is that they use different algorithms to minimize the augmented Lagrangian function inexactly. In
particular, EPALMAL uses the PALM algorithm [15], while PAMAL uses PAM [7]. It is also shown in [93]
that any limit point of the sequence generated by EPALMAL is a KKT point. However, their result assumes
that the iterate sequence is bounded, which holds automatically if the manifold in question is bounded but
is hard to verify otherwise.

3 Preliminaries on Manifold Optimization

We first introduce the elements of manifold optimization that will be needed in the study of (1.1). In fact,
our discussion in this section applies to the case where M is any embedded submanifold of an Euclidean
space. To begin, we say that a function F is locally Lipschitz continuous if for any X ∈ M, it is Lipschitz
continuous in a neighborhood of X. Note that if F is locally Lipschitz continuous in the Euclidean space E ,
then it is also locally Lipschitz continuous when restricted to the embedded submanifold M of E .
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Definition 3.1. (Generalized Clarke subdifferential [44]) For a locally Lipschitz function F on M, the
Riemannian generalized directional derivative of F at X ∈M in the direction V is defined by

F ◦(X,V ) = lim sup
Y→X,t↓0

F ◦ φ−1(φ(Y ) + tDφ(X)[V ])− F ◦ φ−1(φ(Y ))

t
,

where (φ, U) is a coordinate chart at X. The generalized gradient or the Clarke subdifferential of F at

X ∈M, denoted by ∂̂F (X), is given by

∂̂F (X) = {ξ ∈ TXM : 〈ξ, V 〉 ≤ F ◦(X,V ), ∀V ∈ TXM}.

Definition 3.2. ([84]) A function f is said to be regular at X ∈M along TXM if

• for all V ∈ TXM, f ′(X;V ) = limt↓0
f(X + tV )− f(X)

t
exists, and

• for all V ∈ TXM, f ′(X;V ) = f◦(X;V ).

For a smooth function f , we know that grad f(X) = ProjTXM∇f(X) by our choice of the Riemannian

metric. According to Theorem 5.1 in [84], for a regular function F , we have ∂̂F (X) = ProjTXM(∂F (X)).
Moreover, the function F (X) = f(X) + h(X) in problem (1.1) is regular according to Lemma 5.1 in [84].

Therefore, we have ∂̂F (X) = ProjTXM(∇f(X) +∂h(X)) = gradf(X) + ProjTXM(∂h(X)). By Theorem 4.1
in [84], the first-order necessary condition of problem (1.1) is given by 0 ∈ gradf(X) + ProjTXM(∂h(X)).

Definition 3.3. A point X ∈ M is called a stationary point of problem (1.1) if it satisfies the first-order
necessary condition; i.e., 0 ∈ gradf(X) + ProjTXM(∂h(X)).

A classical geometric concept in the study of manifolds is that of an exponential mapping, which defines
a geodesic curve on the manifold. However, the exponential mapping is difficult to compute in general. The
concept of a retraction [4], which is a first-order approximation of the exponential mapping and can be more
amenable to computation, is given as follows.

Definition 3.4. [4, Definition 4.1.1] A retraction on a differentiable manifold M is a smooth mapping
Retr from the tangent bundle TM onto M satisfying the following two conditions (here RetrX denotes the
restriction of Retr onto TXM):

1. RetrX(0) = X, ∀X ∈M, where 0 denotes the zero element of TXM.

2. For any X ∈M, it holds that

lim
TXM∋ξ→0

‖RetrX(ξ)− (X + ξ)‖F
‖ξ‖F

= 0.

Remark 3.5. Since M is an embedded submanifold of Rn×r, we can treat X and ξ as elements in R
n×r

and hence their sum is well defined. The second condition in Definition 3.4 ensures that RetrX(ξ) = X +
ξ + O(‖ξ‖2

F
) and DRetrX(0) = Id, where DRetrX is the differential of RetrX and Id denotes the identity

mapping. For more details about retraction, we refer the reader to [4, 19] and the references therein.

The retraction onto the Euclidean space is simply the identity mapping; i.e., RetrX(ξ) = X + ξ. For the
Stiefel manifold St(n, r), common retractions include the exponential mapping [28]

RetrexpX (tξ) = [X,Q] exp

(

t

[

−X⊤ξ −R⊤

R 0

])[

Ir
0

]

,

where QR = −(In −XX⊤)ξ is the unique QR factorization; the polar decomposition

RetrpolarX (ξ) = (X + ξ)(Ir + ξ⊤ξ)−1/2;

the QR decomposition
RetrQR

X (ξ) = qf(X + ξ),
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where qf(A) is the Q factor of the QR factorization of A; the Cayley transformation [79]

RetrcayleyX (ξ) =

(

In −
1

2
W (ξ)

)−1 (

In +
1

2
W (ξ)

)

X,

where W (ξ) = (In −
1
2XX⊤)ξX⊤ −Xξ⊤(In −

1
2XX⊤).

For any matrix Y ∈ R
n×r with r ≤ n, its orthogonal projection onto the Stiefel manifold St(n, r) is given

by UIrV
⊤, where U, V are the left and right singular vectors of Y , respectively. If Y has full rank, then the

projection can be computed by Y (Y ⊤Y )−1/2, which is the same as the polar decomposition. The total cost
of computing the projection UIrV

⊤ is 8nr2 +O(r3) flops, where the SVD needs 6nr2 +O(r3) flops [38] and
the formation of UIrV

⊤ needs 2nr2 flops. By comparison, if Y = X + ξ and ξ ∈ TXM, then the exponential
mapping takes 8nr2 + O(r3) flops and the polar decomposition takes 3nr2 + O(r3) flops, where ξ⊤ξ needs
nr2 flops and the remaining 2nr2 + O(r3) flops come from the final assembly. Thus, polar decomposition
is cheaper than the projection. Moreover, the QR decomposition of X + ξ takes 2nr2 + O(r3) flops. For
the Cayley transformation of X + ξ, the total cost is 7nr2 + O(r3) [79, 48]. In our algorithm that will be
introduced later, we need to perform one retraction operation in each iteration. We need to point out that
retractions may also affect the overall convergence speed of the algorithm. As a result, determining the most
efficient retraction used in the algorithm is still an interesting question to investigate in practice; see also
the discussion after Theorem 3 of [56].

