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Abstract: The achievements made in genomic technology in recent decades are yet to be

matched by fast and accurate crop phenotyping methods. Such crop phenotyping methods

are required for crop improvement efforts to meet expected demand for food and fibre in the

future. This review evaluates the role of proximal remote sensing buggies for field-based

phenotyping with a particular focus on the application of currently available sensor

technology for large-scale field phenotyping. To illustrate the potential for the development

of high throughput phenotyping techniques, a case study is presented with sample data sets

obtained from a ground-based proximal remote sensing buggy mounted with the following

sensors: LiDAR, RGB camera, thermal infra-red camera and imaging spectroradiometer.

The development of such techniques for routine deployment in commercial-scale breeding

and pre-breeding operations will require a multidisciplinary approach to leverage the recent

technological advances realised in computer science, image analysis, proximal remote

sensing and robotics.

Keywords: LiDAR; time of flight; hyperspectral; RGB camera; thermal imaging;

chlorophyll fluorescence; image analysis; data processing; field experiments; wheat
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1. Introduction

For crop improvement efforts to meet the expected requirement for increased crop yield potential in

the coming decades [1–3], crop scientists and breeders will need to connect phenotype to genotype

with high efficiency [4]. This connection has been partly facilitated through tremendous gains in

biotechnology, including marker-assisted selection, association mapping and the increasing availability

of low-cost DNA sequence information [5]. However, the biotechnology advances have not been

matched by complementary methods to effectively and efficiently phenotype at the crop scale. Today,

field phenotyping of complex traits associated with biomass development and yield is a laborious

process, often involving destructive measurements taken from a subsection of the experimental plot,

which may not accurately represent the entire plot and can be subject to individual human operator

error. While standard protocols for crop phenotyping in wheat are available [6,7], the measurements are

expensive, due to the labour requirement and, hence, seldom used by commercial breeding companies

who are financially constrained. Moreover, field evaluation of germplasm for complex traits is

challenging, since field environments are variable in time and space.

The limited availability of field-based high-throughput phenotyping methods has impeded progress

in crop genetic improvement [8,9], though recent reviews [9–12] have highlighted the opportunities now

available through sensor technology and the digital age. In this review, we evaluate the role of proximal

remote sensing buggies for field-based phenotyping and present a case study to explore the possible traits

that can be quantified, where proximal remote sensing is the deployment of sensors on a ground-based

platform, in contrast to the remote deployment of sensors using aerial or satellite platforms [13].

2. Field Phenotyping Platforms: The Role of Field Buggies

A number of recent papers have reviewed approaches to phenotyping [14–16] largely concentrating

on opportunities in controlled environments. Measurements in the field, however, are much more likely

to be of use in the selection of genotypes that will perform well in farming practice, particularly where

large plots that simulate real farm conditions are used [17]. Large plots require large areas of land for

screening the large number of genotypes required for traditional breeding programmes, and effective

approaches need to have the capacity to study such large areas.

2.1. Approaches Available

Approaches available for field phenotyping are diverse (see Table 1), ranging from hand-held point

sensors, such as spectroradiometers, or thermal sensors [18–20], or imagers [21,22], sensors mounted

on in-field fixed or mobile platforms, to sensors on unmanned aerial vehicles (UAVs), tethered balloons

and manned aircraft [23–30]. Unfortunately, ad hoc hand-held measurements are not very useful for the

high throughput required for the effective phenotyping of large field trials with many replicates, as they

tend to be excessively labour intensive and time consuming, so alternatives are of particular interest.

Fixed systems include those where a set of cameras can be automatically moved over a fixed field array:

examples include the Lemnatec Field Scanalyzer [31] and the Eidgenössische Technische Hochschule

(ETH) Zürich’s Field Phenotyping Platform (FIP), comprising suspending cameras from four 24 m-high
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poles over an area of 130 × 100 m [32]. Similarly, other fixed or semi-fixed platforms, such as “cherry

pickers” and fixed towers are available that allow imagers to be raised substantially above the field to

permit the observation of significant areas of crop within individual images [21,22,33]. The advantages

include the ability to make a relative comparison between experimental units and to study large areas

simultaneously (i.e., minimising problems caused by variation in radiation as irradiance changes with

the passage of clouds). On the other hand, problems can be caused by an oblique view angle, including:

difficulty in identifying individual plots; plots further away are both smaller and have more atmosphere

to traverse, which may be important for thermal data; and the fact that the bidirectional reflectance factor

(BRDF) varies both at different observation angles and also different solar elevations. Towers or cherry

pickers generally need frequent moving to be able to cover an adequate area, which can be inconvenient.

The use of airborne and UAV-mounted sensors are discussed in other articles; here, we concentrate on

the use of mobile field platforms.

2.1.1. Mobile Field Platforms (“Buggies”)

(a) The simplest approach that provides rigorous and constant observation geometry is to mount

sensors on a light, hand-controlled cart; for example, a simple hand-pushed frame on bicycle

wheels (2 m-wide by 1.2 m-long and with a 1-m clearance) has been described [34]. Such systems

can be very cheap and permit the mounting of a wide range of sensors and associated recording

equipment. In principle, it should also be possible to tag recordings to individual plots using high

precision GPS.

