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Abstract

For any p ∈ [1,∞], we prove that the set of simple functions taking at most k different
values is proximinal in Lp for all k ≥ 1. We introduce the class of uniformly approximable
subsets of Lp, which is larger than the class of uniformly integrable sets. This new class is
characterized in terms of the p-variation if p ∈ [1,∞) and in terms of covering numbers if
p = ∞. We study properties of uniformly approximable sets. In particular, we prove that the
convex hull of a uniformly approximable bounded set is also uniformly approximable and that
this class is stable under Hölder transformations. We also prove that, for p ∈ [1,∞), the unit
ball of Lp is uniformly approximable if and only if Lp is finite-dimensional, while for p = ∞

the unit ball is always uniformly approximable.
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1 Introduction

In this paper we study the approximation of measurable functions by simple functions taking at
most k values, for k ∈ N. This problem has important consequences in multiple applications,
where for example, one seeks for reduction of dimensionality, among many others. For example,
the embedding of metric spaces into finite-dimensional normed spaces with small dimension is one
of the main issue in non-linear analysis (see [5, 10, 11]). These results have deep consequences
in order to design approximation algorithms, for instance for the Sparsest Cut problem (see [3]).
When we aproximate a given function f ∈ Lp(Ω,F, µ) by simple functions, the number of terms
in those approximations growths to infinity in general. Here, a main concern is what we can say
if we restrict the number of terms in the approximations. In particular, what we can say about
subsets of Lp(Ω,F, µ) that can be uniformly approximated by simple functions taking k values,
as k growth to ∞. As we shall see, this new concept is more general than uniform integrability
or compactness, and we fully characterize it in terms of a new measure of variation defined for
functions in Lp(Ω,F, µ) for p ∈ [1,∞), and in terms of covering numbers in the case of p = ∞.

Let us fix some notations we need to explain the main results of this paper. Consider (Ω,F, µ)
a measure space. For any k ≥ 1, we denote by Gp,k(Ω,F, µ), or simply Gp,k when the measure
space (Ω,F, µ) is clear from the context, the set of simple functions given by

Gp,k =

{
l∑

i=1

ai1Ai
∈ Lp(Ω,F, µ) : {Ai}1≤i≤l measurable partition of Ω, ai ∈ R for all i, l ≤ k

}
.
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Remark. Assume µ is a finite measure. Then Gp,k = G1,k for all p ∈ [1,∞] is just the set of simple

measurable functions that takes at most k values. If µ is an infinite measure, then h =
∑k

i=1 ai1Ai
,

where {Ai}1≤i≤k is a measurable partition, belongs to Gp,k, for p ∈ [1,∞), if and only if µ(Ai) = ∞
implies ai = 0. So, again for all p ∈ [1,∞) it holds that Gp,k = G1,k ⊂ G∞,k, and the latter is the
set of all simple measurable functions that takes at most k values.

We recall some notions from approximation theory. Let X be a Banach space and let K be a
closed subset of X . The metric projection on K is the multi-valued mapping PK : X ⇒ K defined
by PK(x) = {y ∈ K : ‖x − y‖ = d(x,K)} (where d(A,B) is the distance between two subsets
A and B of X). If PK(x) is not empty for all x ∈ X , we say that K is proximinal. If PK(x) is a
singleton for all x ∈ X , we say that K is Chebyshev. Section 2 is devoted to show the following
result.

Theorem 1.1. Let (Ω,F, µ) be a measure space and p ∈ [1,+∞]. Then Gp,k is proximinal in
Lp(Ω,F, µ) for all k ≥ 1.

In other words, the distance of a function f to Gp,k is attained at some g ∈ Gp,k. Note that
most of the classical results on the existence of a solution cannot be used in this case since Gp,k is
obviously not compact in the strong topology, nor convex, and as we will see, it is not closed in the
weak topology, in general. The proof of this result is divided into several steps. We first deal with
the case p ∈ [1,∞) and we also prove that a minimum can be chosen to have a particular form (see
Theorem 2.3 when µ is finite and Theorem 2.7 if not). The proof is rather technical since we deal
with any kind of measure (not only finite or σ-finite). In case µ is finite we also give conditions
to ensure that there is a unique minimizer (see Theorem 2.6). In general, the set of minimizers
is not a singleton, it can even exists a continuum of minimizers. Then, it makes sense to study if
the metric projection PGp,k

has a continuous selection. In general, there is no continuous selection,
unless Lp(Ω,F, µ) is finite dimensional (see the Remark before Section 3).

When p = ∞, in Proposition 2.9 we prove that G∞,k is proximinal. The proofs we provide are
somehow constructive in nature, but still there is a long way to go for obtaining useful algorithms,
which in itself, we think, will be important in many applications.

An important role in this section is played by Mp(f,A), the p-th mean of f on a set A (see
Definition 2.1). In particular, for p = 2 we have M2(f,A) = 1

µ(A)

∫
A f(x) dµ(x). A well-known

approximation associated to a finite measurable partition P = {Ai}1≤i≤k is given by

E
P(f) =

k∑

i=1

M2(f,Ai)1Ai
,

which corresponds to the conditional expectation of f over the σ-field generated by P.

In Section 3, we introduce the p-variation Varp,k(f) of a function f ∈ Lp(Ω,F, µ), for p ∈ [1,∞)
and we studied some of its properties. The p-variation of a function allow us to control the distance
of f to the sets Gp,k, up to a factor of 2 (see Proposition 3.3). This notion will be a useful tool
to characterize the uniform approximability of sets in the following section and whose definition is
the following:

Definition 1.1. Let (Ω,F, µ) be a measure space and p ∈ [1,+∞]. Let A ⊂ Lp(Ω,F, µ). For
ε > 0, we define

Np,ε(A ) = inf{k ≥ 1 : ∀f ∈ A , ∃h ∈ Gp,k ‖f − h‖p ≤ ε}.

As usual if the set where the infimum is taken is empty we set Np,ε(A ) = ∞. We say that A is
uniformly approximable (in short UA) in Lp(Ω,F, µ) if Np,ε(A ) < ∞ for any ε > 0.
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Concretely a set A is UA in Lp(Ω,F, µ) if for any ε > 0 there exists k ≥ 1 such that any function
in A can be ε-approximated in Lp(Ω,F, µ) by simple functions taking less than k different values.
Notice that A is UA if and only if

lim
k→∞

sup
f∈A

inf{‖f − g‖p : g ∈ Gp,k} = 0.

We point out that a similar quantity leads to relatively compactness of A . Indeed, if 1 ≤ p < ∞,
a result inspired by M. Riesz (see Theorem 4.7.28 in [4]) says that K ⊂ Lp(Ω,F, µ) is relatively
compact if and only if K is bounded in Lp(Ω,F, µ) and

inf
P

sup
f∈K

‖f − E
P(f)‖p = 0.