The retraction Retr has the following properties that are useful for our convergence analysis:

Fact 3.6. ([19, 56]) LetM be a compact embedded submanifold of an Euclidean space. For all X ∈M and
ξ ∈ TXM, there exist constants M1 > 0 and M2 > 0 such that the following two inequalities hold:

‖RetrX(ξ)−X‖F ≤M1‖ξ‖F, ∀X ∈M, ξ ∈ TXM, (3.1)

‖RetrX(ξ)− (X + ξ)‖F ≤M2‖ξ‖
2
F
, ∀X ∈M, ξ ∈ TXM. (3.2)

4 Proximal Gradient Method on the Stiefel Manifold

4.1 The ManPG Algorithm

For manifold optimization problems with a smooth objective, the Riemannian gradient method [1, 4, 61] has
been one of the main methods of choice. A generic update formula of the Riemannian gradient method for
solving

min
X

F (X), s.t., X ∈M

is
Xk+1 := RetrXk

(αkVk),

where F is smooth, Vk is a descent direction of F in the tangent space TXk
M, and αk is a step size. Recently,

Boumal et al. [19] established the sublinear rate of the Riemannian gradient method for returning a point Xk

satisfying ‖gradF (Xk)‖F < ǫ. Liu et al. [56] proved that the Riemannian gradient method converges linearly
for quadratic minimization over the Stiefel manifold. Other methods for solving manifold optimization
problems with a smooth objective have also been studied in the literature, including the conjugate gradient
methods [4, 2], trust region methods [4, 19], and Newton-type methods [4, 67].

We now develop our ManPG algorithm for solving (1.1). Since the objective function in (1.1) has a
composite structure, a natural idea is to extend the proximal gradient method from the Euclidean setting to
the manifold setting. The proximal gradient method for solving minX F (X) := f(X)+h(X) in the Euclidean
setting generates the iterates as follows:

Xk+1 := argmin
Y

f(Xk) + 〈∇f(Xk), Y −Xk〉+
1

2t
‖Y −Xk‖

2
F + h(Y ). (4.1)

In other words, one minimizes the quadratic model Y 7→ f(Xk) + 〈∇f(Xk), Y −Xk〉+
1
2t‖Y −Xk‖

2
F + h(Y )

of F at Xk in the k-th iteration, where t > 0 is a parameter that can be regarded as the stepsize. It is
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known that the quadratic model is an upper bound of F when t ≤ 1/L, where L is the Lipschitz constant
of ∇f . The subproblem (4.1) corresponds to the proximal mapping of h and the efficiency of the proximal
gradient method relies on the assumption that (4.1) is easy to solve. For (1.1), in order to deal with the
manifold constraint, we need to ensure that the descent direction lies in the tangent space. This motivates
the following subproblem for finding the descent direction Vk in the k-th iteration:

Vk := argminV 〈grad f(Xk), V 〉+ 1
2t‖V ‖

2
F + h(Xk + V )

s.t. V ∈ TXk
M,

(4.2)

where t > 0 is the stepsize. Here and also in the later discussions, we can interpret Xk +V as the sum of Xk

and V in the ambient Euclidean space R
n×r, as M is an embedded submanifold of Rn×r. Note that (4.2)

is different from (4.1) in two places: (i) the Euclidean gradient ∇f is changed to the Riemannian gradient
grad f ; (ii) the descent direction Vk is restricted to the tangent space. Following the definition of grad f , we
have

〈gradf(Xk), V 〉 = 〈∇f(Xk), V 〉, ∀V ∈ TXk
M,

which implies that (4.2) can be rewritten as

Vk := argminV 〈∇f(Xk), V 〉+ 1
2t‖V ‖

2
F + h(Xk + V )

s.t. V ∈ TXk
M.

(4.3)

As a result, we do not need to compute the Riemannian gradient grad f . Rather, only the Euclidean gradient
∇f is needed. Note that without considering the constraint V ∈ TXk

M, (4.3) computes a proximal gradient
step. Therefore, (4.3) can be viewed as a proximal gradient step restricted to the tangent space TXk

M.
Since for an arbitrary stepsize αk > 0, Xk + αkVk does not necessarily lie on the manifoldM, we perform a
retraction to bring it back to M.

Our ManPG algorithm for solving (1.1) is described in Algorithm 1. Note that ManPG involves an
Armijo line search procedure to determine the stepsize α. As we will show in Section 5, this backtracking
line search procedure is well defined; i.e., it will terminate after finite number of steps.

Algorithm 1 Manifold Proximal Gradient Method (ManPG) for Solving (1.1)

1: Input: initial point X0 ∈M, γ ∈ (0, 1), stepsize t > 0
2: for k = 0, 1, . . . do
3: obtain Vk by solving the subproblem (4.3)
4: set α = 1

5: while F (RetrXk
(αVk)) > F (Xk)−

α‖Vk‖
2
F

2t
do

6: α = γα
7: end while

8: set Xk+1 = RetrXk
(αVk)

9: end for

4.2 Regularized Semi-Smooth Newton Method for Subproblem (4.3)

The main computational effort of Algorithm 1 lies in solving the convex subproblem (4.3). We have conducted
extensive numerical experiments and found that the semi-smooth Newton method (SSN) is very suitable for
this purpose. The notion of semi-smoothness was originally introduced by Mifflin [60] for real-valued functions
and later extended to vector-valued mappings by Qi and Sun [65]. A pioneering work on the SSN method
was due to Solodov and Svaiter [71], in which the authors proposed a globally convergent Newton method
by exploiting the structure of monotonicity and established a local superlinear convergence rate under the
conditions that the generalized Jacobian is semi-smooth and non-singular at the global optimal solution.
The convergence rate guarantee was later extended in [92] to the setting where the generalized Jacobian is
not necessarily non-singular. Recently, the SSN method has received significant amount of attention due to
its success in solving structured convex problems to a high accuracy. In particular, it has been successfully
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applied to solving SDP [91, 83], LASSO [54], nearest correlation matrix estimation [64], clustering [77], sparse
inverse covariance selection [81], and composite convex minimization [80].

In the following we show how to apply the SSN method to solve the subproblem (4.3) withM = St(n, r).
The tangent space to M = St(n, r) is given by

TXM = {V | V ⊤X + X⊤V = 0}.