(b) The next step of sophistication is to incorporate drive mechanisms and autonomous control to allow

the system to traverse the field automatically at a steady rate, without the need to be pushed (which

can lead to crop trampling). A wide range of such systems of varying degrees of sophistication

have been developed, including the “BoniRob” platform from Osnabrucke, Germany [35] and the

“Armadillo” from Denmark and the University of Hohenheim [36]. BoniRob has a lighter, wheeled

structure with adjustable ground clearance and configurable wheel spacing that is probably more

suitable for taller crops.

(c) The next stage of development involves the use of larger and even more sophisticated platforms

(or “buggies”), usually with a driver, that can support a wider range of sensors and controls. Some

examples of such custom-designed devices for field phenotyping include the system designed in

Maricopa (Arizona) described by [37], the “BreedVision” system from Osnabrucke [38,39] and

the Avignon system [40] and the “Phenomobile” designed at the High Resolution Plant Phenomics

facility in Canberra (described in the following Section 4.1 and Figure 1).

(d) There is also increasing convergence of such specialised “Phenomobiles” with the standard

arrays of sensors commonly mounted on tractor booms for the routine monitoring of crop

conditions, such as nitrogen status (e.g., Crop-Circle (Holland Scientific, Lincoln, Nebraska,

USA), Yara-N sensor (Yara, Haninghof, Germany) and Greenseeker (Trimble Agriculture,

Sunnyvale, California, USA)).
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Table 1. Phenotyping platforms and some relative advantages and disadvantages.

Platform Type Disadvantages Advantages

Fixed systems Generally expensive; can only monitor a very limited number of plots
Unmanned continuous operation; after-hours operation (e.g.,
night-time); good repeatability

Permanent platforms based on cranes,
scaffolds or cable-guided cameras Limited area of crop, so very small plots; expensive Give precise, high resolution images from a fixed angle

Towers/cherry-pickers
Generally varying view angle; problems with distance (for thermal),
bi-directional reflectance distribution function (BRDF), plot delineation,
etc.; difficult to move, so limited areas covered

Good for the simultaneous view of the area; can be moved to
view different areas

Mobile in-field systems
Generally take a long time to cover a field, so subject to
varying environmental conditions

Very flexible deployment; good capacity for GPS/GIS tagging;
very good spatial resolution

Hand-held sensors
Very slow to cover a field; only one sensor at a time;
different operators can give different measurements Good for monitoring

Hand-pushed buggies
Limited payload (weight); hard operation
for large experiments

Relatively low cost; flexibility with payload and view angle geometry;
very adaptable

Tractor-boom Long boom may not be stable
Easy operation; constant view angle; wide swath (if enough sensors
are mounted as on a spraying bar); mounting readily available
(needs modification)

Manned buggies Requires a dedicated vehicle (expensive)
Flexibility with the design of the vehicle (e.g., tall crops, row spacing);
Constant view angle; very adaptable

Autonomous robots Expensive; no commercial solutions available; safety mechanisms required Unmanned continuous operation; after-hours operation (e.g.,
night-time)

Airborne
Limitations on the weight of the payload depending on the platform;
a lack of turnkey systems; spatial resolution depends on speed and altitude

Can cover the whole experiment in a very short time, getting a snapshot
of all of the plots without changes in the environmental conditions

Blimps/balloons
Limited to low wind speed; not very easily moved precisely;
limited payload Relatively cheap compared with other aerial platforms

UAVs
Limited payload (weight and size); limited altitude (regulations) and total
flight time (hence, total covered area); less wind-affected than blimps;
regulatory issues depending on the country

Relatively low cost compared with manned aerial platforms;
GPS navigation for accurate positioning

Manned aircraft
Cost of operation can be expensive and may prohibit repeated flights,
thereby reducing temporal resolution; problems of availability

Flexibility with the payload (size and weight);
Can cover large areas rapidly
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Figure 1. Components of the Phenomobile.
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Description

1 Frame with 1.5 m
ground clearance

2 Wheel encoders
(∼1-mm accuracy)

3 Real time kinematic GPS
(∼2-cm accuracy)

4 Height adjustable boom
(max 3 m)

5 Removable light bank

6 Three LiDAR sensors

7 Four RGB stereo cameras

8 Spectrometer/
hyperspectral camera

9 Infra-red thermometers/
infra-red thermal camera

10 Generator and electronics

11 Two wheel drive
hydraulic drive system

2.1.2. Relative Advantages/Disadvantages of Different Platforms

Table 1 summarises the advantages and disadvantages of different types of sensing systems used for

field phenotyping. The high payload and great flexibility of buggies suggests that they are probably

the most useful general approach.

3. Phenotyping Sensors for Field Buggies

A very wide range of sensors can be mounted on any of the various field buggies and other

phenotyping platforms (for example, see Figure 1). A selection of possible sensors is listed in

Table 2, and their applications are discussed below. Sensors may either be point sensors (such as

spectroradiometers or thermal sensors) or imaging sensors that provide information on the spatial

distribution of the property being detected. Two distinct modes of imaging sensors are available, which

differ according to their method of data acquisition, namely: (i) frame imagers, where a 2D array of

pixels is obtained at a single point in time (e.g., RGB camera); and (ii) line-scan imagers, where a

single line of pixels is obtained at a single time point and the image is created from the movement of

the buggy and by concatenating the individual lines of pixels. Line-scan imagers require the precise

determination of the position and attitude of the sensor for each line collected in order to generate

the image. This can be attained by using an accurate combination of GPS with inertial measurements

units (IMU) or wheel odometry with wheel encoders. Therefore, rather different software solutions

are required for the two types of imagers. Compared with non-imaging sensors, imaging sensors are

much more widely applicable, as they allow the precise delineation of measurement areas in plots

and, potentially, the elimination of background areas in images, though there is a greatly enhanced

requirement for sophisticated image analysis software to achieve this.