We point out that for every finite measurable partition P, with at most k atoms it holds

inf{‖f − g‖p : g ∈ Gp,k} ≤ ‖f − E
P(f)‖p,

so relatively compactness implies UA, a fact that can be easily proved directly.

The last part of the paper, Section 4, is dedicated to the study of uniformly approximable sets.
We will give some examples of UA sets and prove that it is a larger class than the class of uniformly
integrable sets. We also characterize this property in terms of covering numbers if p = ∞ and in
terms of the p-variation if p < ∞. The covering numbers N(f, ε) of a function f is simply defined
as the covering number of its range, up to measure 0. We will prove the following two results:

Theorem 1.2. Let (Ω,F, µ) be a measure space and let A ⊂ L∞(Ω,F, µ). The following assertions
are equivalent:

(i) A is UA;

(ii) supf∈A N(f, ε) < ∞ for all ε > 0.

Theorem 1.3. Let (Ω,F, µ) be a measure space, p ∈ [1,∞) and let A ⊂ Lp(Ω,F, µ). Then, the
following are equivalent

(i) A is UA in Lp(Ω,F, µ);

(ii) lim
k→∞

supf∈A Varp,k(f) = 0.

Then we investigate when the unit ball of Lp(Ω,F, µ) is UA. If 1 ≤ p < ∞, this happens, as
one can expect, if and only if Lp(Ω,F, µ) is finite dimensional (see Theorem 4.7). We conclude
this section by establishing some stability properties of the class of UA sets. In particular, a nice
use of the Rademacher type allows us to prove that if A is a bounded UA set in Lp(Ω,F, µ) for
p ∈ (1,∞) then its closed convex hull also is UA (see Theorem 4.12). For more information about
Rademacher type and cotype, we refer the reader to [1] (chapter 6).

In what follows all the measures considered are assumed non trivial, that is, different from
the 0 measure, unless it is explicitly stated. We believe that our notation is quite standard. For
example, the closure of a set A is denoted by A and the distance between two subsets A and B
in a metric space is denoted by d(A,B). The complement of a set A is denoted by Ac. In some
of the results we will need to consider diffuse and atomic measures. For that reason we fix some
notations at this respect. We recall that an atom in a measure space (Ω,F, µ) is a measurable set
A that satisfies: µ(A) > 0 and if B ⊂ A is a measurable set such that µ(B) < µ(A) then µ(B) = 0.
Notice that if A1, A2 are two atoms with finite measure, then either µ(A1 ∩A2) = 0 or they differ
on a set of measure 0, that is, µ(A1∆A2) = 0 (where ∆ is the symmetric difference). A measurable
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space is said to be atomic if every measurable set of positive measure contains an atom. An atomic
space is said to have a finite number of atoms of finite measure, up to measure 0, if there exists a
finite collection (eventually empty) A of atoms of finite measure such that for any atom B either
µ(B) = ∞ or there exists A ∈ A such that µ(A∆B) = 0. A diffuse measure, is a measure that has
no atoms. Notice that the measure µ ≡ 0 is by definition diffuse, and we refer to this case as the
trivial one. More information about measure theory can be found in [4].

2 Minimizing the distance to the sets Gp,k

The main objective of this section is to prove that Gp,k proximinal, i.e. given some f ∈ Lp(Ω,F, µ),
the distance from f to Gp,k is reached at some function g ∈ Gp,k (see Theorem 1.1). We denote by

Dp,k(f) = inf{‖f − h‖p : h ∈ Gp,k}.

for all p ∈ [1,∞], that is the distance between f and Gp,k. A function g ∈ PGp,k
will be called a

minimizer. As we mentioned in the introduction, the classical results of optimization do not apply
in this case since Gp,k is not convex nor compact. Even in the reflexive case (that is 1 < p < ∞), it
is not clear if the problem admits a solution. However, if 1 < p < ∞ and Gp,k is weakly closed, it is
easy to see that there exists a minimizer. In fact, let (gn)n ⊂ Gp,k such that ‖gn − f‖ → Dp,k(f).
In particular, (gn)n is bounded and then admits a subsequence (gn′)n′ that weakly converges to
some g ∈ Gp,k. Since the norm is weakly lower semicontinuous, we obtain that

Dp,k(f) ≤ ‖f − g‖p ≤ lim
n′

‖f − gn′‖p = Dp,k(f),

implying that Dp,k(f) = ‖f − g‖p. Unfortunately, as the following discussion will show, Gp,k is not
weakly closed in general, a fact that depends strongly on the measure space. On the one hand,
in the case of the ℓp spaces for 1 ≤ p < ∞, every Gp,k is closed under the weak topology. This
follows directly from the fact that if (fn)n ⊂ Gp,k converges to f weakly in ℓp, then (fn)n converges
pointwise to f . From this fact it follows that f(N) is a finite set with cardinality at most k and
therefore f ∈ Gp,k. On the other extreme we have the following result:

Proposition 2.1. Consider ([0, 1],L, dx) the Lebesgue measure and let p ∈ [1,∞). Then Gp,k is
weakly dense in Lp([0, 1],L, dx) for all k ≥ 2.

Proof. It is enough to prove the case k = 2. Consider an integer r ≥ 2. Every x ∈ [0, 1) has a
unique expansion

x =

∞∑

n=1

ζrn(x)r
−n.

where ζrn(x) ∈ {0, ..., r − 1} and (ζrn(x))n is not eventually constant r − 1. For x = 1, we define
ζrn(x) = r − 1 for all n ≥ 1.

Let us prove that for every A ∈ L, the sequence (1A∩{ζ2
n=1})n converges weakly to the function

f = 1
21A. Indeed, assume first that A = [0, 1]. For n ≥ 1, let Ψn : [0, 1] → [0, 1] be the bi-

measurable and measure preserving transformation which flips the n-th binary digit. Then for all
continuous functions g : [0, 1] → R it holds

∫

{ζ2
n=1}

g(x) dx =

∫

{ζ2
n=0}

g(x) dx+Rn,

where Rn =
∫
{ζ2

n=1}
g(x)− g(Ψn(x)) dx. The continuity of g, allow us to prove that Rn converges

to zero. This shows 1{ζ2
n=1} converges weakly to 1

21[0,1]. Thus, for all h ∈ Lq, where q is the
conjugated index of p, and all A ∈ L we have

lim
n→∞

∫
1{ζ2

n=1}(x)1A(x)h(x) dx =
1

2

∫
1A(x)h(x) dx,
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showing that (1A∩{ζ2
n=1})n converges weakly to 1

21A.
In a similar way, it is shown that for all A ∈ L, any integer number r ≥ 2, any m ∈ {1, ..., r}

and all 0 ≤ t1 < t2... < tm ≤ r − 1, the sequence

fn = 1A∩∪m
j=1{ζ

r
n=tj} =

m∑

j=1

1A∩{ζr
n=tj} ∈ Gp,2,

converges weakly to m
r 1A.

