Chapter 10
Proximal Splitting Methods in Signal Processing
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Abstract The proximity operator of a convex function is a natural esten of the
notion of a projection operator onto a convex set. This tablich plays a central
role in the analysis and the numerical solution of conveiwigation problems, has
recently been introduced in the arena of inverse problerdsespecially, in signal
processing, where it has become increasingly importattisrpaper, we review the
basic properties of proximity operators which are relevarsignal processing and
present optimization methods based on these operatorseTgreximal splitting
methods are shown to capture and extend several well-knigerithms in a unify-
ing framework. Applications of proximal methods in signetovery and synthesis
are discussed.
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10.1 Introduction

Early signal processing methods were essentially lineathay were based on
classical functional analysis and linear algebra. With degelopment of nonlin-
ear analysis in mathematics in the late 1950s and early 1@@@sthe bibliogra-
phies of p,147) and the availability of faster computers, nonlinear t@ges have
slowly become prevalent. In particular, convex optimiaathas been shown to pro-
vide efficient algorithms for computing reliable solutiansa broadening spectrum
of applications.

Many signal processing problems darfine be formulated as convex optimiza-
tion problems of the form

minimize f1(X)+---+ fm(X), (10.1)

X€RN

wherefy, ..., fm are convex functions froRN to |-, +-00]. A major difficulty that
arises in solving this problem stems from the fact that,dglby, some of the func-
tions are not differentiable, which rules out conventisraboth optimization tech-
niques. In this paper, we describe a class of efficient coopérization algorithms
to solve (L0.1). These methods proceed gplitting in that the functiondy, ..., fy
are used individually so as to yield an easily implementald@rithm. They are
calledproximalbecause each nonsmooth functionif.() is involved via its prox-
imity operator. Although proximal methods, which can beégback to the work
of Martinet [98], have been introduced in signal processing only recedyq5],
their use is spreading rapidly.

Our main objective is to familiarize the reader with proxiynoperators, their
main properties, and a variety of proximal algorithms folvsa signal and im-
age processing problems. The power and flexibility of pratimethods will be
emphasized. In particular, it will be shown that a numberggaently unrelated,
well-known algorithms (e.g., iterative thresholding, jeied Landweber, projected
gradient, alternating projections, alternating-direetinethod of multipliers, alter-
nating split Bregman) are special instances of proximad@igms. In this respect,
the proximal formalism provides a unifying framework foradyzing and develop-
ing a broad class of convex optimization algorithms. Althloumany of the subse-
quent results are extendible to infinite-dimensional spage restrict ourselves to
a finite-dimensional setting to avoid technical digression

The paper is organized as follows. Proximity operators am®duced in Sec-
tion 10.2 where we also discuss their main properties and provid@pbes. In Sec-
tions10.3and10.4 we describe the main proximal splitting algorithms, nantieé
forward—backward algorithm and the Douglas—Rachfordrétlym. In Sectiorl0.5
we present a proximal extension of Dykstra’s projectionfradtwhich is tailored to
problems featuring strongly convex objectives. Compgsitélems involving lin-
ear transformations of the variables are addressed ind®eldii& The algorithms
discussed so far are designedrios 2 functions. In Sectiod0.7, we discuss paral-
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lel variants of these algorithms for problems involvimg> 2 functions. Concluding
remarks are given in Sectidr.8

10.1.1 Notation

We denote byRN the usuaN-dimensional Euclidean space, Iy its norm, and by

I the identity matrix. Standard definitions and notation franvex analysis will be
used [L3,87,114. The domain of a functiorf : RN — ]—o0, +o0] is domf = {x €

RN | f(x) < +oo}. Io(RN) is the class of lower semicontinuous convex functions
from RN to ]—e0, 4-00] such that donfi # @. Let f € Io(RN). The conjugate of is

the functionf* € Ih(RN) defined by

f*: RN = J—o00, 4-00] : U supx'u— f(x), (10.2)
xeRN

and the subdifferential of is the set-valued operator
Of RN - 2 xis fue RN (Wy e RY) (y—x)Tu+f(x) < f(y)}. (10.3)

Let C be a nonempty subset Bf\. The indicator function o€ is

Ic: X+ 0 ff xeC; (10.4)
+oo, if x¢C,
the support function of is
oc=1&: RN — J—w, 4] : urs supu'x, (10.5)
xeC

the distance fromx € RN to C is dc(x) = infyec||X—y||, and the relative interior of
C (i.e., interior ofC relative to its affine hull) is the nonempty set denoted 16
Cis closed and convex, the projectiomof RN ontoC is the unique poinB-x € C
such thatlc(x) = || x— PeX||.