Agronomy 2014, 5 354

Table 2. Applications and limitations of common sensors mounted on field buggies.

Sensor Type Applications Limitations

RGB Cameras

Imaging canopy cover and canopy colour. Colour information can be used
for deriving information about chlorophyll concentration through greenness
indices. The use of 3D stereo reconstruction from multiple cameras or
viewpoints allows the estimation of canopy architecture parameters.

No spectral calibration, only relative measurements. Shadows and
changes in ambient light conditions can result in under- or over-exposure
and limit automation of image processing.

LiDAR and time of flight sensors

Canopy height and canopy architecture in the case of imaging sensors
(e.g., LiDAR). Estimation of LAI, volume and biomass. Reflectance from
the laser can be used for retrieving spectral information (reflectance in
that wavelength).

Integration/synchronization with GPS and wheel encoder position
systems is required for georeferencing.

Spectral sensors

Biochemical composition of the leaf/canopy. Pigment concentration,
water content, indirect measurement of biotic/abiotic stress.
Canopy architecture/LAI with NDVI.

Sensor calibration required. Changes in ambient light conditions
influence signal and necessitate frequent white reference calibration.
Canopy structure and camera/sun geometries influence signal. Data
management is challenging.

Fluorescence Photosynthetic status, indirect measurement of biotic/abiotic stress.

Difficult to measure in the field at the canopy scale, because of the
small signal-to-noise ratio, though laser-induced fluorescence transients
(LIFT) can extend the range available, while solar-induced fluorescence
can be used remotely.

Thermal sensors Stomatal conductance. Water stress induced by biotic or abiotic factors.

Changes in ambient conditions lead to changes in canopy temperature,
making a comparison through time difficult, necessitating the use of
references. Difficult to separate soil temperature from plant temperature
in sparse canopies, limiting the automation of image processing. Sensor
calibration and atmospheric correction are often required.

Other sensors: electromagnetic
induction (EMI), ground penetrating
radar (GPR) and electrical resistance
tomography (ERT)

Mapping of soil physical properties, such as water content, electric
conductivity or root mapping.

Data interpretation is challenging, as heterogeneous soil properties can
strongly influence the signal.
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3.1. Types of Sensor

3.1.1. RGB Cameras

Arguably, the most widely used sensor for most applications is the conventional RGB digital camera,

which provides information on canopy cover and canopy colour [41–43]. Canopy cover estimates can

readily be estimated automatically from nadir-view images using tools, such as “magic wand” or colour

threshold, available in many image processing programmes, and hence are used to estimate also leaf area

index (LAI) and light interception [44,45]. Estimates of LAI can be well estimated from images taken at

an angle of 57.5◦ [46]. Image analysis can also be used to extract more sophisticated information (e.g.,

on water stress) from shape, compactness, solidity, etc. [47]. Using a stereo camera rig or images from

multiple locations [48,49] allows the detailed reconstruction of the canopy structure and its analysis

to obtain critical variables for phenotyping, such as LAI, leaf area distribution or panicle length [50].

This photogrammetric approach can be easily applied to images obtained from a moving buggy, where

consecutive images can be acquired at constant intervals over the canopy. The position and geometry of

the images can be determined using the GPS location or wheel encoders.

3.1.2. LiDAR and Time of Flight Sensors

A number of other sensors can provide 3D structural information. Perhaps the best known and

most widely used type of sensor for 3D canopy reconstruction is LiDAR [51–53]. Such laser systems

have been used for rapid LAI mapping [54] and to estimate the plant area density profiles of a wheat

canopy [55]. Simpler alternatives, though having rather lower spatial resolution or range than LiDAR,

include depth cameras based on time-of-flight [56,57], ultrasonic sensors [37] and even consumer-grade

gaming interfaces, such as the Microsoft Kinect [58], all of which have been used for the characterisation

of different canopies [52,59,60].

3.1.3. Spectral Sensing

A powerful optical remote sensing approach for canopy characterisation is to make use of the

characteristic difference between the high reflectance of plant leaves in the near-infrared and the

correspondingly low reflectance in the red; this enabled the development of the normalised difference

vegetation index (NDVI) [61] and a wide range of related indices [42]. Such vegetation indices

are particularly useful for quantifying vegetation cover where the sensor view is large (as with wide

angle single sensors or with remote imagers with large pixels that contain a mixture of vegetation and

background soil). In addition to providing information on canopy cover, these vegetation indices and

others, such as the red-edge position, also provide information on leaf nitrogen or chlorophyll content.

They have therefore been widely used for the evaluation of canopy nitrogen content for crop management

purposes with a range of commercial sensors for mounting on tractor booms that were outlined above in

Section 2.1.1.