Now, for any ℓ ≥ 1, any partition {Aj}1≤j≤ℓ of measurable sets, any collection {rj}1≤j≤ℓ of
integer numbers greater or equal than 2, any collection {mj}1≤j≤ℓ such that mj ∈ {1, ..., rj} and
any collection of integer numbers {tj,i : 1 ≤ i ≤ mj , 1 ≤ j ≤ ℓ} such that 0 ≤ tj,1 < ... < tj,mj

≤
rj − 1, we obtain that the sequence

fn =

ℓ∑

j=1

1

Aj∩∪
mj
i=1{ζ

rj
n =tj,i}

=

ℓ∑

j=1

mj∑

i=1

1

Aj∩{ζ
rj
n =tj,i}

,

converges weakly to
ℓ∑

j=1

mj

rj
1Aj

. We notice that fn = 1Bn
, where

Bn =

ℓ⋃

j=1

mj⋃

i=1

Aj ∩ {ζrjn = tj,i},

so fn ∈ Gp,2. This shows that the weak closure of Gp,2 contains all the simple functions of the form

f =
ℓ∑

j=1

αj1Aj
, where ℓ ≥ 1, {Aj}1≤j≤ℓ is any finite measurable partition and αj ∈ [0, 1] for all

j ∈ {1, ..., ℓ}. Moreover, any such simple function is the weak limit of a sequence (1Fn
)n for some

sequence (Fn)n of measurable sets. From here it follows that the weak closure of Gp,2 contains all

the simple functions. Indeed, consider a simple function f =
ℓ∑

j=1

aj1Aj
, with ℓ ≥ 1 and aj ∈ R for

all j ∈ {1, ..., ℓ}. By adding a large constant C, we have f +C =
ℓ∑

j=1

bj1Aj
, where bj = aj +C > 0

for all j ∈ {1, ..., ℓ}. Letting D = max1≤j≤l bj , we deduce that 1
D (f + C) is the weak limit of a

sequence (1Fn
)n for some sequence of measurable sets (Fn)n. Then

fn := D1Fn
− C = (D − C)1Fn

− C1F c
n
∈ Gp,2,

converges weakly to f . The density of the simple functions in Lp, in the strong topology, shows
the result.

The previous result implies obviously that Gp,k is not weakly closed in general, and the usual
optimization methods do not work in this context, we have to find a minimizer by a more con-
structive way.

Definition 2.1. In what follows, for a measurable set A of positive and finite measure, we consider
Mp(f,A) as one of the p-th means of f on A where p ∈ [1,∞). The function

a 7→

∫

A

|f(x)− a|p dµ(x)

5



is convex, nonnegative and finite on R, which converges to ∞ as a → ±∞. Therefore, this function
has at least one global minimum. For p = 1, the set of minima is a bounded interval with extremes
a∗ and b∗ and it is customary to take, the median, as

M1(f,A) =
a∗ + b∗

2
.

For p > 1 the minimum is unique due to strict convexity and we denote it by Mp(f,A). For
example, for p = 2

M2(f,A) =
1

µ(A)

∫

A

f(x) dµ(x),

is the mean of f over the set A. If a set has measure 0, we simply put Mp(f,A) = 0.

The next concept will play an important role in what follows.

Definition 2.2. Assume f ∈ Lp(Ω,F, µ), p ∈ [1,∞). A function g ∈ Gp,k

g =

q∑

i=1

ai1Ci
,

with 1 ≤ q ≤ k, is said in f -special form if there exist −∞ ≤ r1 < ... < rk < rk+1 ≤ ∞ such that

• Ci = f−1([ri, ri+1)) for all i ∈ {1, ..., q−1}, Cq = f−1([rq, rq+1]) and {Ci}1≤i≤q is a partition
of Ω;

• −∞ < a1 < ... < aq < ∞;

• for all i ∈ {1, ..., q} such that µ(Ci) < ∞, it holds ai is a p-th mean of f on Ci.

Suppose that g =
q∑

i=1

ai1Ci
is in f -special form. Note that if µ is an infinite measure there

exists a unique 1 ≤ s ≤ q such that as = 0 and µ(Ci) < ∞ for all i 6= s. We also have that
ai = Mp(f, Ci) for all i ∈ {1, ..., q} if p > 1. Moreover notice that g = h ◦ f , where h =∑q−1

i=1 ai1[ri,ri+1) + aq1[rq, rq+1] is a Borel function and g is f -measurable, that is, g is measurable
with respect σ(f) = f−1(B), where B is the Borel σ-field in R.

2.1 The case of a finite measure, p ∈ [1,∞)

If the measure if finite, we start by proving that there exists an approximation sequence which is
uniformly bounded:

Lemma 2.2. Let (Ω,F, µ) be a finite measure space and p ∈ [1,∞). Let f ∈ Lp(Ω,F, µ) and
k ≥ 1. Then there exists a uniformly bounded sequence (gn)n ⊂ Gp,k such that

‖f − gn‖p → Dp,k(f).

Proof. Let (hn)n ∈ Gp,k be a sequence such that ‖f − hn‖p → Dp,k(f). Assume that hn =∑m(n)
i=1 ci,n1Ai,n

, where (ci,n)1≤i≤m(n) are all different, {Ai,n}1≤i≤m(n) is a measurable partition
with sets of positive measure and m(n) ≤ k. We assume that m(n) = m is constant by passing
to a subsequence if necessary. We modify this approximating sequence by considering ai,n =
Mp(f,Ai,n) any of the p-th means of f in Ai,n. By definition of the p-th means we have, for all
i ∈ {1, ...,m} ∫

Ai,n

|f(x)− ai,n| dµ(x) ≤

∫

Ai,n

|f(x)− ci,n| dµ(x),

6



showing that h̃n =
∑m

i=1 ai,n1Ai,n
∈ Gk is a minimizing sequence since

Dp,k(f) ≤ ‖f − h̃n‖p ≤ ‖f − hn‖ → Dp,k(f)

If m < k, we define ai,n = 0 and Ai,n = ∅ for i ∈ {m+ 1, ..., k}. We assume that {Ai,n}1≤i≤k are
ordered in decreasing order according to their measure

µ(A1,n) ≥ µ(A2,n) ≥ ... ≥ µ(Ak,n) ≥ 0.