For ease of notation, we define the linear operator Ak by Ak(V ) := V ⊤Xk+X⊤
k V and rewrite the subproblem

(4.3) as
Vk := argminV 〈∇f(Xk), V 〉+ 1

2t‖V ‖
2
F + h(Xk + V )

s.t. Ak(V ) = 0.
(4.4)

By associating a Lagrange multiplier Λ to the linear equality constraint, the Lagrangian function of (4.4)
can be written as

L(V ; Λ) = 〈∇f(Xk), V 〉+
1

2t
‖V ‖2F + h(Xk + V )− 〈Ak(V ),Λ〉,

and the KKT system of (4.4) is given by

0 ∈ ∂V L(V ; Λ), Ak(V ) = 0. (4.5)

The first condition in (4.5) implies that V can be computed by

V (Λ) = proxth(B(Λ))−Xk with B(Λ) = Xk − t(∇f(Xk)−A∗
k(Λ)), (4.6)

where A∗
k denotes the adjoint operator of Ak. By substituting (4.6) into the second condition in (4.5), we

see that Λ satisfies
E(Λ) ≡ Ak(V (Λ)) = V (Λ)⊤Xk + X⊤

k V (Λ) = 0. (4.7)

We will use the SSN method to solve (4.7). To do so, we need to first show that the operator E is monotone
and Lipschitz continuous. For any Λ1,Λ2 ∈ Sr, we have

‖E(Λ1)− E(Λ2)‖F

≤‖Ak‖op‖proxth(B(Λ1))− proxth(B(Λ2))‖F

≤‖Ak‖op‖B(Λ1)−B(Λ2)‖F

≤t‖Ak‖
2
op‖Λ1 − Λ2‖F,

(4.8)

where the second inequality holds since the proximal mapping is non-expansive. Moreover,

〈E(Λ1)− E(Λ2),Λ1 − Λ2〉

=〈V (Λ1)− V (Λ2),A∗
k(Λ1 − Λ2)〉

=
1

t
〈proxth(B(Λ1))− proxth(B(Λ2)), B(Λ1)−B(Λ2)〉

≥
1

t
‖proxth(B(Λ1))− proxth(B(Λ2))‖2F

≥
1

t‖Ak‖2op
‖E(Λ1)− E(Λ2)‖2F ≥ 0,

where the first inequality holds since the proximal mapping is firmly non-expansive and the second inequality
is due to (4.8). In particular, we see that E is actually 1/(t‖Ak‖

2
op)-coercive. Therefore, E is indeed monotone

and Lipschitz continues, and we can apply the SSN method to find a zero of E. In order to apply the SSN
method, we need to compute the generalized Jacobian of E.1 Towards that end, observe that the vectorization
of E(Λ) can be represented by

vec(E(Λ)) = (X⊤
k ⊗ Ip)Knrvec(V (Λ)) + (Ir ⊗X⊤

k )vec(V (Λ))

= (Krr + Ir2)(Ip ⊗X⊤
k )

[

proxth(·)(vec(Xk − t∇f(Xk)) + 2t(Ir ⊗Xk)vec(Λ))− vec(Xk)
]

,

1See Appendix A for a brief discussion of the semi-smoothness of operators related to the proximal mapping.
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where Knr and Krr denote the commutation matrices. We define the matrix

G(vec(Λ)) = 2t(Krr + Ir2)(Ir ⊗X⊤
k )J (y)|y=vec(B(Λ))(Ir ⊗Xk),

where J (y) is the generalized Jacobian of proxth(y). From [41, Example 2.5], we know that G(vec(Λ))ξ =

∂vec(E(vec(Λ))ξ, ∀ξ ∈ R
r2 . Thus, G(vec(Λ)) can serve as a representation of ∂vec(E(vec(Λ))). Note that

since Λ is a symmetric matrix, we only need to focus on the lower triangular part of Λ. It is known that there
exists a unique r2 × 1

2r(r + 1) matrix Ur, called the duplication matrix [59, Ch 3.8], such that Urvec(Λ) =
vec(Λ). The Moore-Penrose inverse of Ur is U+

r = (U⊤
r Ur)−1U⊤

r and satisfies U+
r vec(Λ) = vec(Λ). Note

that both Ur and U+
r have only r2 nonzero elements. As a result, we can represent the generalized Jacobian

of vec(E(Urvec(Λ))) by

G(vec(Λ)) = tU+
r G(vec(Λ))Ur = 4tU+

r (Ir ⊗X⊤
k )J (y)|y=vec(B(Λ))(Ir ⊗Xk)Ur,

where we use the identity Krr + Ir2 = 2UrU
+
r . It should be pointed out that G(vec(Λ)) can be singular.

Therefore, the vanilla SSN method cannot be applied directly and we need to resort to a regularized SSN
method proposed in [71] and further studied in [92, 80]. It is known that the global convergence of the
regularized SSN method is guaranteed if any element in G(vec(Λ)) is positive semidefinite [80], which is the
case here because it can be shown that G(vec(Λ)) + G(vec(Λ))⊤ is positive semidefinite. We find that the
adaptive regularized SSN (ASSN) method proposed in [80] is very suitable for solving (4.7). The ASSN
method first computes the Newton direction dk by solving

(G(vec(Λk)) + ηI)d = −vec(E(Λk)), (4.9)

where η > 0 is a regularization parameter. If the matrix size is large, then (4.9) can be solved inexactly by
the conjugate gradient method. The authors then designed a strategy to decide whether to accept this dk
or not. Roughly speaking, if there is a sufficient decrease from ‖E(Λk)‖2 to ‖E(Λk+1)‖2, then we accept dk

and set
vec(Λk+1) = vec(Λk) + dk.

Otherwise, a safeguard step is taken. For more details on the ASSN method, we refer the reader to [80].

5 Global Convergence and Iteration Complexity

In this section, we analyze the convergence and iteration complexity of our ManPG algorithm (Algorithm
1) for solving (1.1). Our convergence analysis consists of three steps. First, in Lemma 5.1 we show that
Vk in (4.3) is a descent direction for the objective function in (4.3). Second, in Lemma 5.2 we show that
Vk is also a descent direction for the objective function in (1.1) after applying a retraction to it; i.e., there
is a sufficient decrease from F (Xk) to F (RetrXk

(αVk)). This is motivated by a similar result in Boumal

et al. [19], which states that the pullback function F̂ (V ) := F (RetrX(V )) satisfies certain Lipschitz-type
property. Therefore, the results here can be seen as an extension of the ones for smooth problems in [19] to
the nonsmooth problem (1.1). Third, we establish the global convergence of ManPG in Theorem 5.5.