More interesting for phenotyping, however, is the application of spectral reflectance to derive

information on canopy biochemistry, such as the content of water and stem soluble carbohydrates, and

of pigments, such as chlorophyll, carotenoids and xanthophylls. Although broadband multispectral
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sensors can be used, more accurate information can be obtained from narrow-band or hyperspectral

sensors [30,62–65]. A wide range of techniques have been proposed and tested for the selection of

the critical wave bands to use in the development of appropriate hyperspectral indices for different

biochemicals and physiological processes. These include the use of 2D correlation plots [66], partial least

squares regression [67,68], principal components analysis [65], support vector machines (SVM) [69],

neural networks [70] and other machine learning approaches for stress detection. The power of many

of these techniques can be enhanced by a combination with radiative transfer modelling [71,72], which

allows one to correct for complexity introduced by shadowing and complex canopy structure.

Multispectral and hyperspectral measurements are widely used for the estimation of canopy water

content as an indicator of water status. These make use of the water absorption bands in the infrared to

describe various water indices [42,73–75]. Alternatively, a dual wavelength laser can be used to estimate

an equivalent water thickness (EWT) [76], as it can be range-resolved to ignore the background soil,

which might otherwise affect spectral EWT measurement. In addition to simple water indices, the use

of high resolution spectroscopy and wavelet analysis [77–79] can also give a high sensitivity to canopy

water content. Measurements of water content using spectral reflectance data have, on occasion, been

successfully correlated with water potential [80,81], but as with any rather indirect proxy marker, the

ability to predict water potential under a range of conditions or plant ages is likely to always be rather

limited [82].

Hyperspectral reflectance indices can also be used as a probe for physiological function, such as

for the rate of photosynthesis. The best known approach is the photochemical reflectance index (PRI)

introduced by Gamon [83], which is based on a correlation between the epoxidation of xanthophylls and

the assimilation rate, which can be quantified from the change in absorptance at 531 nm.

A disadvantage with hyperspectral imagers is that they tend to be very expensive, though a number of

relatively inexpensive multispectral imagers are becoming available that can be mounted on buggies

or other phenotyping platforms, where specifically tailored narrow-band filters can be incorporated.

The lower spatial resolution of the corresponding single view hyperspectral sensors, whose footprint

may cover a whole plot, inevitably have a lower discriminatory power, because of the complications

caused by canopy complexity and soil background. The conventional approach to the spectral analysis

of images is based on a pixel-by-pixel analysis, with averages taken of the pixels within any class; an

alternative approach that has been shown to have some advantages is to segment the available pixels into

discrete objects prior to analysis, a technique known as “object-based image analysis” [4].

3.1.4. Fluorescence

In addition to the passive sensing of spectral reflectance, useful information can be obtained from an

analysis of fluorescence from crops. The most useful information can be obtained from chlorophyll

fluorescence, which is a powerful indicator of photosynthetic functioning. The use of modulated

fluorescence (as widely used in the laboratory) requires substantial power for the rapid illumination

pulses needed and is limited to situations where the sensor is within 1 m or so of the crop and probably

has too high a power requirement for most mobile buggies. The pulse of rapid illumination must

also uniformly illuminate all of the imaged crop canopy, and this may be difficult to achieve in the

field. There are, however, two potentially useful alternative approaches: (i) laser-induced fluorescence
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transients (LIFT) [84]; and (ii) passive solar-induced fluorescence based on the infilling of radiation

in the Fraunhofer lines in the solar spectrum [85–88]. Less precise estimates of green leaf area,

chlorophyll content and photosynthesis can also be obtained using relatively simple canopy laser-induced

fluorescence (CLIF) systems [89].

Fluorescence in the blue region (for example, using short-wave laser stimulation) might also

possibly be a tool for the study of stress-induced compounds that could be screened as an indicator

of stress responses. However, the power requirements of such active sensors may be limiting for field

phenotyping applications.

3.1.5. Thermal Sensors

One of the most powerful tools for phenotyping, especially for traits related to water stress responses,

is the use of thermal sensing or imaging [90]. The basis of the approach is that surfaces are cooled

by evaporation, so their temperatures fall in proportion to the evaporation rate. Any stomatal closure

in response to drought stress, therefore, will be manifest as a warmer temperature, so that thermal

imaging can be used to quantify the stomatal closure. As with spectral reflectance sensing, a major

problem with all thermal sensing is that posed by interference from the background, as soil temperature

is commonly many degrees warmer than that of the transpiring canopy, and techniques are necessary

to obtain a pure signal from the canopy only. These can include the overlaying of multispectral

images and extracting shaded or sunlit canopy temperatures [91–93] or the use of thresholding [94].

Various automated or semi-automated methods have been proposed for canopy temperature extraction

for different experimental plots [93,95].

Although straightforward in principle, to use thermal sensing, there are a number of potential

difficulties with its practical application, in addition to the obvious problem caused by the high

background temperature. Most important is the fact that surface temperature depends not only on the

evaporation rate, but also on varying environmental factors, including the incoming solar radiation, the

ambient air temperature and the wind speed (and hence, boundary layer conductance). The most usual

way to correct for the rapidly changing environmental conditions is to normalise observations to the mean

of nearby plot temperatures [22]. This approach is particularly suitable for tower-based images, where

many plots are included in each image, but can be adapted to buggy use by normalising to running means,

though the precision of this correction is best when many plots are included in each image [21,22].

Rigorous correction on the basis of the full canopy energy balance can also be achieved, where a full

set of micrometeorological observations are available [96]. Other problems are related to the fact that

varying angles between the view and solar illumination angles can lead to differing proportions of sunlit

and shaded leaves being observed, with consequences for observed temperatures; such BRDF-based

problems need to be recognised or corrected for on the basis of a canopy radiation transfer model.