10.2 From projection to proximity operators

One of the first widely used convex optimization splittingaithms in signal pro-
cessing is POCS (Projection Onto Convex Se8d) 42, 141]. This algorithm is
employed to recover/synthesize a signal satisfying senmeibusly several convex
constraints. Such a problem can be formalized within theé&waork of (L0.1) by
letting each functiorf; be the indicator function of a nonempty closed convexCset
modeling a constraint. This reduce€(J) to the classicatonvex feasibility prob-
lem[31,42,44,86,93,121,122 128 141
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find xe (Gi. (10.6)
i=1

The POCS algorithm2p, 141] activates each s&t; individually by means of its
projection operatoR,. It is governed by the updating rule

Xn+1 = PC1 e Pcan. (10.7)

When ", Ci # @ the sequencéx,)nery thus produced converges to a solution to
(10.9 [25]. Projection algorithms have been enriched with many esitats of this
basic iteration to solvel(.§ [10,43,45,90]. Variants have also been proposed to
solve more general problems, e.g., that of finding the ptigjpof a signal onto an
intersection of convex set22,47,137]. Beyond such problems, however, projection
methods are not appropriate and more general operatoescanead to tacklel0.1).
Among the various generalizations of the notion of a convejgetion operator that
exist [10,11,44,90], proximity operators are best suited for our purposes.

The projectiorP-x of x € RN onto the nonempty closed convex €at RN is the
solution to the problem

minimize lc(y)-i-}HX—sz. (10.8)
yeRN 2

Under the above hypotheses, the functigrbelongs tolp(RN). In 1962, Moreau
[101] proposed the following extension of the notion of a prd@ttoperator,
whereby the functionc in (10.9) is replaced by an arbitrary functidne o(RV).

Definition 10.1 (Proximity operator) Let f € Io(RN). For every xc RN, the min-
imization problem

minimize f(y)Jr}Hx—)’H2 (10.9)
yeRN 2

admits a unique solution, which is denotedygx;x. The operatoprox; : RN —
RN thus defined is thproximity operatoof f.
Let f € Io(RN). The proximity operator of is characterized by the inclusion
(V(x,p) eRNxRN) p=proxxx < x—pedf(p), (10.10)
which reduces to
(V(x,p) e RNxRN) p=prox;x < x—p=0f(p) (10.11)

if fis differentiable. Proximity operators have very attraetproperties that make
them particularly well suited for iterative minimizationgarithms. For instance,
prox; is firmly nonexpansive, i.e.,
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(vx € RY)(vy € RY)  [|prox;x— proxqy|® + || (x— prox;x) — (y — proxy)||*

<|x=y|? (10.12)

and its fixed point set is precisely the set of minimizer§.@uch properties allow us
to envision the possibility of developing algorithms basadhe proximity operators
(prox;,)1<i<m to solve (L0.1), mimicking to some extent the way convex feasibility
algorithms employ the projection operatdPs; )1<i<m to solve (0.6. As shown in
Table10.1, proximity operators enjoy many additional propertiese@ill find in
Table10.2closed-form expressions of the proximity operators ofaagifunctions
in Ip(R) (in the case of functions such ps$P, proximity operators implicitly appear
in several places, e.g3,[4, 35)).

From a signal processing perspective, proximity operataxge a very natural
interpretation in terms of denoising. Let us consider thadard denoising problem
of recovering a signat € RN from an observation

y=X+W, (10.13)

wherew € RN models noise. This problem can be formulated &3.9, where

| - —v||?/2 plays the role of a data fidelity term and whéreodels a priori knowl-
edge abouk. Such a formulation derives in particular from a Bayesiaprapch

to denoising 21,124,124 in the presence of Gaussian noise and of a prior with a
log-concave density exp-f).

10.3 Forward-backward splitting

In this section, we consider the casenof= 2 functions in (0.1), one of which is
smooth.

Problem 10.2 Let f; € Io(RN), let f,: RN — R be convex and differentiable with
a B-Lipschitz continuous gradieftfy, i.e.,

(V(xy) € RNx RN)  [|Of2(x) — Of2(y)[| < BlIx—Vll, (10.14)

wheref3 € ]0,+o[. Suppose that; (X) + f2(X) — 40 as||x|| — +. The problem
is to
minimize f1(x) + f2(x). (10.15)

xeRN

It can be showng5] that Probleml0.2admits at least one solution and that, for
anyy € ]0,+], its solutions are characterized by the fixed point equation

X = prox¢, (x— yOfa(x)). (10.16)

This equation suggests the possibility of iterating
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Table 10.1 Properties of proximity operator7, 37, 53-55,102: ¢ < [o(RN); C c RN is
nonempty, closed, and convexe RN.

[ Property [ (x) [prox; x
i translation ¢(x—2),zc RN Z+prox, (x—2)
i scaling ®(x/p), p e R\ {0} PProX, ,2(X/p)
i reflection ¢ (—x) —prox (—x)
iv quadratic ¢+ alX/2+uTx+y  |proxs a1 ((x—u)/(a+1))
perturbation ueRN, a>0,yeR
vV conjugation o*(x) X— Proxsx
vi squared distance %dé(x) %(er Pex)
vii Moreau envelope [¢(x) = inf ¢(y)+ 1foyH2 1(er ProXaeX)
yeRN 2 2
viii Moreau complemen %H JZ=8(x) X— Proxy >(x/2)
ix decomposition SR @(x hy) ¥ i1 ProX, (X bi)by
in an orthonormal
. Io(R
basis(bk)1<k<n %€ lo(R)
x semi-orthogonal  |¢(Lx) X+ Vv ILT (prox,e (LX) — Lx)
linear transform LeRMN LT =vl,v>0
xi quadratic function |y||Lx—y]||2/2 I+ Y (x+yLTy)
Le RMXN vy~ 0,ye RM
xii indicator function [ic(x) = {O i XGC, Pex
+o otherwise
X+ y(Rex—X) /de (X)
xiii distance function  |ydc(x), y>0 if de(x) >y
Rex otherwise
prox,dc(x)
xv function of P(de(x) . . X+ (1 de(x) (Rex=x)
distance @ € IH(R) even, differentiable if x¢C
at 0 with¢/(0) = 0 .
X otherwise
XV support function ac(X) X—Pex
prox,dc (X)
xviithresholding ac(¥) + @(X]) oy TR

