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Abstract

For any p € [1,00], we prove that the set of simple functions taking at most k different
values is proximinal in LP for all & > 1. We introduce the class of uniformly approximable
subsets of LP, which is larger than the class of uniformly integrable sets. This new class is
characterized in terms of the p-variation if p € [1,00) and in terms of covering numbers if
p = oo. We study properties of uniformly approximable sets. In particular, we prove that the
convex hull of a uniformly approximable bounded set is also uniformly approximable and that
this class is stable under Holder transformations. We also prove that, for p € [1,00), the unit
ball of L? is uniformly approximable if and only if L? is finite-dimensional, while for p = oo
the unit ball is always uniformly approximable.
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1 Introduction

In this paper we study the approximation of measurable functions by simple functions taking at
most k values, for £ € N. This problem has important consequences in multiple applications,
where for example, one seeks for reduction of dimensionality, among many others. For example,
the embedding of metric spaces into finite-dimensional normed spaces with small dimension is one
of the main issue in non-linear analysis (see [5, 10, 11]). These results have deep consequences
in order to design approximation algorithms, for instance for the Sparsest Cut problem (see [3]).
When we aproximate a given function f € LP(Q,F, u) by simple functions, the number of terms
in those approximations growths to infinity in general. Here, a main concern is what we can say
if we restrict the number of terms in the approximations. In particular, what we can say about
subsets of LP(),F, u) that can be uniformly approximated by simple functions taking k values,
as k growth to co. As we shall see, this new concept is more general than uniform integrability
or compactness, and we fully characterize it in terms of a new measure of variation defined for
functions in LP(Q, F, u) for p € [1,00), and in terms of covering numbers in the case of p = cc.

Let us fix some notations we need to explain the main results of this paper. Consider (Q, F, )
a measure space. For any k& > 1, we denote by 9, ,(Q, F, 1), or simply %, ;, when the measure
space (2, F, 1) is clear from the context, the set of simple functions given by

l
Dok = {Z a;la, € LP(Q,F, ) : {A;}1<i<; measurable partition of Q, a; € R for all ¢, [ < k} )
i=1
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Remark. Assume p is a finite measure. Then 9, 1, = % i, for all p € [1,00] is just the set of simple
measurable functions that takes at most k values. If  is an infinite measure, then h = Zle a;la,,
where {A; }1<i<k i a measurable partition, belongs to 9, i, for p € [1,00), if and only if 1(A;) = oo
implies a; = 0. So, again for all p € [1,00) it holds that Yk = %k C Yook, and the latter is the
set of all simple measurable functions that takes at most k values.

We recall some notions from approximation theory. Let X be a Banach space and let K be a
closed subset of X. The metric projection on K is the multi-valued mapping Px : X = K defined
by Pr(x) ={y € K : ||z —y| = d(z, K)} (where d(A, B) is the distance between two subsets
A and B of X). If Px(z) is not empty for all z € X, we say that K is proziminal. If Pk (z) is a
singleton for all x € X, we say that K is Chebyshev. Section 2 is devoted to show the following
result.

Theorem 1.1. Let (Q,F,u) be a measure space and p € [1,400]. Then 9, is proziminal in
LP(Q,F,u) for all k > 1.

In other words, the distance of a function f to %, is attained at some g € %, . Note that
most of the classical results on the existence of a solution cannot be used in this case since ¥, j is
obviously not compact in the strong topology, nor convex, and as we will see, it is not closed in the
weak topology, in general. The proof of this result is divided into several steps. We first deal with
the case p € [1,00) and we also prove that a minimum can be chosen to have a particular form (see
Theorem 2.3 when p is finite and Theorem 2.7 if not). The proof is rather technical since we deal
with any kind of measure (not only finite or o-finite). In case p is finite we also give conditions
to ensure that there is a unique minimizer (see Theorem 2.6). In general, the set of minimizers
is not a singleton, it can even exists a continuum of minimizers. Then, it makes sense to study if
the metric projection Py, , has a continuous selection. In general, there is no continuous selection,
unless LP(Q, F, 1) is finite dimensional (see the Remark before Section 3).

When p = oo, in Proposition 2.9 we prove that ¥, j is proximinal. The proofs we provide are
somehow constructive in nature, but still there is a long way to go for obtaining useful algorithms,
which in itself, we think, will be important in many applications.

An important role in this section is played by M,(f, A), the p-th mean of f on a set A (see
Definition 2.1). In particular, for p = 2 we have My(f, A) = ﬁ J4 f(x) du(z). A well-known
approximation associated to a finite measurable partition P = {A;}1<i<k is given by

k
E”(f) =Y Ma(f, Ai)la,
=1

which corresponds to the conditional expectation of f over the o-field generated by P.

In Section 3, we introduce the p-variation Var, x(f) of a function f € LP(Q2, F, ), for p € [1, 00)
and we studied some of its properties. The p-variation of a function allow us to control the distance
of f to the sets ¥, , up to a factor of 2 (see Proposition 3.3). This notion will be a useful tool
to characterize the uniform approximability of sets in the following section and whose definition is
the following;:

Definition 1.1. Let (2,7, 1) be a measure space and p € [1,+o0]. Let &/ C LP(Q,F, u). For
e > 0, we define

Npe()=inf{k >1 : Vfe o/, €Ty |f—hl,<e}.

As usual if the set where the infimum is taken is empty we set Np (/) = co. We say that o7 is
uniformly approzimable (in short UA) in LP(Q2, F, u) if Np (47) < oo for any € > 0.



Concretely a set o7 is UA in LP(Q, F, u) if for any £ > 0 there exists k > 1 such that any function
in &7 can be e-approximated in LP(Q2, F, 1) by simple functions taking less than k different values.
Notice that « is UA if and only if

lim sup inf{||f —gll,: 9 €%} =0.
k—)oojt'eg{

We point out that a similar quantity leads to relatively compactness of 7. Indeed, if 1 < p < o0,
a result inspired by M. Riesz (see Theorem 4.7.28 in [4]) says that K C LP(Q2, F, ) is relatively
compact if and only if K is bounded in LP(Q,F, ) and

inf sup [|f — E7 (f)[|, = 0.
P fek
We point out that for every finite measurable partition P, with at most k atoms it holds

inf{|lf = gllp: 9€Gpn} < If —E(f)llp,
so relatively compactness implies UA, a fact that can be easily proved directly.

The last part of the paper, Section 4, is dedicated to the study of uniformly approximable sets.
We will give some examples of UA sets and prove that it is a larger class than the class of uniformly
integrable sets. We also characterize this property in terms of covering numbers if p = co and in
terms of the p-variation if p < co. The covering numbers N(f, ¢) of a function f is simply defined
as the covering number of its range, up to measure 0. We will prove the following two results:

Theorem 1.2. Let (2, F, p) be a measure space and let o7 C L>=(Q, F, u). The following assertions
are equivalent:

(i) o is UA;
(i) sup e N(f,€) < oo for all e > 0.

Theorem 1.3. Let (0, F,u) be a measure space, p € [1,00) and let o C LP(Q),F, ). Then, the
following are equivalent

(i) o is UA in LP(Q,F, u);
(i) klgr;() SUp e Varpk(f) = 0.

Then we investigate when the unit ball of LP(Q,F, ) is UA. If 1 < p < oo, this happens, as
one can expect, if and only if LP(Q,F, 1) is finite dimensional (see Theorem 4.7). We conclude
this section by establishing some stability properties of the class of UA sets. In particular, a nice
use of the Rademacher type allows us to prove that if &/ is a bounded UA set in LP(Q, F, u) for
p € (1,00) then its closed convex hull also is UA (see Theorem 4.12). For more information about
Rademacher type and cotype, we refer the reader to [1] (chapter 6).

In what follows all the measures considered are assumed non trivial, that is, different from
the 0 measure, unless it is explicitly stated. We believe that our notation is quite standard. For
example, the closure of a set A is denoted by A and the distance between two subsets A and B
in a metric space is denoted by d(A, B). The complement of a set A is denoted by A°. In some
of the results we will need to consider diffuse and atomic measures. For that reason we fix some
notations at this respect. We recall that an atorn in a measure space (Q,F, 1) is a measurable set
A that satisfies: u(A) > 0 and if B C A is a measurable set such that u(B) < u(A) then u(B) = 0.
Notice that if Aj, Ay are two atoms with finite measure, then either pu(A; N Ag) = 0 or they differ
on a set of measure 0, that is, u(A; AAs) = 0 (where A is the symmetric difference). A measurable



space is said to be atomic if every measurable set of positive measure contains an atom. An atomic
space is said to have a finite number of atoms of finite measure, up to measure 0, if there exists a
finite collection (eventually empty) A of atoms of finite measure such that for any atom B either
u(B) = oo or there exists A € A such that u(AAB) = 0. A diffuse measure, is a measure that has
no atoms. Notice that the measure p = 0 is by definition diffuse, and we refer to this case as the
trivial one. More information about measure theory can be found in [4].

2 Minimizing the distance to the sets ¥,

The main objective of this section is to prove that ¢, ; proximinal, i.e. given some f € LP(Q,F, p),
the distance from f to %, j is reached at some function g € 4, ; (see Theorem 1.1). We denote by

Do (f) = inf{||f — th : he gp,k}'

for all p € [1,00], that is the distance between f and %, ;. A function g € Py , will be called a
minimizer. As we mentioned in the introduction, the classical results of optimization do not apply
in this case since ¥, is not convex nor compact. Even in the reflexive case (that is 1 < p < 00), it
is not clear if the problem admits a solution. However, if 1 < p < co and ¥, is weakly closed, it is
easy to see that there exists a minimizer. In fact, let (gn)n C 9,k such that |g, — f|| = Zp.x(f)-
In particular, (g,)n is bounded and then admits a subsequence (g, ), that weakly converges to
some g € ¥, ;. Since the norm is weakly lower semicontinuous, we obtain that

Dy (f) < If = gllp <Umlf = gully = Zpu(f),

implying that 2, (f) = ||f — gllp. Unfortunately, as the following discussion will show, ¥, j is not
weakly closed in general, a fact that depends strongly on the measure space. On the one hand,
in the case of the ¢, spaces for 1 < p < oo, every ¥, is closed under the weak topology. This
follows directly from the fact that if (fy, ), C %,k converges to f weakly in £, then (f,), converges
pointwise to f. From this fact it follows that f(N) is a finite set with cardinality at most k& and
therefore f € ¢, 1. On the other extreme we have the following result:

Proposition 2.1. Consider ([0,1],£,dz) the Lebesgue measure and let p € [1,00). Then 9, is
weakly dense in LP([0,1], L, dx) for all k > 2.

Proof. Tt is enough to prove the case k = 2. Consider an integer r > 2. Every = € [0,1) has a

unique expansion
o0
x = Z ¢ (z)r .
n=1

where ¢/ (x) € {0,...,7 — 1} and (¢} (x)), is not eventually constant » — 1. For x = 1, we define
¢ (x)=r—1foralln>1.

Let us prove that for every A € £, the sequence (1 An{¢2=1 })n converges weakly to the function
f = 31a. Indeed, assume first that A = [0,1]. For n > 1, let ¥, : [0,1] — [0,1] be the bi-
measurable and measure preserving transformation which flips the n-th binary digit. Then for all
continuous functions g : [0, 1] — R it holds

/ g(x) dx = / g(x) dx + R,
{G=1} {¢i=0}

where R, = f{<2:1} g(x) — g(¥,(z)) dx. The continuity of g, allow us to prove that R, converges

to zero. This shows 1(c2_;y converges weakly to %]1[0,1]- Thus, for all h € L9, where ¢ is the
conjugated index of p, and all A € £ we have

lim [ Lgcz—1y(z)La(z)h(z) dov = 1/]l,ﬂ:zc)h(gc) dx,

n—00 2



showing that (14n(¢2=1})n converges weakly to 114
In a similar way, it is shown that for all A € £, any integer number r > 2, any m € {1,...,r}
and all 0 < t; < ta... <ty < 1r — 1, the sequence

f = ]lAﬁU’" T {Cn=ty — Z IAO{(;:tj} €Y ,2)

j=1

converges weakly to T*1 4.

Now, for any ¢ > 1, any partition {A;}1<j<¢ of measurable sets, any collection {r;}1<;<¢ of
integer numbers greater or equal than 2, any collection {m;}1<;j<¢ such that m; € {1,...,7;} and
any collection of integer numbers {t;; : 1< <mj, 1 <j</{}suchthat 0<t;; <..<tjm <
r; — 1, we obtain that the sequence

fn = Z A;NUT (G =ty T ZZ L, SN =t )

j=11:=1
4

converges weakly to Y %]l 4;- We notice that f, = 1p,, where
j=1 "’

Ajn{¢7 =t}

m-yiUs

50 frn € 9p.2. This shows that the weak closure of ¢, » contains all the simple functions of the form
¢

1 CNS_

f =3 ajla,, where £ > 1, {A;}1<j<¢ is any finite measurable partition and a; € [0,1] for all
j=1

j €{1,...,£}. Moreover, any such simple function is the weak limit of a sequence (1, ), for some

sequence (F),), of measurable sets. From here it follows that the weak closure of ¥, » contains all

‘
the simple functions. Indeed, consider a simple function f = " a;la;, with £ > 1 and a; € R for

Jj=1

¢
all j € {1,...,£}. By adding a large constant C', we have f+C = }_ b;14,, where b; = a; +C >0
j=1
for all j € {1,...,¢}. Letting D = maxi<;<;b;, we deduce that % (f + C) is the weak limit of a
sequence (1, ), for some sequence of measurable sets (F,),. Then

fn:=Dlp, —C=(D—C)lp, — Clp: €%,

converges weakly to f. The density of the simple functions in LP, in the strong topology, shows
the result. O

The previous result implies obviously that ¢, ; is not weakly closed in general, and the usual
optimization methods do not work in this context, we have to find a minimizer by a more con-
structive way.

Definition 2.1. In what follows, for a measurable set A of positive and finite measure, we consider
M, (f, A) as one of the p-th means of f on A where p € [1,00). The function

0 /A (@) — al? dpu(z)



is convex, nonnegative and finite on R, which converges to oo as a — £o0o. Therefore, this function
has at least one global minimum. For p = 1, the set of minima is a bounded interval with extremes
a® and b* and it is customary to take, the median, as

a* +b*

Ml(va): 2 .