An interesting observation that may be related to differences in aerodynamic resistance is that there can

be consistent differences in canopy temperature between tall and dwarf crops, irrespective of differences

in stomatal conductance [97,98].

Thermal sensing has been used for many crops, from small grain cereals to maize [99] and fruit

trees [100]. It has also been used in combination with spectral sensing for the enhanced estimation of

leaf water content [101].
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3.1.6. Other Sensors

A wide range of other sensors can, in principle, be mounted on buggies or other mobile platforms.

These include radar (microwave) sensors for the measurement of soil moisture, while other sensors

available for soil mapping include electromagnetic induction (EMI), ground penetrating radar (GPR)

and electrical resistance tomography (ERT) [102]. Even radiation attenuation using a Gamma probe

could give information on crop mass and water content, but this is unlikely to be acceptable in practice

on health and safety grounds.

3.2. Some Technical Challenges in the Use of Proximal Sensors Mounted on Buggies

Major challenges with the use of sensors include:

(a) Problems resulting from mixed pixels when a single pixel comprises both plant material and

background soil (Jones and Sirault, submitted to this special issue).

(b) Difficulties caused by variation in the solar illumination angle and the bi-directional reflectance

distribution function (BRDF) (for example, the resulting variation in the amount of shadowing in

a pixel and its dependence on canopy structure) [103].

(c) Although the simplest application of in-field remote sensing, especially of spectral reflectance, is

to use simple vegetation indices (VI) as indicators of variables of interest (e.g., N or water content,

chlorophyll, LAI or photosynthesis), the values of the quantities being estimated can be very

subject to environmental conditions and to canopy structure; this leads to substantial imprecision

in the estimates of variables of interest and the need for site-specific calibration [82]. However,

substantial improvements can be made in the estimation of these fundamental variables, by taking

into account the detailed canopy structure and BRDF and the use of appropriate radiation transfer

models [62,104,105]. This approach often requires significant computing power and may not often

be suitable for real-time implementation on a mobile buggy.

(d) Data handling. A particular and continuing challenge in the use of platform-mounted sensors

remains the data handling and assimilation of data from different types of sensor (frame imagers,

line-scan imagers, point sensor), each with their own scales of view, and their combination with

GPS information to generate effective measurements for a particular experimental plot. This

generally requires specialist software engineering skills.

4. Application to Phenotyping

Identification of appropriate target traits for phenotypic evaluation is of critical importance for

breeders and physiologists. In cereals, traits that contribute to the components that make up the

conceptual framework of yield potential in the target environment under the limitation of water [106]

or radiation [107] are of interest. Such traits have been identified previously for crops growing under

water [108–110] or radiation [111] limitation. A summary of sensor quantifiable cereal traits and their

primary effect contributing to yield is presented in Table 3, together with the relevant sensor technology

that can be mounted on a field buggy for phenotyping. While the traits identified in Table 3 contribute

to yield, new cereal varieties released by commercial breeding programs must meet disease resistance
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and quality criteria in the harvestable product to satisfy market requirements. Indeed, many commercial

wheat breeding operations in Australia preferentially focus on the selection for disease resistance, quality

and then yield, presumably because of the phenotyping challenges associated with the direct selection of

traits in Table 3.

Table 3. The summary of cereal traits quantifiable with sensors mounted on field buggies

and the primary effect contributing to yield.

Trait Primary Effect Sensor Technology

Canopy structure

Leaf area index
RI LiDAR, 2D and 3D RGB photogrammetry,

ToF camera, spectral vegetation indices

Biomass WUE/RUE LiDAR, 2D and 3D RGB photogrammetry, ToF camera

Tillering HI LiDAR, 2D and 3D RGB photogrammetry, ToF camera

Canopy height WUE/HI LiDAR, 2D and 3D RGB photogrammetry, ToF camera

Awn presence WUE/HI LiDAR, 2D and 3D RGB photogrammetry, ToF camera

Leaf rolling WUE/RI LiDAR, 3D RGB photogrammetry and ToF camera

Leaf angle RI LiDAR, 3D RGB photogrammetry and ToF camera

Early vigour WUE/WU LiDAR, 2D RGB photogrammetry, spectral vegetation indices

Tissue damage WU/RI RGB camera, multi/hyperspectral camera

Leaf glaucousness/waxes WUE/HI Multi/hyperspectral camera

Pubescence WUE/HI Multi/hyperspectral camera

Grain fertility (number) HI Very high resolution RGB images

Function

Water loss/stomatal control WUE/WU Thermal camera, infra-red temperature sensor

Photosynthesis RUE
Chlorophyll fluorescence, LIFT, PRI, estimation from

biomass accumulation (see above)

Phenology

Stay green/senescence HI/RI LiDAR, multi/hyperspectral camera, thermal camera

Flowering date HI LiDAR, high resolution RGB images

Biochemistry

Stem carbohydrates HI hyperspectral camera

Nutrient content (e.g., N) NUE Multi/hyperspectral camera

Carotenoids, xanthophylls,

anthocyanins, water indices
WU/RI Multi/hyperspectral camera

HI = harvest index; LIFT = laser-induced fluorescence transients; NUE = nitrogen-use efficiency;

PRI = photochemical reflectance index; RGB = red, green and blue; RI = radiation interception;

RUE = radiation-use efficiency; ToF = time of flight; WU = water-use; WUE = water-use efficiency.
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4.1. Case Study

The Phenomobile developed at the High Resolution Plant Phenomics Centre, Canberra (Figure 1),

comprises a height adjustable sensor bar (max 3 m), a two-wheel drive hydraulic drive system, a 6-kW

generator, RTK GPS (∼2 cm resolution), wheel encoders on both front wheels (∼1 mm resolution) and a

removable light bank. The frame of the Phenomobile itself was designed to traverse a mature wheat crop

(1.2-m ground clearance) and the wheel width designed to match that of the equipment used to sow the

trials, thereby minimising the chance of encroachment into the experimental plot during measurement.