@€ (R) even

if X) > maxArgmin
and not constant de(x) gming

X— Pex otherwise

Xni1= ProX.r, (Xn—y0Of2(xn)) (10.17)
—_— e
backward step ~ forward step
for values of the step-size paramejgiin a suitable bounded interval. This type of

scheme is known as farward—backwardsplitting algorithm for, using the termi-
nology used in discretization schemes in numerical ana[§8, it can be broken
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up into a forward (explicit) gradient step using the funotfg, and a backward (im-
plicit) step using the functioffy. The forward—backward algorithm finds its roots in
the projected gradient metho8@4] and in decomposition methods for solving vari-
ational inequalities99, 119. More recent forms of the algorithm and refinements
can be found inZ3,40,48,85,130. Let us note that, on the one hand, whign= 0,
(10.17 reduces to thgradient method

Xn+1 = Xn — YO T2 (Xn) (10.18)

for minimizing a function with a Lipschitz continuous gradi [19,61]. On the other
hand, whenf, = 0, (10.17 reduces to theroximal point algorithm

Xn+1 = ProXy f, Xn (10.19)

for minimizing a nondifferentiable function2p, 48, 91, 98, 115. The forward-—
backward algorithm can therefore be considered as a cotitira these two basic
schemes. The following version incorporates relaxatioamp@tergAn)nen.

Algorithm 10.3 (Forward-backward algorithm)
Fix € €]0,min{1,1/B}[, %o € RN

Forn=0,1,...
W E[€,2/B8—¢]
Yn = Xn — ¥aOf2(Xn)
A€ [6.1] (10.20)

Xn+1 = Xn + An(ProXy t, Yn — Xn).

Proposition 10.4 [55] Every sequencé)neny generated by Algorithri0.3con-
verges to a solution to ProblefrD.2

The above forward—backward algorithm features varying-stees(yn)nen but
its relaxation parametefd,)ney cannot exceed 1. The following variant uses con-
stant step-sizes and larger relaxation parameters.

Algorithm 10.5 (Constant-step forward—backward algorithm)
Fix £ €]0,3/4[ andxg € RN

Forn=0,1,...
Yn =X — B 10f2(Xn)
An € [€,3/2—¢] (10.21)

Xn+1 = Xn + An(proxﬁflflyn —Xn).

Proposition 10.6 [13] Every sequencé)neny generated by Algorithri0.5con-
verges to a solution to ProblefirD.2

Although they may have limited impact on actual numericaffgrenance, it
may be of interest to know whether linear convergence ratsiailable for the
forward—backward algorithm. In general, the answer is tiegieeven in the simple
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setting of Examplel0.12below, linear convergence of the iterateg)ncn gener-
ated by Algorithm10.3fails [9,139. Nonetheless it can be achieved at the expense
of additional assumptions on the probleh®[24,40,61,92,99,100,115 119 144].
Another type of convergence rate is that pertaining to thgatlve values
(f1(Xn) + f2(Xn))nen. This rate has been investigated in several platés2f, 83]
and variants of Algorithni0.3have been developed to improve 15 16, 84, 104,
105131134 in the spirit of classical work by Nestero(g. It is important to note
that the convergence of the sequence of iter&tgs.n, which is often crucial in
practice, is no longer guaranteed in general in such vaidie proximal gradient
method proposed inp, 16] assumes the following form.

Algorithm 10.7 (Beck-Teboulle proximal gradient algorithm)
Fix xg € RN, setzg = xp andty = 1

Forn=0,1,...

Yn =20 — B 0fa(z0)

Xnt1 = ProXg-1¢, Yn

1+ /4t2+1
thi1 = f” (10.22)
A1+ th—1
thr1

| Znr1 = X0+ An(Xnt1— Xn)-

While little is known about the actual convergence of segesmproduced by Al-
gorithm10.7, theO(1/n?) rate of convergence of the objective function they achieve
is optimal [L0J, although the practical impact of such property is not glevenan-
ifest in concrete problems (see Figut6.2 for a comparison with the Forward-
Backward algorithm).

Proposition 10.8 [16] Assume that, for everyeydom f, df1(y) # &, and letx be a
solution to Probleni0.2 Then every sequen¢e,)ny generated by Algorithr0.7
satisfies

2% —x|?

(Vn e N~ {0}) fl(Xn) + fz(Xn) < fl(x) + fZ(X) + (I’H— 1)2

(10.23)

Other variations of the forward—backward algorithm haw®dleen reported to
yield improved convergence profile&(, 70,97,134,135.

