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Abstract. In this paper, we study strong convergence of some proximal-type algorithms to a solution of split

minimization problem in complete p-uniformly convex metric spaces. We also analyse asymptotic behaviour
of the sequence generated by Halpern-type proximal point algorithm and extend it to approximate a common

solution of a finite family of minimization problems in the setting of complete p-uniformly convex metric spaces.

Furthermore, numerical experiments of our algorithms in comparison with other algorithms are given to show
the applicability of our results.

1. Introduction

Let X be a geodesic space and f be any real-valued function defined on X. If there exists a point v̄ ∈ X such that
f(v̄) = min

v∈X
f(v), then v̄ is called a minimizer of f and is denoted by v̄ :=argmin

v∈X
f(v) (that is, argmin

v∈X
f(v) denotes

the set of minimizers of f). The problem of finding such a point v̄ ∈ X for which f(v̄) = min
v∈X

f(v), is called a

Minimization Problem (MP), which is very useful in optimization theory, convex and nonlinear analysis. Many
authors have proposed some efficient and implementable algorithms and obtain some convergence theorems for
solving MPs and some of their generalizations, (see for example, [21, 22, 23, 33, 35, 43, 49]). The Proximal
Point Algorithm (PPA) is a well-known method for finding solutions of MPs. It was introduced by Martinet
[32] and was further developed by Rockafellar [41] in Hilbert spaces. Rockafellar [41] proved that the PPA
converges weakly to a minimizer of a proper convex and lower semicontinuous functional (to be defined in
Section 2) and raised a very important question as to whether the PPA converges strongly or not. The question
was resolved in the negative by Güler [21] who constructed a counterexample showing that the PPA does not
necessarily converges strongly (see also [9, 10] for more counterexamples on this subject matter). In other
words, except additional conditions are imposed on either the convex functional or on the underlying space,
only weak convergence results for PPA are expected. In 2000, Kamimura and Takahashi [24] modified the PPA
into Halpern-type PPA, so that its strong convergence is guaranteed. The study of PPA has been generalized
from Hilbert spaces to differentiable manifolds, in particular, the Hadamard manifolds (Riemannain manifolds
of nonpositive sectional curvature) see for example [20, 30, 40] and the references therein. Bačák [6] continued
along this line and introduced the PPA in Hadamard spaces (complete CAT(0) spaces) as follows: For arbitrary
point x1 in a Hadamard space X, define the sequence {xn} iteratively by

xn+1 = Jfµn
(xn),(1.1)

where µn > 0 for all n ≥ 1, and Jfµ : X → X is the Moreau-Yosida resolvent of a proper convex and lower
semicontinuous functional defined by

Jfµ (x) = arg min
v∈X

(
f(v) +

1

2µ
d2(v, x)

)
.

Bačák [6] proved that the PPA ∆-converges (to be defined in Section 2) to a minimizer of f under the assumption
that

∑∞
n=1 µn =∞ and that f has a minimizer in X. Since then, different modifications of the PPA have been

studied in Hadamard spaces, as well as in Hilbert and Banach spaces (see [4, 5, 44, 48] and the references
therein).

The PPA have now been generalized to p-uniformly convex metric spaces, introduced by Noar and Silberman
[34] in 2011 as follows: Let 1 < p <∞, a metric space (X, d) is called p-uniformly convex with parameter c > 0
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if and only if (X, d) is a geodesic space (to be defined in Section 2) and

d(v, (1− t)x⊕ ty)p ≤ (1− t)d(v, x)p + td(v, y)p − c

2
t(1− t)d(x, y)p ∀x, y, v ∈ X, t ∈ [0, 1].(1.2)

Let X be a p-uniformly convex metric space. Choi and Ji [14] introduced the notion of resolvent mapping of a
proper, convex and lower semicontinuous functional f in X as follows: For x ∈ X and µ > 0, Jfµ : X → X is
defined by

Jfµ (x) = arg min
v∈X

(
f(v) +

1

2µ
dp(v, x)

)
.(1.3)

Clearly, if p = 2, then (1.3) reduces to the Moreau-Yosida resolvent. Using (1.3), they obtained the following
result.

Theorem 1.1. [14, Theorem 3.6] Let X be a p-uniformly convex metric space with parameter c > 0 and
diameter α > 0. Let f : X → (−∞,∞] be a proper uniformly convex, lower semicontinuous function, and {µn}
be a sequence of positive real numbers such that lim

n→∞
n

(
∑n

i=1 µi)
= 0. Suppose that the sequence {xn} in X is

generated by the following PPA:

xn = Jfµn
(xn−1), n ≥ 1,(1.4)

where Jfµn
is defined in (1.3). Then, {xn} converges to a minimizer of f .

Kuwae [28] defined the resolvent Jfµ of f in p-uniformly convex metric space slightly different from that in (1.3)
as follows:

Jfµ (x) = arg min
v∈X

(
f(v) +

1

pµp−1
d(v, x)p

)
.(1.5)

off course, (1.5) is more general and known to be applicable in obtaining solutions of initial boundary value
problems for p-harmonic maps (see [28] for more details). Kuwae [28] also established the unique existence of
the resolvent Jfµ of f under Assumption 3.21 of [28] (see [28, Proposition 3.26]). Furthermore, he proved the
existence of the minimizer of a coercive proper lower semicontinuous functionals.

We emphasize here that the results of Kuwae [28], Choi and Ji [14] naturally extend contemporary results in
Hadamard spaces (as well as Hilbert and Banach spaces). For example, Theorem 1.1 is an extension of [6,
Theorem 1.4] from Hadamard space to p-uniformly convex spaces. In general, existing results concerning PPA
in Hadamard spaces cannot be simply carried into p-uniformly convex metric spaces due to the structure of
the space; the smoothness constant c (see inequality (1.2)) among others, always serves as a natural obstacle
to be overcome in order to extend existing results on PPA to p-uniformly convex metric space. Moreover,
CAT(0) spaces are 2-uniformly convex metric spaces with parameter c = 2 and CAT(k) spaces (k > 0) with

diam(X) < π
2
√
k

are 2-uniformly convex metric spaces with parameter c = (π − 2
√
kε) tan(

√
kε) for any 0 <

ε ≤ π
2
√
k
−diam(X) (see [42]). Furthermore, p-uniformly convex metric spaces are obvious generalization of

p-uniformly convex normed spaces without using the modulus of convexity for p ∈ (1,∞) (see [14, Example
2.2]). It is also known in [47] that normed spaces and their convex subsets are convex metric spaces but the
converse of this statement is not always the case. In addition, inequality (1.2) has numerous applications in
Finsler geometry and metric geometry; the nonlinearization of the geometry of Banach space and other related
fields (see for example [29, 34, 39, 36, 37, 38, 45]). For more details on p-uniformly convex metric spaces see
[29, 34, 39, 36, 37, 38] and the references therein.