Thus, the Phenomobile can traverse ∼1.8-m width plots of a mature wheat crop without disturbing the

canopy at a typical operating speed of 1 m/s.

The height adjustable sensor bar can accommodate a range of sensors, including: three LiDAR

sensors, four high resolution RGB cameras, a thermal infra-red camera, three infra-red thermometers,

a full range spectroradiometer and a hyperspectral camera. Sample data sets from these sensors are

discussed in the below section within the context of the development of high-throughput phenotyping

techniques.

4.1.1. LiDAR Subsystem

The LiDAR subsystem used on the Phenomobile presents possibilities for using time of flight,

resolved distance, and signal intensity information to extract canopy structural parameters that are

traditionally measured either manually using destructive sampling or simply estimated by a visual score.

The LiDAR sensor (LMS400, 70◦ FOV, SICK AG, Waldkirch, Germany) used on the Phenomobile

comprises a monochromatic red laser light source. The active nature of the LiDAR confers a number of

advantages when compared to the traditional RGB camera, including: the LiDAR is not influenced by

shadows and changes in the ambient light conditions, while the RGB camera requires parameterization

for each light condition; the LiDAR can obtain measurements under all light conditions in contrast to

an RGB camera that requires an additional light source in low-light conditions.

The LiDAR intensity signal provides high contrast between soil and green vegetation, as a greater

proportion of the red laser is absorbed by green vegetation than soil. The high contrast between plant

and soil achieved from the LiDAR intensity image is highly amenable for image analysis to derive

ground cover estimation and possibly plant seedling counts. This is illustrated in the comparison of an

RGB image and a LiDAR intensity image of the same scene (Figure 2).

The high resolution of the height data obtained from the LiDAR is amenable to the estimation of

advanced canopy structural parameters, like leaf angular distribution. From the LiDAR height image

of a mixed plot of forage Brassica (Brassica napus) and maize (Zea mays), two transects have been

made in the image to derive the height profiles (Figure 3) across the width of the plot and for a single

maize leaf. The height profile of the single maize leaf illustrates the possibility for the non-destructive

estimation of leaf angle.

The time of flight returns from the LiDAR can be used to measure the height of the crop canopy.

This is illustrated in Figure 4 with the height profile of five genotypes varying for canopy height. The

two profiles show a single-pixel profile and the average height of the plot.
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Figure 2. Comparison of an RGB image (a) and the intensity image from the LiDAR (b),

both acquired over the same plot of rice. The weeds and shadowing in the RGB image

present a clear difficulty for the automatic extraction of the fractional cover, while the use

of an active sensor, such as the red laser from the LiDAR, yields high contrast between soil

and plants and can even discriminate between species based on the intensity or pattern of the

reflectance.

�� ��

For an experiment comprising wheat genotypes varying for height, we compared the crop canopy

height measured manually with a ruler to the height extracted from the LiDAR data (Figure 5).

The manual measurements were obtained from one height measurement per 6 m by 2 m experimental

plot; while the LiDAR height measurements were obtained from the mean of the top 95th percentile

of the height distribution for a given experimental plot minus the height of the ground obtained from

the average of the returns from the soil. An R2 relationship of 0.86 was obtained between both

measurements with a root mean square error (RMSE) of 78.93 mm. Interestingly, for shorter canopy

height measurements, the LiDAR gave higher values than the manual measurement, while for taller

canopy height measurements, the LiDAR gave lower values than the manual measurement. The possible

explanation for this bias is that the manual measurements only sample one or two points of the plot using

the ruler, which in the case of non-uniform plots with a mix of tall and shorter plants could lead to a bias

in manual measurements.

The possibility to identify individual plant organs from the height image obtained from the LiDAR

is illustrated in Figure 6, where the spikes of a mature wheat crop are visible and have been segmented.

The segmentation of the canopy height and intensity images by depth could be used to further enhance

the contrast required for feature extraction of individual plant organs using image analysis algorithms.
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Figure 3. LiDAR data acquired over a mixed plot of forage Brassica and maize. (a) Depth

image rasterized from the LiDAR height data; (b) height profile across the plot (A–B line

in red); (c) height profile of a single maize leaf (C–D blue line) illustrating the potential to

measure the leaf angle non-destructively.
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Figure 4. Profile of the LiDAR elevation. The yellow line in the graph represents the profile of the single-pixel width transect across the

plots, denoted in yellow in the image; while the orange line in the graph represents the average height of all the pixels between the two

orange lines in the image.
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Figure 5. Comparison of canopy height measured manually on wheat using the traditional ruler method and the height estimated with

the LiDAR. The resulting relationship shows R2 = 86 and RMSE = 78.93 mm.
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Figure 6. An example of the application of LiDAR for counting spikes in wheat. The

LiDAR elevation image (a) can be segmented into an image showing only the top fraction

of the image, which clearly shows the spikes (b). A simple particle count algorithm can be

used to count the number of elements per area.