For p > 1 the minimum is unique due to strict convexity and we denote it by M,(f, A). For
example, for p =2

Ma(f, A) = @ /A f(2) du(a),

is the mean of f over the set A. If a set has measure 0, we simply put M,(f, A) = 0.
The next concept will play an important role in what follows.

Definition 2.2. Assume f € LP(Q,F, u), p € [1,00). A function g € 4,

q
9= Zailc“
i=1

with 1 < g <k, is said in f-special form if there exist —oo <71y < ... < 71 < rp+1 < 00 such that

e Ci= fY([ri,rit1)) foralli € {1,...,q—1}, Cy = f~1([rq,74+1]) and {C;}1<i<, is a partition
of Q;

o —oco<ar <. <ag<oQ;

e for all i € {1,...,¢} such that u(C;) < oo, it holds a; is a p-th mean of f on C;.

q
Suppose that ¢ = > a;1¢, is in f-special form. Note that if u is an infinite measure there
i=1
exists a unique 1 < s < ¢ such that as = 0 and p(C;) < oo for all i # s. We also have that
a; = My(f,C;) for all i € {1,...,q} if p > 1. Moreover notice that ¢ = h o f, where h =
23;11 ;L rpr) T aql[rg, 7q11] is a Borel function and g is f-measurable, that is, g is measurable
with respect o(f) = f~1(%4), where 4 is the Borel o-field in R.

2.1 The case of a finite measure, p € [1,0)

If the measure if finite, we start by proving that there exists an approximation sequence which is
uniformly bounded:

Lemma 2.2. Let (Q,F, 1) be a finite measure space and p € [1,00). Let f € LP(Q,F,u) and
k > 1. Then there exists a uniformly bounded sequence (gn)n C 9p 1 such that

”f - gan - @p,k(f)'

Proof. Let (hn)n € 9%k be a sequence such that ||f — hyll, = Zpi(f). Assume that h, =
E;’;(I”) cinla,,, where (Cin)i<i<m(n) are all different, {A;,}1<i<m(n) is a measurable partition
with sets of positive measure and m(n) < k. We assume that m(n) = m is constant by passing
to a subsequence if necessary. We modify this approximating sequence by considering a;, =
M, (f, A; ) any of the p-th means of f in A;,. By definition of the p-th means we have, for all
ie{l,..,m}

1@ =l duta) < [ 17() = ol duta),

Ain



showing that h, = 2111 a;nla,, €% is a minimizing sequence since

Dpo(f) SN = allp S N1F = Pnll = Zpie(f)

If m < k, we define a;,, =0 and A;,, =0 for i € {m +1,...,k}. We assume that {A; ,}1<i<k are
ordered in decreasing order according to their measure

In this way, the vector v, = (11(A1 1), 1(A2.1), -, 4(Ag 5 )) belongs to the compact set in R*

A—{xeRk: xlzxgz...zkaO,in—u(Q)}

By passing to a subsequence if necessary, we can assume that (v,), converges to some vector
v = (v1,v2,...,v5) € A. If ¢ is the largest index such that v, > 0 (¢ could be exactly k) then,
we have ¢ > 1 and v; > ... > v4 > 0 = vg41 = ... = v;. We notice that ¢ < m. Now, define

k
B,= U A, forall n € N, that we take as the empty set if ¢ = k, so
i=q+1

k
lim pu(By) = nh_)ngo Z w(A;n) =0.

n—oo
1=q+1
On the other hand, for all i« € {1, ..., ¢} we have

lim pu(A;pn) =v >0,

n—oo

and so, passing to a further subsequence we can assume there exists a finite constant I' such that
for all n and all ¢ € {1, ..., ¢} it holds

W) = 21

The finite measure v defined by
o) = [ @l duta),

is absolutely continuous with respect to p, which means that, for all p > 0 there exists a § > 0
such that, for any measurable set A if (A) <6 then v(A) = [, [f(z)|P du(z) < p. This property
shows that

tim [ @) du(2) = 0.

n—oo B

n

Now, we modify further the approximation sequence by defining

a;n forie{l,..,
O Lomap (2.2)
0 forie{qg+1,... Kk}
and define
k q
gn = binla,, = My(f, Ain)la,, +0lp, € %G (2.3)
i=1 i=1

We need to show that (g,,)n is a good approximation sequence and it is uniformly bounded. For
the first claim notice that for ¢ € {¢+ 1, ..., k}, we have

| 1@ =Rl duta) = [ 17@) = MyF AP du@) < [ 1@ duta),
Ain Ain

Ain



where we have used the optimality of M, (f, A; ) in the last inequality. This shows that

Zyil(F <IF = hallp = 3 [, 1F(2) = My(F A )P dp(z)
<3 L, 1) = ML AP dia) + J, 1F@ du@) = I = g0l
s; e 1) = M AP da) + [, 1) o)
<Uf = B2+ f, 1@ du(@) = Dy ()7

Now, we prove that (g, ), is uniformly bounded. We notice that g, = 0 on B,,, so we must study
gn on BS. For i € {1,...,q} and = € A;,, we have g, (x) = M,(f, Ain) and so

IMp(f, Ain)La; o llp <= Mp(f Ain ) Las o llp + 114l < 20 La; Ml < 201715,

where we have used again the optimality of M, (f, A;). This shows that

s
M, (f, Au)| < 200 <oy 7,05,
I

i,m P

where I' is the constant obtained in (2.1). O

The next result proves that ¥, ; is proximinal in case of finite measure spaces. Remember that
Py is the metric projection over K.

Theorem 2.3. Let (Q,F,p) be a finite measure space, p € [1,00) and k > 1. Then 9, is
proximinal.
q
Moreover, if f € LP(Q0,F,u) and g = 3 bjla, € Py, , (f) is a minimizer with ¢ < k, —oo <
i=1
b1 < ... < by < o0 and {Aiti<i<q a partition of Q with sets of positive measure, there ezxists a
minimizer g € Py, (f) in f-special form:

E Ci)) Ly-1(cy)

where
_ _ _ bicitbi . .
® 7 = —00,7qy1 = 00 and r; = “—— for all i € {2,...,q};
o C; = fY[ri,rix1)) for alli e {1,....,q— 1} and Co=f~ ([rq,rq+1])

e b; is a p-th mean of f on f~1(C;) for alli € {1,...,q} such that u(f=1(C;)) > 0.
If q is the smallest among all minimizers, then p(C;) > 0 for all i € {1,...,q}.

Proof. By Lemma 2.2, let (gn)n C 9p 1 be a uniformly bounded sequence such that || f — gnll, —

k
Dpi(f). Let C > 0 such that |g,,| < C for alln € N. We write g, = > b;nla,,, where {A; , }1<i<k
i=1
is a partition of Q and —C < by, < ... < bg,, < C. The vector u, = (b1 n, ..., bgn) belongs to
the compact set [~C, C]* and therefore, by taking a subsequence if necessary, we can assume that
() converges to some u = (by, ..., by) € [=C,C]* with by < ... < by Some of the entries in u can
be equal, for that we consider z; < ... < z; the distinct entries in v where 1 <[ < k. We define
r = —00,r141 = 0o and r; = 2521 for j € {2,...,1}. Consider the intervals I; = [rj,7;11) for



je{l,...,l =1} and I; = [r,m41]. For j € {1,...,1}, we also define L; = {i € {1, ..., k} : b; = z;},
which is a partition of {1,...,k}. For all n € N, consider the function

k
Gn= bila,,.
=1

Then, we have

- - 1
1f = anlle <N = gnllp +llgn = Gnllpy < I = gullp + maxicicr [bin = bil ()7 = Zpi(f),

proving that (g,)n is also a minimizing sequence. Finally, our candidate for minimizer is the
function g = 37", 21 5-1(7,) € Gy For all i € {1,...,k}, all j € {1,...,1} and all n, we have

/ £@) = 5P du(o) < [ 1£() = bil? di(a),
FHI)N A n F=1I)NA;

This is clear if ¢ € L; because in that case z; = b;. Now, if ¢ € Lj» with j' # j, we have b; = z;/
and for all z € f~1(I;) it holds |f(x) — z;| <|f(z) — 2| = | f(x) — b;]. Now, summing over i, j we
get for all n that

@p,k(f)p <|f _ng fo L(I;)N A |f(z) — Zjlp dp(z) < fo 1IN |f(x) — ;[P du(z)
< ||f Inllp = Zpi(f)7,

proving that g € Py , (f).
Now, we prove the last part of the Theorem. Assume that g = > 7 b;1a, € Py, (f) is a

minimizer, with by < ... < bg, {4;}1<i<q a partition of © where all the sets A; have positive
measure and ¢ < k. Let 7 = —00,rgq41 = 00,7 = w for i ={2,...,q} and
Ci = M [ri,rig)) fori € {1,...¢ = 1}, Cq = f~H([ri,rit1]).
For all i € {1, ..., ¢}, we modify the sets A; as
A= (AU {m)) \ T {ri ) (2.4)

Let us prove that (A1 ACY) = u(A; N Ey) = 0 for all j > 2 where Ey = f~1({ry}). Define

q
gl = bl]lgl + Zbi]lAi\E2 + b2l a,0E, € Yk
=3

and note that {A;, {A;\ Es};>2, AsUE>} is a partition of 2. Consider the following decomposition

||f_g||§:ZfA.|f( ) = bsl? dp(x fA |f(x) = b1]P du(x +ZfA \E2|f ) —b;|? dp(x)
+§2!Am 1) ~ byl due +fAmE2 1) = bal dia) + [, 1£(2) — bal? dila)

2 3, 10@) =0l ) & % Lo, 1) =031 @) + Ly, 11(0) ol ()

+(b3 — l)z))fﬂg2 (A, mEQ)

=|f = g'll5 + (b — b2)? ng w(A; N Ey),

where the second equality follows from the fact that Al = A; \ E> (up to a set of measure zero).
The inequality is proved noting that, for © € A; N Ey with j > 2 it holds |f(x) — ba| = ba —re <



bs —ro < bj —re = |f(x) — bj|, which implies |f(z) —b;| > | f(x) — ba|+ b3 — e, and for z € Ay NE,
it holds |f(z) — b1] = |f(x) — ba|. So, since ¢ is a minimizer we deduce that p(A; N E3) = 0 for all
7 > 2. Thus, we get

I =gl = [ 1@ bl )+ 3 [ @ bl [ @) bl aue)

7>2

showing that
bl]lgl + bz]lAsz—l({rz}) + Z bj]lAj S ng,k (f)
Jj>2

A similar argument shows that p(A4; NC1) =0 and w(Ar N C;) =0 for all j > 2. Since {A;}1<i<q
is a partition we conclude that p(Ci) = >, u(4; N Cy) = p(Ci N Ay) = p(Ci N Ay), proving
that C; C gl except for a set of measure 0. On the other hand, using again that {AVl,AQ U
FY{ra}), {A; \ f1({r2})}>2} is also a partition, we conclude that A; C C; except for a set of
measure 0. In a similar way, we prove p(A; N C;) = w(A;AC;) = 0, for all i # j.

At this point we should mention that some of the A; could have measure 0. For example this
occurs if Ay = f~1({r2}). In any case, we have

I - g||P—Z/ £0) = b du(z Z/ £(0) = bl di(a),
showing that

q
0 = Zbl]lcl S ng,k(f)’
=1

is a minimizer. On the other hand, if u(C;) > 0 we have [ |f(2) =M, (f, C))[? du(z) < [ |f(z
bi|P du(x). The inequality cannot be strict, otherwise we contradict the mlmmahty of g, showmg
that b; is a p-th means of f on C;, and therefore,

Z Ci)lc, € Py, (f),

is a minimizer in f-special form, as we wanted to prove. In case that ¢ is the minimal among all
minimizers, we conclude that p(C;) > 0 for all i. (|

Remark. In the last part of the Theorem, for any minimizer g, we have constructed a minimizer
g in f-special form, but it may happens that some of the sets (C;); have measure 0, which can
be discarded to get a minimizer with fewer terms. An interesting question is if this procedure
applied to any minimizer gives always a minimizer with the smallest possible number of terms (see
Proposition 2.12).

Recall that given f € LP(Q,F, u), the distribution of f is the measure py defined on (R, %)
given by, for all B € #

pe(B) = p(f~(B)).

Let g be a minimizer of f in %, in f-special form provided by Theorem 2.3

q
9= Z aily—1(fr;rii0))

i=1

10



So, g = (o f with .
(= Zain[mynﬂ),
and .
If =gl = Jo |f (@) — g(@)P du(x) = [q [f(2) = L(f (@) dp(z) = [ply — L) dpy(y)

= Hid - €||§P(R)@)Hf)'

Thus, the problem of finding a minimizer for f is equivalent to find a minimizer for the identity
function id in 9, x(R, %, pi5). The following result shows that when 5 is continuous, this search can
be done over the subclass of simple functions in f-special form. Before stating the result, let us fix
some notations. The cumulative distribution associated to p is the function Fy(z) = ps((—00, z])
Notice that Fy(—o0) = 0 and Fy(co) = p(€2). The convex support of py is the interval [ay, by],
where

af =sup{z: Fy(z) =0}, by =inf{z: Fy(z) = Fy(o0)}.

The following lemma is needed to study the uniqueness of minimizers, where p-th means are
characterized as roots of certain equations, suitable for our purposes. We include a proof, inspired
by exercise 1.4.23 in [13], for the sake of completeness.

Lemma 2.4. Let (Q,F, 1) be a finite measure space and f € LP(Q,F, ), forp € [1,00). Forp=1,
we also assume that Fy is continuous and strictly increasing on [ay,by]. Let I C R be an interval
with extremities ¢,d € R such that us(I) > 0. Then, the p-th mean m = M,(f, f~1(I),pn) =
M, (id, I, ps) is characterized as the unique solution of the equation

/Iﬂ(oo,m] (m a :E)pi d'uf (I) - / (I o m)p* d:uf(x)a (25)

IN(m,o00)
which for p =1 is equivalent to
1
Fy(m) = Fy(c) = 5 (Fy(d) = Fy(c)). (2.6)

Proof. The proof is based on the following equality for all z,b € R

b 0o
|z —b|P = p/ (t —o)P  ypeyy dt +p/ (x — )P ey dt,
b

— 00

which implies that
b
L ) I (R L TR CE s TR )
Fix m € R. Define a function L : R — R by

£0) = [ o =7 dug(@) = [ Jo = ml? diss (o)

It is clear that m is a minimum of L if and only if m is a p-th mean. Using Fubini’s Theorem and
the previous equality, we obtain that for all b € R

b b
ty=p [ [ oy tdy@d-p [ [ ooty
m JIN(—o0,t] m JIN(t,00)

11



Note that L is convex, coercive and continuous and then reaches a minimum.