Motivated by the above results and facts, we study some proximal-type algorithms for finding solutions of Split
Minimization Problems (SMP) in p-uniformly convex metric spaces. We also study the asymptotic behaviour of
the sequence generated by Halpern-type PPA and extend it to approximate a common solution of finite family of
MPs in p-uniformly convex metric spaces. Furthermore, numerical experiments of our algorithms in comparison
with other algorithms are given to show the applicability of our results

This paper is organized as follows: In section 2, we study the geometry of p-uniformly convex metric spaces.
We also study some fundamental properties of the resolvent defined in (1.5). In section 3, we carry out strong
convergence analysis on some proximal-type algorithms. First (in Subsection 3.1), we study the Backward-
Backward Algorithm (BBA) and its convergence to a SMP. Secondly (in Subsection 3.2), we recall the importance
of the Alternating Proximal Algorithm (APA) and prove that it converges strongly to a SMP. Finally (in
Subsection 3.3), we study asymptotic behaviour of the sequence generated by Halpern-type PPA and extend
it to examine the behaviour of the sequence given by Halpern-type algorithm involving a finite composition of
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resolvents of proper convex and lower semicontinuous functions. We then employ this algorithm to approximate
a common solution of finite family of MPs in a complete p-uniformly convex metric space. In Section 4, we give
numerical example of our algorithms and compare them with other useful algorithms.

2. Preliminaries

2.1. Geometry of p-uniformly convex metric space.

Definition 2.1. A metric space X is called a geodesic space if every two points x, y ∈ X are joined by a geodesic
path c : [0, d(x, y)]→ X such that c(0) = x and c(d(x, y)) = y. In this case, c is an isometry and the image of c
is called a geodesic segment joining x to y. The space X is said to be uniquely geodesic if every two points of
X are joined by exactly one geodesic segment.

Inequality (1.2) ensures that p-uniformly convex metric spaces are uniquely geodesic (see [38, Lemma 2.2]). Also,
CAT(0) spaces are examples of uniquely geodesic metric spaces (see [18]). Concrete examples of p-uniformly
convex metric spaces can be found in [14].

Definition 2.2. Let {xn} be a bounded sequence in a geodesic metric space X. Then, the asymptotic center
A({xn}) of {xn} is defined by

A({xn}) = {v̄ ∈ X : lim sup
n→∞

d(v̄, xn) = inf
v∈X

lim sup
n→∞

d(v, xn).

The sequence {xn} in X is said to be ∆-convergent to a point v̄ ∈ X if A({xnk
}) = {v̄} for every subsequence

{xnk
} of {xn}. In this case, we write ∆- lim

n→∞
xn = v̄ and we say that v̄ is the ∆-limit of {xn}. The notion of

∆-convergence in a metric space was introduced by Lim [31], and it is known as an analogue of the notion of
weak convergence in a Banach space. Thus, it is sometimes referred to as the notion of weak convergence in
metric space.

Definition 2.3. Let X and Y be two complete p-uniformly convex metric spaces. Then the Cartesian product
X × Y is a complete p-uniformly convex metric space endowed with the metric d : (X × Y )× (X × Y )→ [0,∞)
defined by

d((x1, y1), (x2, y2)) = [dX(x1, x2)p + dY (y1, y2)p]
1
p , ∀x1, x2 ∈ X, y1, y2 ∈ Y.(2.1)

The following lemma plays an important role in this paper.

Lemma 2.4. For 1 < p < ∞, let X be a p-uniformly convex metric space with parameter c > 0 and f : X →
(−∞,+∞] be a proper convex and lower semicontinuous function. Then, for all a, b, c, d ∈ X, we have

d(a, b)p + d(c, d)p ≤ 2

c
(d(a, c)p + d(a, d)p + d(b, c)p + d(b, d)p) .

Proof. From (1.2), we obtain that

0 ≤ d

(
1

2
a⊕ 1

2
b,

1

2
c⊕ 1

2
d

)p
≤ 1

4

[
d(a, c)p + d(a, d)p + d(b, c)p + d(b, d)p − c

2
(d(c, d)p + d(a, b)p)

]
,

which implies

d(a, b)p + d(c, d)p ≤ 2

c
(d(a, c)p + d(a, d)p + d(b, c)p + d(b, d)p) .

�

2.2. Fundamental properties of resolvent of convex functions.

Definition 2.5. Let X be a geodesic space. A mapping f : D ⊆ X → (−∞,∞] is called convex if for any
geodesic path [x, y] := {tx⊕ (1− t)y : 0 ≤ t ≤ 1} joining x, y ∈ X, we have that

f(tx⊕ (1− t)y) ≤ tf(x) + (1− t)f(y),

and is called uniformly convex (see [14]), if there exists a strictly increasing function ψ : R+ → R+ such that

f

(
1

2
x⊕ 1

2
y

)
≤ 1

2
[f(x) + f(y)]− ψ(d(x, y)).
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We also recall that f : D ⊆ X → (−∞,∞] is called proper, if its domain D := {v ∈ X : f(v) < +∞} 6= ∅, and
f is said to be lower semi-continuous at a point v̄ ∈ D if f(v̄) ≤ lim inf

n→∞
f(xn) for each sequence {xn} in D such

that lim
n→∞

xn = v̄.

Proposition 2.6. [46] Let X be a geodesic space and f : X → (−∞,+∞] be a proper uniformly convex and
lower semicontinuous function. Then, there exists a unique minimizer v̄ ∈ X of f (that is v̄ :=argmin

v∈X
f(v)).

Proposition 2.7. For 1 < p < ∞, let X be a p-uniformly convex metric space with parameter c > 0 and
f : X → (−∞,+∞] be a proper convex and lower semicontinuous function. Then, for any µ > 0 and x ∈ X,
there exists a unique point, say Jfµ (x) ∈ X such that

f(Jfµ (x)) +
1

pµp−1
d(Jfµ (x), x)p = inf

v∈X

(
f(v) +

1

pµp−1
d(v, x)p

)
.

Proposition 2.7 (referred to as the unique existence of resolvent of a proper convex and lower semicontinuous
function) is proved in [28, Proposition 3.26] under Assumption 3.21 of [28]. Using Proposition 2.6, we prove
Proposition 2.7 without this assumption. Our proof is similar to the proof of [14, Lemma 3].

Proof. Let Gfµ(v) := f(v) + 1
pµp−1 d(v, x)p. Clearly, Gfµ is a proper and lower semicontinuous mapping. Also, Gfµ

is uniformly convex. For this, let v = tv1 ⊕ (1 − t)v2 for all v1, v2 ∈ X and t ∈ [0, 1] (in particular, t = 1
2 ), we

obtain from the convexity of f and (1.2) that

Gfµ(
1

2
v1 ⊕

1

2
v2) ≤ 1

2

(
f(v1) +

1

pµp−1
d(v1, x)p

)
+

1

2

(
f(v2) +

1

pµp−1
d(v2, x)p

)
− c

8pµp−1
d(v1, v2)p

=
1

2
Gfµ(v1) +Gfµ(v2)− c

8pµp−1
d(v1, v2)p,

which implies that Gfµ is uniformly convex. Hence, by Proposition 2.6, we obtain the desired conclusion. �

We now obtain some basic properties of the resolvent of a proper convex and lower semicontinuous function.

Lemma 2.8 (Firmly nonexpansive-type property). For 1 < p <∞, let X be a p-uniformly convex metric
space with parameter c > 0 and f : X → (−∞,+∞] be a proper convex and lower semicontinuous function.
Then, for all x1, x2 ∈ X, we have

d(Jfµx1, J
f
µx2)p ≤ 1

c

[
d(Jfµx1, x2) + d(Jfµx2, x1)p − d(Jfµx1, x1)p − d(Jfµx2, x2)p

]
.