�� ��

There are different approaches for processing and interpreting LiDAR data. The examples shown

above (Figures 3–6) deal with the information in the form of raster images. The returns of the LiDAR

are converted into distances and angles and then converted into an image. This has the advantage of

using standard image processing software for analysing the data. The alternative to this method is the

generation of point clouds with x, y, z coordinates associated with attributes, such as the intensity of

the return. Each return of the LiDAR is converted into a 3D point (Figure 7a). This requires specific

software to deal with the large number of point clouds generated from each LiDAR run. One way to deal

with the point cloud using standard image analysis software is to convert the point cloud into a voxel

image. A voxel (volume element) is the 3D equivalent to a pixel. Voxels are calculated by creating a grid

of cubes that overlap with the point cloud. For each of these cubes or voxels, it is possible to calculate

attributes, such as the number of returns, into the voxel or average intensity. Then, the resulting 3D array

of voxels can be exported as a multi-layered image that can be processed using most image analysis

software. The use of voxels is also amenable to the estimation of crop bio-volume and biomass or as the

input format for radiative transfer models [112,113].
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Figure 7. Point cloud calculated from the LiDAR. (a) Perspective view of the point cloud;

top view (b) and side view (c) of the voxels calculated from the point cloud.
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4.1.2. RGB Camera Subsystem

Using two RGB cameras (Flea2 5MP, Point Grey Research Inc., Richmond, Canada), we estimated

the leaf area and volume of a Japanese millet (Echinochloa esculenta) and forage Brassica (Brassica

napus) crop sown at three densities in 10-m2 plots (0.5 times normal density, 1 times normal density

and 1.5 times normal density). Volume and/or surface area are assumed here to be proxies for standing

biomass. The pairs of acquired RGB images were first corrected for radial distortion (“undistorted”) to

account for imperfection in the manufacturing process of the lenses [114,115] and rectified to account

for the non-co-planarity of the optical system [116] before being matched using a stereo algorithm [117].

This generated a disparity map. Using a pin-hole model of the camera [118], each point of the disparity

map was registered to a real-world coordinate system. The disparity map was then used to produce

an elevation map of the scene. Bio-volume was then computed by integrating the surface below the

leaves and the soil surface along the depth coordinate. Figure 8a shows an example result from 3D

surface reconstruction using the RGB stereo system on the Phenomobile platform. Sampling of standing

biomass was performed by cutting at ground level the total above-ground biomass contained in a 0.5-m2

quadrat. These destructive samples were dehydrated for three days at 110 ◦C before being weighed to

the nearest gram. The relationship between standing biomass and calculated bio-volume (Figure 8b) was

species specific, whereby the offset differed by a factor of two, while the slopes were similar. While it

is possible to calculate bio-volume and many of the canopy structure parameters listed in Table 3 with

pairs of acquired RGB images, the advantages of the LiDAR compared to the RGB camera, described

earlier (Section 4.1.1), are worth considering when selecting sensor technology for phenotyping canopy

structure traits.

Figure 8. (a) Surface reconstruction of a small region of Figure 3 (due to the rectification

steps, parts of the plants are missing in the rectified images); (b) volume estimation (in cm3)

vs. destructive sampling (in grams); variation reflects the different sowing densities of 0.5, 1

and 1.5 times normal sowing density.
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4.1.3. Hyperspectral Subsystem

There are two hyperspectral sensors on the Phenomobile. A full-range spectroradiometer

(Fieldspec 3, ASD Inc., Boulder, CO, USA) and a Vis-NIR hyperspectral line scanner camera
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(Micro-Hyperspec, Headwall Photonics Inc., Fitchburg, MA, USA). The full-range spectroradiometer

is programmed to acquire continuous spectra at approximately 1 Hz that are geo-referenced using the

RTK GPS on the Phenomobile. A foreoptic of 18◦ FOV is installed on the optic fibre, providing an

80 mm diameter spot over the plot at a boom height of 2.5 m. The spectra are acquired in radiance

and then converted into reflectance using either a second full-range spectroradiometer fitted with the

cosine corrector and making continuous measurements of the incoming irradiance or using a radiative

transfer model to model irradiance from aerosol optical depth obtained from the NASA Aeronet station

in Canberra. Since each spectrum is geo-referenced, it is possible to extract the collection of spectra

corresponding to each plot. Then, a number of vegetation indices are calculated from the average plot

reflectances of the different spectral bands.

The hyperspectral camera can record images at a maximum frame rate of 90 Hz. The resolution of the

camera in the spatial axis is 1004 pixels, which, with the current foreoptics of 25◦ FOV and a 2.5-m boom

height, results in a 1.1-mm spatial resolution. However, the spatial resolution in the direction of travel is

determined by the speed of the Phenomobile and the frame rate of the camera. At the maximum frame

rate (90 Hz) and a travel speed of 1 m/s, the spatial resolution in the direction of travel is approximately

11 mm. Therefore, in order to get square pixels, it is required to travel at a lower speed or apply spatial

binning in order to reduce the spatial resolution on the axis perpendicular to the travel. Each scanned line

is time-tagged with GPS time, which is used for geo-referencing each line based on the information from

the RTK-GPS and wheel encoders on the Phenomobile. The camera is calibrated into radiance using a

uniform light source based on an integrating sphere (USS-2000S, Labsphere, North Sutton, NH, USA).