Now, let us begin our analysis. The first observation is that the objective function in (4.3) is strongly
convex, which implies that the subproblem (4.3) is also strongly convex. Recall that a function g is said to
be α-strongly convex2 on R

n×r if

g(Y ) ≥ g(X) + 〈∂g(X), Y −X〉+
α

2
‖Y −X‖2F, ∀X,Y ∈ R

n×r. (5.1)

The following lemma shows that Vk obtained by solving (4.3) is indeed a descent direction in the tangent
space to M at Xk:

2A function g : R
n → R is called α−strongly convex [66, Definition 12.58] if there exists α > 0 such that

g((1 − t)x + ty) ≤ (1 − t)g(x) + tg(y) − 1

2
αt(1 − t)‖x − y‖2, for all x, y when t ∈ (0, 1). It is equivalent to that

g − 1

2
α‖ · ‖2 is convex [66, Exercise 12.59]. Thus, we have the definition in (5.1).
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Lemma 5.1. Given the iterate Xk, let

g(V ) := 〈∇f(Xk), V 〉+
1

2t
‖V ‖2F + h(Xk + V ) (5.2)

denote the objective function in (4.3). Then, the following holds for any α ∈ [0, 1]:

g(αVk)− g(0) ≤
(α− 2)α

2t
‖Vk‖

2
F
. (5.3)

Proof. Since g is (1/t)-strongly convex, we have

g(V̂ ) ≥ g(V ) + 〈∂g(V ), V̂ − V 〉+
1

2t
‖V̂ − V ‖2F, ∀V, V̂ ∈ R

n×r. (5.4)

In particular, if V, V̂ are feasible for (4.3) (i.e., V, V̂ ∈ TXk
M), then

〈∂g(V ), V̂ − V 〉 = 〈ProjTXk
M∂g(V ), V̂ − V 〉.

From the optimality condition of (4.3), we have 0 ∈ ProjTXk
M∂g(Vk). Letting V = Vk and V̂ = 0 in (5.4)

yields

g(0) ≥ g(Vk) +
1

2t
‖Vk‖

2
F,

which implies that

h(Xk) ≥ 〈∇f(Xk), Vk〉+
1

2t
‖Vk‖

2
F + h(Xk + Vk) +

1

2t
‖Vk‖

2
F.

Moreover, the convexity of h yields

h(Xk + αVk)− h(Xk) = h(α(Xk + Vk) + (1− α)Xk)− h(Xk) ≤ α (h(Xk + Vk)− h(Xk)) .

Upon combining the above two inequalities, we obtain

g(αVk)− g(0) = 〈∇f(Xk), αVk〉+
‖αVk‖

2
F

2t
+ h(Xk + αVk)− h(Xk)

≤ α

(

〈∇f(Xk), Vk〉+ α
‖Vk‖

2
F

2t
+ h(Xk + Vk)− h(Xk)

)

≤
α2 − 2α

2t
‖Vk‖

2
F,

as desired.

The following lemma shows that {F (Xk)} is monotonically decreasing, where {Xk} is generated by
Algorithm 1.

Lemma 5.2. For any t > 0, there exists a constant ᾱ > 0 such that for any 0 < α ≤ min{1, ᾱ}, the
condition in Step 5 of Algorithm 1 is satisfied, and the sequence {Xk} generated by Algorithm 1 satisfies

F (Xk+1)− F (Xk) ≤ −
α

2t
‖Vk‖

2
F .

Proof. Let X+
k = Xk + αVk. Following Boumal et al. [19], we first show that f(RetrXk

(V )) satisfies certain
Lipschitz smooth condition. By the L-Lipschitz continuity of ∇f , for any α > 0, we have

f(RetrXk
(αVk))− f(Xk) ≤ 〈∇f(Xk),RetrXk

(αVk)−Xk〉+
L

2
‖RetrXk

(αVk)−Xk‖
2
F

= 〈∇f(Xk),RetrXk
(αVk)−X+

k + X+
k −Xk〉+

L

2
‖RetrXk

(αVk)−Xk‖
2
F

≤M2‖∇f(Xk)‖F‖αVk‖
2
F + α〈∇f(Xk), Vk〉+

LM2
1

2
‖αVk‖

2
F,

(5.5)
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where the last inequality follows from (3.1) and (3.2). Since ∇f is continuous on the compact manifold M,
there exists a constant G > 0 such that ‖∇f(X)‖F ≤ G for all X ∈M. It then follows from (5.5) that

f(RetrXk
(αVk))− f(Xk) ≤ α〈∇f(Xk), Vk〉+ c0α

2‖Vk‖
2
F, (5.6)

where c0 = M2G + LM2
1 /2. This implies that

F (RetrXk
(αVk))− F (Xk)

(5.6)

≤ α〈∇f(Xk), Vk〉+ c0α
2‖Vk‖

2
F + h(RetrXk

(αVk))− h(X+
k ) + h(X+

k )− h(Xk)

≤ α〈∇f(Xk), Vk〉+ c0α
2‖Vk‖

2
F + Lh‖RetrXk

(αVk)−X+
k ‖F + h(X+

k )− h(Xk)

(3.2)

≤ (c0 + LhM2)‖αVk‖
2
F + g(αVk)−

1

2t
‖αVk‖

2
F − g(0)

(5.3)

≤

(

c0 + LhM2 −
1

αt

)

‖αVk‖
2
F,

where g is defined in (5.2) and the second inequality follows from the Lipschitz continuity of h. Upon setting
ᾱ = 1/(2(c0 + LhM2)t), we conclude that for any 0 < α ≤ min{ᾱ, 1},

F (RetrXk
(αVk))− F (Xk) ≤ −

1

2αt
‖αVk‖

2
F = −

α

2t
‖Vk‖

2
F.

This completes the proof.

The following lemma shows that if one cannot make any progress by solving (4.3) (i.e., Vk = 0), then a
stationary point is found.

Lemma 5.3. If Vk = 0, then Xk is a stationary point of problem (1.1).

Proof. By Theorem 4.1 in [84], the optimality conditions of the subproblem (4.2) are given by

0 ∈
1

t
Vk + grad f(Xk) + ProjTXk

M∂h(Xk + Vk), Vk ∈ TXk
M.

If Vk = 0, then 0 ∈ grad f(Xk) + ProjTXk
M∂h(Xk), which is exactly the first-order necessary condition of

problem (1.1) since Xk ∈M.

From Lemma 5.3, we know that Vk = 0 implies the stationarity of Xk with respect to (1.1). This
motivates the following definition of an ǫ-stationary point of (1.1):

Definition 5.4. We say that Xk ∈ M is an ǫ-stationary point of (1.1) if the solution Vk to (4.4) with
t = 1/L satisfies ‖Vk‖F ≤ ǫ/L.