Suppose p > 1. The functions ¢ — fm[_%t] (t—z)P~ 1 dpys(z) and t fm(t)oo)(x—t)p_l dps(z)
are continuous, and therefore L is strictly convex and continuously differentiable, which proves that
L'(b) = 0 is the equation for the unique minima, that is,

Lﬂ»—pﬁm Jb—@pldw@»—p/ (2= by duy(w) = 0.

IN(b,00)

It follows that m is the p-th mean if and only if m fulfills (2.5).
For p = 1, using that Fy is continuous, we have

b
Mwa/ﬂ@—ﬂ@—wmwfm»w

Again, since Fy is continuous we obtain that L is continuously differentiable. Then, if b is any
minima for L, it holds that L'(b) = 0, that is, Fy(b) — Fy(c) = $(Fs(d) — Fy(c)). Since Fy is
assumed to be strictly increasing, this equation has a unique solution, and then L has exactly one
minimum. Then, m is a 1-th if and only if Fy(m) — Fy(c) = 3(Fy(d) — Fy(c)). O

Notice that in the previous Lemma we can replace (—oo, m| by (—oo, m) and (m, co) by [m, oo)
in 2.5, because z = m does not add to the integrals. In the case FY is just increasing, I = (¢, d] and
p =1, all the 1-th means satisfy the equations L/+(m) >0 and L/_(m) < 0, which are equivalent
to

1
Fy(m) = F() 2 5
and the solution set is, in general, an interval.

(Fr(d) — Fy(c), Fr(m—)— Fy(c) < 5(Fr(d) — Fy(c)),

N =

The next result shows that when Fy is continuous all minimizers are in f-special form.

Corollary 2.5. Let (0, F, 1) be a finite measure space, p € [1,00) and k > 1. Let f € LP(Q,F, )
and assume that Fy is continuous. Then any minimizer g € Py, (f) is of the f-special form

k

9= Zai]lf*l([rivmﬂ))v (2.7)
=1

where
o [ri,rit1) has positive pg-measure for alli € {1,....k};
o ;=71 <..<rp<Tp1="byandr; = % forallie{2,.. . k};

e a; is a p-th mean of id on [ri,ri11) under py for alli € {1,...,k}. Moreover, if Fy is strictly
increasing on [as, by], then a; = My, (id, [ri,rix1), py) for all i € {1,...,k}.

Proof. Notice first that f ¢ ¢, ., because the image of f cannot be a finite set a.e., since uy is not
atomic. This implies that there is no minimizer in ¥, 4, with ¢ < k (see Proposition 2.12 below).
So, any minimizer has the structure
k
i=1

where a1 < ... < ag, {4;}1<i<k is a partition with sets of positive measure and a; is a p-th mean
of fin A;, for all i € {1,...,k}. In the previous proof, we then modify this minimizer to get one in
f-special form. If one goes over that proof and using the fact that F is continuous, one realizes

12



that in equation (2.4), we get AZ = A; a.e. and then A; = C; a.e., proving that A; = f~1([r;,7i11))
a.e.

The fact that a; is a p-th mean is just the fact that g is a minimizer. For p > 1, the uniqueness
of the p-th mean shows that a;, = M, (id, [r;,7i+1), tf). This is also true for p = 1, when FYy is
continuous and strictly increasing in [ay, bs] (see Lemma 2.4). O

Remark. The previous result could be used as the basis of an algorithm to approrimate a mini-
mizer. Assume that py is a continuous distribution. For any s € R, were s plays the role of ry in
the representation (2.7), we define r1(s) = —00,72(s) = s and a1 = a1(s) = M, (id, (—00, s), pif).
Then, we define az(s) = 2ra(s) — a1(s), which is a relation that should satisfy any minimizer.
Then, compute r3(s) so that

az(s) = Mp(id, [r2(s), 3(s)), 1y )-

and continue in this way defining az(s),ra(s),...,ax(s),rk+1(s). It may happens that at some
iteration Ti41(8) is not well defined for some i < k — 1 because, for all t € [r;(s), 0]

ai(s) > Mp(id, [ri(s), 1), puy),

which shows that there is no minimizer starting with ro = s. So, we say s is admissible if r1(s)
is well defined. For every admissible s we have a candidate

k—1

ls =) a;i(8) L[ (s),rs(s)) T Mp(id, [rr(5),00), tg) L, (s5),00)
1

i

and we can compute R(s) = [ |z — ls(x)|P dug(x). For s which is not admissible put R(s) = .
Then a minimizer of R gives a minimizer for f. One expects that the set of admissible values of s
is an interval. We shall work on this algorithm in a forcoming paper.
For example, if py is a normal N(0,1), p = 2 and k = 3, this algorithm gives the following
approzximation
h~—=121_sx 06 T0 106,06 + 1.2 L.600)-

Notice that ||id||2 = 1 and (22 3(id))? ~ 0.18, which means that, in the language of statistics, 82%
of the variance of f is explained by a simple function taking 3 values.

Uniqueness of minimizers is a much harder problem. Here, we present a partial result in case
iy satisfies a certain monotone likelihood ratio property.

Theorem 2.6. Let (2, F,u) be a finite measure space, p € [1,00) and f € LP(Q,F, u). Assume
ps has a density with respect to the Lebesgue measure W : (af,by) — (0,00), which we extend by
0 outside this interval. Consider for s € (0,by — ay) the function Gy : (ay,by) — [0,00) given by

Gs(y) = % and assume that G is decreasing. Moreover, we suppose that one of the following
hypotheses hold:

(H1) either ay or by is finite;
(H2) Gs((af,by)) is an infinite set;
(H3) VU is continuous.

Then there exists a unique minimizer for f in 9, for all k > 1.

13



Proof. The case k =1 is direct from the fact that F is is strictly increasing (because ¥ is strictly
positive on (af,bs)) and therefore the p-th means are unique. So, we assume that k& > 2.

According to Corollary 2.5, and since Fy is strictly increasing all minimizers for f have the
f-special form given in (2.7). Fix one of them g = £ o f, where

k
{= Zai]].]i
i=1

with 11 = ay,rp41 = by, = '“%w for i € {2,...,k}, I; = [ri,ri11) for @ € {1,...,k — 1},
I, = [rk, rit], pp(L;) > 0 for i € {1,....,k} and a; = M, (id, I;, i s) for i € {1, ..., k}. Assume there
exists another minimizer g = £ o f with

k
0=>"a1;
=1

where 71 = ap,Th41 = by, 7 = % for i € {2,...k}, I; = [Fi,Fiq1) for i € {1,....k — 1},
I = [Fry ), pp(l) > 0 for i € {1,...,k} and @; = M,(id, I;, jus) for i € {1,...,k}. We need to
prove that ¢ = (. Consider s = r9 — ro. Switching g and ¢ if necessary, we can suppose without
loss of generality that s > 0, and since rp,72 € (ay,by) then s < by — ay. Define 6; = a; — a; for
allie {1,...,k}and n; =7; —r; for all i € {2,..., k}.

Case 1: Suppose that s = 0. We shall prove that ¢ = {. Notice that I, = I; and G =
M,(id, I1, oy) and by uniqueness of the p-th mean we deduce that a; = @;. But ai, a2 and
T are related by a; = 27y — a1 = 2rp — a; = ag, showing that a; = az. Using the fact that
as = M,(id, I, uy) = Mp(id, I2, pty) and Lemma 2.4, we have that

/;3 (z — az)P "V (z)de = /FS (z — ag)P~ U (2)dx = /62 (az — )P~ 10 (2)dz

2 az 7

_ / (a3 — )P~ 10 (2)dz = / (& — az)P~ "W (2)da.

r2 az

Since 73 < by and since V¥ is strictly positive, we conclude that s = r3. Repeating this argument
we conclude that 7; = r; for all i € {2,....k} and @; = a; for all i € {1,...,k}. Thus / = (.

Case 2: Suppose that s > 0 and let us arrive to a contradiction if we suppose that (H1), (H2)
or (H3) holds. This part will be divided in several steps.

Step 1: We are going to show that the following properties hold:

(8) Ok > Mk = Op—1 = Mh—1 = ... 212 = 01
(b) if one of these inequalities is strict then all the inequalities on the left are also strict;

(c) all of these inequalities are in fact equalities if and only if a; = —co and for all i € {1,...,k—1}

it holds
U(y+s) Ya;+s)
VyE (Tiuri-l-l) \I/(y) = \I/(CL) .

Define a function ¢ : z ffflJrz(z +a; — 2)P" 1 (x)dr — f;erz(a? —aj — 2)P7 10 (z)dx. Tt is clear

that ¢ is strictly increasing. Recall that a3 = M, (id, [as,72), pt), which is characterized by

/al (@, — )P~ 10 (2) do = /~T2($ — )P (x) da,

ar aq
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so ¢(01) = 0. Note also that

¢(O)=/ual(a1—xp Wy (x / (x — a1)P" ' (2)dz

T2

:/ (x —a)P U (x / (x —a)P~ ¥ (z)dz < 0,

1

since 79 — 19 = s > 0. Moreover, we have

ai1+s ai1+s a T s
/ (a1 + s — )P~ 0 (z)dx > / (a1 4+ 5 — )P U (z)dr = / (a1 —x)pflM\I!(:v)dx

ays ar+s \If(fL')
\If(al—i—s) ala — 2P (e x:L(al—i—s) T2x—a Py (x)dz
> St / (@1 =) Wa)do = S gL / (v — ) 10 (2)d

T2

> /T2($ - al)p_l%ﬁ!(x) dx = / N (x —ay — )P U (z)dx

proving that ¢(s) > 0. It follows that 0 < ;3 < s = n2. The only way that §; = 72 = s is that the

previous inequalities are only equalities, which means that ay = —co and ‘1}\%’(;)5) = é,a(;r)s ) holds

for all y € (ay,r2) dy-a.e., but since G, is decreasing this property holds for all y € (as,72). We
summarize this condition for future reference
Y(y+s)  Y(a+s)

ay = —oc and Yy € (af,2) ) = Ta) (2.8)

On the other hand, since o = 51552, we deduce
Gy = 279 — a1 = 2ry — a1 + 210 — 61 = ay + 212 — 61,

from where we deduce that do = 215 — 31 > 12, with equality do = 72 if and only if 63 = 173 = 01 = s.
Now, if there exists 73 < by such that

Mp(ida [:F277F3)7Mf) = 627

we deduce that 13 > do. Indeed, this follows from the inequalities

/ "’ (z — )P 1 (2)dz = /~ " (@ — 2P (2)dz = / e (@2 — )P~ U (z) do

az T2 r2+12

as+02 az
> / (ag — )P~ 10 (2)dx = / (ag — )P~ (2 + 6y)dx

2402 T2
= a2a —ajp*li\l/(x_kch) x)dx 7\11(@_'—52) a2a — )P~ (z)dx
- e e > S [ N ey
7\I/(CL2+52) Tsx_a P () Tsx_a pil\IJ(iZ?—l—(SQ) Dda
- g /@( )1 (2)d z/@( S s

T3+02
:/ x—ag)P” \Il(a:—|—52)d:17—/a2+62 (v — a2)P 1 (z)dx
r3+0d2
/ ' (z —a)P "1 (2)dx

proving that 73 > r3 + do, i.e. 13 > d2. Also, we notice that n3 = o if and only if

U(y + 52) _ \I/(ag + 02)
¥(y) V(az)

N2 = 9y and Yy € (re,r3)
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which in particular implies that n3 = 73 = d2 = 01 = s and (2.8) holds. Iterating this idea, we
complete Step 1.

Step 2: Since g has f-special form, we have that a; = My (id, [F, by], uy). Since o, > ng by (a)
in Step 1, we obtain that

/bf(x — @)P U (2)dr = /fk (@ — 2)P~ 0 (z)dz = /akm (@ — 2)P~10(z) da

ak Tk TE+Mk

ar+0k ag
> / (ar — )P 0 (x)dx = / (ap — )P W (z + 0y )dx

k0K e
_ \Ij(ak +5k) by pe1 \I/(ak +5k) by—0; -
- W/ak (= ap)" ¥ (z)do = W/% (@ — ap)? " U(z)dx

by—k . by
2/ (x—ak)plwa(x)dx—/ +5 (x —ap)?P W (x)d

k

_ /bf(x )P (2)da

ay
It follows that all the inequalities are in fact equalities and then the following properties hold:
(d) by = o0;

(e) Mk = O;

1) ap+6
() Vy € (rp,00) L4Eped — Huton),

We notice that (e) implies that all inequalities in (a) are equalities and then (c¢) holds. This
together with (d) and (f) implies that if ¢ is a minimizer then

(8) Ok =1k =0k—1 =1k—1= ... =12 =51 = 5;
(h) af = —00,by =00 and for all i € {1,...,k} it holds

Vy € (ri,Tis1) \11(3(;_)8) = \I]E;E;_)S).

Step 3: Conclusion. Clearly under (H1) or (H2) the function § cannot be a minimizer. It
remains to consider that (H3) holds. From (h) and the continuity of ¥ it holds that

Yy € (—00,0) ‘1’213]/(;‘)3) = \I]EIOJLEG—:)S) =C € (0,00)

Iterating this equality we have ¥(y + 2s) = \I:I,(&Jf:')) %\P(y) = C?¥(y), and then for all n € Z
and all y

U(y +ns) = C"U(y).
Then, if C' > 1, we have

1 1 ns+1
C”/ Y (y) dy:/ U (y + ns) dy:/ U(y) dy — 0,
0 0 n

s n—r oo
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which is a contradiction. A similar contradiction is obtained if C' < 1, because ¥(y—ns) = C~"¥(y)

and then 0 B
Cc- / dy—/ U(y — ns) dy:/ U(y) dy — 0,

—1 —(1+ns) n—00

proving that g cannot be a minimizer, and the result is shown.
O

Remark. FEzamples of distributions that satisfies the hypothesis of the previous Proposition are
the exponential distribution py(dx) = e=* dx for x > 0, the normal distribution N(0,1) and the
uniform distribution uy(dx) = dz for x € [0,1]. In the uniform case, we obtain an explicit solution
for the minimizer of f € LP(Q,F, ). For all k > 1 this unique minimizer is g = £ o f, where

E oo
21 —1
gzz 2k g by

=1

independently of p € [1,00).