In this way, the vector vn = (µ(A1,n), µ(A2,n), ..., µ(Ak,n)) belongs to the compact set in R
k

∆ =

{
x ∈ R

k : x1 ≥ x2 ≥ ... ≥ xk ≥ 0,
∑

i

xi = µ(Ω)

}

By passing to a subsequence if necessary, we can assume that (vn)n converges to some vector
v = (v1, v2, ..., vk) ∈ ∆. If q is the largest index such that vq > 0 (q could be exactly k) then,
we have q ≥ 1 and v1 ≥ ... ≥ vq > 0 = vq+1 = ... = vk. We notice that q ≤ m. Now, define

Bn =
k⋃

i=q+1

Ai,n for all n ∈ N, that we take as the empty set if q = k, so

lim
n→∞

µ(Bn) = lim
n→∞

k∑

i=q+1

µ(Ai,n) = 0.

On the other hand, for all i ∈ {1, ..., q} we have

lim
n→∞

µ(Ai,n) = vi > 0,

and so, passing to a further subsequence we can assume there exists a finite constant Γ such that
for all n and all i ∈ {1, ..., q} it holds

1

µ(Ai,n)
≤ Γ (2.1)

The finite measure ν defined by

ν(A) =

∫

A

|f(x)|p dµ(x),

is absolutely continuous with respect to µ, which means that, for all ρ > 0 there exists a δ > 0
such that, for any measurable set A if µ(A) ≤ δ then ν(A) =

∫
A
|f(x)|p dµ(x) ≤ ρ. This property

shows that

lim
n→∞

∫

Bn

|f(x)|p dµ(x) = 0.

Now, we modify further the approximation sequence by defining

bi,n =

{
ai,n for i ∈ {1, ..., q}

0 for i ∈ {q + 1, ..., k}
, (2.2)

and define

gn =

k∑

i=1

bi,n1Ai,n
=

q∑

i=1

Mp(f,Ai,n)1Ai,n
+ 01Bn

∈ Gp,k. (2.3)

We need to show that (gn)n is a good approximation sequence and it is uniformly bounded. For
the first claim notice that for i ∈ {q + 1, ..., k}, we have

∫

Ai,n

|f(x)− h̃n(x)|
p dµ(x) =

∫

Ai,n

|f(x)−Mp(f,Ai,n)|
p dµ(x) ≤

∫

Ai,n

|f(x)|p dµ(x),

7



where we have used the optimality of Mp(f,Ai,n) in the last inequality. This shows that

Dp,k(f)
p ≤ ‖f − h̃n‖pp =

m∑
i=1

∫
Ai,n

|f(x)−Mp(f,Ai,n)|p dµ(x)

≤
q∑

i=1

∫
Ai,n

|f(x)−Mp(f,Ai,n)|p dµ(x) +
∫
Bn

|f(x)|p dµ(x) = ‖f − gn‖pp

≤
m∑
i=1

∫
Ai,n

|f(x)−Mp(f,Ai,n)|p dµ(x) +
∫
Bn

|f(x)|p dµ(x)

≤ ‖f − h̃n‖
p
p +

∫
Bn

|f(x)|p dµ(x) → Dp,k(f)
p

Now, we prove that (gn)n is uniformly bounded. We notice that gn = 0 on Bn, so we must study
gn on Bc

n. For i ∈ {1, ..., q} and x ∈ Ai,n we have gn(x) = Mp(f,Ai,n) and so

‖Mp(f,Ai,n)1Ai,n
‖p ≤ ‖(f −Mp(f,Ai,n))1Ai,n

‖p + ‖f1Ai,n
‖p ≤ 2‖f1Ai,n

‖p ≤ 2‖f‖p,

where we have used again the optimality of Mp(f,Ai,n). This shows that

|Mp(f,Ai,n)| ≤ 2
‖f‖p

µ(Ai,n)
1
p

≤ 2‖f‖pΓ
1
p ,

where Γ is the constant obtained in (2.1).

The next result proves that Gp,k is proximinal in case of finite measure spaces. Remember that
PK is the metric projection over K.

Theorem 2.3. Let (Ω,F, µ) be a finite measure space, p ∈ [1,∞) and k ≥ 1. Then Gp,k is
proximinal.

Moreover, if f ∈ Lp(Ω,F, µ) and g =
q∑

i=1

bi1Ai
∈ PGp,k

(f) is a minimizer with q ≤ k, −∞ <

b1 < ... < bq < ∞ and {Ai}1≤i≤q a partition of Ω with sets of positive measure, there exists a
minimizer g̃ ∈ PGp,q

(f) in f -special form:

g̃ =

q∑

i=1

Mp(f, f
−1(Ci)) 1f−1(Ci)

where

• r1 = −∞, rq+1 = ∞ and ri =
bi−1+bi

2 for all i ∈ {2, ..., q};

• Ci = f−1([ri, ri+1)) for all i ∈ {1, ..., q − 1} and Cq = f−1([rq, rq+1]);

• bi is a p-th mean of f on f−1(Ci) for all i ∈ {1, ..., q} such that µ(f−1(Ci)) > 0.

If q is the smallest among all minimizers, then µ(Ci) > 0 for all i ∈ {1, ..., q}.

Proof. By Lemma 2.2, let (gn)n ⊂ Gp,k be a uniformly bounded sequence such that ‖f − gn‖p →

Dp,k(f). Let C > 0 such that |gn| < C for all n ∈ N. We write gn =
k∑

i=1

bi,n1Ai,n
where {Ai,n}1≤i≤k

is a partition of Ω and −C ≤ b1,n ≤ ... ≤ bk,n ≤ C. The vector un = (b1,n, ..., bk,n) belongs to
the compact set [−C,C]k and therefore, by taking a subsequence if necessary, we can assume that
(un)n converges to some u = (b1, ..., bk) ∈ [−C,C]k with b1 ≤ ... ≤ bk. Some of the entries in u can
be equal, for that we consider z1 < ... < zl the distinct entries in u where 1 ≤ l ≤ k. We define
r1 = −∞, rl+1 = ∞ and rj =

zj−1+zj
2 for j ∈ {2, ..., l}. Consider the intervals Ij = [rj , rj+1) for
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j ∈ {1, ..., l− 1} and Il = [rl, rl+1]. For j ∈ {1, ..., l}, we also define Lj = {i ∈ {1, ..., k} : bi = zj},
which is a partition of {1, ..., k}. For all n ∈ N, consider the function

g̃n =

k∑

i=1

bi1Ai,n
.