Problem10.2 and PropositiorL0.4 cover a wide variety of signal processing
problems and solution methodsy. For the sake of illustration, let us provide a
few examples. For notational convenience, wedget 1 in Algorithm 10.3 which
reduces the updating rule td@.17.

Example 10.9 (projected gradient) In Problem10.2 suppose that; = ic, where
Cis a closed convex subset BY such that{x € C| fo(x) < n} is nonempty and
bounded for somg € R. Then we obtain the constrained minimization problem
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Table 10.2 Proximity operator ofp € lo(R); a € R,k >0,k >0,k >0, w >0, w <, q> 1,
7> 0[37,53,55].

| o) [prox,x
i ’[w [7] (X) P[g@] X
wx if x<0 X—w if X<w
i Om(X) =40 ifx=0 SOfty(X) = 1 0 if x€ [w,]
wx otherwise X—w if x>
Px)+ Olw| )
i We® ) R) differentiable at 0 proxy (soft, ¢ (X))
Y'(0) =
X if X <w
iv. max{|x| — w,0} sign(x)w if w<|x <2w
sign(X) (x| — w) if [x] > 2w
sign(x)p,
q
vk wherep > 0 andp+ gk p¥—1 = ||
R if x| <w/v2K X/(2k +1) if x| <w(2k+1)/v2K
vi
wV2k|x| — w?/2 otherwise X— wV 2K sign(x) otherwise
N 2 . max{[x] — w,0}
Vi w[x| 4+ T|x|* 4+ kx| SIGNX)PrOXe|.o/(2r41) — pp 7
(2)~ sign(x) <w|x\ w1
viii w|x| —In(1+4 w|X|) >
T/l — 2~ 17 + 40}
ix if x>0 X—w if x>w
+o otherwise 0 otherwise
wxl/q if x>0 pl/a,
X otherwise wherep > 0 andp®@ ! —xp™1=qlw
i wx 9 if x>0 p>0
+e  otherwise such thap™2 —xpi*t = wq
In(x) if 0
i 2 ¥ I.f §>o w(e™),
whereW is the Lambert W-function
+o0 otherwise
1 .
- icw) i xelog |[3(reryk-ale) it x<i/e
xii ¢ —In(@—x)+In(w) if xe]0, @ 1 R . -
—(x+w—/|IXx—w]?+4) if x>1/w
+oo otherwise 2 ( | | ) ./
0 otherwise
w<0<w (see Figurel0.7)
. KIn(x)+/2+ax if x>0 1 2
Xiv —(X—a X—a 4k (1471
{+oo otherwise 2(1+71) ( v [+ 4k 1+ ))
v —kIn(x)+ax+wx ! if x>0 p>0
+o0 otherwise  |such thap®+ (a —x)p> —kp=w
Wi —kIn(x)+wxd if x>0 p>0
+oo otherwise such thatjwp? + p? —xp= K
—KIn(x— w) —KIn(w—Xx) p€lw, @[
Xvii if xe]w, @[ |suchthap®—(w+@+x)p>+
otherwise (Ww— K — K+ (W+ @)X) p = WX — WK — WK

11
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1/w

1o

Fig. 10.1 Proximity operator of the function

—In( —w)+In(—w) if &c]w,0]
@R |-t 1 & ¢ —In(@— &) +In(w)  if & €]0.w|
00 otherwise.

The proximity operator thresholds over the interiglw, 1/%], and saturates ateo and+-co with
asymptotes at and@, respectively (see TablE.2xiii and B3]).

minimize f3(x). (10.24)
xeC

Since proy;, = Fc (see Tablel0.1xii), the forward—backward iteration reduces to
theprojected gradient method

%11 =Pe(X%n— 0f2(%)), €< <2/B—e. (10.25)

This algorithm has been used in numerous signal processitdgms, in particular
in total variation denoising34], in image deblurring 18], in pulse shape design
[50], and in compressed sensingf].
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Example 10.10 (projected Landweber)In Example10.9 settingf: x — ||Lx—
y||?/2, whereL € RM*N < {0} andy € RM, yields the constrained least-squares
problem

minimize :—L||Lx—y|\2. (10.26)
xeC 2

SinceOfy: x — LT (Lx —y) has Lipschitz constarfs = ||L||2, (10.29 yields the
projected Landweber meth¢@g]

Xnp1 = Pe(Xn+ WL (Y= Lx0), € <y <2/|L|°—e. (10.27)

This method has been used in particular in computer vis8# &nd in signal
restoration 129.

Example 10.11 (backward—backward algorithm) Let f and g be functions in
o(RN). Consider the problem

minimize f(x)+g(x), (10.28)
x€RN

whereg is the Moreau envelope @f (see Tablel0.1vii), and suppose thdt(x) +
g(x) — +o as||x|| — 4. This is a special case of Problerfi.2with f; = f and
fo =@. Sincelf2: x— X— prox,x has Lipschitz constarft = 1 [55,102, Proposi-
tion 10.4with y, = 1 asserts that the sequer{gg)n generated by theackward—
backward algorithm

Xn41 = ProX; (ProXXn) (10.29)

converges to a solution td.Q.29. Detailed analyses of this scheme can be found
in[1,14,48,108.