We use ‖Vk‖F ≤ ǫ/L as the stopping criterion of Algorithm 1 with t = 1/L. From Lemma 5.2, we obtain
the following result which is similar to the one in [19, Theorem 2] for manifold optimization with smooth
objectives.

Theorem 5.5. Under Assumption 1.1, every limit point of the sequence {Xk} generated by Algorithm 1 is
a stationary point of problem (1.1). Moreover, Algorithm 1 with t = 1/L will return an ǫ-stationary point
of (1.1) in at most

⌈

2L(F (X0)− F ∗)/(γᾱǫ2)
⌉

iterations, where ᾱ is defined in Lemma 5.2 and F ∗ is the
optimal value of (1.1).

Proof. Since F is bounded below on M, by Lemma 5.2, we have

lim
k→∞

‖Vk‖
2
F = 0.

Combining with Lemma 5.3, it follows that every limit point of {Xk} is a stationary point of (1.1). Moreover,
since M is compact, the sequence {Xk} has at least one limit point. Furthermore, suppose that Algorithm
1 with t = 1/L does not terminate after K iterations; i.e., ‖Vk‖F > ǫ/L for all k = 0, 1, . . . ,K − 1. Let αk
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be the stepsize in the k-th iteration; i.e., Xk+1 = RetrXk
(αkVk). From Lemma 5.2, we know that αk ≥ γᾱ.

Thus, we have

F (X0)− F ∗ ≥ F (X0)− F (XK) ≥
t

2

K−1
∑

k=0

αk‖Vk/t‖
2
F >

tǫ2

2

K−1
∑

k=0

αk ≥
tKǫ2

2
γᾱ.

Therefore, Algorithm 1 finds an ǫ-stationary point in at most
⌈

2L(F (X0)− F ∗)/(γᾱǫ2)
⌉

iterations.

Remark 5.6. When the objective function F in (1.1) is smooth (i.e., the nonsmooth function h vanishes),
the iteration complexity in Theorem 5.5 matches the result given by Boumal et al. in [19]. Zhang and Sra
[88] analyzed the iteration complexity of some first-order methods, but they assumed that the objectives are
geodesically convex. Such an assumption is rather restrictive, as it is known that every smooth function that
is geodesically convex on a compact Riemannian manifold is constant [14]. Bento et al. [13] also established
some iteration complexity results for gradient, subgradient, and proximal point methods. However, their
results for gradient and subgradient methods require the objective function to be convex and the manifold to
be of nonnegative curvature, while those for proximal point methods only apply to convex objective functions
over the Hadamard manifold.

6 Numerical Experiments

In this section, we apply our ManPG algorithm3 (Algorithm 1) to solve the sparse PCA (1.2) and compressed
modes (CM) (1.3) problems. We compare ManPG with two existing methods SOC [53] and PAMAL [22].
For both problems, we set the parameter γ = 0.5 and use the polar decomposition as the retraction mapping
in ManPG. The latter is because it is found that the MATLAB implementation of QR factorization is slower
than the polar decomposition; see [5]. Moreover, we implement a more practical version of ManPG, named
ManPG-Ada and described in Algorithm 2, that incorporates a few tricks including adaptively updating the
stepsize t. We set the parameters γ = 0.5 and τ = 1.01 in ManPG-Ada. All the codes used in this section
were written in MATLAB and run on a standard PC with 3.70 GHz I7 Intel microprocessor and 16GB of
memory.

6.1 A More Practical ManPG: ManPG-Ada

In this subsection, we introduce some tricks used to further improve the performance of ManPG in practice.
First, a warm-start strategy is adopted for SSN; i.e., the initial point Λ0 in SSN is set as the solution of the
previous subproblem. For the ASSN algorithm, we always take the semi-smooth Newton step as suggested
by [80]. Second, we adaptively update t in ManPG. When t is large, we may need smaller total number of
iterations to reach an ǫ-stationary point. However, it increases the number of line search steps and the SSN
steps. For sparse PCA and CM problems, we found that setting t = 1/L leads to fewer number of line search
steps. We can then increase t slightly if no line search step was needed in the previous iteration. This new
version of ManPG, named ManPG-Ada, is described in Algorithm 2. We also applied ManPG-Ada to solve
sparse PCA and CM problems and compared its performance with ManPG, SOC, and PAMAL.

6.2 Numerical Results on CM

For the CM problem (1.3), both SOC [53] and PAMAL [22] rewrite the problem as

minX,Q,P∈Rn×r Tr(P⊤HP ) + µ‖Q‖1
s.t. Q = P,X = P,X⊤X = Ir.

(6.1)

3Our MATLAB code is available at https://github.com/chenshixiang/ManPG.
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Algorithm 2 ManPG-Ada for Solving (1.1)

1: Input: initial point X0 ∈M, γ ∈ (0, 1), τ > 1 and Lipschitz constant L
2: set t = 1/L
3: for k = 0, 1, . . . do
4: obtain Vk by solving the subproblem (4.3)
5: set α = 1 and linesearchflag = 0

6: while F (RetrXk
(αVk)) > F (Xk)−

α‖Vk‖
2
F

2t
do

7: α = γα
8: linesearchflag = 1
9: end while

10: set Xk+1 = RetrXk
(αVk)

11: if linesearchflag = 1 then

12: t = τt
13: else

14: t = max{1/L, t/τ}
15: end if

16: end for

SOC employs a three-block ADMM to solve (6.1), which updates the iterates as follows:

Pk+1 := argminP Tr(P⊤HP ) + β
2 ‖P −Qk + Λk‖

2
F + β

2 ‖P −Xk + Γk‖
2
F ,

Qk+1 := argminQ µ‖Q‖1 + β
2 ‖Pk+1 −Q + Λk‖

2
F ,

Xk+1 := argminX
β
2 ‖Pk+1 −X + Γk‖

2
F , s.t., X⊤X = Ir,

Λk+1 := Λk + Pk+1 −Qk+1,
Γk+1 := Γk + Pk+1 −Xk+1.

(6.2)

PAMAL uses an inexact augmented Lagrangian method to solve (6.1) with the augmented Lagrangian
function being minimized by the proximal alternating minimization algorithm proposed in [8]. Both SOC
and PAMAL need to solve a linear system (H + βI)X = B, where B is a given matrix.