Then, we have

‖f − g̃n‖p ≤ ‖f − gn‖p + ‖gn − g̃n‖p ≤ ‖f − gn‖p +max1≤i≤k |bi,n − bi|µ(Ω)
1
p → Dp,k(f),

proving that (g̃n)n is also a minimizing sequence. Finally, our candidate for minimizer is the

function g =
∑l

j=1 zj1f−1(Ij) ∈ Gp,k. For all i ∈ {1, ..., k}, all j ∈ {1, ..., l} and all n, we have

∫

f−1(Ij)∩Ai,n

|f(x) − zj|
p dµ(x) ≤

∫

f−1(Ij)∩Ai,n

|f(x)− bi|
p dµ(x).

This is clear if i ∈ Lj because in that case zj = bi. Now, if i ∈ Lj′ with j′ 6= j, we have bi = zj′

and for all x ∈ f−1(Ij) it holds |f(x)− zj | ≤ |f(x)− zj′ | = |f(x)− bi|. Now, summing over i, j we
get for all n that

Dp,k(f)
p ≤ ‖f − g‖pp =

∑
i,j

∫
f−1(Ij)∩Ai,n

|f(x) − zj|p dµ(x) ≤
∑
i,j

∫
f−1(Ij)∩Ai,n

|f(x)− bi|p dµ(x)

≤ ‖f − g̃n‖
p
p → Dp,k(f)

p,

proving that g ∈ PGp,k
(f).

Now, we prove the last part of the Theorem. Assume that g =
∑q

i=1 bi1Ai
∈ PGp,k

(f) is a
minimizer, with b1 < ... < bq, {Ai}1≤i≤q a partition of Ω where all the sets Ai have positive

measure and q ≤ k. Let r1 = −∞, rq+1 = ∞, ri =
bi−1+bi

2 for i = {2, ..., q} and

Ci = f−1([ri, ri+1)) for i ∈ {1, ...q − 1}, Cq = f−1([ri, ri+1]).

For all i ∈ {1, ..., q}, we modify the sets Ai as

Ãi =
(
Ai ∪ f−1({ri})

)
\ f−1({ri+1}). (2.4)

Let us prove that µ(Ã1∆C1) = µ(Aj ∩ E2) = 0 for all j > 2 where E2 = f−1({r2}). Define

g′ = b11Ã1
+

q∑

i=3

bi1Ai\E2
+ b21A2∪E2 ∈ Gp,k

and note that {Ã1, {Aj \E2}j>2, A2∪E2} is a partition of Ω. Consider the following decomposition

‖f − g‖pp =
∑
j

∫
Aj

|f(x)− bj |p dµ(x) =
∫
Ã1

|f(x)− b1|p dµ(x) +
∑
j>2

∫
Aj\E2

|f(x)− bj |p dµ(x)

+
∑
j>2

∫
Aj∩E2

|f(x)− bj|p dµ(x) +
∫
A1∩E2

|f(x)− b1|p dµ(x) +
∫
A2

|f(x)− b2|p dµ(x)

≥
∫
Ã1

|f(x)− b1|p dµ(x) +
∑
j>2

∫
Aj\E2

|f(x) − bj|p dµ(x) +
∫
A2∪E2

|f(x) − b2|p dµ(x)

+(b3 − b2)
p
∑
j>2

µ(Aj ∩ E2)

= ‖f − g′‖pp + (b3 − b2)
p
∑
j>2

µ(Aj ∩E2),

where the second equality follows from the fact that Ã1 = A1 \ E2 (up to a set of measure zero).
The inequality is proved noting that, for x ∈ Aj ∩ E2 with j > 2 it holds |f(x) − b2| = b2 − r2 <
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b3− r2 ≤ bj − r2 = |f(x)− bj|, which implies |f(x)− bj | ≥ |f(x)− b2|+ b3− b2, and for x ∈ A1∩E2

it holds |f(x)− b1| = |f(x)− b2|. So, since g is a minimizer we deduce that µ(Aj ∩E2) = 0 for all
j > 2. Thus, we get

‖f − g‖pp =

∫

Ã1

|f(x)− b1|
p dµ(x) +

∑

j>2

∫

Aj

|f(x) − bj|
p dµ(x) +

∫

A2∪f−1({r2})

|f(x)− b2|
p dµ(x),

showing that

b11Ã1
+ b21A2∪f−1({r2}) +

∑

j>2

bj1Aj
∈ PGp,k

(f).

A similar argument shows that µ(Aj ∩C1) = 0 and µ(Ã1 ∩Cj) = 0 for all j ≥ 2. Since {Ai}1≤i≤q

is a partition we conclude that µ(C1) =
∑

i µ(Ai ∩ C1) = µ(C1 ∩ A1) = µ(C1 ∩ Ã1), proving

that C1 ⊂ Ã1 except for a set of measure 0. On the other hand, using again that {Ã1, A2 ∪

f−1({r2}), {Aj \ f−1({r2})}j>2} is also a partition, we conclude that Ã1 ⊂ C1 except for a set of

measure 0. In a similar way, we prove µ(Ãi ∩ Cj) = µ(Ãi∆Ci) = 0, for all i 6= j.

At this point we should mention that some of the Ãi could have measure 0. For example this
occurs if A1 = f−1({r2}). In any case, we have

‖f − g‖pp =

q∑

i=1

∫

Ãi

|f(x)− bi|
p dµ(x) =

q∑

i=1

∫

Ci

|f(x)− bi|
p dµ(x),

showing that

ĝ =

q∑

i=1

bi1Ci
∈ PGp,k

(f),

is a minimizer. On the other hand, if µ(Ci) > 0 we have
∫
Ci

|f(x)−Mp(f, Ci)|p dµ(x) ≤
∫
Ci

|f(x)−

bi|p dµ(x). The inequality cannot be strict, otherwise we contradict the minimality of ĝ, showing
that bi is a p-th means of f on Ci, and therefore,

g̃ =

q∑

i=1

Mp(f, Ci)1Ci
∈ PGp,k

(f),

is a minimizer in f -special form, as we wanted to prove. In case that q is the minimal among all
minimizers, we conclude that µ(Ci) > 0 for all i.

Remark. In the last part of the Theorem, for any minimizer g, we have constructed a minimizer
g̃ in f -special form, but it may happens that some of the sets (Ci)i have measure 0, which can
be discarded to get a minimizer with fewer terms. An interesting question is if this procedure
applied to any minimizer gives always a minimizer with the smallest possible number of terms (see
Proposition 2.12).

Recall that given f ∈ Lp(Ω,F, µ), the distribution of f is the measure µf defined on (R,B)
given by, for all B ∈ B

µf (B) = µ(f−1(B)).