Example 10.12 (alternating projections)In Examplel0.1] let f andg be respec-
tively the indicator functions of nonempty closed convets €&sandD, one of which
is bounded. Thenl(.28 amounts to finding a signalin C at closest distance from
D, i.e., L

minimize Zd3(x). (10.30)

xeC 2

Moreover, since prox= Fc and proy = Pp, (10.29 yields thealternating projec-
tion method

Xnt1 = Pe(PoXn), (10.31)

which was first analyzed in this context idl]. Signal processing applications can
be found in the areas of spectral estimatiBfi] pulse shape desigi(7, wavelet
construction 109, and signal synthesid Q.

Example 10.13 (iterative thresholding) Let (bx)1<k<n be an orthonormal basis of
RN, let (ax)1<k<n be strictly positive real numbers, lete RM*N < {0}, and let
y € RM. Consider the'-¢? problem
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Fig. 10.2 Forward-backward versus Beck-Teboulle : As in Exaniel2 let C andD be two
closed convex sets and consider the proble30 of finding a pointx. in C at minimum distance
from D. Let us setf; = ic and f, = d,% /2. Top: The forward—backward algorithm with = 1.9
and A, = 1. As seen in Exampl&0.12 it reduces to the alternating projection methdd.g7).
Bottom: The Beck-Teboulle algorithm.
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minimize " ax|x" bi| + 5||Lx—y]%. (10.32)
xRN &y 2

This type of formulation arises in signal recovery problamsvhichy is the ob-
served signal and the original signal is known to have a sparesentation in the
basis(bx)1<k<n. €.0., [L7,20,56,58,72,73,125 127. We observe thatl0.32) is a
special case ofl(0.19 with

{ f11 X ¥ 1ckan ax|X by (10.33)

fo: X ||Lx—y||?/2.

Since proys, : X = ¥ 1<k<nSOft_yey yay] (x"by) bk (see Tablel0.Llvii and Ta-
ble 10.2ii), it follows from Propositionl0.4 that the sequencén)nen generated
by theiterative thresholding algorithm

N
Xni1= Y &knbk, Wwhere
K=1
-
ficn = SOy yoaa (n LT (Y= Lxw)) D g 5
E<WHm < 2/||L||2_81
converges to a solution ta.Q.32.

Additional applications of the forward—backward algomitin signal and image
processing can be found i8§-30,32,36,37,53,55,57,74].

10.4 Douglas—Rachford splitting

The forward—backward algorithm of Secti@fl.3requires that one of the functions
be differentiable, with a Lipschitz continuous gradientthis section, we relax this
assumption.

Problem 10.14 Let f; and f, be functions irro(RN) such that
(ridomfy) N (ridomf,) # & (10.35)
and f1(x) + fa(x) — +o as||x|| — +o. The problem is to

minimize f1(x) 4+ f2(x). (10.36)
X€RN
What is nowadays referred to as theuglas—Rachford algorithrgoes back to
a method originally proposed i®{] for solving matrix equations of the form=
Ax+ Bx, whereA andB are positive-definite matrices (see al48%). The method
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was transformed in95] to handle nonlinear problems and further improveddfj [
to address monotone inclusion problems. For further dgveénts, seed8,49,66].

Problem10.14admits at least one solution and, for ang |0, 4o, its solutions
are characterized by the two-level conditi&2]

X = prox,;,y (10.37)
ProXyr,y = ProXyf, (2prox,,y —y),

which motivates the following scheme.

Algorithm 10.15 (Douglas—Rachford algorithm)

Fix € €]0,1[, y> 0,yo € RN

Forn=0,1,...
Xn = ProX,s,Yn
A€ [€,2—¢] (10.38)
Yn+1 = Yn+An(Prox, (2 — yn) —Xn).

Proposition 10.16 [52] Every sequencéxn)nen generated by Algorithni0.15
converges to a solution to Problehd.14

Just like the forward—backward algorithm, the Douglas+Rad algorithm op-
erates by splitting since it employs the functiohsand f, separately. It can be
viewed as more general in scope than the forward—backwgatitiim in that it
does not require that any of the functions have a Lipschitzicoous gradient.
However, this observation must be weighed against the Fedtit may be more
demanding numerically as it requires the implementatiotwof proximal steps at
each iteration, whereas only one is needed in the forwakvwerd algorithm. In
some problems, both may be easily implementable (seelbi§for an example)
and it is not clear a priori which algorithm may be more efintie

Applications of the Douglas—Rachford algorithm to signad @amage processing
can be found in38,52,62,63,117,118 123.

The limiting case of the Douglas—Rachford algorithm in vbhig, = 2 is the
Peaceman—Rachford algorithp8, 66, 9€]. Its convergence requires additional as-
sumptions (for instance, th& be strictly convex and real-valued)q).