In our numerical experiments, we tested the same problems as in [62] and [22]. In particular, we consider
the time-independent Schrödinger equation

Ĥφ(x) = λφ(x), x ∈ Ω,

where Ĥ = − 1
2∆ denotes the Hamiltonian, ∆ denotes the Laplacian operator, and H is a symmetric matrix

formed by discretizing the Hamiltonian Ĥ. We focus on the 1D free-electron (FE) model. The FE model
describes the behavior of valence electron in a crystal structure of a metallic solid and has Ĥ = − 1

2∂
2
x. We

consider the system on a domain Ω = [0, 50] with periodic boundary condition and discretize the domain
with n equally spaced nodes. The stepsize t in Algorithm 1 was set to 1/(2λmax(Ĥ)), where λmax(Ĥ) denotes
the largest eigenvalue of Ĥ and is given by 2n2/502 in this case.

Since the matrix H is circulant, we used FFT to solve the linear systems in SOC and PAMAL, which
is more efficient than directly inverting the matrices. We terminated ManPG when ‖Vk/t‖

2
F ≤ ǫ := 10−8nr

or the maximum iteration number 30000 was reached. For the inner iteration of ManPG (i.e., using SSN to
solve (4.3)), we terminated it when ‖E(Λ)‖2F ≤ max{10−13,min{10−11, 10−3t2ǫ}} or the maximum iteration
number 100 was reached. In all the tests of the CM problem, we ran ManPG first and let FM denote the
returned objective value. We then ran SOC and PAMAL and terminated them when F (Xk) ≤ FM + 10−7

and
‖Qk − Pk‖F

max{1, ‖Qk‖F , ‖Pk‖F }
+

‖Xk − Pk‖F
max{1, ‖Xk‖F , ‖Pk‖F }

≤ 10−4. (6.3)

Note that (6.3) measures the constraint violation of the reformulation (6.1). If (6.3) was not satisfied in 30000
iterations, then we terminated SOC and PAMAL. We also ran ManPG-Ada (Algorithm 2) and terminated
it if F (Xk) ≤ FM + 10−7.
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In our experiments, we found that SOC and PAMAL are very sensitive to the choice of parameters. The
default setting of the parameters of SOC and PAMAL suggested in [62] and [22] usually cannot achieve our
desired accuracy. Unfortunately, there is no systematic study on how to tune these parameters. We spent
a significant amount of effort on tuning these parameters, and the ones we used are given as follows. For
SOC (6.2), we set the penalty parameter β = nrµ/25 + 1. For PAMAL, we found that the setting of the
parameters given on page B587 of [22] did not work well for the problems we tested. Instead, we found that
the following settings of these parameters worked best and they were thus adopted in our tests: τ = 0.99,
γ = 1.001, ρ1 = 2 |λmin(H)| + r/10 + 2,Λp,min = −100,Λp,max = 100,Λ1

p = 0nr, p = 1, 2, and ǫk = (0.995)k,
k ∈ N. For the meaning of these parameters, we refer the reader to page B587 of [22]. We used the same
parameters of PAM in PAMAL as recommended by [22]. For different settings of (n, r, µ), we ran the four
algorithms with 50 instances whose initial points were obtained by projecting randomly generated points
onto St(n, r). Since problem (1.3) is nonconvex, it is possible that ManPG, ManPG-Ada, SOC and PAMAL
return different solutions from random initializations. To increase the chance that all four solvers found the
same solution, we ran the Riemannian subgradient method for 500 iterations and used the resulting iterate
as the initial point. The Riemannian subgradient method is described as follows:

∂̂F (Xk) := ProjTXk
St(n,r)(2HXk + µsign(Xk)),

Xk+1 := RetrXk

(

−
1

k3/4
∂̂F (Xk)

)

,
(6.4)

where sign(·) denotes the element-wise sign function. Moreover, we tried to run the Riemannian subgradient
method (6.4) until it solved the CM problem. However, this method is extremely slow and we only report one
case in Figure 1. We report the averaged CPU time, iteration number, and sparsity in Figures 1 to 4, where
sparsity is the percentage of zeros and when computing sparsity, X is truncated by zeroing out its entries
whose magnitude is smaller than 10−5. For SOC and PAMAL, we only took into account the solutions that
were close to the one generated by ManPG. Here the closeness of the solutions is measured by the distance
between their column spaces. More specifically, let XM , XS , and XP denote the solutions generated by
ManPG, SOC, and PAMAL, respectively. Then, their distances are computed by dist(XM , XS) = ‖XMX⊤

M−
XSX

⊤
S ‖F and dist(XM , XP ) = ‖XMX⊤

M − XPX
⊤
P ‖F. We only counted the results if dist2(XM , XS) ≤ 0.1

and dist2(XM , XP ) ≤ 0.1.
In Figure 1, we report the results of Riemannian subgradient method with respect to different n’s. We

terminated the Riemannian subgradient method (6.4) if F (Xk) < FM + 10−3. We see that this accuracy
tolerance 10−3 is too large to yield a good solution with reasonable sparsity level, yet it is already very time
consuming. As a result, we do not report more results on the Riemannian subgradient method. In Figures 2,
3, and 4, we see that the solutions returned by ManPG and ManPG-Ada have better sparsity than SOC and
PAMAL. We also see that ManPG-Ada outperforms ManPG in terms of CPU time and iteration number.
In Figure 2, the iteration number of ManPG increases with the dimension n, because the Lipschitz constant
L = 2λmax(H) = 4n2/502 increases quadratically, which is consistent with our complexity result. In Figure
3, we see that the CPU times of ManPG and ManPG-Ada are comparable to those of SOC and PAMAL
when r is small, but are slightly more when r gets large. In Figure 4, we see that the performance of the
algorithms is also affected by µ. In terms of CPU time, ManPG and ManPG-Ada are comparable to SOC
and PAMAL when µ gets large.

The first five CMs of the 1D FE model computed by the ManPG-Ada, SOC and PAMAL methods are
shown in Figure 5. We found that the CMs generated by ManPG and ManPG-Ada were the same, so we
only report the results of ManPG-Ada. We flip the CMs if necessary so that most values on the support
of the CMs are positive, as sign ambiguities do not affect the minimal values of the objective function in
(1.3). It can be seen that the CMs obtained from the three methods are compactly supported functions, and
their localization degree is almost the same. We next examine the approximation behavior of the unitary
transformations derived from the CMs to the eigenmodes of the Schrödinger operator. The approximation
accuracy is measured by comparing the first r eigenvalues (σ1, . . . , σr) of the matrix X⊤ĤX with the first
r eigenvalues (λ1, . . . , λr) of the corresponding Schrödinger operator Ĥ. Figure 6 reports the results for
different values of r. We can see the approximation errors of the ManPG-Ada, SOC and PAMAL are
similar, and that (σ1, . . . , σr) converges to (λ1, . . . , λr) as r increases.