2.2 The case of an infinite measure, p € [1,0)

The case of infinite measure needs an extra work and use some ideas already developed in the finite
measure case.

Theorem 2.7. Let (2, F, 1) be an infinite measure space, p € [1,00) and k > 1. Then 9, is
proximinal.

Moreover, if f € LP(Q2,F, u) and g = E bila, € Py, (f) is a minimizer, with ¢ < k, —oo <

b < ... < by < 00, {Ait1<i<q @ partmon of Q such that p(A;) > 0 for all i € {1,...,q} and a
unique 1 <s < q such that by = 0. Then, there exists a minimizer g € Py, (f) in f-special form

q
Z n( Ci))ly-1(c,) + 0L s-1(c,),
i=1,i
where
® I = —00,Tgp1 =00 and 1; = M for alli € {2,...,q} (notice that rs <0 < rs41);

o Ci= fY([ri,ris1)) fori € {1,....,q—1} and Cy = f~Y([rq,rg+1]);
o if u(f~1(Ci)) >0 and i # s, then b; is a p-th mean of f on f~1(C;);
If q is the smallest among all minimizers, then p(C;) > 0 for all 3.

Proof. For k = 1 the result is obvious since ¢, 1 = {0}. So for the rest of the proof we assume that
k> 2.

Let f € LP(Q,F, u) and consider a sequence (gn)n € %k such that g, = ngi) ainla,,, where
ayp < ... < agm)n €R, {Am}lggq(n) is a measurable partition with sets of positive measure and
g(n) <k for all n € N, and such that

1 = gnllp = Zp.x(f)-

Since g, € LP(2,J, ) there exists a unique 1 < s(n) < g(n) such that ay,), = 0 and we have
that p(A;in) < oo for all i # s(n). Passing to a subsequence, we can assume that 1 < s(n) = s <

q(n) = g < k. Define 1y =11, = —00, rgt1,n = 00 and r;,, = W for i € {2,...,q}. We
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point out that if ¢ = 1, then g,, = 0, for all n and so h = 0 is a minimizer. Then for the rest of the
proof, we assume ¢q > 2.

Now, consider I; ,, = [rjn,7i+1.n) and the corresponding C; , = f~1(I;,) for all i € {1,...,q}.
For all n € N, define

q
Gn = Z ainly-1(1; )
i=1

Ifi,7 € {1,...,q}, we have that |f(x) — a;n| > |f(z) — aj | for all z € C;. It follows that for all
neN

W—%%=2;Auwwmuwmw=Z§jAMJﬂM—%mwu>

proving that (g, ), is also a minimizing sequence.

For all i € {1,...,q}, the sequence (a;,,), has a convergent subsequence in R. Then we can also
assume that a;, — a; € R for alli € {1,...,q}. We denote by z; < ... < z, the different values in
{a1,...,aq}, where £ < q. We point out that z; = 0 for some 1 < ¢ < ¢. For each 1 <m < ¢, we
denote L,, = {i: 1 <i<gqand a; = z,}. Each L,, is an interval in N, because we have assumed

a1y < oo < iy < ... < g, for each n. We define i;, = min{L,,} and i}, = max{L,,} for all
m € {1,...,£} and also i,, ; = £+ 1. Note that L,, = {i,,,...,i;},} for all m € {1,..., £}.

Assume that z; = 0o or 21 = —oo. In this situation ¢ > 2, because z; = 0. As in the case of
finite measure we can modify (g,)n to get a uniformly bounded minimizing sequence. Consider
first the case zy = oo and recall that i, = min{L,} € {s+1,...,q}. Then, we have

Qi —1m + Qi
Ty = Ty — 00,
because a,- ,, > as, =0 and thena,- _, —a,- ;= 2z_1 €[0,00). Consider
. 1, ¢ L ¢

Gn= D Ginlpr,,) + Gy i, o) = Y il F eyl 20))

. — )
iy —1,n

i<iy i<iy -1
An important fact is that f{fzriz,n} |f(z) — ai;_l)n|1) du(x) — 0, because (ai;—l,n)n is a bounded
sequence and Tim o OO Then
W—%%SU—%%+Af 1) = a1 @) = (Zps( DY
>r

i, ,n
£

Then, the sequence (g, )n is a minimizing sequence, which is uniformly upper bounded. Similarly,
we can modify this sequence to get a minimizing sequence, which is uniformly bounded. Then, in
what follows we assume (gy,), is uniformly bounded and —oo < 21, 2y < 0.

Now we consider 2 different cases.
Case 1: £ = 1. In this situation a; = ... = az = 0. Notice that ry, = =tatder 0 5o if
0 < f(z) < oo, then gn(x) = ag,, for all large n and g, (z) — 0. In the same way, if f(z) < 0, then
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gn(x) = a1, for all large n and g, (z) — 0. On the other hand, if f(x) = 0, then g, (z) = 0. Then
by Fatou’s Lemma we conclude

fiminf £ = 3} > [ timint |f(e) - . du(e) = 71
and we obtain 2, ,(f) > || fllp, showing that h = 0 is a minimizer.

Case 2: £ > 2. For all m € {1,...,£} recall that i,, = min{L,,} and i,,, = £+ 1. Then, for all
2<m</

L Zm—1 + Zm
Tim g = Tm 1= —
and r;1 = —00 < 1 < ... < 1y < 7941 := 00. Now, we choose a particular subsequence (n'),.

We start with (ri; n)n- If there exist an increasing subsequence of (ri; )n, we fix one of these

\n

subsequences as (n(?)) and we put T(2) = in, for increasing. Otherwise we take (n(?)) so that
(ri;,n@))n(z) is strictly decreasing, and we put T'(2) = sd, for strictly decreasing. We repeat this
procedure for (ri;,n@))n(z)’ to obtain, if possible, (n(®)) a subsequence of (n(?)) so (ri; n® )@ 18
increasing, and put 7'(3) = in. Otherwise we take (n(3)) a subsequence of (n(?)) so that (r,- , @) )n

'3

is strictly decreasing, and we put T'(3) = sd. We continue until m = £. We also put T'(1) = in and
T(¢+ 1) = in. Denote by (n/) = (n9).
Now, we define the intervals that give a minimizer. For all m € {1, ..., ¢} let

[Tm7Tm+1) if T(m) = in7 T(m + 1) —in
= {mrn) T() =i Tt w0
(Tmu rm-l-l) if T(m) = Sd, T(m + 1) = in
(Tmu rm-l-l] if T(m) = Sd, T(m + 1) = sd
We notice that Uf,_; I, = [~00,00), and for all m € {1,...¢} and all ', we define Jy, n =

UieL,, Tin’ Tig1n) = [T r ). Then, it holds

G 1 i:nJrl,n/
]].ffl(‘]m,n/) — ]lf—l([m) a.e.

The last piece of information we need is that the set Uzt f ! (Jp,ns) is contained in a fixed
set of finite measure A for large n’. If t = £, then Upzs [~ () C fH (=00, 7m]) C A =

(=00, %)), for large n/, because ¢, — 1y = 25+ < 2 = 0, and then A has finite measure.
Similarly, if ¢t = 1, then Uz f ™ (Jmnr) C fH([ram, 00]) € A = f71([%, 00)), for large n’. This
set has finite measure because rs > 0. In the general case, 1 < t < ¢, we have for large n’

Um?’ftf_l(‘]m,n’) - g = f_l((_oov 7“,5/2]) U f_l([rt+1/27 OO))?

which has finite measure because r; < 0 < r¢41.
Now, consider the decomposition

1 =G llp = [17(@) = G @ L0,y din) + S [y1r, (@) = o ()] dia(a).

We use now Fatou’s Lemma for the first term and the Dominated Convergence Theorem for the
second term. In the first term, we have the a.e. convergence

|f = gwlL-10s, ) = [FILp-1(1,)

With respect to the second term, for large n’, we have maxi<i<q |@i,n/| < max{|zi|,z,} +1:=C,
also

[f(@) = Gu (@)IP Lo, 10,0 < 227 H(f(@)P +CP) 15 € LHQ, T, p),
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En’]]‘Un#tf’l(Jm,n/) — Zm;ﬁt Zm]].f—l(jm) a.e. and f]]'Um:f‘tfil(Jm,n’) — f]]‘f’l(Un#tfm) a.e. SO, we
get

i =Gl 2 [ @)+ 3 [ 15 =l du

It) m#£t

and then h = an:l Zm1g-1(z,) is a minimizer, where the intervals {I,,}1<m<¢ are either open,
closed or semi-closed, they are disjoint and U’ _,I,,, = R (see (2.10)).

From here it is clear that a minimizer exists in f-special form as we have done in the finite
measure case. Also notice that if m # ¢ and 0 < u(f (1)), we must have z,, is a p-th mean for
fin f71(I,,), since h is a minimizer. O

2.3 The case p =0

In this section we shall prove that ¥ j is proximinal. We start with a lemma.

Lemma 2.8. Let (Q,F, 1) be a measure space and f € L>°(Q,F,u). Then, for all k > 1, we have
that Do i:(f) = ni(f) where

me(f) = hj?f inf{a > 0 | h(Q2) can be covered by at most k closed balls of radius a}.

Proof. Let € > 0 and let g € 9 1, such that || f — gllco < Pook(f)+e. Write g = Zle a;1 4, where
{A;}1<i<k is a partition of Q. For every i, the set C; = {z € A; : |f(z) — ai| > [|(f — 9)1a,llo}

k
has measure 0 and therefore h = flg\u,c;, + D ajlc, satisfies h = f a.e. and
j=1

k

h(2) C U[ai — Dooi(f) —€,0i + Do ic(f) + €.

=1

It follows that nx(f) < Zeo,x(f) + € and since ¢ is arbitrary, we obtain that 1 (f) < Zoc.x(f). To
prove the other inequality, let again ¢ > 0 and pick | < k, a1, ...,a; € R and h = f a.e. such that

l

r(©) € Jlai — me(f) — & ai + e (f) + .
i=1
For 1 < i <, define A; = h™'([a; — m(f) — &,a; + mk(f) +¢]) € F. Now define By = A, and
B, = Al\Uz;ll A; fori € {2,...,1}. Then {B;}1<i<; is a partition of Q. Defining g = Zé:l a;lp, €
Yook, 1t is clear that ||f — gllee < ne(f) + &. It follows that Zoo k(f) < mk(f) + € and then

Do i (f) < i (f)- u

Proposition 2.9. Let (2, F, 1) be a measure space. Then Yoo 1, is proziminal for all k > 1.

Proof. For all n € N, let o, = mi(f) + % So, for all n € N, there exist af,...,a7 € R with

1<, <kand h, = f a.e. such that h,(Q2) C Uéll[a? — ap, al' + o). Of course there exists i
such that pu(hy, ' ([a}, — an,al 4+ ay])) > 0. If for some ¢ it holds u(h™'([a} — am,al’ + anl)) =0,
we can redefine h,, on a set of measure 0, to have h,(w) = a;, for all w € h; }([a? — apn, a? + ay)).
So, we can assume for all i it holds p(h, ! ([a? — apn,a + a,])) > 0. Consider

1

= / ha(@) di(e) € [a7 = anyal +anl,
N(hnl([a? — g, 0y + an])) hin ' ([a? —am,a? +an])

which obviously satisfies [t;n| < ||Anllco = ||flloo- Then, for all i, n, it holds

lai'| < |ti,n| + laj" — ti7n| < flloo +an < | flloo +me(f) + 1,
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which implies that the set {a} : 1 <4i <, n € N} is bounded.

Considering a subsequence if necessary, we can suppose that I, =1 € {1,...,k} for alln € N. By
compactness and taking a further subsequence, we can also assume that a — a; for alli € {1,...,1}.
Define

C={weQ|VneN fw)=h,(w)}eF

and note that u(C°) = 0. Let us show that f(C) C Ui:l[a’i —ni(f), a; + nk(f)]. In fact, if w € C
then for all n € N there exists i(w, n) € {1, ...,1} such that f(w) = hn(w) € [a}(, = A}, ) Fom].
There exists a subsequence ¢(n) = ¢(n)(w) such that the sequence (i(w, p(n))), is constant and
equal to some ig(w) € {1,...,l}. Tt follows that f(w) € [a;yw) — M (f), iy (w) + 1m:(f)] C Uézl[ai -
Nk (f), a;+nie(f)]. Define h = flo+tlee where t is any real belonging to Ui:l [ai =i (f), ait+ni(f))]-
We have that f = h ae. and h(2) C Ui:l[a’i —ne(f),a;i + ne(f)]. For 1 < i < [, define
A; = h Y ([a; — me(f),a; + ne(f)]) € F. Now define By = A; and B; = A; \ U;;11 A; for i €
{2,...,1}. Then {B;}1<i< is a partition of Q. Defining g = Zézl a;lp, € Y, it is clear that
lf = gllo = 1P = glloc < n&(f). Moreover, we have that P k(f) = ni(f) by the previous Lemma
and so we conclude that || f — gllcc = Zoo.k(f)-

o

2.4 Extra properties of minimizers and the sets (¥, ),

In this section we include some extra properties of the sets (¢, k)p.x as well as some natural
questions like uniqueness of minimizers and the existence of a continuous selection for Py , .

Let us start by proving that ¢, ; is a closed set, for all p > 1,k > 1, something that it is not
straightforward to do. Nevertheless, this is a direct consequence of the previous results.

Corollary 2.10. Let (0, F, 1) be a measure space, p € [1,00] and k > 1. Then %, . is closed.

Proof. Assume (g, )n C 9 converges in LP(Q2, F, u) to g. Then
inf{llg —hllp: h€e%r}=0.