Proof. From (1.5), we obtain that

f(Jfµx) +
1

pµp−1
d(Jfµx, x)p ≤ f(z) +

1

pµp−1
d(z, x)p ∀z ∈ X.

Now, set z = (1− t)v ⊕ tJfµx, t ∈ [0, 1). Then, we obtain from the convexity of f and the inequality (1.2) that

f(Jfµx) +
1

pµp−1
d(Jfµx, x)p ≤ (1− t)f(v) + tf(Jfµx) +

(1− t)
pµp−1

d(v, x)p

+
t

pµp−1
d(Jfµx, x)p − ct(1− t)

2pµp−1
d(v, Jfµx)p,

which implies (since t 6= 1) that

pµp−1f(Jfµx) + d(Jfµx, x)p ≤ pµp−1f(v) + d(v, x)p − ct

2
d(v, Jfµx)p.(2.2)

As t→ 1 in (2.2), we obtain

pµp−1f(Jfµx) + d(Jfµx, x)p ≤ pµp−1f(v) + d(v, x)p − c

2
d(v, Jfµx)p.(2.3)

Now, for x1, x2 ∈ X, we obtain from (2.3) that

pµp−1f(Jfµx1) + d(Jfµx1, x1)p ≤ pµp−1f(Jfµx2) + d(Jfµx2, x1)p − c

2
d(Jfµx2, J

f
µx1)p(2.4)

and

pµp−1f(Jfµx2) + d(Jfµx2, x2)p ≤ pµp−1f(Jfµx1) + d(Jfµx1, x2)p − c

2
d(Jfµx1, J

f
µx2)p.(2.5)
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Adding (2.4) and (2.5), we obtain

d(Jfµx1, J
f
µx2)p ≤ 1

c

[
d(Jfµx1, x2) + d(Jfµx2, x1)p − d(Jfµx1, x1)p − d(Jfµx2, x2)p

]
.

�

Remark 2.9. (a) Observe that if c ≥ 2 and p = 2 in Lemma 2.8, then by the definition of quasilinearization
mapping in CAT(0) space (see [11] and [49]), one obtains that Jfµ is a firmly nonexpansive mapping in
a CAT(0) space. That is,

d(Jfµx1, J
f
µx2)2 ≤ 〈

−−−−−−−→
Jfµx1J

f
µx2,

−−→x1x2〉 ∀x1, x2 ∈ X,

which by Cauchy-Swartz inequality gives that Jfµ is nonexpansive in CAT(0) space.

(b) From (2.3), we obtain that

d(v, Jfµx)p ≤ 2

c

[
d(v, x)p − d(Jfµx, x)p − pµp−1

(
f(Jfµx)− f(v)

)]
, ∀v ∈ X.

(c) If we replace convexity of f with uniform convexity in Lemma 2.8, then (b) becomes

d(v, Jfµx)p ≤ 2

c

[
d(v, x)p − dp(Jfµx, x)− pµp−1

(
ψ(d(v, Jfµx)) + f(Jfµx)− f(v)

)]
, ∀v ∈ X.

Lemma 2.10 (Nonexpansive property). For 1 < p < ∞, let X be a p-uniformly convex metric space with
parameter c ≥ 2 and f : X → (−∞,+∞] be a proper convex and lower semicontinuous function. Then, the
resolvent Jfµ of f is nonexpansive. That is, for all x1, x2 ∈ X, we have

d(Jfµx1, J
f
µx2) ≤ d(x1, x2).

Proof. By Lemma 2.4 and Lemma 2.8 (note that c ≥ 2), we obtain that

d(Jfµx1, J
f
µx2)p ≤ 1

c

[
2

c

(
d(Jfµx1, J

f
µx2)p + d(Jfµx1, x1) + d(Jfµx2, x2)p + d(x1, x2)p

)
− d(Jfµx1, x1)p − d(Jfµx2, x2)p

]
≤ 1

2

[
d(Jfµx1, J

f
µx2)p + d(x1, x2)p

]
,

which yields the desired conclusion. �

Lemma 2.11 (Monotonicity of resolvent). For 1 < p < ∞, let X be a p-uniformly convex metric space with
parameter c > 0 and f : X → (−∞,+∞] be a proper convex and lower semicontinuous function. Then, for
0 < µ1 < µ2, we have

d(Jfµ1
x, x) ≤ d(Jfµ2

x, x) ∀x ∈ X.

Proof. Let x ∈ X. We obtain from (1.5) that

f(Jfµ2
x) +

1

pµp−12

d(Jfµ2
x, x)p ≤ f(Jfµ1

x) +
1

pµp−12

d(Jfµ1
x, x)p.(2.6)

Similarly, we obtain

f(Jfµ1
x) +

1

pµp−11

d(Jfµ1
x, x)p ≤ f(Jfµ2

x) +
1

pµp−11

d(Jfµ2
x, x)p.(2.7)

Adding (2.6) and (2.7), we obtain that(
1− µp−11

µp−12

)
d(Jfµ1

x, x)p ≤

(
1− µp−11

µp−12

)
d(Jfµ2

x, x)p.

Since, 0 < µ1 < µ2, therefore 1−
(
µ1

µ2

)p−1
> 0. Thus, we obtain that

d(Jfµ1
x, x) ≤ d(Jfµ2

x, x).

�

We end this section with the following important result which is an analogue of [27, Lemma 3.1] in the setting
of CAT(0) space.
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Lemma 2.12. For 1 < p <∞, let X be a p-uniformly convex metric space with parameter c > 0 and f : X →
(−∞,+∞] be a proper, convex and lower semicontinuous function. For µ1, µ2 > 0 and x1, x2 ∈ X, the following
inequality holds:

c

2
(µp−11 +µp−12 )d(Jfµ1

x1, J
f
µ2
x2)p+µp−12 d(Jfµ1

x1, x1)p+µp−11 d(Jfµ2
x2, x2)p ≤ µp−11 d(Jfµ1

x1, x2)p+µp−12 d(Jfµ2
x2, x1)p.

Proof. Put x = x1 and v = Jfµ2
x2 in (2.3) to obtain

pµ1
p−1f(Jfµ1

x1) + d(Jfµ1
x1, x1)p ≤ pµ1

p−1f(Jfµ2
x2) + d(Jfµ2

x2, x1)p − c

2
d(Jµ2x2, J

f
µ1
x1)p.

That is,

c

2
d(Jfµ1

x1, J
f
µ2
x2)p + d(Jfµ1

x1, x1)p + pµp−11

(
f(Jfµ1

x1)− f(Jfµ2
x2)
)
≤ d(Jfµ2

x2, x1)p,

from which we obtain that

pµp−12

[ c
2
d(Jfµ1

x1, J
f
µ2
x2)p + d(Jfµ1

x1, x1)p + pµp−11

(
f(Jfµ1

x1)− f(Jfµ2
x2)
)]

≤ pµp−12 d(Jfµ2
x2, x1)p.(2.8)

Similarly, we obtain

pµp−11

[ c
2
d(Jfµ2

x2, J
f
µ1
x1)p + d(Jfµ2

x2, x2)p + pµp−12

(
f(Jfµ2

x2)− f(Jfµ1
x1)
)]

≤ pµp−11 d(Jfµ1
x1, x2)p.(2.9)

Adding (2.8) and (2.9), we obtain the desired conclusion. �

3. Strong convergence analysis

In this section, we study strong convergence of some proximal-type algorithms.