Let g be a minimizer of f in Gp,k in f -special form provided by Theorem 2.3

g =

q∑

i=1

ai1f−1([ri,ri+1)),
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So, g = ℓ ◦ f with

ℓ =

q∑

i=1

ai1[ri,ri+1),

and

‖f − g‖pp =
∫
Ω |f(x)− g(x)|p dµ(x) =

∫
Ω |f(x)− ℓ(f(x))|p dµ(x) =

∫
R
|y − ℓ(y)|p dµf (y)

= ‖id− ℓ‖pLp(R,B,µf )
.

Thus, the problem of finding a minimizer for f is equivalent to find a minimizer for the identity
function id in Gp,k(R,B, µf ). The following result shows that when µf is continuous, this search can
be done over the subclass of simple functions in f -special form. Before stating the result, let us fix
some notations. The cumulative distribution associated to µf is the function Ff (x) = µf ((−∞, x])
Notice that Ff (−∞) = 0 and Ff (∞) = µ(Ω). The convex support of µf is the interval [af , bf ],
where

af = sup{z : Ff (z) = 0}, bf = inf{z : Ff (z) = Ff (∞)}.

The following lemma is needed to study the uniqueness of minimizers, where p-th means are
characterized as roots of certain equations, suitable for our purposes. We include a proof, inspired
by exercise 1.4.23 in [13], for the sake of completeness.

Lemma 2.4. Let (Ω,F, µ) be a finite measure space and f ∈ Lp(Ω,F, µ), for p ∈ [1,∞). For p = 1,
we also assume that Ff is continuous and strictly increasing on [af , bf ]. Let I ⊂ R be an interval
with extremities c, d ∈ R such that µf (I) > 0. Then, the p-th mean m = Mp(f, f

−1(I), µ) =
Mp(id, I, µf ) is characterized as the unique solution of the equation

∫

I∩(−∞,m]

(m− x)p−1 dµf (x) =

∫

I∩(m,∞)

(x−m)p−1 dµf (x), (2.5)

which for p = 1 is equivalent to

Ff (m)− Ff (c) =
1

2
(Ff (d)− Ff (c)). (2.6)

Proof. The proof is based on the following equality for all x, b ∈ R

|x− b|p = p

∫ b

−∞

(t− x)p−1
1{x≤t} dt+ p

∫ ∞

b

(x− t)p−1
1{t<x} dt,

which implies that

|x− b|p − |x− a|p = p

∫ b

a

(
(t− x)p−1

1{x≤t} − (x − t)p−1
1{t<x}

)
dt.

Fix m ∈ R. Define a function L : R → R by

L(b) =

∫

I

|x− b|p dµf (x) −

∫

I

|x−m|p dµf (x).

It is clear that m is a minimum of L if and only if m is a p-th mean. Using Fubini’s Theorem and
the previous equality, we obtain that for all b ∈ R

L(b) = p

∫ b

m

∫

I∩(−∞,t]

(t− x)p−1 dµf (x)dt − p

∫ b

m

∫

I∩(t,∞)

(x− t)p−1dµf (x)dt

11



Note that L is convex, coercive and continuous and then reaches a minimum.
Suppose p > 1. The functions t 7→

∫
I∩[−∞,t]

(t−x)p−1 dµf (x) and t 7→
∫
I∩(t,∞)

(x−t)p−1 dµf (x)

are continuous, and therefore L is strictly convex and continuously differentiable, which proves that
L′(b) = 0 is the equation for the unique minima, that is,

L′(b) = p

∫

I∩(−∞,b]

(b − x)p−1 dµf (x)− p

∫

I∩(b,∞)

(x− b)p−1 dµf (x) = 0.

It follows that m is the p-th mean if and only if m fulfills (2.5).
For p = 1, using that Ff is continuous, we have

L(b) =

∫ b

m

Ff (t)− Ff (c)− (Ff (d)− Ff (t)) dt.

Again, since Ff is continuous we obtain that L is continuously differentiable. Then, if b is any
minima for L, it holds that L′(b) = 0, that is, Ff (b) − Ff (c) = 1

2 (Ff (d) − Ff (c)). Since Ff is
assumed to be strictly increasing, this equation has a unique solution, and then L has exactly one
minimum. Then, m is a 1-th if and only if Ff (m)− Ff (c) =

1
2 (Ff (d)− Ff (c)).

Notice that in the previous Lemma we can replace (−∞,m] by (−∞,m) and (m,∞) by [m,∞)
in 2.5, because x = m does not add to the integrals. In the case Ff is just increasing, I = (c, d] and

p = 1, all the 1-th means satisfy the equations L
′+(m) ≥ 0 and L

′−(m) ≤ 0, which are equivalent
to

Ff (m)− Ff (c) ≥
1

2
(Ff (d)− Ff (c)), Ff (m−)− Ff (c) ≤

1

2
(Ff (d) − Ff (c)),

and the solution set is, in general, an interval.

The next result shows that when Ff is continuous all minimizers are in f -special form.

Corollary 2.5. Let (Ω,F, µ) be a finite measure space, p ∈ [1,∞) and k ≥ 1. Let f ∈ Lp(Ω,F, µ)
and assume that Ff is continuous. Then any minimizer g ∈ PGp,k

(f) is of the f -special form

g =

k∑

i=1

ai1f−1([ri,ri+1)), (2.7)

where

• [ri, ri+1) has positive µf -measure for all i ∈ {1, ..., k};

• af = r1 < ... < rk < rk+1 = bf and ri =
ai+ai+1

2 for all i ∈ {2, ..., k};

• ai is a p-th mean of id on [ri, ri+1) under µf for all i ∈ {1, ..., k}. Moreover, if Ff is strictly
increasing on [af , bf ], then ai = Mp(id, [ri, ri+1), µf ) for all i ∈ {1, ..., k}.

Proof. Notice first that f /∈ Gp,k, because the image of f cannot be a finite set a.e., since µf is not
atomic. This implies that there is no minimizer in Gp,q, with q < k (see Proposition 2.12 below).
So, any minimizer has the structure

g =

k∑

i=1

ai1Ai

where a1 < ... < ak, {Ai}1≤i≤k is a partition with sets of positive measure and ai is a p-th mean
of f in Ai, for all i ∈ {1, ..., k}. In the previous proof, we then modify this minimizer to get one in
f -special form. If one goes over that proof and using the fact that Ff is continuous, one realizes
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that in equation (2.4), we get Ãi = Ai a.e. and then Ai = Ci a.e., proving that Ai = f−1([ri, ri+1))
a.e.

The fact that ai is a p-th mean is just the fact that g is a minimizer. For p > 1, the uniqueness
of the p-th mean shows that ai = Mp(id, [ri, ri+1), µf ). This is also true for p = 1, when Ff is
continuous and strictly increasing in [af , bf ] (see Lemma 2.4).