We also report the total number of line search steps and the averaged iteration number of SSN in ManPG
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and ManPG-Ada in Table 1. We see that ManPG-Ada needs more line search steps and SSN iterations,
but as we show in Figures 2, 3, and 4, ManPG-Ada is faster than ManPG in terms of CPU time. This is
mainly because the computational costs of retraction and SSN steps in this problem are both nearly the
same as computing the gradient. In the last two columns of Table 1, ‘#s|d’ denotes the number of instances
for which SOC and PAMAL generate same, different solutions as ManPG with the closeness measurement
discussed above; ‘# f’ denotes the number of instances that SOC and PAMAL fail to converge. We see that
for the tested instances of the CM problem, all algorithms converged thanks to the parameters that we chose,
although sometimes the solutions generated by PAMAL are different from those generated by ManPG and
SOC.

60 80 100 120 140 160 180 200 220 240 260

dimenion-n

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

C
P

U

comparison on CPU: different dimension,r=4, =0.1

ManPG

ManPG-Ada

SOC

PAMAL

Rsub

(a) CPU

60 80 100 120 140 160 180 200 220 240 260

dimenion-n

0

2

4

6

8

10

12

14

16

18

it
e
r

104 comparison on iter: different dimension,r=4, =0.1

ManPG

ManPG-Ada

SOC

PAMAL

Rsub

(b) Iteration

Figure 1: Comparison on CM problem (1.3), different n = {64, 128, 256} with r = 4 and µ = 0.1.
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Figure 2: Comparison on CM problem (1.3), different n = {64, 128, 256, 512} with r = 4 and
µ = 0.1.
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Figure 3: Comparison on CM problem (1.3), different r = {1, 2, 4, 6, 8} with n = 128 and µ = 0.15.
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Figure 4: Comparison on CM problem (1.3), different µ = {0.05, 0.1, 0.15, 0.2, 0.25} with n = 128
and r = 4.
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Figure 5: Comparison of the first five modes obtained for the 1D FE model with different values
of µ. Left column: µ = 1/30; Right column: µ = 1/50.

Table 1: Number of line search steps and averaged SSN iterations for different (n, r, µ).

ManPG ManPG-Ada SOC PAMAL

# line search SSN iter # line search SSN iter # s| d| f # s| d| f

n r = 4, µ = 0.1

64 85.94 1.0005 165.98 1.3307 50|0|0 48|2|0
128 70.5 0.64414 540.76 1.2237 50|0|0 50|0|0
256 84.06 0.39686 1191.5 0.60652 50|0|0 50|0|0
512 55.1 0.16622 2720.6 0.2417 50|0|0 49|1|0

µ n = 128, r = 4

0.05 49.2 0.30933 695.6 0.83637 50|0|0 50|0|0
0.1 74.38 0.54915 572.42 1.1514 50|0|0 50|0|0
0.15 102.62 0.82093 439.6 1.2899 50|0|0 50|0|0
0.2 82.52 0.81565 350.86 1.2114 50|0|0 50|0|0
0.25 93.3 0.57232 209.12 1.0122 50|0|0 48|2|0

r n = 128, µ = 0.15

1 0 0.8971 0 0.98694 50|0|0 50|0|0
2 3.48 1.0001 61.02 1.1135 50|0|0 50|0|0
4 86.92 0.91814 311 1.2812 50|0|0 50|0|0
6 169.8 0.60206 719.42 1.5195 50|0|0 49|1|0
8 216.54 1.2011 1198.8 2.8667 50|0|0 42|8|0
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Figure 6: Comparisons of the first r eigenvalues of the 1D free electron model. ∗: The first r
eigenvalues of the matrix Ĥ. ◦: The first r eigenvalues of the matrix X⊤ĤX, where X is the
solution obtained by ManPG-Ada. ⋄: The first r eigenvalues of the matrix X⊤ĤX, where X is
the solution obtained by SOC. +: The first r eigenvalues of the matrix X⊤ĤX, where X is the
solution obtained by PAMAL.

6.3 Numerical Results on Sparse PCA

In this section, we compare the performance of ManPG, ManPG-Ada, SOC, and PAMAL for solving the
sparse PCA problem (1.2). Note that there are other algorithms for sparse PCA such as the ones proposed in
[50, 25], but these methods work only for the special case when r = 1; i.e., the constraint set is a sphere. The
algorithm proposed in [34] needs to smooth the ℓ1 norm in order to apply existing gradient-type methods
and thus the sparsity of the solution is no longer guaranteed. Algorithms proposed in [94, 70, 51] do not
impose orthogonal loading directions. In other words, they cannot impose both sparsity and orthogonality
on the same variable. Therefore, we chose not to compare our ManPG with these algorithms.

The random data matrices A ∈ R
m×n considered in this section were generated in the following way. We

first generate a random matrix using the MATLAB function A = randn(m,n), then shift the columns of A
so that their mean is equal to 0, and lastly normalize the columns so that their Euclidean norms are equal
to one. In all tests, m is equal to 50. The Lipschitz constant L is 2σ2

max(A), so we use t = 1/(2σ2
max(A))

in Algorithms 1 and 2, where σmax(A) is the largest singular value of A. Again, we spent a lot of effort on
tuning the parameters for SOC and PAMAL and found that the following settings of the parameters worked
best for our tested problems. For SOC, we set the penalty parameters β = 2σ2

max(A). For PAMAL, we set
τ = 0.99, γ = 1.001, ρ1 = 5σ2

max(A), Λp,min = −100, Λp,max = 100, Λ1
p = 0nr, p = 1, 2, and ǫk = (0.996)k,

k ∈ N. We again refer the reader to page B587 of [22] for the meanings of these parameters. We used
the same parameters of PAM in PAMAL as suggested in [22]. We used the same stopping criterion for
ManPG, ManPG-Ada, SOC, and PAMAL as for the CM problems. For different settings of (n, r, µ), we ran
the four algorithms with 50 instances whose initial points were obtained by projecting randomly generated
points onto St(n, r). We then ran the Riemannian subgradient method (6.4) for 500 iterations and used the
returned solution to be the initial point of the compared solvers.