Remark 3.1. In general, PPA is known to converge only weakly even in a Hilbert space; to obtain strong
convergence results for PPA (see [6]), we need to impose additional assumption(s) on either the convex function
or on the underlying space.

Since our interest in this paper is to obtain strong convergence results, we shall rely on the above remark in our
study. That is, we shall assume in the next two subsections that, the proper lower semicontinuous function f is
uniformly convex, and in the last subsection that, the smoothness constant c of X is in [2,∞) (in this case, f
needs not to be uniformly convex).

3.1. Backward-backward algorithm. The BBA is defined for an initial point x1 ∈ X as:{
yn = Jgµn

xn,

xn+1 = Jfµn
yn, n ≥ 1,

(3.1)

where {µn} is a sequence of positive real numbers and f, g : X → (−∞,∞] are two proper, convex and lower
semicontinuous functions (see [8] for related work in the frame work of Hadamard spaces). In what follows, we
shall study strong convergence of Algorithm (3.1) to a solution of the following SMP:

min Ψ(x, y) such that (x, y) ∈ X ×X, where Ψ(x, y) = f(x) + g(y) ∀x, y ∈ X.(3.2)

We begin with the following lemma.

Lemma 3.2. For 1 < p <∞, let X be a p-uniformly convex metric space with parameter c > 0 and f, g : X →
(−∞,+∞] be two proper, convex and lower semicontinuous functions. Let {xn} and {yn} be defined by (3.1),
where {µn} is a sequence of positive real numbers. Then, for any v = (x, y) ∈ X ×X, we have

Ψ(vn)−Ψ(v) ≤
∑n−1
i=1 d(v, vi)

p − c
2

∑n
i=2 d(v, vi)

p

p
∑n−1
i=1 µ

p−1
i

,(3.3)

where vn = (xn, yn) ∈ X ×X.
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Proof. By (3.1) and (1.5), we obtain that

g(yn) +
1

pµp−1n

d(yn, xn)p ≤ g(y) +
1

pµp−1n

d(xn, y)p(3.4)

and

f(xn+1) +
1

pµp−1n

d(xn+1, yn)p ≤ f(x) +
1

pµp−1n

d(yn, x)p(3.5)

Adding (3.4) and (3.5), we obtain for all x, y ∈ X that

f(xn+1) + g(yn) +
1

pµp−1n

[d(xn+1, yn)p + d(yn, xn)p] ≤ f(x) + g(y)

+
1

pµp−1n

[d(yn, x)p + d(xn, y)p] .(3.6)

In particular, for y = yn, we obtain that

f(xn+1) +
1

pµp−1n

[d(xn+1, yn)p + d(yn, xn)p] ≤ f(x) +
1

pµp−1n

[d(yn, x)p + d(xn, yn)p] .(3.7)

Now, by interchanging f and g, and starting the iteration process at y1 in (3.1), then by an argument similar to
above, we obtain that

g(yn+1) + f(xn) +
1

pµp−1n

[d(yn+1, xn)p + d(xn, yn)p] ≤ g(y) + f(x)

+
1

pµp−1n

[d(xn, y)p + d(yn, x)p] .(3.8)

By setting x = xn in (3.8), we obtain

g(yn+1) +
1

pµp−1n

[d(yn+1, xn)p + d(xn, yn)p] ≤ g(y) +
1

pµp−1n

[d(xn, y)p + d(yn, xn)p] .(3.9)

Adding (3.7) and (3.9), we obtain

f(xn+1) + g(yn+1) +
1

pµp−1n

[d(xn+1, yn)p + d(yn+1, xn)p] ≤ f(x) + g(y)

+
1

pµp−1n

[d(xn, y)p + d(yn, x)p] ,

which gives by (2.1) that

Ψ(vn+1) +
1

pµp−1n

d(vn+1, vn)p ≤ Ψ(v) +
1

pµp−1n

d(vn, v)p.(3.10)

Thus, by Remark 2.9 (b), (or inequality (2.3)), we obtain that

pµp−1n (Ψ(vn+1)−Ψ(v)) ≤ d(v, vn)p − c

2
d(v, vn+1)p.(3.11)

By letting v = vn in (3.10), we obtain that

Ψ(vn+1) +
1

pµp−1n

d(vn+1, vn)p ≤ Ψ(vn),

which implies that {Ψ(vn)} is monotone non-increasing. Thus, we obtain from (3.11) that

p (Ψ(vn)−Ψ(v))

n−1∑
i=1

µp−1i ≤ p

n−1∑
i=1

µp−1i (Ψ(vi+1)−Ψ(v))

≤
n−1∑
i=1

d(v, vi)
p − c

2

n∑
i=2

d(v, vi)
p,(3.12)

which yields the desired conclusion. �

Theorem 3.3. For 1 < p <∞, let X be a complete p-uniformly convex metric space with parameter c > 0 such
that the diameter of X × X is K > 0. Let f, g : X → (−∞,+∞] be two proper, uniformly convex and lower
semicontinuous functions and {xn}, {yn} be sequences defined by (3.1), where {µn} is a sequence of positive real
numbers such that lim

n→∞
n∑n

i=1 µ
p−1
i

= 0. Then, {(xn, yn)} converges to a solution of (3.2).
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Proof. Since the diameter of X ×X is K > 0, therefore we obtain from (3.3) that

Ψ(vn)−Ψ(v) ≤
∑n−1
i=1 d(v, vi)

p − c
2

∑n
i=2 d(v, vi)

p

p
∑n−1
i=1 µ

p−1
i

(3.13)

≤ (n− 1)Kp

p
∑n−1
i=1 µ

p−1
i

→ 0, as n→∞.

That is, lim
n→∞

Ψ(vn) ≤ Ψ(v) for all v ∈ X ×X, which implies that

lim
n→∞

Ψ(vn) = inf
v∈(X×X)

Ψ(v).(3.14)

Furthermore, we obtain by Proposition 2.6 that, there exists a unique minimizer v̄ ∈ (X ×X) of Ψ. Thus, by
(3.14), we obtain that

lim
n→∞

Ψ(vn) = Ψ(v̄).(3.15)

Also, using the uniform convexity of Ψ, we obtain that there exists a function ψ : R+ → R+ with ψ(t) = 0⇐⇒
t = 0 such that

Ψ

(
1

2
vn ⊕

1

2
vm

)
≤ 1

2
(Ψ(vn) + Ψ(vm))− ψ(d(vn, vm)), ∀n,m ≥ 1.