From the previous results, there exists a minimizer h € Y.k, that is g = h a.e. and the result is
shown. O

A question that appears when proving the existence of minimizers is the following. Assume
there exists a best approximation of f by an element of ¢, ;. which is in fact an element of &, ,,, for
some m < k, then it is natural to think that f should belong to %, ,,,. This is true when p € [1, c0)
and it is not true for p = co. Before doing that we require the following lemma.

Lemma 2.11. Assume that f € LP(Q,F, ), for 1 <p < oo, and A = f=1(I) is a set of positive
and finite measure, where I is an interval. Assume b is a p-th mean of f on A, then b € I.

Proof. Assume the interval I = [c,d], where ¢,d € R and let us prove that b > ¢. If ¢ = —c0
it is clear that ¢ < b. So assume c is finite. By contradiction, if b < ¢ we have |f(z) — b =
f(@)—c+(c—b)> f(z)—c=|f(x) —c|, for all z € f~1(I) and then, since u(f~1(I)) > 0, we get

[ 5@ = du@) > [ 15w el duta),
f=HI) a1 0))
which is contradiction. Similarly, it is shown that b < d. O

Proposition 2.12. Assume f € LP(Q,F, u) with p € [1,00). Let m,k € N such that 1 < m < k.
Suppose that there exists g € 9y .m N Py, , (f). Then f € Gy .
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Proof. Suppose that the measure is finite. We can assume that

9= il
=1

where r < m, {I;}1<i<, is a family of disjoint intervals such that {f~1(I;)}1<i<, is a partition
of @ and b; < ... < b,. Suppose by contradiction that f ¢ 4, ,,. Then in particular it holds
that p(f=1({b1,...,b-}¢) > 0. Since © = {by,...,b.}° is open, it is a countable union of open
intervals (J,,), and therefore for some ng we should have u(f~*(J,,)) > 0. By the continuity of
the measure, there exists a closed bounded interval J C J,,, such that u(f~*(J)) > 0, and therefore
p(f~Y(JN 1)) > 0, for some ig. Hence, we obtain

/ £ =367 57 Ty NI dute) < 1 — b l? dia(a),
f=1(LignJ) f=1(TigNJ)

since an equality in the previous formula would imply that b;, € I;, N J C J C {b1, ..., b}, by the
previous Lemma. If we define

h = Z billy-11,) + bio Ly—1(1, ney + Mp(fs f 7 Lo NI p-1(1,,00) € Doirt1 C Dp ks
i=1,i7io
we have that ||f — k|, < ||f — gll, which contradicts the minimality of g. We conclude that
f €Y m.
In case the measure is infinite, with the same notation as above, we know that b;, = 0 for
some 1. As above there exists a closed and bounded interval J C {b1,...,b,}¢ C {0}¢, such that
p(f~1(J)) > 0. Without loss of generality we can assume that J C [a,0), for some a > 0. Then

p(fHI)a? < I FIIP,
proving that f~!(J) has finite and positive measure. The argument now goes as in the case of
finite measure. O
The following result shows that, for p € [1,00), the error in the approximation by functions in
9,1, decreases strictly with & until eventually reaching zero.
Corollary 2.13. Assume that f € LP(Q,F, p) with p € [1,00) and consider Py o(f) = 0. Define
k* = min{k : Z,,(f) =0} € [1,00]. Then, (Dpi(f))k<p~ is strictly decreasing and Dp 1 (f) =0

)

for all k > k*, that is
E* =min{k : Dppt1(f) = Zpi(f)} =min{k: 2, ,(f) = 0}.
The previous results are not true for p = co. In fact, we have the following example:

Example. Consider the Lebesque measure in [0,1], the function

and k = 3. It is not difficult to show that Do 3(f) =

example

, where there are multiple minimizers, for

1 1 5
h=sloy+slas+elzy

3

is a minimizer, but also
5
9=5L0.3) T 5Lz €

1
6
= Do 2(f) > 0. Nevertheless, [ ¢ Yoo i for all k. This also

is a minimizer, in particular Doo 3(f)
shows that Y 3 is not Chebyschev.

22



In Proposition 2.6, we have shown that under certain conditions on f, there exists a unique
minimizer. An important question then is if ¢, is Chebyschev, that is, if there is a unique
minimizer for all f. As we have seen in the previous example this is not true for p = oo, and we
complement this for all p.

Example. Consider again the Lebesgue measure in [0,1]. Then ¥, 9 is not Chebyshev for any
p € [1,00]. To see that, let f = =1 1) + 011 2y + L2 3. A possible minimizer in %2 has the
Jorm g = alf—1((—oo,ry))+0Lf—1([r,,00]), fOT suitable a,b,ro (see Theorem 2.5). Ifro < —1orry > 1,
a candidate to be a minimizer is g1 = 0. For —1 < ry < 0 the candidate is go = —11[07%) + %l[%ﬁl}‘

Finally, for 0 < re <1 the candidate is g3 = —%]1[07%) + 1[%,1]- The corresponding errors are

2 1
If =gilz =3 If = gell2 = IIf —gsll = 5,

showing that g» and g3 are two minimizers and then % o is not Chebyschev. Finally, for every
p € [1,00] both g2 and g3 are minimizers in ¥, 2, showing that this set is not Chebyschev for any
p. Moreover, for 1 < p < oo, it can be proved that g2, gs are the only minimizers. For p =1, there
s a continuum of minimizers since

9o = ~Lpo ) Talyy

is a minimizer for all a € [0,1]. For p = oo, there is also a continuum of minimizers since

1
ho = b3y + 5113,

is a minimizer for all b € [52, SL].

Remark. We have proved that 9, 1, is proziminal and closed for allk > 1 andp € [1,00]. However,
9,1 is not Chebyshev in general as we have shown in the previous examples. Then, it is natural
to ask if Py, , admits a continuous selection. If such continuous selection ewists, then 9,y has to
be almost-convex (see Lemma 5 in [14]). Remember that a subset K of a Banach space is said to
be almost-convez (see [14]) if for every closed ball B such that K N B = (), there exists a closed
ball B' of arbitrary large radius such that KN B =0 and B C B'. Ifp € (1,00), a subset K is
almost-convez if and only if K is convex (see Lemma 2 in [14]). So, the question is if 9, 1 can be
convex. For k> 2 and p < 00, 9, 1 is convez if and only if LP(Q, F, 1) is finite dimensional and
LP(Q,F, 1)) = Yy k. Indeed, assume k > 2 and that 9, i is convex. Then it is direct to show that
9.1 s a vector space, because it is homogeneous. Then 9, ¢ = 4, 1, for all £ > k. This is done by
induction, so the only interesting case is £ = k+ 1. Take g = Zf:ll a;1a,, which can be seen as
the sum of three elements g1, g2, 93 € 9p

k-1
g1 = Z Gi]lAi + OlAkuAHl, g2 = ak]lA;C + O]IU#;CAjv gs = ak+1]]‘Ak+1 + O]]‘Uj;ék+1Aj'
i=1
Therefore, 9, 1, = U¢%yp,1 is dense and closed in LP(Y, F, i), which implies 9,1 = LP(Q, F, ). The
conclusion is that the unit ball of LP(Y, F, p) is UA and then LP(Q,F, 1) is finite dimensional (see
Theorem 4.7 in Section 4.3).

3 The p-variation
In this part we introduce a new notion of variation for functions in LP(Q,F, ). There are sev-
eral notions of variation or oscillation for functions. Our notion notion could be contrasted with

the definition of oscillation given in [4] (p.296), which helps to characterize compact sets in L1.
However, both concepts are not comparable, in general.
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Definition 3.1. Let p € [1,00). For f € LP(Q,F, 1) and A a measurable set of finite measure, we
define var,(f, A), the p-variation of f in A, as

ity Jawa (@) = f)P du(z)duly) if p(A) >0
0 otherwise.

vary(f, AP = {

Given P = (A;);, a finite collection of disjoint measurable sets each one of finite measure, which
we also assume it contains at least one set of positive measure, we define the total p-variation of f
in P as

1/p

1/p
P — 1 ) — P du(x
vary(f,P) = (Zvan(vai) ) = i:u(;ibo (A /AixAi |f(x) = f(y)|P du(x)du(y)

For a measurable set A of finite measure, we define the k-th total p-variation of f as
Varp, 1 (f, A) = inf{varp(f, P) : P is a partition of 4, |P| < k}

where the infimum is taken over the set of finite measurable partitions of A consisting of at most
k measurable sets. Finally, we define the total p-th variation of f as

Vary, 1 (f) = sup Var,i(f, A)

AecT
n(A)<oo
Note that if p is finite then Var, x(f, Q) < Varp x(f), and it is not clear if both measures of total
variation are equivalent, something that we study below (see Proposition 3.3).

Remark. Notice that the sets in P that have measure 0 can be removed by gluing them to an
element of P with positive measure. We redefine a new collection P, which has fewer elements and
vary(f,P) =vary(f,P). So, in what follows, we can always assume that P is a collection with sets
of positive and finite measure.

We compile some basic properties of Var, ;(e,Q) and Var, ;(e) in the next result:

Proposition 3.1. Let (Q,F, 1) be a measure space and p € [1,00). Then (Varp k)k>1 s a decreas-
ing family of continuous semi-norms on LP(Q, F, u) such that Vary (o) < 2| e ||, for all k > 1.
The same properties hold for (Vary i(e,))k>1, in the case p is a finite measure.

Proof. The fact that Var,; is a semi-norm is easy and is left to the reader. The monotony of
(Varp i )k>1 follows directly from the definition. Let f € LP(Q,F,u) and A be a measurable
set of finite and positive measure. First note that var,(f, A) < 2| fLlall,. In fact, using that
(a+b)P < 2P~1(aP +bP) holds for all nonnegative numbers a, b and Fubini’s theorem, we have that

S T
vary(f, A)" = 75 /A @ = SO du(w)duy)
opr—1 » )
<2 [ @+ Pt (5.1)
— 27| L

It follows that if P is a finite measurable partition of A then Var,(f,P) < 2||f14]|, and therefore,
we deduce that Var, x(f) < 2||f|l,- In particular, Var, j is continuous. In case the measure is
finite we have

Vary i (f,92) < Varp(f) < 2[5
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Remark. Assume that p is a finite measure. We notice that for a fized function f € LP(Q,F, ),
we have limg_oo Var, x(f,Q) = 0. Indeed, let k € N and define the sets

. 1
AiZ{UC? %gf(:v)<%}, forie {—K*, ... k* =2},

Ay = {z: k—+ < f(x) <k} and Ay = {x : |f(z)] > k}. Then, we have, for all i €

vary (,45) < M2
and for i = k>
vary(f, Apz) < 2Hf]1A,cz -
Thus,

1
V1,007 < @) 42 [ 1@ dnte),

and then limy Vary, 1 (f, Q) = 0.
We also notice that the same property holds for (Varyr(f)),, in general measure spaces, but
its proof is more involved and we postponed to Corollary 3./.

The following lemma proves that the variation of a function can always be computed on a
o-finite set if the measure has no atoms of infinite mass.

Lemma 3.2. Assume (2,F, ) is a measurable space such that p has no atoms of infinite mass
and p € [1,00). Let f € LP(Q,F, ) and fix k > 1. Then there exists an increasing sequence of
finite measure sets (), C F such that

Var, k(f) = li7rln Varp kn(f) = Vary i «(f),

where

o Varp i« (f) is the total variation of f

o+ computed in (0, Fla«, plo-) with Q* =J,, Q;

o Vary xn(f) is the total variation of fla- computed in (2, Flax , plax)-

Proof. We can obviously suppose that u is infinite. Define F' = {z : f(z) = 0}. In case F has
finite measure, we define D = F'. If F has infinite measure, we consider a subset D C F which is
o-finite and of infinite measure. Note that such a set exists. Indeed, take

a= sup (D).
DeF,DCF,u(D)<oco

Let us prove that « = oco. Consider a sequence (D;); of subsets of F', each one of finite measure

such that lim; u(D;) = a. It is clear that 51 = U<y D; is an increasing sequence of sets of finite

measure, included in F which satisfies u(D;) < p(D;), proving that u(D;) 1 a and D = U D,

satisfies u(ﬁ) = a. If a is finite then, F'\ D has infinite measure. By hypothesis this set contains a

set H of finite and positive measure. Then u(DUH) = u(D)+ p(H) > a, which is a contradiction.
Now consider a sequence of sets of finite measure (A,,), such that

1
Varpﬁk(f, An) Z Varpyk(f) — E
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For every m > 1 the set C,,, = {a: S f(@)] > %} has finite measure. The set Q* = UnAnUUmC'mUE
is o-finite and it has infinite measure, because p(lJ,, Cm U F') = u(2) = co. We consider

O — {Ui<nAi ucC; UE if ILL(D) < 00

UignAi uc;u 51 if ILL(D) = 00

n Y

which is an increasing sequence of sets of finite and positive measure, such that 2} 1 Q*. Define
Vary, k. (f) the total variation of f|o- computed in (2}, Flox, ufox ), that is

Varp i n(f) = sup Varpyk(fm;,A) = sup Varpp(f,A) < Varpi(f).
AT, ACQz AeF,ACQr

Similarly, we define Varp  «(f), which is the total variation of f
It is clear that for every n, by construction,

o+ computed in (Q*, Flo-, plao-).

1
Var, 1 (f) — - < Var, i (f, Ayn) < Vary o (f) < Varp i« (f) < Vary, x(f),
and also that (Varp i »(f))n is increasing, showing that

Vary i,n(f) T Varp e (f)
and Var . (f) = Var, . (f). O

The next proposition shows that the variation and %, ;, have the same behaviour. This will be
a fundamental tool to caracterize the uniform approximability of sets.

Proposition 3.3. Assume (Q,F, ) is a measurable space and p € [1,00). For any k > 1 and any
ferLr(QF, ), we have

(i)
Dpi+1(f) < Varpx(f) < 2Py i (f)-

(i) If the measure p is finite, it holds
D1 (f) < Vary 1 (f,Q) < Vary 1 (f) < 29p1(f) < 2Vary 1 (f, Q).
(i) If 1 has no atoms of infinite mass, we have that
Dok (f) < Vary 1 (f) < 2Zp 1 (f)-
Proof. (i) For the upper bound, consider g € 4, N LP(Q, F, 1) a function such that
Dok (F)P = If —glip-
Assume that g = Zle cila,, where {A;}1<i<k is a finite partition of Q. Clearly if pu(A;) = oo,

then ¢; = 0. For A a set of finite measure define a partition of A by P = {ANA;}1<i<k. Using that
(a+b)P < 2P71(aP? + bP) for all positive numbers a and b, we get for all i such that u(AN A4;) >0

1
var ANAY = ———— T)— Pdu(x)d < 2P 2)—c;|Pdu(z).
W ANAY = s [ HE P <2 [ 15—t
Then,
varg( 1,27 <23 [ 110) = ePdutz) < 27 = gl
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Therefore, we get

Var, . (f, A) < 2|[f = gll, = 2%, 1(f).