10.5 Dykstra-like splitting

In this section we consider problems involving a quadraiot penalizing the de-
viation from a reference signal

Problem 10.17 Let f andg be functions ino(RN) such that donf Ndomg # &,
and letr ¢ RN. The problem is to
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Fig. 10.3 Forward-backward versus Douglas—Rachford: As in Exarhflé2 letC andD be two
closed convex sets and consider the probl&tn30 of finding a pointx, in C at minimum distance
from D. Let us setf; = ic andf, = d% /2. Top: The forward—backward algorithm wigh= 1 and
An=1. As seen in Exampl#0.12 it assumes the form of the alternating projection meti@d3).
Bottom: The Douglas—Rachford algorithm witk= 1 andA, = 1. Table10.1xii yields prox, =R
and Tablel0.1vi yields prox, : x— (x+ Pbx)/2. Therefore the updating rule in Algorithird.15
reduces tot = (Yn+ Fbyn)/2 andyn;1 = Re(2 — Yn) + Yn —Xn = Re(FoYn) + Yn — Xa.
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minimize f(x)+g(x)+}||x—r||2. (10.39)
xRN 2

It follows at once from {0.9 that Problem10.17 admits a unique solution,
namelyx = prox; 4r. Unfortunately, the proximity operator of the sum of two
functions is usually intractable. To compute it iteratiyelve can observe that
(10.39 can be viewed as an instance @0(39 in Problem10.14with f; = f and
fo =g+ |- —r||?/2. However, in this Douglas—Rachford framework, the addi
qualification condition10.35 needs to be imposed. In the present setting we require
only the minimal feasibility condition dofhndomg # &.

Algorithm 10.18 (Dykstra-like proximal algorithm)
Setxg=r,pp=0,0o=0

Forn=0,1,...
Yn = ProXy(Xn =+ Pn)
Pnt1=Xn+Pn—Yn (10.40)

Xn+1 = Prox¢ (Yn+ )
On+1 = Yn+On — Xn+1.

Proposition 10.19 [12] Every sequencéxn)nen generated by Algorithni0.18
converges to the solution to Probleifi.17

Example 10.20 (best approximation)Let f and g be the indicator functions of
closed convex sets andD, respectively, in Problerh0.17 Then the problem is to
find the best approximation tofrom CND, i.e., the projection of ontoCND. In
this case, since prex= R and proy = P, the above algorithm reduces to Dykstra’s
projection methodZ2, 64].

Example 10.21 (denoising)Consider the problem of recovering a sigRdtom a
noisy observatiom = X+ w, wherew models noise. Iff andg are functions in
Io(RN) promoting certain properties af adopting a least-squares data fitting ob-
jective leads to the variational denoising probleifi.G9.

10.6 Composite problems

We focus on variational problems with= 2 functions involving explicitly a linear
transformation.

Problem 10.22 Let f € [H(RN), let g € Ip(RM), and letL € RM*N < {0} be such
that dongNL(domf) # @ and f(X) + g(Lx) — 4+ as||x|| — 4. The problem is
to

minimize f(x) 4 g(Lx). (10.41)

xeRN
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Our assumptions guarantee that ProblEi?2 possesses at least one solution.
To find such a solution, several scenarios can be conterdplate

10.6.1 Forward-backward splitting

Suppose that in Problerh0.22g is differentiable with ar-Lipschitz continuous
gradient (seel0.19). Now setf; = f andf, = goL. Thenf; is differentiable and
its gradient

Of, =L  oOgoL (10.42)

is B-Lipschitz continuous, with3 = ||L||%. Hence, we can apply the forward—
backward splitting method, as implemented in Algorithth3 As seen in 10.20),
it operates with the updating rule

¥ € [£,2/(T|IL]1?) — €]

Yn =X — L' Og(Lxn)

An € [€,1]

Xn+1 = Xn + An(ProXy Yn —Xn).

(10.43)

Convergence is guaranteed by Proposifior

10.6.2 Douglas—Rachford splitting

Suppose that in Problefid.22the matrixL satisfies
LL" =vl, where v e ]0,+o] (10.44)

and(ridomg) NriL(domf) # @. Let us setf; = f andf, = goL. As seen in Ta-
ble 10.1x, prox;, has a closed-form expression in terms of grard we can there-
fore apply the Douglas—Rachford splitting method (Algamit10.15. In this sce-

nario, the updating rule reads

Xn = Yn+ VLT (proX,yg(Lyn) — Lyn)
An€lg,2—¢] (10.45)

Ynt1=Yn+ /\n(pFOny (2Xn - Yn) - Xn)-

Convergence is guaranteed by Proposifiorig
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10.6.3 Dual forward—backward splitting

Suppose that in Problef0.22f = h+ |- —r||?/2, whereh € [H(RN) andr € RN.
Then (L0.4]) becomes

minimize h(x)+g(Lx)+}||x—r||2, (10.46)
xRN 2

which models various signal recovery problems, e 33, 34,51,59, 112 13§. If

(10.49 holds, proy,, is decomposable, and@.49 can be solved with the Dykstra-

like method of Sectiorl0.5 where f; = h+ || - —r||?/2 (see Tablel0.1iv) and

f, = goL (see Tablel0.1x). Otherwise, we can exploit the nice properties of the

Fenchel-Moreau-Rockafellar dual af((.49, solve this dual problem by forward—

backward splitting, and recover the unique solutionit®.49 [51].

Algorithm 10.23 (Dual forward—backward algorithm)
Fix € € ]0,min{1,1/[L[?} [, up € RM
Forn=0,1,...