Since ψ(t) = 0 ⇐⇒ t = 0, we obtain from (3.15) that d(vn, vm) → 0, as n,m → ∞. Thus, {vn} is a Cauchy
sequence in X×X. As X is complete, so X×X is also complete. Thus, {vn} converges to a point say v̂ ∈ X×X.
It follows from the lower semicontinuity of Ψ (since f and g are lower semicontinuous functions) and (3.3) that
Ψ(v̂) = inf

v∈X×X
Ψ(v). Therefore, we conclude that {vn} = {(xn, yn)} converges to a solution of (3.2). �

Remark 3.4. If X is a complete 2-uniformly convex metric space in Theorem 3.3 with parameter c = 2 for X×X,
then (3.13) becomes

Ψ(vn)−Ψ(v) ≤
∑n−1
i=1 d(v, vi)

2 −
∑n
i=2 d(v, vi)

2

2
∑n−1
i=1 µi

≤ d(v, v1)2

2
∑n−1
i=1 µi

,

which implies that lim
n→∞

Ψ(vn) = inf
v∈(X×X)

Ψ(v), provided lim
n→∞

∑n−1
i=1 µi = ∞. In this case, we do not need the

assumption that X ×X has a diameter K > 0. Thus, we obtain the following result from Theorem 3.3.

Corollary 3.5. Let X be a complete 2-uniformly convex metric space (in particular, a complete CAT(0) space)
and f, g : X → (−∞,+∞] be two proper, uniformly convex and lower semicontinuous functions. Suppose that
{xn} and {yn} are sequences defined by (3.1), where {µn} is a sequence of positive real numbers such that∑∞
n=1 µn =∞. Then, {(xn, yn)} converges to a solution of (3.2).

3.2. Alternating proximal algorithm. In problem (3.2), the functions f and g are defined on the same space
X. In this subsection, we shall consider the SMP for the case where f and g are defined on two different
p-uniformly convex metric spaces, say X and Y respectively. That is, we consider the following SMP:

min Ψ(x, y) such that (x, y) ∈ X × Y,(3.16)

where X and Y are p-uniformly convex metric spaces and Ψ : X × Y → (−∞,+∞] is a function defined
by Ψ(x, y) = f(x) + g(y); f : X → (−∞,+∞] and g : Y → (−∞,+∞] are two proper convex and lower
semicontinuous functions.

To solve problem (3.16), we define the following algorithm called the APA: For arbitrary point v1 = (x1, y1) in
X × Y , the sequence {vn} = {(xn, yn)} in X × Y is defined as follows:

(xn, yn)→ (xn+1, yn)→ (xn+1, yn+1),xn+1 = argmin
x∈X

(
Ψ(x, yn) + 1

pµp−1
n

d(xn, x)p
)
, x ∈ X,

yn+1 = argmin
y∈Y

(
Ψ(xn+1, y) + 1

pµp−1
n

d(yn, y)p
)
, y ∈ Y, n ≥ 1,

(3.17)
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where {µn} is a sequence of positive numbers. We remark here that, in each iteration, we have to solve the
following subproblems:

min Ψ(x, yn) +
1

pµp−1n

d2(xn, x), where x ∈ X(3.18)

and

min Ψ(xn+1, y) +
1

pµp−1n

d2(yn, y), where y ∈ Y.(3.19)

In order to solve the subproblem (3.18) or (3.19), we employ the following PPA: For arbitrary x1 ∈ X, {xn} is
generated by

xn+1 = arg min
x∈X

(
f(x) +

1

pµp−1n

d(xn, x)p
)
, n ≥ 1,(3.20)

where f(x) = Ψ(x, yn). This process has been studied in several settings. For instance, in Euclidean spaces (see
[1, 3]), Hilbert spaces (see [2, 13]), Hadamard manifolds (see [16]) and Hadamard spaces (see [15]).

Algorithm (3.17) has many applications, for instance, it has applications in decision science ([1]), game theory
([2, 16]), PDE’s and many other disciplines (see [2, 15]). Furthermore, unlike Algorithm (3.1), Algorithm (3.17)
allows us to check or monitor what happens in each space of action after a given iteration (see [15]).

Therefore, it is of practical importance to study problems of the form (3.16) using Algorithm (3.17). To this
end, we present the following convergence result for problem (3.16).

Theorem 3.6. For 1 < p <∞, let X and Y be two complete p-uniformly convex metric spaces with parameter
c > 0 and such that the diameter of X × Y is K > 0. Let f : X → (−∞,+∞] and g : Y → (−∞,+∞] be two
proper, uniformly convex and lower semicontinuous functions and {(xn, yn)} be the sequence defined by (3.17),
where {µn} is a sequence of positive real numbers such that lim

n→∞
n∑n

i=1 µ
p−1
i

= 0. Then, {(xn, yn)} converges to a

solution of (3.16).

Proof. By (3.17) (also see (3.20)), we obtain that

f(xn+1) + g(yn) +
1

pµp−1
d(xn, xn+1)p ≤ f(x) + g(yn) +

1

pµp−1
d(xn, x)p(3.21)

and

g(yn+1) + f(xn+1) +
1

pµp−1
d(yn, yn+1)p ≤ g(x) + f(xn+1) +

1

pµp−1
d(yn, y)p.(3.22)

Adding above two inequalities, we obtain that

f(xn+1) + g(yn+1) +
1

pµp−1
[d(xn, xn+1)p + d(yn, yn+1)p] ≤ f(x) + g(y) +

1

pµp−1
[d(xn, x)p + d(yn, y)p] ,

which gives by (2.1) that

Ψ(xn+1, yn+1) +
1

pµp−1n

d((xn, yn), (xn+1, yn+1))p ≤ Ψ(x, y) +
1

pµp−1n

d((xn, yn), (x, y))p.(3.23)

Set v = (x, y) and vn = (xn, yn) in (3.23), to get

Ψ(vn+1) +
1

pµp−1n

d(vn, vn+1)p ≤ Ψ(v) +
1

pµp−1n

d(vn, v)p.(3.24)

As in the proof of (3.10) -(3.12), we can show that that

Ψ(vn)−Ψ(v) ≤
∑n−1
i=1 d(v, vi)

p − c
2

∑n
i=2 d(v, vi)

p

p
∑n−1
i=1 µ

p−1
i

.(3.25)

Hence, by a proof similar to that of Theorem 3.3, we obtain the desired conclusion. �

Corollary 3.7. Let X and Y be two complete 2-uniformly convex metric spaces (in particular, complete CAT(0)
spaces). Let f : X → (−∞,+∞] and g : Y → (−∞,+∞] be two proper, uniformly convex and lower semicon-
tinuous functions. Suppose that {(xn, yn)} is a sequence defined by (3.17), where {µn} is a sequence of positive
real numbers such that

∑∞
n=1 µn =∞. Then, {(xn, yn)} converges to a solution of (3.16).

Proof. It follows from Theorem 3.6 and Remark 3.4. �
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3.3. Halpern-type proximal point algorithm. In this subsection, we study the asymptotic behaviour of the
sequence {xn} generated by the following Halpern-type PPA:{

u, x1 ∈ X,
xn+1 = αnu⊕ (1− αn)Jfµn

xn,
(3.26)

where {αn} and {µn} are sequences in [0, 1) and (0,∞) respectively, and f : X → (−∞,+∞] is a proper
convex and lower semicontious function. We also extend our study to examine the behaviour of the sequence
given by the following Halpern-type PPA involving finite composition of resolvents of proper convex and lower
semicontinuous functions: {

u, x1 ∈ X,
xn+1 = αnu⊕ (1− αn)

∏m
j=1 J

fj
µnxn, n ≥ 1,

(3.27)

where
∏m
j=1 J

fj
µn = Jf1µn

◦ Jf2µn
◦ · · · ◦ Jfm−1

µn ◦ Jfmµn
, {αn} is a sequence in [0, 1) and {µn} is a sequence in (0,∞).