Then, the conversion into reflectance is similar to the one applied to the radiance measurements from

the full range spectroradiometer. The resulting image has 340 spectral bands with a spectral resolution

of approximately 2 nm. The example in Figure 9 shows a wheat experiment comprising two plots with

higher and lower plant density; Plot_A (denoted in yellow, lower plant density) and Plot_B (denoted in

red, higher plant density). The true color image is an RGB composite rendered using the visible bands.

From the hyperspectral image, it is possible to calculate a range of different vegetation indices. For

example, the NDVI and PRI are presented in Figure 9, whereby the average NDVI and PRI for the lower

plant density plot, Plot_A (0.58 and −0.047, respectively), is less than that for the higher plant density

plot, Plot_B (0.68 and −0.027, respectively).

Given the resolution of the hyperspectral system, it is possible to extract the reflectance from

individual plants and, thereby, discriminate between the individual plant organs, such as spikes and

flag leaves. See, for example, Figure 9, where Plant_1, denoted in blue, is the average reflectance of a

region of interest manually drawn over a single plant. In the case of incomplete canopies, where part of

the soil background is presented in the image, a simple NDVI-based mask can be used to filter out pixels

with low NDVI representing soil or shadows; therefore, only pixels with vegetation would be used in

the analysis.



Agronomy 2014, 5 369

Figure 9. Hyperspectral image of wheat with the camera mounted on Phenomobile. From

top to bottom: a true color composite showing the selection of two plots differing for plant

density (Plot_A in yellow, lower plant density, and Plot_B in red, higher plant density) and

a single plant (Plant_1 in a blue circle); an NDVI image from the same hyperspectral image;

a PRI image; a close-up look at Plot_A; plots of spectral radiance of Plot_A, Plot_B and

Plant_1.

For the application of proximal hyperspectral technology in field phenotyping to derive

the biochemistry traits listed in Table 3, high spatial resolution is critical for extracting

the spectral information from pure vegetation or even individual organs within a plant.

In hyperspectral remote sensing, scaling up from the leaf level to the canopy scale is

one of the biggest challenges. Spectral measurements and established vegetation indices

known to work well for determining pigment concentration or photosynthetic functioning

at the leaf scale do not necessarily maintain the same relationship at the canopy scale.

In the application of phenotyping across genotypically diverse populations, where one may expect a

broad range of canopy architectures, scaling from leaf to canopy becomes even more challenging.
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The ability to extract the pixels from the hyperspectral image that represents the reflectance of a

well-illuminated leaf is only possible by using an imaging sensor with high spatial resolution. Moreover,

the combination of hyperspectral and the structural information obtained from the LiDAR will enable the

fusion of both datasets and permit the filtering of the spectral pixels on plant material to those with unique

sensor/sun geometry. This filtering technique can remove artifacts caused by differences in canopy

architecture and has been explored at the airborne level [119] over natural vegetation; therefore, the

same techniques that are applied with sub-metre imagery could be applied to sub-centimetre datasets

and single plants in field phenotyping.

4.1.4. Thermal Infrared Camera

The images captured by the thermal infrared camera (SC645, FLIR Systems Australia Pty Ltd,

Notting Hill, VIC, Australia) mounted on the Phenomobile contain sufficient resolution to identify

individual leaves in a wheat canopy (Figure 10). This level of resolution presents opportunities to

threshold soil from plant material and to overcome the complexities that arise from the influence of the

background soil temperature. Such complexities are increased when single pixel thermal infrared sensors

are used to measure the temperature of canopies with incomplete ground cover and row crops. Other

opportunities exist for identifying individual plant organs within the canopy to estimate transpiring and

non-transpiring plant material, as well as their relative contribution to the overall canopy transpiration at

a particular time during the growing season. Such an analysis could be used to evaluate traits contributing

to the duration of the grain-filling period in cereals, sometimes referred to as “stay green”, and to estimate

the transpiration of reproductive organs. However, to compare consecutive temperature measurements

of a large number of experimental plots, one must account for the influence of the changing environment

with time on the measured temperature (discussed previously in Section 3.1.5).

Figure 10. A single thermal image obtained with Phenomobile over wheat. The image

shows the contrast between the temperatures of the soil and the individual plants. In this

example, the soil was recently irrigated, and most of the soil is cooler than the actual canopy.
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5. Conclusions

Obtaining useful information from proximal remote sensing buggies for use by breeders and

physiologists is a considerable challenge that has been identified by others [11]. For low-throughput

applications, like intensive physiology investigations, less automation and greater human intervention in

the data processing and analysis is acceptable. However, for commercial-scale breeding and pre-breeding

applications, mature data acquisition and automated data processing systems are required to keep pace

with the demand imposed by the large number of genotypes deployed across sites and environment types.

The latter application can often require expert level skills and capabilities in the software engineering and

computer science domains, necessitating genuine multidisciplinary collaborations to achieve substantive

outcomes. Multidisciplinary teams are required to overcome challenges with: hardware and software

integration; customization of data processing and analysis; efficient georeferencing of the data to an

experimental field plan and timely delivery of the data, preferably through secure web-based portals, to

inform decision-making. Today, the crop science community can leverage the unprecedented technology

advances made in computer science, image analysis, proximal remote sensing and robotics.
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