The CPU time, iteration number, and sparsity are reported in Figures 7, 8, and 9, respectively. Same
as the CM problem, all the values were averaged over those instances that yielded solutions that were close
to the ones given by ManPG. In Figures 7, 8 and 9, we see that ManPG and ManPG-Ada significantly
outperformed SOC and PAMAL in terms of CPU time required to obtain the same solutions. We also see
that ManPG-Ada greatly improved the performance of ManPG. We also report the total number of line
search steps and the averaged iteration number of SSN in ManPG and ManPG-Ada in Table 2. We observe
from Table 2 that SOC failed to converge on one instance, and for several instances, SOC and PAMAL
generated different solutions when compared to those generated by ManPG.
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Figure 7: Comparison on sparse PCA problem (1.2), different n = {100, 200, 500, 800, 1000, 1500}
with r = 5 and µ = 0.8.
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Figure 8: Comparison on sparse PCA problem (1.2), different r = {1, 2, 4, 6, 8, 10} with n = 800
and µ = 1.
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Figure 9: Comparison on sparse PCA problem (1.2), different µ = {0.55, 0.6, 0.65, 0.7, 0.75, 0.8}
with n = 500 and r = 5.

7 Discussions and Concluding Remarks

Manifold optimization has attracted a lot of attention recently. In this paper, we proposed a proximal gradient
method (ManPG) for solving the nonsmooth nonconvex optimization problem over the Stiefel manifold
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Table 2: Sparse PCA: Number of line search steps and averaged SSN iterations for different (n, r, µ).

ManPG ManPG-Ada SOC PAMAL

# line search SSN iter # line search SSN iter # s| d| f # s| d| f

n r = 5, µ = 0.8

100 0.8 1.1881 0.08 1.5221 46|3|1 50|0|0
200 2.98 1.0722 15.1 1.3705 48|2|0 48|2|0
500 0.4 1.025 29.4 1.2066 50|0|0 50|0|0
800 0 1.0167 59.36 1.1847 49|1|0 50|0|0
1000 3.08 1.016 82.04 1.1712 49|1|0 49|1|0
15 11 1.0121 108.94 1.1035 48|2|0 49|1|0

µ n = 500, r = 5

0.55 0 1.0155 68.7 1.1463 48|2|0 50|0|0
0.60 0 1.0197 48.82 1.1431 50|0|0 49|1|0
0.65 0 1.019 57.96 1.1841 48|2|0 48|2|0
0.70 0 1.0246 52.5 1.2098 49|1|0 50|0|0
0.75 0.36 1.0238 55.88 1.2252 48|2|0 49|1|0
0.80 0 1.0286 28.98 1.1966 49|1|0 49|1|0

r n = 800, µ = 0.6

1 0 0.90182 4.12 1.0335 50|0|0 50|0|0
2 82.06 1.0041 10.74 1.0767 49|1|0 50|0|0
4 8.52 1.0229 39.04 1.1453 48|2|0 50|0|0
6 0 1.0243 72.22 1.3198 46|4|0 49|1|0
8 0.34 1.0309 125.64 1.5325 46|4|0 50|0|0
10 0.76 1.0579 132.58 1.6894 42|8|0 47|3|0
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(1.1). Different from existing methods, our ManPG algorithm relies on proximal gradient information on
the tangent space rather than subgradient information. Under the assumption that the the smooth part
of the objective function has a Lipschitz continuous gradient, we proved that ManPG converges globally
to a stationary point of (1.1). Moreover, we analyzed the iteration complexity of ManPG for obtaining
an ǫ-stationary solution. Our numerical experiments suggested that when combined with a regularized
semi-smooth Newton method for finding the descent direction, ManPG performs efficiently and robustly. In
particular, ManPG is more robust than SOC and PAMAL for solving the compressed modes and sparse PCA
problems, as it is less sensitive to the choice of parameters. Moreover, ManPG significantly outperforms SOC
and PAMAL for solving the sparse PCA problem in terms of the CPU time needed for obtaining the same
solution.

It is worth noting that the convergence and iteration complexity analyses in Section 5 also hold for other,
not necessarily bounded, embedded submanifolds of an Euclidean space, provided that the objective function
F satisfies some additional assumptions (e.g., F is coercive and lower bounded on M). We focused on the
Stiefel manifold because it is easier to discuss the semi-smooth Newton method in Section 4.2 for finding
the descent direction. As demonstrated in our tests on the compressed modes and sparse PCA problems,
the efficiency of ManPG highly relies on that of solving the convex subproblem to find the descent direction.
For general Riemannian submanifolds, it remains an interesting question whether the operator Ak in (4.4)
can be easily computed and the resulting subproblem can be solved efficiently.
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A Semi-smoothness of Proximal Mapping

Definition A.1. Let E : Ω → R
q be locally Lipschitz continuous at X ∈ Ω ⊂ R

p. The B-subdifferential of
E at X is defined by

∂BE(X) :=

{

lim
k→∞

E′(Xk)
∣

∣

∣
Xk ∈ DE , Xk → X

}

,

where DE is the set of differentiable points of E in Ω. The set ∂E(X) = conv(∂BE(X)) is called Clarke’s
generalized Jacobian, where conv denotes the convex hull.

Note that if q = 1 and E is convex, then the definition is the same as that of standard convex subdiffe-
rential. Thus, we use the notation ∂ in Definition A.1.

Definition A.2. [60, 65] Let E : Ω→ R
q be locally Lipschitz continuous at X ∈ Ω ⊂ R

p. We say that E is
semi-smooth at X ∈ Ω if E is directionally differentiable at X and for any J ∈ ∂E(X + ∆X) with ∆X → 0,

E(X + ∆X)− E(X)− J∆X = o(‖∆X‖).

We say that E is strongly semi-smooth at X if E is semi-smooth at X and

E(X + ∆X)− E(X)− J∆X = O(‖∆X‖2).

We say that E is semi-smooth on Ω if it is semi-smooth at every X ∈ Ω.
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The proximal mapping of ℓp (p ≥ 1) norm is strongly semi-smooth [29, 75]. From [75, Prop. 2.26], if
E : Ω → R

m is a piecewise C1 (piecewise smooth) function, then E is semi-smooth. If E is a piecewise C2

function, then E is strongly semi-smooth. It is known that proximal mappings of many interesting functions
are piecewise linear or piecewise smooth.
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