We shall employ Algorithm (3.27) to find common solution of a finite family of MPs.

For our strong convergence results in this subsection, we only need the proper lower semicontinuous function f to
be convex (not uniformly convex). However, we shall assume that the smoothness constant c of the p-uniformly
convex metric space X is in [2,∞) (see Remark 3.1).

Lemma 3.8. For 1 < p < ∞, let X be a p-uniformly convex metric space with parameter c ≥ 2 and f : X →
(−∞,+∞] be proper, convex and lower semicontinuous function such that for µ > 0 F (Jfµ ) 6= ∅ (where F (Jfµ )

denotes the set of fixed points of Jfµ ). Then, F (Jfµ ) = argmin
y∈X

f(y).

Proof. Let v̄ ∈ F (Jfµ ). Then, by (1.5), we obtain that

f(v̄) ≤ f(v) +
1

pµp−1
d(v, v̄)p.

Let v = (1− t)y ⊕ tv̄ for all y ∈ X and t ∈ [0, 1). Then, by the convexity of f and (1.2), we obtain that

(1− t)f(v̄) ≤ (1− t)f(y) +
(1− t)
pµp−1

d(y, v̄)p +
t

pµp−1
d(v̄, v̄)p − ct(1− t)

2pµp−1
d(y, v̄)p.

Since c ≥ 2, therefore we obtain that

t(1− t)
pµp−1

d(y, v̄)p ≤ (1− t) (f(y)− f(v̄)) +
(1− t)
pµp−1

d(y, v̄)p,

which implies that
td(y, v̄)p ≤ pµp−1 (f(y)− f(v̄)) + d(y, v̄)p.

As t→ 1, we obtain that
0 ≤ f(y)− f(v̄) ∀y ∈ X.

Hence, v̄ ∈ argmin
y∈X

f(y).

Conversely, suppose that v̄ ∈ argmin
y∈X

f(y). Then, we obtain by (1.5) that

f(Jfµ v̄) +
1

pµp−1
d(Jfµ v̄, v̄)p ≤ f(v) +

1

pµp−1
d(v, v̄)p.

Let v = (1− t)v̄ ⊕ tJfµ v̄, for t ∈ [0, 1). Then, we obtain by the convexity of f and (1.2) that

1

pµp−1
d(Jfµ v̄, v̄)p ≤ (1− t)f(v̄)− (1− t)f(Jfµ v̄) +

1

pµp−1
d((1− t)v̄ ⊕ tJfµ v̄, v̄)p

≤ (1− t)
pµp−1

d(v̄, v̄)p +
t

pµp−1
d(Jfµ v̄, v̄)p − ct(1− t)

2pµp−1
d(Jfµ v̄, v̄)p,

which implies that (
1 +

ct(1− t)
2

− t
)
d(Jfµ v̄, v̄)p ≤ 0.

Since t 6= 1, we obtain that v̄ ∈ F (Jfµ ). Hence, F (Jfµ ) = argmin
y∈X

f(y). �

We now recall important results which will be needed in the proofs of the main theorems of this subsection.
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Remark 3.9. Inequality (1.2) ensures that the function x 7→ d(., x)p : X → [0,∞) is a convex and lower
semicontinuous function.

Remark 3.10. [42],[19]. Let X be a complete p-uniformly convex metric space. Then,

(i) every bounded sequence in X has a unique asymptotic center,
(ii) every bounded sequence in X has a ∆-convergent subsequence.

Lemma 3.11. [50]. Let {an} be a sequence of non-negative real numbers satisfying

an+1 ≤ (1− αn)an + αnδn + γn, n ≥ 0,

where {αn}, {δn} and {γn} satisfy the following conditions:
(i) {αn} ⊂ [0, 1], Σ∞n=0αn =∞,
(ii) lim supn→∞ δn ≤ 0,
(iii) γn ≥ 0 (n ≥ 0), Σ∞n=0γn <∞.

Then lim
n→∞

an = 0.

Lemma 3.12. For 1 < p <∞, let X be a complete p-uniformly convex metric space with parameter c ≥ 2 and
f : X → (−∞,+∞] a proper, convex and lower semicontinuous function. Let {µn} be a sequence of positive
real numbers. Suppose lim

n→∞
µn =∞ and A({Jfµn

xn}) = {v̄} for some bounded sequence {xn} of X. Then v̄ is a

minimizer of f , that is, v̄ ∈ argmin
y∈X

f(y).

Proof. By Lemma 2.12, we obtain that

c

2
(µp−1n + 1)d(Jfµn

xn, J
f v̄)p + d(Jfµn

xn, xn)p + µp−1n d(Jf v̄, v̄)p ≤ d(Jf v̄, xn)p + µp−1n d(Jfµn
xn, v̄)p,

which implies

c

2
d(Jfµn

xn, J
f v̄)p ≤ 1

µp−1n

d(Jf v̄, xn)p + d(Jfµn
xn, v̄)p.

By lim
n→∞

µn =∞ and {xn} is bounded, we obtain that

c

2
lim sup
n→∞

d(Jfµn
xn, J

f v̄)p ≤ lim sup
n→∞

d(Jfµn
xn, v̄)p.

Furthermore, since A({Jfµn
xn}) = {v̄} and c ≥ 2, we obtain that

lim sup
n→∞

d(Jfµn
xn, J

f v̄) ≤ lim sup
n→∞

d(Jfµn
xn, v̄) = inf

y∈X
lim sup
n→∞

d(Jfµn
xn, y).(3.28)

By (3.28), Remark 3.10 (i) and Lemma 3.8, we obtain that v̄ ∈ F (Jf ) = argmin
y∈X

f(y). �

Theorem 3.13. For 1 < p < ∞, let X be a complete p-uniformly convex metric space with parameter c ≥ 2
and f : X → (−∞,+∞] a proper, convex and lower semicontinuous function. Let {xn} be the sequence defined
by (3.26), where {αn} is a sequence in [0, 1) and {µn} is a sequence in (0,∞) such that lim

n→∞
µn = ∞. Then,

the following hold:

(i) The sequence {Jfµn
xn} is bounded if and only if argmin

y∈X
f(y) 6= ∅.

(ii) If lim
n→∞

αn = 0,
∑∞
n=1 αn = ∞ and argmin

y∈X
f(y) 6= ∅, then {xn} and {Jfµn

xn} converge to an element of

argmin
y∈X

f(y).