Remark. The previous result could be used as the basis of an algorithm to approximate a mini-
mizer. Assume that µf is a continuous distribution. For any s ∈ R, were s plays the role of r2 in
the representation (2.7), we define r1(s) = −∞, r2(s) = s and a1 = a1(s) = Mp(id, (−∞, s), µf ).
Then, we define a2(s) = 2r2(s) − a1(s), which is a relation that should satisfy any minimizer.
Then, compute r3(s) so that

a2(s) = Mp(id, [r2(s), r3(s)), µf ).

and continue in this way defining a3(s), r4(s), ..., ak(s), rk+1(s). It may happens that at some
iteration ri+1(s) is not well defined for some i ≤ k − 1 because, for all t ∈ [ri(s),∞]

ai(s) > Mp(id, [ri(s), t), µf ),

which shows that there is no minimizer starting with r2 = s. So, we say s is admissible if rk+1(s)
is well defined. For every admissible s we have a candidate

ℓs =
k−1∑

i=1

ai(s)1[ri(s),ri+1(s)) +Mp(id, [rk(s),∞), µf )1[rk(s),∞)

and we can compute R(s) =
∫
|x − ℓs(x)|p dµf (x). For s which is not admissible put R(s) = ∞.

Then a minimizer of R gives a minimizer for f . One expects that the set of admissible values of s
is an interval. We shall work on this algorithm in a forcoming paper.

For example, if µf is a normal N(0, 1), p = 2 and k = 3, this algorithm gives the following
approximation

h ≈ −1.2 1(−∞,−0.6) + 0 1[−0.6,0.6) + 1.2 1[0.6,∞).

Notice that ‖id‖2 = 1 and (D2,3(id))
2 ≈ 0.18, which means that, in the language of statistics, 82%

of the variance of f is explained by a simple function taking 3 values.

Uniqueness of minimizers is a much harder problem. Here, we present a partial result in case
µf satisfies a certain monotone likelihood ratio property.

Theorem 2.6. Let (Ω,F, µ) be a finite measure space, p ∈ [1,∞) and f ∈ Lp(Ω,F, µ). Assume
µf has a density with respect to the Lebesgue measure Ψ : (af , bf) → (0,∞), which we extend by
0 outside this interval. Consider for s ∈ (0, bf − af) the function Gs : (af , bf ) → [0,∞) given by

Gs(y) =
Ψ(y+s)
Ψ(y) and assume that Gs is decreasing. Moreover, we suppose that one of the following

hypotheses hold:

(H1) either af or bf is finite;

(H2) Gs((af , bf )) is an infinite set;

(H3) Ψ is continuous.

Then there exists a unique minimizer for f in Gp,k for all k ≥ 1.
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Proof. The case k = 1 is direct from the fact that Ff is is strictly increasing (because Ψ is strictly
positive on (af , bf )) and therefore the p-th means are unique. So, we assume that k ≥ 2.

According to Corollary 2.5, and since Ff is strictly increasing all minimizers for f have the
f -special form given in (2.7). Fix one of them g = ℓ ◦ f , where

ℓ =

k∑

i=1

ai1Ii

with r1 = af , rk+1 = bf , ri = ai−1+ai

2 for i ∈ {2, ..., k}, Ii = [ri, ri+1) for i ∈ {1, ..., k − 1},
Ik = [rk, rk+1], µf (Ii) > 0 for i ∈ {1, ..., k} and ai = Mp(id, Ii, µf ) for i ∈ {1, ..., k}. Assume there

exists another minimizer g̃ = ℓ̃ ◦ f with

ℓ̃ =

k∑

i=1

ãi1Ĩi

where r̃1 = af , r̃k+1 = bf , r̃i = ãi−1+ãi

2 for i ∈ {2, ..., k}, Ĩi = [r̃i, r̃i+1) for i ∈ {1, ..., k − 1},

Ĩk = [r̃k, r̃k+1], µf (Ĩi) > 0 for i ∈ {1, ..., k} and ãi = Mp(id, Ĩi, µf ) for i ∈ {1, ..., k}. We need to

prove that ℓ = ℓ̃. Consider s = r̃2 − r2. Switching g and g̃ if necessary, we can suppose without
loss of generality that s ≥ 0, and since r2, r̃2 ∈ (af , bf) then s < bf − af . Define δi = ãi − ai for
all i ∈ {1, ..., k} and ηi = r̃i − ri for all i ∈ {2, ..., k}.

Case 1: Suppose that s = 0. We shall prove that ℓ = ℓ̃. Notice that I1 = Ĩ1 and ã1 =
Mp(id, I1, µf ) and by uniqueness of the p-th mean we deduce that a1 = ã1. But ã1, ã2 and
r̃2 are related by ã2 = 2r̃2 − ã1 = 2r2 − a1 = a2, showing that ã2 = a2. Using the fact that
a2 = Mp(id, I2, µf) = Mp(id, Ĩ2, µf) and Lemma 2.4, we have that

∫ r̃3

a2

(x − a2)
p−1Ψ(x)dx =

∫ r̃3

ã2

(x− a2)
p−1Ψ(x)dx =

∫ ã2

r̃2

(a2 − x)p−1Ψ(x)dx

=

∫ a2

r2

(a2 − x)p−1Ψ(x)dx =

∫ r3

a2

(x− a2)
p−1Ψ(x)dx.

Since r̃3 ≤ bf and since Ψ is strictly positive, we conclude that r̃3 = r3. Repeating this argument

we conclude that r̃i = ri for all i ∈ {2, ..., k} and ãi = ai for all i ∈ {1, ..., k}. Thus ℓ̃ = ℓ.
Case 2: Suppose that s > 0 and let us arrive to a contradiction if we suppose that (H1), (H2)

or (H3) holds. This part will be divided in several steps.
Step 1: We are going to show that the following properties hold:

(a) δk ≥ ηk ≥ δk−1 ≥ ηk−1 ≥ ... ≥ η2 ≥ δ1;

(b) if one of these inequalities is strict then all the inequalities on the left are also strict;

(c) all of these inequalities are in fact equalities if and only if af = −∞ and for all i ∈ {1, ..., k−1}
it holds

∀y ∈ (ri, ri+1)
Ψ(y + s)

Ψ(y)
=

Ψ(ai + s)

Ψ(ai)
.