For the lower bound let ¢ > 0 and take a set A of finite measure such that [|fLa<|[5 < e. By
definition of Var, x(f, A), there exists a finite partition P = {A4;}1<i<n of A, with n < k, such that
(we assume all the sets in P has positive measure)

wary(§.97 =3 ﬁ /A @)~ fw)Pdn(aiuty)

< (Varp,k(f, A))" + & < (Varp x(f))" +¢.

For every ¢ < n by the definition of M,(f, A;), we have

AW [ @) =360, AP dut) < 1a0) [ 1160~ £GP dute),

and therefore, integrating over y we get

1 p
NG A dnte) < s [ 1) - s dute),

and then

>/ e AP di(z) < vary(1,9)"
Finally, define g = Y, M, (h, A;)14, + 0L ac € 9, k41 N LP(2, F, 1) to obtain that

1f1a = g} < vary(f,P)P < (Varp,i(f)” +¢
To finish this part, notice that
1f = glly = 11fLa — glallp + | fLac — gLac|l}
= 1fLa =gl + | fLacllh < (Varyx(f))” + 2¢

which implies that 2, p1(f) < Var, 1 (f).

(#4) The proof is similar to (7). The upper bound follows immediately from the lower bound to
be proved. For the lower estimate, in the above proof we can take A = Q.

(i17) Let ())n, C F and Q* = J,, 2 given by Lemma 3.2, such that
Var, 1 (f) = 1irlanarp7k7n(f) = Varp . «(f).

We first assume that f is bounded by some constant C' > 0. Then, using the result we have
shown for the finite measure case, we have on €2

inf{|[flag —9gllp = 9 € Gr()} < Varp pn(f).

By Theorem 2.3, the left hand side is attained at some function g, defined in €2}, which is also
bounded by C'. We can assume this minimizer has the following form

q(n)

gn = szn]]-Blnv
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where {B; n}1<i<q(n) 18 @ partition of sets of positive measure of (2}, and
—C<bp<...< bq(n))n <C,

bi— n bzn .
i =—C—1, Tymytin=C+1, 1in= 1’#—’_’ for i € {2,...,q(n)},

Bi,n = f_l([ri,nvriJrl,n))mQ:; fori e {17 ey Q(n) - 1} and Bq(n),n = f_l([rq(n),na Tq(n)-i-l,n])mQ:u
bi,n = M;D(fv Bz,n) fOl" { € {17 sy Q(n)}

and g(n) < k. As before, we can assume by passing to a subsequence that g(n) = ¢ is constant and
the vector vy, = (71,1, 01,0y 72,05 s Tg.ns Dg,ns Tg+1,n) CONVErges to a vector in [—C —1, C+1]37, which
we denote by v = (r1,b1,72,...,7q, bg, Tq+1). Also we denote by L = (b1, ...,by) and w1 < ... < Wy,
the different values in L, where m < q.

Let us show that wy = 0 for some t*. For that, remark that 2 = UJ_, B, , and therefore,
there exists an index i(n), such that

1 *
,U(Bi(n),n) > _/L(Qn)a

(=

showing that lim,, ju(B;(,),n) = oo. We can assume that i(n) = 4 is constant, by passing to a
subsequence if necessary. Using the optimality of b; , = M, (f, Bin), we get

ialn(Bin) <270 ([ 1) = My(F. Bil? dia(e) + [, |F@)P du(a)) < 22,

This shows that b; ,, — b; = 0, and the claim holds by taking ¢* such that w;» =b; = 0.

Consider I = {j € {1,...¢} : b; = w;} for t € {1,...,m}. Notice that each I; is a nonempty
interval of I = {1,...,¢}. Assume that I; = {I(t),...,u(t)}, then we have 7;4) 41,0 — Wi, o, Tu(r),n —
Wi, by(t),n = Wi, +v5 by(),n — Wi and

i B by 1w buy+1 +wr .
IN7y(8),n = Ti(t) = - 9 <wy < - 5 = Tu(t)+1 = hglm(t)ﬂ,m

with the obvious modifications in the case I(¢t) = 1 or u(t) = ¢. By construction we have for all
T(t*)

i < I(t*) it holds riy1,n < 7+, < =5~ = r_, for all large n, because 7y < 0. Similarly, for all

i > u(t*) we have 7410 > Ty )41,0 > T““% =ry > 0, for all large n. This implies that, for

large n -

U Bi,n C fﬁl([_c - 1,7“_]),

i<l(t*)
which is a set of finite measure: u(f~*([-C —1,7_])) < co. Consider a modification of g,, given

by
£, = Z bl]]'Bln + Z bi7n]]‘Bi,n'
AE[L(E),u(t)] I(t*)<i<u(t*)

We have ||gn — £5]|p converges to zero. Indeed, this follows from the inequality

llgn = €nllf = 2 [bi = bin|"1(Bin)
IEUE) ()}
< max; [bj — bjnlPp (fH([=C = Lr_) U fH([r4,C + 1)) = 0.

Using the triangular inequality and the optimality of g,, we get

[fles = gnlly < 1floz = €l < [1flog = gnllo + llgn = Eallp,
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and we plan to use Fatou’s Lemma. Before doing that, we will fix a subsequence with certain
monotonic properties. Since 1, 7q+1,, are constant, there is no restriction here. For i € {2, ..., ¢}
we choose a subsequence in the following order. If (r2 ), has an strictly decreasing subsequence,
we consider this as n(?) and define T'(2) = sd (for strictly decreasing) otherwise, we consider n(?) so
that (2,5 )n is increasing along this subsequence and T'(2) = in (for increasing). Now, we construct
n®). If (rg e )ne has an strictly decreasing subsequence we take this as n(® and T'(3) = sd,
otherwise we take n(%) so that (73,03 )p» is increasing, and 7T'(3) = in. We continue in this way
until we define n(?). We put T(1) = in and T(g + 1) = sd. We call n’ = n(9). In this way we have
the a.e. convergence

]]-fil([r'i)ri#»l])ﬁﬂ* ifT@) = )

1.- o . if T TG+ 1) =i
]]'ffl([ﬁ T )N, N =1 ([rs,rig1))NQ 1 (1) in, (z + ) in
V ’ ! Li-r((roripanae 1T ) )
]]'ffl((Ti,Ti+1))ﬁQ* if T(
We call J; the interval, with extremes r;, 711, according to the above classification. An important
I‘emark iS thart Ulgz = [_O — 1, O + 1]

Using the Dominated Convergence Theorem we conclude that

N AR EE D SR SN GBI
i U)o u(t)} i {1t} 700
On the other hand, using Fatou’s Lemma we conclude
lim inf > fB — b [P dp(z) > fhmlnf |f(x) = gn(@)|P1B,, du(z)
e (), ()}
> [1f(@)Ply-ig)na- du(@).

where By = Uie i)
x € B, we have

w(t*)} Ji. Here, we have used that for all

..........

()] < max bin| — 0.
gn’ ()] e (t*)}l |

Hence,
|f(@)|L5, ., <|f(z) = gn(@)|LB, ,, + MaXic (=), .. uee)} [binr | LB,
|f(@) = gn (2)|1B, ,, <|f(2)LB,,, +maXicq),... ui)} [bin LB,
showing that
tim nf | (x) — g ()] L,
Putting all together, we conclude that

Varyx(f) = liminf || flo:, = gnllp = [1flo- = £,

= |f(z)[liminf 15, ,

i,n’

where the function ¢ € 4, ,(€2*) is defined on Q* as
0= > bilf-i(g)nes + 0L, 1 Gnq--
iE{U(E), o u(t)}

Notice that for i ¢ {I(t*),...,u(t*)}, we have u(f~1(d;)NQ*) < p (f7H([-C — 1,r_JU f~Y([r4,C +1])) <
oo and so u(f~H(J) NQ*) = oo

Since b; = 0 for some i and f = 0 outside 2%, we can extend ¢ by 0 outside Q* and still this
extension ¢ belongs to ¥, ¢ C %, k. So, we get that

Dpi(f) < IS _EHp < Vary, . (f).
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and the result is shown in the case f is bounded.
Now, for the general case, consider € > 0 and a large C' > 0, such that || f17>cl, < e. From
the domination Var,, x(e) < 2|/ f||p, and the seminorm property of Var, ; we conclude

Var, 1(f1j5<c) < Vary i (f) + Vary 1 (f — f1j5<c) < Vary(f) + 2¢.

Using what we have shown, we get there exists and ¢ € ¥, ;. such that

111 51<c — €llp < Vary k(f115<c) < Vary x(f) + 2¢.

On the other hand, we have

If =Llp <1 p1<o = Lo + 1/ Lg1<o = fllo < 1Fg1<o = Ly + &

which shows that
Dp.i(f) < Vary i (f) + 3e,

and the result is shown. O

Remark. Ezamples that satisfies (iit) in the previous Proposition are the o-finite measures. In
particular, it can be applied to ¢? = LP(N,P(N),§), where & is the counting measure. But, there
are mon o-finite measures that satisfies that hypothesis as well, the counting measures on any
uncountable space.

Corollary 3.4. Assume (Q,F, ) is a measurable space and p € [1,00). For all f € LP(Q,F, u) it
holds that klirn Vary k(f) = 0.
— 00

Proof. This follows directly from the previous proposition since limy 2, k(f) = 0 by density of the
simple functions. O

A question of some interest is when Vary ,(f) = 0, for a function f € L?(Q,F, ). Clearly, if
f € %, then Var, ,,(f) = 0. The next result answers the converse.

Proposition 3.5. Let (2, F, 1) be a measure space and p € [1,00). Let k > 1. We have
(1) if w is a general measure, then 9, C Var;k({O}) C Ypiot1-
(i) if p has no atoms of infinite mass, then Var;i({O}) =9 k.

Proof. (i). Let f € LP(Q, F, u) satistying Var, (f) = 0. From (¢) of Proposition 3.3, we have

Dpr+1(f) < Vary 1 (f) =0,

which implies that f = g a.e. for some g € ¥4, ;41 (see Theorems 2.3 and 2.7). The other inclusion
is obvious.
(#4) The proof is similar to (i) and uses (4i7) in Proposition 3.3. O

Remark. Notice that if i has an atom of infinite mass it may happens that Vary, (f) = 0, but
f €9 ki1 \ Yi. Indeed, assume Q = {1, ...,k + 1}, where the mass of each atom in {1,....k} is
one and the mass at atom {k+ 1} is infinite. Every function in LP(Q,F, u) for p € [1,00) satisfies
f(k+1) =0. The function [ given by f(i) =i for i € {1,....,k} and f(k+ 1) = 0 belongs to
Yo i+1 \ Yo k. Nevertheless, Vary i (f) = 0, which is exactly the case (i) in Proposition 3.5. Also,
this example explains why the lower bound in Proposition 3.3 (i) is computed over 9, 11 and not
over 9, 1., in general.
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4 Uniform approximability

In this section, we investigate some properties of uniformly approximable sets (see Definition 1.1).

4.1 Uniform integrability

In this subsection, we prove that the class of uniform approximable sets is strictly larger than
the class of uniform integrable sets. Assume that (2, F, ) is a measure space and let p € [1,00).
Remember that a subset & C LP(Q, F, ) is uniformly integrable (in short, UT) if

it sup / @ dut) =0,

9ELL (T 1) fea

where LY (Q,F, ) is the set of nonnegative functions in LP(Q2,F, ). Note that if p is a finite
measure, then this definition coincides with the usual one, that is o/ is Ul in LP(Q,F, u) if and
only if (see [7], page 254)

lim sup / |fP(x)] du(x) = 0.

a—r 00 fE'Q{
|f(z)|za

Proposition 4.1. Let (Q,F, 1) be a measure space and p € [1,4+00). Assume of C LP(Q,F, ) is
UL Then, o is UA.

Proof. Consider € > 0, and take g € L% (Q, F, u1), such that

s [ 1@ dute) <

fed

Fix f € «. Consider n € N, large enough such that fg>n gP(x) du(x) + f <1 gP(x) dp(x) < %
The set B, = {z: L <g(z)<n}n{z:|f(z) < g(x)} € Cn = {z: L <g(x)<n} has finite
measure. Notice that over B we have |f| < n. Take now k > 2 such that (2)” u(C,) < % and

define _ -

forie {—k,...k—2}, Ap_1 = B, N {x : n(kkfl) < flx) < n} and
o
h = Z Z]lAi + O]lng € Yy okt1-

i=—k

Then, we have

s, (@) = h(@)|P dp(x z Ja, 1 (@) = h@)P du(e) < ()" 3 p(A)
< (@) (B < (%)pmcn) <5
On the other hand, BS = (CS N {x: |f(z)| < g(x)}) U{z: |f(x)| > g(z)} and so
IB% |f(z) = h(=@)|P du(z ch |f ()P dp(x fccm\f|<g |f(@)P du(z) + f|f\>g |f(@)P dp(z)
< Joo 97(@) dp(@) + [j45, 1F (@) du(z) < %57

Finally, we have ||f — k||, < e, and the result is shown. O
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Remark. Note that the converse of Proposition 4.1 is not true in general. In fact 4,2 is UA,
but this set is not Ul in LP(Q,F, 1) in general. Indeed, assume the space has finite measure and
there exists a sequence (By)n of measurable sets with positive measure such that u(By,) — 0. Then
fo = u(Bn)"YP1p, belongs to 9, each one has norm 1 and the subfamily (f,)n is not U, since
for all a > 0, we have

sup / fPdu=1.
" fn>a
The conclusion is that UA is weaker than UL

Remark. If (2, F, u) is a finite measure space, the following examples are Ul in LP(Q,F, 1), for
p € [1,00),

- o is bounded in LY(2, F, u) for some q > p;
- o is bounded by a fized function g € LP(Q, F, u).