Proof. (i) Suppose that {Jfµn
xn} is bounded. Then by Remark 3.10 (i), there exists v̄ ∈ X such thatA({Jfµn

xn}) =
{v̄}. Thus, from (3.26) and Remark 3.9, we obtain that

d(xn+1, v̄)p ≤ αnd(u, v̄)p + (1− αn)d(Jfµn
xn, v̄)p,

which implies that {xn} is bounded. Also, since lim
n→∞

µn =∞ and A({Jfµn
xn}) = {v̄}, we obtain by Lemma 3.12

that v̄ is a minimizer of f . Hence, argmin
y∈X

f(y) 6= ∅.
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Conversely, let argmin
y∈X

f(y) 6= ∅. Then, we may assume that v̄ is a minimizer of f . Thus by (3.26), Remark 3.9

and Lemma 2.10, we obtain that

d(xn+1, v̄)p ≤ αnd(u, v̄)p + (1− αn)d(Jfµn
xn, v̄)p

≤ αnd(u, v̄)p + (1− αn)d(xn, v̄)p

≤ max{d(u, v̄)p, d(xn, v̄)p},
which implies by induction that

d(xn, v̄)p ≤ max{d(u, v̄)p, d(x1, v̄)p} ∀n ≥ 1.(3.29)

Therefore, {xn} is bounded. Consequently, {Jfµn
xn} is also bounded.

(ii) Since argmin
y∈X

f(y) 6= ∅, we obtain from (3.29) that {xn} and {Jfµn
xn} are bounded. Furthermore, we obtain

by (1.2) and Lemma 2.10 that

d(xn+1, v̄)p ≤ αnd(u, v̄)p + (1− αn)d(Jfµn
xn, v̄)p − αn(1− αn)c

2
d(u, Jfµn

xn)p

≤ αnd(u, v̄)p + (1− αn)d(xn, v̄)p − αn(1− αn)d(u, Jfµn
xn)p

= (1− αn)d(xn, v̄)p + αnδn ∀n ≥ 1,(3.30)

where δn = d(u, v̄)p+(αn−1)d(u, Jfµn
xn)p. Now, set vn = Jfµn

xn ∀n ≥ 1. Then, by the boundedness of {Jfµn
xn},

we obtain by Remark 3.10 (ii) that there exists a subsequence {vnk
} of {vn} that ∆-converges to some v̂ ∈ X.

Thus, by Remark 3.10 (i), we obtain that A({vnk
}) = {v̂}. Moreover, lim

k→∞
µnk

= ∞ and {xnk
} is bounded.

Hence, by Lemma 3.12, we obtain that v̂ is a minimizer of f .

Next, we show that {xn} converges to v̂. Observe that

d(u, v̂)p ≤ lim inf
k→∞

d(u, vnk
)p = lim

k→∞
d(u, vnk

)p = lim inf
n→∞

d(u, vn)p.

Thus,
lim sup
n→∞

δn ≤ d(u, v̂)p − lim inf
n→∞

d(u, vn)p ≤ 0.

Now, Lemma 3.11 applied to (3.30), gives that {xn} converges to v̂. �

In what follows, we intend to apply Theorem 3.13 to establish convergence of Halpern-type PPA (3.27) involving
finite composition of resolvents of f .

Lemma 3.14. For 1 < p <∞, let X be a p-uniformly convex metric space with parameter c ≥ 2 and f : X →
(−∞,+∞] a proper, convex and lower semicontinuous function. Then, for µ > 0, we have the following:

(i) d(x∗, Jfµx)p+d(Jfµx, x)p ≤ d(x∗, x)p for all x ∈ X and x∗ ∈ F (Jfµ ) (where F (Jfµ ) denotes the set of fixed

points of Jfµ );

(ii) F
(∏m

j=1J
(j)
µ

)
= ∩mj=1F

(
J
(j)
µ

)
, where

∏m
j=1J

(j)
µ = Jf1µ ◦ Jf2µ ◦ · · · ◦ J

fm−1
µ ◦ Jfmµ .

Proof. (i) Let x ∈ X and x∗ ∈ F (Jfµ ). Then by setting v = x∗ in (2.3), we obtain that

c

2
d(Jfµx, x

∗)p ≤ pµp−1
(
f(x∗)− f(Jfµx)

)
+ d(x∗, x)p − d(Jfµx, x)p.

Since x∗ ∈ F (Jfµ ), therefore by Lemma 3.8 we obtain that f(x∗) ≤ f(Jfµx). Hence, we obtain that

d(x∗, Jfµx)p + d(Jfµx, x)p ≤ d(x∗, x)p.

(ii) Clearly, ∩mj=1F
(
J
(j)
µ

)
⊆ F

(∏m
j=1J

(j)
µ

)
. Thus, we only have to show that F

(∏m
j=1J

(j)
µ

)
⊆ ∩mj=1F

(
J
(j)
µ

)
.

For this, let x ∈ F
(∏m

j=1J
(j)
µ

)
and y ∈ ∩mj=1F

(
J
(j)
µ

)
, we obtain by Lemma 2.10 that

d(x, y)p = d

 m∏
j=1

J (j)
µ x,

m∏
j=1

J (j)
µ y

p

≤ d

 m∏
j=2

J (j)
µ x, y

p

.(3.31)
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Furthermore, we obtain by (i), Lemma 2.10 and (3.31) that

d

 m∏
j=2

J (j)
µ x,

m∏
j=1

J (j)
µ x

p

≤ d

 m∏
j=2

J (j)
µ x, y

p

− d

 m∏
j=1

J (j)
µ x, y

p

...

≤ d(x, y)p − d

 m∏
j=1

J (j)
µ x− y

p

= d

 m∏
j=1

J (j)
µ x, y

p

− d

 m∏
j=1

J (j)
µ x− y

p

,

which implies

m∏
j=1

J (j)
µ x =

m∏
j=2

J (j)
µ x.(3.32)

Similarly, we obtain that

d

 m∏
j=3

J (j)
µ x,

m∏
j=2

J (j)
µ x

p

≤ d

 m∏
j=3

J (j)
µ x, y

p

− d

 m∏
j=2

J (j)
µ x, y

p

...

≤ d(x, y)p − d

 m∏
j=2

J (j)
µ x, y

p

≤ d

 m∏
j=1

J (j)
µ x, y

p

− d

 m∏
j=1

J (j)
µ x− y

p

,

which implies

m∏
j=2

J (j)
µ x =

m∏
j=3

J (j)
µ x.(3.33)

Continuing in this manner, we can show that

m∏
j=3

J (j)
µ x =

m∏
j=4

J (j)
µ x = · · · =

m∏
j=m−1

J (j)
µ x = J (m)

µ x = x.(3.34)

From (3.34), we have

x = Jfmµ x.(3.35)

From (3.34) and (3.35), we obtain

x =

m∏
j=m−1

J (j)
µ x = Jfm−1

µ Jfmµ x = Jfm−1
µ x.(3.36)

Continuing in this manner, we obtain from (3.32)-(3.36) that

x = Jfm−2
µ x = · · · = Jf2µ x = Jf1µ x.(3.37)

That is,

Jf1µ x = Jf2µ x = · · · = Jfm−1
µ x = Jfmµ x = x.(3.38)

Hence, we obtain the desired conclusion. �
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Theorem 3.15. For 1 < p <∞, let X be a complete p-uniformly convex metric space with parameter c ≥ 2 and
fj : X → (−∞,+∞] be proper, convex and lower semicontinuous functions. Let {xn} be a sequence generated
by (3.27), where {αn} is a sequence in [0, 1) and {µn} is a sequence in (0,∞) such that lim

n→∞
µn = ∞. If

lim
n→∞

αn = 0,
∑∞
n=1 αn =∞ and Γ := ∩mj=1argmin

y∈X
fj(y) 6= ∅, then the sequence {xn} converges to an element of

Γ.