Xn = prox,(r — L "up)

W€ [€,2/|L]* €]

An € [€,1]

Un+1 = Un + An(ProX g (Un -+ YalXn) — Un).

(10.47)

Proposition 10.24 [51] Assume thatridomg) NriL(domh) # &. Then every se-
guenceXn)ney generated by the dual forward—backward algorithith23converges
to the solution tq10.49.

10.6.4 Alternating-direction method of multipliers

Augmented Lagrangian techniques are classical approfmtssving Probleni0.22
[77,78] (see alsoT5,79)). First, observe thatl(0.4]) is equivalent to

minimize f(x)+ g(y). (10.48)
xe]RI’_\‘,ye]RM
X=y

Theaugmented Lagrangiaof indexy € |0, +o[ associated with1(0.4§ is the sad-
dle function

Ly RN RM x RM — |00, 4]

1 1
(xy,2) = £(x) +a(y) + ;,ZT(LX— Y+ 5 1= Yl (10.49)



10 Proximal Splitting Methods in Signal Processing 21

The alternating-direction method of multipliers consistsninimizing £}, overx,
then overy, and then applying a proximal maximization step with respedhe
Lagrange multipliez. Now suppose that

L'L is invertible and(ridomg) NriL(domf) # @. (10.50)

By analogy with (0.9, if we denote by pro'?< the operator which maps a point

y € RM to the unique minimizer of — f(x) + ||Lx—y||?/2, we obtain the following
implementation.

Algorithm 10.25 (Alternating-direction method of multipl iers (ADMM))
Fixy>0,yoeRM, z e RM

Forn=0,1,...
Xn = ProXy (Yn — Zn)
S =bx (10.51)

Yni1 = ProXg(sh+2zn)
Zni1 = Zn+ S — Yn+1-

The convergence of the sequenE@)ncy thus produced under assumption
(10.5Q has been investigated in several places, e, 7, 79]. It was first ob-
served in 76| that the ADMM algorithm can be derived from an applicatioh o
the Douglas—Rachford algorithm to the dual ©0(4J). This analysis was pursued
in [66], where the convergence 0f)nen t0 @ solution to £0.47) is shown. Variants
of the method relaxing the requirementsloim (10.50 have been propose#,39.

In image processing, ADMM was applied iB] to an ¢1 regularization prob-
lem under the name “alternating split Bregman algorithrarftker applications and
connections are found ir2]69,117,143.

10.7 Problems withm > 2 functions

We return to the general minimization probleh®(2).

Problem 10.26 Let f4,...,fn be functions irro(RN) such that
(ridomfy)N---N(ridomfy) # @ (10.52)

andfy(x) 4 - + fm(X) = +o0 as||x|| — +. The problemis to

minimize f1(x) 4 -- -+ fm(X). (10.53)

xeRN

Since the methods described so far are designedhfer2 functions, we can
attempt to reformulatel(0.53 as a 2-function problem in the-fold product space

A =RNx...xRN (10.54)
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(such techniques were introduced i} 111] and have been used in the context of
convex feasibility problems inl0,43,45]). To this end, observe that(.53 can be
rewritten inJZ as

minimiz; fa(xa) + -+ fm(Xm)- (10.55)

If we denote by = (xq,...,Xm) @ generic element igt’, (10.59 is equivalent to

minimize ip(X) + f(x), (10.56)
xeH

where

(10.57)

D={(X,...,x) € #|xc RN}
fixe fo(xa) 4+ -+ fm(Xm).

We are thus back to a problem involving two functions in thgda space’”. In
some cases, this observation makes it possible to obtaireogent methods from
the algorithms discussed in the preceding sections. Ftarins, the following par-
allel algorithm was derived from the Douglas—Rachford athm in [54] (see also
[49) for further analysis and connections with Spingarn’stsiply method 120).

Algorithm 10.27 (Parallel proximal algorithm (PPXA))
Fix € €]0,1[, y> 0, (a)1<i<m € ]0,1]™ such that
S =1, yio€RN,... ,ymo € RN

Setxo =y @yio
Forn=0,1,...
Fori=1,....m

{ Pi.n = ProXy, /¢ Yin
m

pn= i;m Pin

e<A<2-¢
Fori=1,....m
LYi,nle = Yi,n+/\n(2pn —Xn— pi,n)

| Xn+-1 = Xn + An(Pn — Xn)-

Proposition 10.28 [54] Every sequencéxn)nen generated by Algorithni0.27
converges to a solution to Problehd.26

Example 10.29 (image recovery)n many imaging problems, we record an obser-
vationy € RM of an imagez € R¥ degraded by a matrix € RM*X and corrupted by
noise. In the spirit of a number of recent investigationg (8&] and the references
therein), a tight frame representation of the images unalesideration can be used.
This representation is defined through a synthesis matrix RX*N (with K < N)
such thaF "F = vl, for somev € 0, +[. Thus, the original image can be written
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asz= F ', wherex € RN is a vector of frame coefficients to be estimated. For this
purpose, we consider the problem

minimize :—2L|\LFTX—y||2+ ®D(x) +tv(F x), (10.58)
Xe!