The following result can be prove using the fact that totally boundedness implies Ul in LP(Q, F, 1)
for p € [1,00). However, since the case p = co needs a proof, we give a more direct argument:

Proposition 4.2. Let (Q,F, 1) be a measure space and p € [1,+00]. If o is totally bounded in
LP(Q, F, u) then o is UA.

Proof. Let ¢ > 0. There exist finitely many functions fi, ..., f, such that & C U?:l B(fj,e). By
density of the simple functions, there exist k¥ € N and g; € 9, such that || f; — g/, < € for all
j€{l,..,n}. Nowif f € o then, there exists jo = jo(f) € {1,...,n} such that || f — fj |, <e. It
follows that

”f - gjo”P < ”f - fjo”P + Hfjo - gjo”P <2

and the proof is complete. o

4.2 Characterization of the uniform approximability

If M is a metric space, we recall that the covering numbers of M are defined for every € > 0 by
N(M,e) =inf {N >1 : M can be covered by N closed balls of radius ¢} .

For more informations about covering numbers and its applications to Machine Learning, we refer
the reader to [15] and [2].
If (Q,F, 1) is a measure space, we define the covering numbers of a measurable function f by

N(f,e) = inf{N(g(Q),e) : g measurable function such that f = g a.e.}.

This notion allows us to caracterize the uniform approximability in L>°(Q, F, 1) in terms of uni-
formly bounded covering numbers. Before doing that, we notice that if f € L (Q,F, u), then
N(f,e) < oo. Indeed, we know that |f| < || f||oc holds a.e., so by considering g = f1yj7<|i..}» We
have g = f a.e. and

N(f,e) < 2 f oo + 1

If f is a measurable function and N(f,e) < oo then f € L*(Q,F, ). On the other hand, by
definition of infimum, there exists a measurable function g such that f = g a.e., and

N(J.2) < N(g(®).2) < N(f2) + 3,

showing that N(f,e) = N(g(Q),¢).
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Theorem 4.3. Let (2, F, p) be a measure space and let o7 C L=(Q, F, u). The following assertions
are equivalent:

(i) o is UA;
(i4) sup e N(f,€) < 00 for all € > 0.
In this case, we have that Neo o (/) = sup;c ., N(f,¢) for all e > 0.

Proof. Let ¢ > 0 and suppose sup;c, N(f,e) = oo. Fix k > 1 and choose f € &/ such that
N(f,e) > 10(k + 1). Changing the representant of f is necessary, we can suppose that m. :=
N(f,e) = N(f(Q),e). So there exists a collection J of closed balls {I; = [a;, b;]}1<i<m., of radius
g, such that

i=1

Using the minimality of this covering each interval cannot be covered by the other intervals, so for
i # j we have I; \ I; # (. Consider the measurable sets A; = f~1(I;). We shall prove that the
minimality of J implies that (A;) > 0. Indeed, assume that for some ¢ we have u(A;) = 0. Take
any j # ¢ (notice that we have assumed that m. is at least 10(k+ 1) > 2) and @ € I; \ I;. The
measurable function

h=f1 As + alg,
coincides with f up to measure 0 and h(Q2) C |J I, so N(h(©2), e) < m.—1, which is a contradiction.

r#i
We say that a subcollection C C J is e-separated if for two different intervals I, J € €, we have

the distance between them d(1,J) is greater than . Notice that a collection with only one interval
from J is e-separated. Take C* a maximal e-separated subcollection with respect to inclusion. Now,
if I € J\ C* there exists an interval L = [a, b] € C* such that d(I, L) < ¢, otherwise the maximality
of C* is contradicted. Then,

ICla—4e,a—2e]Ufa—2e,a]U[a,b] U [b,b+ 2] U [b+ 2¢,b+ 4e],
showing that the collection
D = {la; — 4¢e,a; — 2¢], [a; — 2¢, a;], [as, bs], [bi, b; + 2¢], [b; + 2, b; + 4] : [a;,b;] € C*},
is a covering of f(§) with closed balls of radius . Therefore
me < |D[ < 5[C7,
showing that n = [€*| > Lm. (here |€*] is the cardinal of €*).

Consider now g € Y ;. We say that an interval I € C* is unmarked if d(g(2),I) > . There
are at least n — 2k > %ma -2k = 2(1—10m8 — k) > 1 unmarked intervals in C*. Consider I; € C* any
unmarked interval, then for all z € A; = f~1(I;), we have

[f(z) = g(z)] > e.

Since ju(A;) > 0, we conclude that || f — gl|oc > € and therefore N, (<) > ¢ — 1, showing that
Neo,e (&) = 00. So we have proved that (i) implies (7).

Now, let us show that (i4) implies (i). So, we are assuming that M. = sup ¢, N(f,¢) < oo for
alle > 0. Fix e > 0 and let f € &/. Suppose that m. := N(f,¢) = N(f(R2),¢) < M.. Again we

can write

i=1
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where I; = [a;,b;] are closed balls of radius e. We assume th%t the left extremes are ordered
increasingly: a1 < az < ... < @y, We define recursively a; = a1,b; = by and for ¢ > 2

di = max{bi_l, ai}, l;i = bi.

Define I; = [di,l;i] for i € {1,...,mc.}. The fact that every interval I; cannot be covered by the
intervals {I;},-; allows us to show the following facts about the new intervals {I;}1<i<m.

t

~ i—1 i i
Vi Ii:Ii\ U [aj,bj), Vi U IjZ -U1 s
J= J=

1 j=1

int(Z;) = (@, bi) # 0,

0 ifj—i>2
Vi<j: LnI;C .
{b;} ifj=i+1
Thus, {I;}1<i<m, is a collection of closed balls of radii at most ¢, that covers f(Q), which are
disjoint except for consecutive intervals that can intersects at one extreme.

With this new intervals we can produce a partition of f(£2), by choosing :fl =T, and for i > 2
(a5, bi) i LNL_y #0
I~i otherwise

We now define A; = f_l(j;), which is a partition of Q (maybe some of them are empty). If z € A,
then f(z) € I; C I; = [a;, b;] and therefore |f(z) — 2E%| < . Define the simple function

me

a; +b;
g(z) =Y 5 L,

i=1

that belongs to ¥ ,,,. and satisfies for all z €

[f(z) —g(x)] <,
showing that || f — g[loc < e. We conclude that Noo (&) < supye o, N(f,¢€).

To finish, we prove that No o(#7) = sup;c ., N(f,€). For that purpose consider k = N (<),
which means that for all f € o7, there exists g € %oo i, such that ||f — glcc < e. We assume that
g= Zle cilp,, where (B;)¥_, is a partition of Q. For any i € {1,...,k} we have

I(f = e)lB;lloo < I = glloo <,

which means that A; = {z € B; : |f(x)—¢;| > £} is a measurable set of measure 0. Since p(£2) > 0,
not all the sets B; can have measure 0, so we assume without loss of generality that p(B1) > 0.
k
Consider B =Q\ U 4, h = flp+c1lpe and g = c11p,uBe + Ef:2 cilp,\a,- We notice that
i=1
f =hae and g = g a.e. On the other hand, By U B¢, By \ Aa, ..., Br \ Ay is a partition and
9 € Yoo k. Also, it is clear that By \ Ay, ..., By \ Ak, B¢ is a partition and

Z;: glp+cilpe.
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With these modifications, we have for all x € Q
Ih(z) —g(z)| <e.

This is clear for x € B. For x € B¢, we have h(z) = ¢1 = g(z) and the claim is shown. Finally, the
collection of closed ball of radius e given by: {[¢; — €, ¢; + €]}1<i<k is an e-cover of h(€2), showing
that N(f,e) < k. The conclusion is that

sup N(f,e) <k = Neo (),
feod

and the result is shown. O

Corollary 4.4. Let (Q,F, 1) be a finite measure space and </ be a set of measurable functions.
Assume that & is UA in LI(Q,F, u) for some q € [1,00|, then &7 is UA in LP(Q,F,u) for all
p € [1,q] and for all € > 0 it holds

pri(ﬂ) < Nq,s,u(ﬂ)*T (JZ{)’

where r =

=

1
E.

In particular if sup s . N(f, €) < oo for alle > 0, then <7 is UA in LP(Q0, F, ) for all p € [1, oq]
and for all ¢ > 0 it holds Ny (/) < sup e, N(f, au(Q)%)

Proof. This is a direct consequence of Holder’s inequality. In fact, assume that p < ¢ and consider
9 € %Yk, [ € 9 then, we have

1f = gllp < 1F = glla(n(2))"

where r = % - %. From this it follows that & is UA in LP(Q, F, 1) and
pri(ﬂ) < Nq,s,u(ﬂ)*r(ﬂ)'
The second assertion follows from Theorem 4.3 O

The previous result gives a large class of UA sets when the measure is finite. For example
suppose that 2 is a bounded metric space, F is the Borel o-algebra and p is a finite measure on
F. Then the set of 1-Lipschitz functions is UA in LP(Q2, F, u) for any p € [1, 4+00].

The following result is a characterization of UA in L? for p € [1,00), where we shall prove that
a class is UA if and only Var, (f) converges toward 0, when k — oo, uniformly in the class.

Theorem 4.5. Let (0, F, 1) be a measure space, p € [1,00) and let o C LP(Q,F,u). Then, the
following are equivalent

(i) o is UA in LP(Q,F, u);
(i) limg_y00 Sup e Varpk(f) = 0.
In this case if we define re(«/) = min{k € N : sup;c,, Var, 1 (f) < e}, we have that for all € >0

To: () < Np () < re() + 1.
Moreover, if the measure p is finite both properties (i), (i) are equivalent to

(i41) limg o0 SUP pe o Varp k(f, Q) = 0.
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In this case if we define m.(«/) = min{k € N : sup;c,, Varyx(f,2) < e}, we have that for all
e>0
Moe () < 12e () < Np (o) < me() < re()

Proof. Suppose that o7 is UA and fix € > 0. Then we have that Z, ,(f) < ¢ for all f € &/, where
k = N, (/). By Proposition 3.3, we deduce that Var, ,(f) < 2¢ for all f € &. It follows that
r2:(2/) < Np (&), implying that (i¢) holds. Now suppose that (i7) holds. Using Proposition 3.3
again, it is easy to see that Np (&) < r.(«7) + 1, from what we deduce that () is true. In the
case that p is finite, the equivalence between (i) and (ii4) and the last assertion of the theorem
follow directly from Proposition 3.3. O

4.3 The unit ball of LP

Now we investigate when the unit ball of LP(Q, F, 1), denoted by Brs(q,5,,) = {f € LP : ||fll, < 1},
is UA. The case p = oo is simple:

Proposition 4.6. Let (2,5, 1) be a measure space. Then Bre(q ) is UA. More precisely we
have that Noo c(Br=(.5..)) < [2] + 1 (where [.] is the integer part) for all € > 0.

Proof. Tt is a direct consequence of theorem 4.3. O
The main objective of this section is to prove the following result:

Theorem 4.7. Let (Q,F, ) be a measure space and p € [1,+00). The following assertions are
equivalent:

(i) Bre(a,5,u) is UA;

(i) LP(Q,F, u) is finite dimensional;

(iii) p is atomic and has only a finite number of atoms with finite measure, up to measure 0.
More precisely, if the previous assertions are false then Ny o(Brvq,5,.)) = 0o for all € € (0,1).

This theorem will be proved thanks to several intermediary results. We start with the following
result:

Proposition 4.8. Let (Q,F, 1) be a measure space and p € [1,+00). Suppose that there exists
a sequence of disjoint measurable sets (An)n of positive measure such that p(A,) — 0. Then
Bre,7,) is not UA. More precisely, we have that Ny, -(Bry(q,7,u)) = o0 for all e € (0,1).

Proof. We are going to prove that for all k¥ > 1

If =Rl

sup inf =1. (4.1)

rerr(@,F.m), 520" €% |1 flp

Note that this equality implies easily that Ny, -(Brr(q,7,4)) = oo for all € € (0,1). Consider r > 2
and consider a subsequence (ny)x such that u(A,,) € (r~"*~1 r=m*]. We further assume that
Ng+1 — Nk > 2. With this sequence we consider
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for all N > 1 and note that ||[fx|) = N. Let h € 4, and N > 2 + 2k. We say that an index
eS|

1 < j < N is unmarked if Im(h) N (Tnj;1 , TP ) = (). Note that there are at least N — 2 — 2k

unmarked indexes. For such unmarked index j, we have for x € Ay,

fj\/(a:):u(Anj)T1 >r® >r 7 >r p > h(z), or

fn(@) =p(An)7 <r v <r » <h).

In the first case we have

In the second case we get

nj41 nj+2

ha) = fn(z) Zr=r = fy(z) 2 e

Notice that

So, we have | fy(z) — h(z)| > 0fn(x) on A,,. Then, we conclude that

Iv—nlz> Y / n@)-h@Pde > 3 / (@) de > 67(N —2-2k).

j:unmarked j:unmarked

Hence, we have
| fn = hlb N —-2-2K

> g ,
I~ lp N
and we get
T S
sup inf ——m > P =(1—r7)P.
rerr@F ), 520 €% x| b
Now, it is enough to make r 1 oo. O

An inmediate corollary is obtained for diffuse measures.

Corollary 4.9. Assume that p is a non trivial diffuse measure, then for all p € [1,00) the unit
ball Bre(q,5,u) s not UA and Ny -(Bry(,7,.)) = o0, for all € € (0,1).

Proof. This follows directly from Sierpinski’s theorem (see [12]). In fact, consider a measurable
set Bp such that 0 < pu(Bp) = a < oo (if such set does not exists then 2 is an atom of u). Then,

there exists By C Bg such that u(B1) = §. Applying the same idea to By \ Bi, there exists

By C (Bo \ By) such that u(Bs3) = @ = ¢. Inductively, we construct a sequence of disjoint
subsets (Bj) such that
k
Bk-l—l C BO \ U Bi,
i=1

and i
1% (Bo \ U Bi)
i=1 a
(Biy1) = B = gkt1
for all k € N. The result follows from the previous Proposition. O
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Proposition 4.10. Assume that (Q,F, 1) is an atomic measure space and p € [1,00). Then the
following are equivalent:

(i) u has a finite number of atoms of finite measure, up to measure 0;
(i) The space LP(Q2,F, 1) is finite dimensional;
(iii) The unit ball Bryq 5., is UA.
Moreover, if the previous assertions are false then Ny (Brs(o,,u)) = oo for all e € (0,1).