Proof. By Theorem 3.13 (ii) and Lemma 3.8, we obtain that {xn} converges to an element of F
(∏m

j=1 J
fj
µ

)
.

Therefore, we conclude by Lemma 3.14 (ii) and Lemma 3.8 that {xn} converges to an element of Γ. �

Corollary 3.16. Let X be a complete 2-uniformly convex metric space (in particular, complete CAT(0) space)
and fj : X → (−∞,+∞] be proper, convex and lower semicontinuous functions. Let {xn} be a sequence
generated by (3.27), where {αn} is a sequence in [0, 1) and {µn} is a sequence in (0,∞) such that lim

n→∞
µn =∞.

If lim
n→∞

αn = 0,
∑∞
n=1 αn = ∞ and Γ := ∩mj=1argmin

y∈X
fj(y) 6= ∅, then the sequence {xn} converge to an element

of Γ.

Proof. Take p = 2 = c in Theorem 3.15. �

4. Numerical examples

Let X = R4 be endowed with the Euclidean norm. For x = (x1, x2, x3, x4) ∈ X, define f, g : X → (−∞,∞] by

f(x) =
1

2
||A(x)− a||22, g(x) =

1

2
||B(x)− b||22,

where

A =


3 1 −2 2
1 3 4 5
2 3 1 4
5 2 3 1

 and a =


−1
3
5
4

 ,

B =


2 3 1 −1
4 −4 3 2
−1 3 2 −4
5 7 4 3

 and b =


3
0
1
2

 .
Then, f and g are proper convex and lower semicontinuous functions (see [17, 32]). Thus, by [32], we know that

Jf1 (x) = proxf (x) = (I +AtA)−1(x+Ata) and Jg1 (x) = proxg(x) = (I +BtB)−1(x+Btb).

Hence, the BBA (3.1) (studied in this paper) becomes{
yn = (I +BtB)−1(xn +Btb),

xn+1 = (I +AtA)−1(yn +Ata), n ≥ 1,
(4.1)

the classical PPA (1.4) (studied by Choi and Ji [14]) becomes

xn+1 = (I +AtA)−1(xn +Ata), n ≥ 1,(4.2)

the Halpern-type PPA (3.27) (studied in this paper) becomes

xn+1 = αnu+ (1− αn)Jf1 (Jg1xn), n ≥ 1,(4.3)

where αn = 1
10(n+1) , ∀n ≥ 1,

and the hybrid PPA in [49, Algorithm 3.1] becomes
zn = (I +AtA)−1(xn +Ata),

yn = (1− αn)zn,

xn+1 = (1− βn)zn + βnyn, n ≥ 1,

(4.4)

where αn = 1
10(n+1) and βn = 3n−1

50n for all n ≥ 1.

Case 1: Take x1 = (1, 0.5,−1, 1)t.
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Case 2: Take x1 = (−1, 2,−1, 3)t.

Case 3: Take x1 = (6, 7, 9, 11)t.

Case 4: Take x1 = (−6,−2,−0.2,−0.5)t.

Using different choices of the initial vector x1 (that is, Case 1-Case 4), we compared Algorithms (4.1)-(4.4)
as shown in the graphs and table below. Notice that we only considered the table for Case 1 since the tables
for other cases are similar to it. The graphs and table show that our algorithms (Algorithms (4.1) and (4.3))
converges faster than Algorithms (4.2) and (4.4) studied by Choi and Ji [14], and Ugwunnadi et. al. [48]
respectively.
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Table 1. Numerical results for BBA (4.1)  

 

 

 

Table 2. Numerical results for the classical PPA (4.2) of Choi and Ji 

No. of iterations xn=(xn1, xn2, xn3, xn4)t Errors=||xn - xn-1||2 

1             (1.0000, 0.5000, -1.0000, 1.0000)  

2 (0.0853, 1.3349, 0.3046, -0.2646) 2.1988                 
3  (-0.1074, 2.1758, 0.2707, -0.7311) 0.9814 

4 (-0.2410, 2.8344, 0.1748, -1.0603) 0.7544 
5 (-0.3439, 3.3444, 0.0962,-1.3126) 0.5836 

6 (-0.4236, 3.7390, 0.0350, -1.5077) 0.4514 

.   

.   

.   
41  (-0.6956, 5.0868, -0.1739, -2.1738) 0.0001     

42 (-0.6956, 5.0868, -0.1739, -2.1738) 0.0000 

43 (-0.6956, 5.0868, -0.1739, -2.1738) 0.0000 
 

 

 

No. of iterations xn=(xn1, xn2, xn3, xn4)t Errors=||xn - xn-1||2 

1             (1.0000, 0.5000, -1.0000, 1.0000)  

2             (0.7135  0.2351,  -0.2993,  -0.5831) 1.7746                 
3  (0.7233,  0.2384, -0.3074,  -0.5963) 0.0186 

4  (0.7237,  0.2385,  -0.3077,  -0.5966) 0.0006 
5  (0.7237, 0.23852,  -0.3077,  -0.5967) 0.0000 

6 (0.7237,  0.2385, -0.3077, -0.5967) 0.0000 
7 (0.7237,  0.2385, -0.3077, -0.5967) 0.0000 
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Table 3. Numerical results for Halpern-type PPA (4.3) 

 

 

Table 4. Numerical results for Hybrid PPA (4.4) 

No. of iterations xn=(xn1, xn2, xn3, xn4)t Errors=||xn - xn-1||2 

1             (1.0000, 0.5000, -1.0000, 1.0000)  

2 (0.0853, 1.3349, 0.3046, -0.2646) 2.1988                 
3  (-0.1002, 2.0308, 0.2526, -0.6824) 0.8343 

4 (-0.2054, 2.5399, 0.1752, -0.9386) 0.5847 
5 (-0.2809, 2.9218, 0.1191, -1.1259) 0.4357 

6 (-0.3386, 3.2175, 0.0771, -1.2700) 0.3366 

.   

.   

.   
221  (-0.6866, 5.0385, -0.1678, -2.1507) 0.0003       

222 (-0.6867, 5.0387, -0.1678, -2.1508) 0.0002 

223 (-0.6867, 5.0389, -0.1679, -2.1509) 0.0002 
 

No. of iterations xn=(xn1, xn2, xn3, xn4)t Errors=||xn - xn-1||2 

1             (1.0000, 0.5000, -1.0000, 1.0000)  

2 (0.0513, 1.5315, 0.3144, -0.4422) 2.4024                 

3  (0.0444, 1.5491, 0.3271, -0.4470) 0.0233 
4 (0.0439, 1.5615, 0.3292, -0.4516) 0.0133 

5 (0.0436, 1.5691, 0.3304, -0.4545) 0.0083 
6 (0.0433, 1.5742, 0.3311, -0.4564) 0.0055 

.   

.   

.   

9  (0.0425, 1.5960, 0.3344, -0.4647) 0.0000    
10 (0.0425, 1.5960, 0.3344, -0.4647) 0.0000 

11 (0.0425, 1.5960, 0.3344, -0.4647) 0.0000 
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Figure 1. Errors vs Iteration numbers(n): Case 1 (top left); Case 2 (top right); Case 3
(bottom left); Case 4 (bottom right).
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