whereC is a closed convex set modeling a constraingzathe quadratic term is the
standard least-squares data fidelity te@s a real-valued convex function @&\
(e.g., aweighted! norm) introducing a regularization on the frame coefficieand
tv is a discrete total variation function aiming at presegupiecewise smooth areas
and sharp edge41§. Using appropriate gradient filters in the computationoftt

is possible to decompose it as a sum of convex functipn$ <j<q, the proximity
operators of which can be expressed in closed f&a#[13. Thus, (L0.59 appears
as a special case 0f@.53 withm=q+3, fi=1c, fo = [LF - —V||2/2, f3 = @,
andfz,j =tvj(F ") fori € {1,...,q}. Since a tight frame is employed, the proximity
operators off, and( fa.j)1<i<q can be deduced from Tabl®.1x. Thus, the PPXA
algorithm is well suited for solving this problem numerigal

A product space strategy can also be adopted to addresdltheifigg extension
of Problem10.17

Problem 10.30Let fq, ..., fn be functions inI‘o(IR{N) such that doniy N ---N
domfm # &, let (a)1<i<m €]0,1]™ be such thaf"; wy = 1, and letr € RN. The
problemis to
m
1
minimize fi(X)+ =[x —r]|% 10.59
i;m 10+ 5x—=r ( )

xeRN

Algorithm 10.31 (Parallel Dykstra-like proximal algorith m)
SetXg=r,210=X0, ---1Zmo = X0

Forn=0,1,...

Fori=1,....m

{ Pi.n = ProXs zin

Xni1=Y{%1 GAPin (10.60)
Fori=1,....m

in,nJrl =Xn+1+Zn— Pin-

Proposition 10.32 [49] Every sequencéxn)nen generated by Algorithni0.31
converges to the solution to Probleif.30

Next, we consider a compaosite problem.

Problem 10.33 For everyi € {1,...,m}, letg; € lo(RM) and letL; € RM*N, As-
sume that
(3q€ RN) Lig e ridomgy,...,Lmg € ridomgn, (10.61)
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that gy (L1X) + -+ + gm(LmX) — +o0 as||x| — +, and thatQ = F1mLi Li is
invertible. The problem is to

minimize gy (L1X) + - - + gm(LmX). (10.62)
xRN

Proceeding as inl(0.55 and (L0.56, (10.62 can be recast as

minimize 1p(X) +9(y), (10.63)
xe%,LyeOf
y=Lx

where
H=RNx...xRN, @ =RM1 x ... x RMm
L: # —>4: x— (Lixg,...,LmXm) (10.64)
9: 9 — |—oo,+oo] 1y ga(Y1) + -+ Gm(Ym)-
In turn, a solution to 10.62 can be obtained as the limit of the sequeGg ey
constructed by the following algorithm, which can be dedii®m the alternating-

direction method of multipliers of SectiolD.6.4(alternative parallel offsprings of
ADMM exist, see for instancesh]).

Algorithm 10.34 (Simultaneous-direction method of multidiers (SDMM))
Fixy>0,y10€RM ... ymo € RMm 7 g € RM1 ... Z7g € RMm

Forn=0,1,...
Xn = Qil z.nll |—iT (Yi,n - Zi,n)
Fori=1,....m
Sn = LiXn
Yin+1 = ProXy, (Sn+12zn)
Zint1=Zn+Sn—Yin+1

(10.65)

This algorithm was derived from a slightly different viewpbin [118 with a
connection with the work of{1]. In these papers, SDMM is applied to deblurring
in the presence of Poisson noise. The computatiog @f (10.69 requires the so-
lution of a positive-definite symmetric system of linear atjons. Efficient methods
for solving such systems can be found BZ][ In certain situations, fast Fourier
diagonalization is also an optiog,[71].

In the above algorithms, the proximal vectors, as well asatindliary vectors,
can be computed simultaneously at each iteration. Thisllpastructure is use-
ful when the algorithms are implemented on multicore aggtitres. A parallel
proximal algorithm is also available to solve multicompohsignal processing
problems P7]. This framework captures in particular problem formwat found
in [7,8,80,88,133. Let us add that an alternative splitting framework apgdbie to
(10.53 was recently proposed i 7).
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10.8 Conclusion

We have presented a panel of convex optimization algoritiinasing two main
features. First, they employ proximity operators, a powlegkeneralization of the
notion of a projection operator. Second, they operate bitiggl the objective to
be minimized into simpler functions that are dealt with indually. These methods
are applicable to a wide class of signal and image procepsaoiiems ranging from
restoration and reconstruction to synthesis and desiga.dDthe main advantages
of these algorithms is that they can be used to minimize rifamdntiable objectives,
such as those commonly encountered in sparse approxinaatbcompressed sens-
ing, or in hard-constrained problems. Finally, let us nbt the variational prob-
lems described in1(0.39, (10.46, and (L0.59, consist of computing a proximity
operator. Therefore the associated algorithms can be gsesidroutine to compute
approximately proximity operators within a proximal sfiiy algorithm, provided
the latter is error tolerant (seé§,49,51,66,115 for convergence properties under
approximate proximal computations). An application oétpiinciple can be found

in [39].
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