Proof. Assume (i) holds. Denote by {Ax}i<k<n a finite collection of atoms of finite measure,
such that all other atom C' of finite measure coincides with some of them up to measure 0. Take
B = Q\Up_Ag. If u(B) > 0 there there exists an atom C' C B. This atom C satisfies that
w(C\ Ag) = u(C) > 0 and it cannot coincide with Ay up to measure 0. Then C has infinite
measure. Then either y(B) = 0 or u(B) = co and contains no measurable subset of positive finite
measure. Then, LP(Q, F, i) is generated by the finite collection {14, }1<k<n, so (#4) holds. Clearly

So, for the rest of the proof we assume that there exists a countable collection of disjoint atoms
(Ap)n each one of finite positive measure. Here there are two different situations. The first one
is the existence of an infinite subsequence of atoms (A4,, )i such that p(A,,) — 0. Then, we can
apply Theorem 4.8, to conclude that the unit ball Br»q ) is not UA.

The second possibility is the existence of a constant a > 0 such that u(A,) > a, for all n. We
now procede to prove that Brr(q g, is not UA. We do it for p = 1, the other cases are treated
similary.

In what follows we fix £ > 2 and R > 1, and we consider the partial sums

Si= > (4 =a2

2i—1 §j<2i

for ¢ > 1, and we construct a strictly increasing sequence of integers (¢q)q such that the interval
[R'e, R'a*!) contains at least one of these partial sums. We call S;, any such partial sums, for
example the smallest one, that is, for ¢ such that [Rf«, Rt™1) N {S,;};>1 # 0, we take

iy =min{r € N: Rl < 5, < Rlat11,
We also define »
2ta_1
B,= |J 4,
j=2ta—1
the union of the atoms that has mass S;,. We consider the function

M+2

f = Z R_tq ]].Bq7
q=3

where M is a large integer. For the moment we choose M > 2kR. Take h € ¢, ;, and as before we
say that 3 < ¢ < M + 2 is an unmarked index if

tin(h) 0 (R, R4 =0,
There are at least M — 2k unmarked indexes. For an unmarked index ¢ and € B, we either have
f(x) = h@) > R = R™1 > f(z) (1 - %) = f(@) B, or

h(z) = f(&) > R+ — R~% > f(2)(R - 1).
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In any case, we have for x € B,

R-1
[F@) = h@)| > fla) ==,
and then
If—hlp >E2 > Ru(By) = I (Z Rtap(By) = ) Rtw(Bq)>
¢: unmarked q ¢:marked
> 2L (|fll - 2kR) = |1£12 %52 (1 - Bft)
=R ! I"R [FALE

Now, we estimate the norm of f. Clearly, we have || f|li = >, R™*u(By), which gives the lower
estimate

M < ||l (42)
and then the lower bound R_1 kR
—hl; > iy 4.3
17 = nlh > 11 (1= 20) (43)
So, we conclude that for f = f/||f||
- R—-1 2kR
inf — : 4 22— |1-—
we {17 ~ ol g€ ) = Tt (1-5F).,
and therefore R—1 2kR
sup inf{||f—gl1: 9€%r}> R (1 M )
FE€EBL1(q, 7,1

Taking M 1 oo, we conclude that

. R—-1
_sup inf{|[f —glli: g € Gn} 2 ——.
J‘GBL1(QJ’M)

Now we take R 1 oo, to get finally that

sup  inf{[[f—gli: g€ G} 21
F€BL1(a, 5,1

independently of k > 2. For k = 1, we point out that 4 ; = {0} and so

~osup inf{|[f—gli:g€%} =1
J‘GBL1(QJ’M)

Hence, N1 .(Bri(q,5,,)) = 00, for all e < 1. O

In order to prove Theorem 4.7, we shall use a result in [9], where the notion of atomic and
nonatomic are different from the (standard) notions we are using. In this discussion we add an *
to distinguish the notions we are using and the corresponding in [9]. According to [9] a measurable
set A is an x-atom if u(A) > 0 and for all E € F either u(ANE) =0or p(A\ E) = 0. It is direct
to show that if A is an x-atom for u, then it is an atom for u. Indeed, assume that B C A satisfies
w(B) < p(A), then p(A\ B) = u(A) — p(B) > 0 and we conclude that 0 = u(AN B) = u(B),
proving that A is an atom for u. The converse is not always true (see the example below). It is
true if A has finite measure. In fact, suppose that A is an atom of finite measure and let E be a
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measurable set. If u(ANE) > 0 then u(A) = u(AN E), showing that y(A\ E) = 0 since EN A
has finite measure, and therefore A is an x-atom.

A measure is x-atomic if every measurable set A of positive measure contains an x-atom. A
measure that has no *-atoms is said *-nonatomic. Here is an example of a *-nonatomic measure
which is atomic in the standard sense. Consider (R, P(R)) as a measurable space and

oo if A is uncountable
WA) = {

0  otherwise

If u(A) > 0, then A is uncountable and can be splitted into two uncountable disjoint sets B and
C. Then (AN B) = oo and u(A\ B) = co. So, there are no #-atoms and then according to the
above definition p is *-nonatomic.

The other concept we need is the notion of x-singular. Two measures v and \ are said *-singular
if for all measurable sets F, there exist two measurable sets F' and G contained in F such that

v(F)=v(E), \(F)=0, and A\(G) = A(E), v(G) =0.

The main theorem we need is the following.

Theorem 2.1 in [9]. Assume (Q,F, u) is a measure space. Then p can be decomposed as p = v+ A,
where v is x-atomic and A is x-nonatomic. We can assume that v, \ are x-singular, in which case
the decomposition is unique.

We are now ready to prove the main result of this subsection:

Proof of Theorem 4.7. 1t is clear that (iii) = (i) = (i). Now suppose that (i) holds, that
is, Brr(q,,u) is UA. By Theorem 2.1 in [9], there is a unique decomposition u = v + A where v is
x-atomic measure, A\ is *-nonatomic and v and A are %-singular. Consider

C={[A] : Ais an x-atom for v of finite v-measure }

where [4] is the equivalence class of measurable sets B such that v(AAB) = 0. Notice that [A] € €
if and only if A is an atom of finite v-measure. Therefore, if [4] # [B] € € then v(ANB) = 0, that
is, A and B are disjoint up to v-measure 0.

If C is infinite, we take a countable collection (E,,), of atoms for v, which are disjoint up to
v-measure zero, and each one has finite and positive v-measure. For every n there exists F,, C E,,
such that v(F,) = v(E,) and A\(F,,) = 0. Clearly, (F},)n is a countable class of disjoint atoms for
v, which have positive and finite measure. The measurable set A = U2, F,, satisfies A(4) = 0.
This shows that p|a = v|a, so LP(A, F|a, pla) and LP(A,F|a,v|a) can be identified.

On the other hand, the measure v| 4 is atomic. Indeed, assume that D C A has positive measure.
Then for some n it holds v(D N F,) > 0 and then D N F,, contains an x-atom H of v, which has
finite measure, and therefore it is an atom for v. We can apply Proposition 4.10 to conclude that
Brr(a,#)4,0|4) 18 not UA, and a fortiori Brr(q,7,,) is not UA, which is a contradiction.

The conclusion is that v has a finite number of atoms (4, )nes of finite measure, up to measure
0, where J is a finite (eventually empty) set. Therefore, if B = Q\ U, A4, then any measurable
C C B has 0 or infinite v-measure.

On the other hand, there exists G C B such that v(G) = 0 and A\(G) = A(B). If there exists
H C B a measurable set such that 0 < AM(H) < oo, then we arrive to a contradiction. Indeed,
consider K C H such that v(K) = 0 and A\(K) = A(H). Since A(H) is finite, this means that
AMH\K) = 0. Now, A g is a diffuse measure, because if there exists L C K an atom for A, then this
atom has finite measure and therefore it is an *-atom for A, which is not possible. The contradiction
is obtained because Bro (x|, ulx) a0d BLr(k,7|x.A|x) can be identified and the latter is not UA,
according to Corollary 4.9.

plK
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The conclusion is that A(H) is 0 or infinite for every H C B. Since A(B€) = 0, we conclude
that A(H) is either O or infinite for every measurable set H. Also, u(H) is 0 or infinite, for any
H C B and p=v on A = B¢. Therefore, p is an atomic measure and it has a finite collection of
disjoint atoms with finite measure, up to measure zero.

The last part of the Theorem follows from either Corollary 4.9 or Proposition 4.10. o

4.4 Stability of the class of UA sets

In this subsection, we study the image of a UA set under classical operations. We start with the
following easy proposition:

Proposition 4.11. Let (Q,F, 1) be a measure space and p € [1,+00]. Let o/, B C LP(Q,TF, u)
and € > 0. Then:

(1) if o C PB then N, () < N, .(B);
(it) Np,e(o) = Np,a(y);
(ii3) Npre(A) = Np (&) for all X € R;
() Npe( + PB) <ming s>0,t+s<e Np,t(F )Ny s(B);
In particular if o/ and B are UA then o/, N/ and o/ + PB are UA.
Proof. The proof is left to the reader. O
In the next result, we prove that the closed convex hull of a bounded UA set is still UA.

Theorem 4.12. Let (Q,F, 1) be a measure space and p € (1,+00). If o C LP(Q,F, ) is a UA
set, then o = {f € co() | Vg €  ||f —gllp < K} is also UA for all K > 0. More precisely,
we have that

. s(n)
Npe(ic) < min (N, 1-)e(</) !

min{p,2}

for all e >0, where 5(n) = {(i;_f} =BT 41 and C s a constant depending on (0, F, ) and p.

In particular, if &/ is bounded then To(A) is UA.
Proof. Fix K > 0. For n € N, define

con () = {Zaifi | a; >0, Zai =1, fi E%}.
i=1 i=1

Remember that LP(2, F, 1) has non-trivial Rademacher type r = min{p, 2} (see Theorem 6.2.14
in [1]). By Theorem 2.5 of [6], one has that

C

nl-

=

d(con(#), f) <

3=

for all f € ok and n € N where C is a constant depending on (Q,F, 1) and p. Therefore, if we

r

takee > 0,1 € (0,1) and ng = [Cn—f} it 1, we will have that d(con,, (&), f) < ne, for all f € k.

Thus, if fy € @ there exists go = Y 10, aifi € cop, () such that || fo — goll, < ne. On the
other hand, since &/ is UA, there exists h; € 4, x where k = N, (1_p)-(#7) such that

1fi = hillp < (L =mn)e
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for all i € {1,...,m0}. One can deduce that

no no no no
Hf_zaihi < Ifo = gollp + Zaifi_zaihi §77€+Zai(1—77)€=€
i=1 p i=1 i=1 p i=1
with >, a;h; € 9, kno. We conclude that N, (k) < k™. O

Remark. Note that if o7 is an unbounded UA set then co(</) may not be UA. In fact, 9,2 is UA
but ©0(9p2) = LP(Q, F, ) (since co(Y,,2) is the set of simple functions) is not UA in general for
any p € [1,00]. Remark that the previous theorem is not interesting if p = oo since any bounded
set is UA by Proposition /J.0.

Remark. The previous theorem is false if p = 1. In fact remember that By, = ¢o(Ext(By,))
and Ext(By,) = {+0n}nen, where Ext(By,) is the set of extreme points of Be,. It follows that
Ext(By,) is UA but we have seen that By, is not UA (see Theorem 4.7). More generally, using
the previous result, it is easy to show that there exists a UA set o/ C £y, such that By, = co(/) if
and only if p € {1,00}.

In the next result we study stability properties of UA classes under Holder transformations.
Recall that a real function ¥ is uniformly a-Hélder if there exists a constant K, such that

¥ (x) = W(y)| < K|z —y|™

With this definition, the identity function is not uniformly a-Holder for o < 1. To enlarge the
class of uniformly a-Holder functions we consider the following classes of Holder functions, denoted
H(K, «) for 0 < o < 1, which consists of real functions ¥ such that for all z,y, it holds

@ (2) — W(y)| < K(|z| + |yl + 1)' o —y|*.

We can assume without loss of generality that K > 1. We notice that H(K,1) is the set of K-
Lipschitz functions. If 0 < 8 < «, then H(K,«) C H(K, ). Also H(K,«) contains the class of
uniformly Hélder functions.

Proposition 4.13. Assume that (2, F, u) is a finite measure space and </ is UA in L1(Q,F, ),
for some q € [1,00]. Consider o € (0,1], and we assume further that &7 is bounded in L1(Q, F, 1)
when o < 1. Then, the H(K, «)-transform of </ given by

H(K,a)(«) ={¥(f): f e,V eH(K, a)}
is UA in LP(Q,F, p) for any 1 < p < q. Moreover, for e € (0,1]

N, (H(K,a)(/)) <N

aeyryx ()

where .
2B+1+u(@)5)  fa<l
ifa=1

I =T(a,p,q) = Kp(Q)™"

=

with B a bound for o/ in L(Q,F,u) and r =

1
R

Sl

Proof. The case a = 1 is straightforward so, we assume o < 1. We assume first that p = gq.
Consider € € (0,1], k = Ny (&), f € &, g € 9,1, such that ||f — g|l; < e and ¥ € H(K,a). We
have

[10t@) ~ wg)lrdute) < K1 [(5@)] + lote)] + 110 7(2) - g(a)* du(o).
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Now, we apply Holder’s inequality for s = é and its conjugated index t = ﬁ to get

[1even-staenia <o ([0 + o ) ( [15 - o)

which implies
() = U (g)llg < K (I + lglla + 111" 117 = gllg-
If B is a bound for <, we conclude that ||g|l; < B + 1, which shows

[9(5) = (@)l < K (2B+1+u@?) e < ren
Since ¥(g) € 9k, we deduce that
Nyree (H(K, a)(#/)) < Noo (<),
and the result is shown in this case. The case p < ¢ follows from Corollary 4.4. O

We point out that under the hypothesis of the Theorem, we have &/ C H(K, a)(«).
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