Define a function φ : z 7→
∫ a1+z

af
(z + a1 − x)p−1Ψ(x)dx −

∫ r̃2
a1+z

(x − a1 − z)p−1Ψ(x)dx. It is clear

that φ is strictly increasing. Recall that ã1 = Mp(id, [af , r̃2), µf ), which is characterized by

∫ ã1

af

(ã1 − x)p−1Ψ(x) dx =

∫ r̃2

ã1

(x− ã1)
p−1Ψ(x) dx,
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so φ(δ1) = 0. Note also that

φ(0) =

∫ a1

af

(a1 − x)p−1Ψ(x)dx −

∫ r̃2

a1

(x− a1)
p−1Ψ(x)dx

=

∫ r2

a1

(x− a1)
p−1Ψ(x)dx −

∫ r̃2

a1

(x− a1)
p−1Ψ(x)dx < 0,

since r̃2 − r2 = s > 0. Moreover, we have
∫ a1+s

af

(a1 + s− x)p−1Ψ(x)dx ≥

∫ a1+s

af+s

(a1 + s− x)p−1Ψ(x)dx =

∫ a1

af

(a1 − x)p−1Ψ(x+ s)

Ψ(x)
Ψ(x)dx

≥
Ψ(a1 + s)

Ψ(a1)

∫ a1

af

(a1 − x)p−1Ψ(x)dx =
Ψ(a1 + s)

Ψ(a1)

∫ r2

a1

(x− a1)
p−1Ψ(x)dx

≥

∫ r2

a1

(x− a1)
p−1Ψ(x+ s)

Ψ(x)
Ψ(x) dx =

∫ r̃2

a1+s

(x− a1 − s)p−1Ψ(x)dx

proving that φ(s) ≥ 0. It follows that 0 < δ1 ≤ s = η2. The only way that δ1 = η2 = s is that the

previous inequalities are only equalities, which means that af = −∞ and Ψ(y+s)
Ψ(y) = Ψ(a1+s)

Ψ(a1)
holds

for all y ∈ (af , r2) dy-a.e., but since Gs is decreasing this property holds for all y ∈ (af , r2). We
summarize this condition for future reference

af = −∞ and ∀y ∈ (af , r2)
Ψ(y + s)

Ψ(y)
=

Ψ(a1 + s)

Ψ(a1)
. (2.8)

On the other hand, since r̃2 = ã1+ã2

2 , we deduce

ã2 = 2r̃2 − ã1 = 2r2 − a1 + 2η2 − δ1 = a2 + 2η2 − δ1,

from where we deduce that δ2 = 2η2−δ1 ≥ η2, with equality δ2 = η2 if and only if δ2 = η2 = δ1 = s.
Now, if there exists r̃3 ≤ bf such that

Mp(id, [r̃2, r̃3), µf ) = ã2,

we deduce that η3 ≥ δ2. Indeed, this follows from the inequalities

∫ r̃3

ã2

(x − ã2)
p−1Ψ(x)dx =

∫ ã2

r̃2

(ã2 − x)p−1Ψ(x)dx =

∫ a2+δ2

r2+η2

(ã2 − x)p−1Ψ(x) dx

≥

∫ a2+δ2

r2+δ2

(ã2 − x)p−1Ψ(x)dx =

∫ a2

r2

(a2 − x)p−1Ψ(x+ δ2)dx

=

∫ a2

r2

(a2 − x)p−1Ψ(x+ δ2)

Ψ(x)
Ψ(x)dx ≥

Ψ(a2 + δ2)

Ψ(a2)

∫ a2

r2

(a2 − x)p−1Ψ(x)dx

=
Ψ(a2 + δ2)

Ψ(a2)

∫ r3

a2

(x − a2)
p−1Ψ(x)dx ≥

∫ r3

a2

(x− a2)
p−1Ψ(x+ δ2)

Ψ(x)
Ψ(x)dx

=

∫ r3

a2

(x− a2)
p−1Ψ(x+ δ2)dx =

∫ r3+δ2

a2+δ2

(x− ã2)
p−1Ψ(x)dx

=

∫ r3+δ2

ã2

(x − ã2)
p−1Ψ(x)dx

proving that r̃3 ≥ r3 + δ2, i.e. η3 ≥ δ2. Also, we notice that η3 = δ2 if and only if

η2 = δ2 and ∀y ∈ (r2, r3)
Ψ(y + δ2)

Ψ(y)
=

Ψ(a2 + δ2)

Ψ(a2)
, (2.9)
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which in particular implies that η3 = η2 = δ2 = δ1 = s and (2.8) holds. Iterating this idea, we
complete Step 1.

Step 2: Since g̃ has f -special form, we have that ãk = M1(id, [r̃k, bf ], µf ). Since δk ≥ ηk by (a)
in Step 1, we obtain that

∫
bf

ãk

(x− ãk)
p−1Ψ(x)dx =

∫ ãk

r̃k

(ãk − x)p−1Ψ(x)dx =

∫ ak+δk

rk+ηk

(ãk − x)p−1Ψ(x) dx

≥

∫ ak+δk

rk+δk

(ãk − x)p−1Ψ(x)dx =

∫ ak

rk

(ak − x)p−1Ψ(x+ δk)dx

=

∫ ak

rk

(ak − x)p−1Ψ(x+ δk)

Ψ(x)
Ψ(x)dx ≥

Ψ(ak + δk)

Ψ(ak)

∫ ak

rk

(ak − x)p−1Ψ(x)dx

=
Ψ(ak + δk)

Ψ(ak)

∫ bf

ak

(x− ak)
p−1Ψ(x)dx ≥

Ψ(ak + δk)

Ψ(ak)

∫ bf−δk

ak

(x− ak)
p−1Ψ(x)dx

≥

∫
bf−δk

ak

(x− ak)
p−1Ψ(x+ δk)

Ψ(x)
Ψ(x)dx =

∫
bf

ak+δk

(x − ãk)
p−1Ψ(x)dx

=

∫ bf

ãk

(x− ãk)
p−1Ψ(x)dx

It follows that all the inequalities are in fact equalities and then the following properties hold:

(d) bf = ∞;

(e) ηk = δk;

(f) ∀y ∈ (rk,∞) Ψ(y+δk)
Ψ(y) = Ψ(ak+δk)

Ψ(ak)
.

We notice that (e) implies that all inequalities in (a) are equalities and then (c) holds. This
together with (d) and (f) implies that if g̃ is a minimizer then

(g) δk = ηk = δk−1 = ηk−1 = ... = η2 = δ1 = s;

(h) af = −∞, bf = ∞ and for all i ∈ {1, ..., k} it holds

∀y ∈ (ri, ri+1)
Ψ(y + s)

Ψ(y)
=

Ψ(ai + s)

Ψ(ai)
.

Step 3: Conclusion. Clearly under (H1) or (H2) the function g̃ cannot be a minimizer. It
remains to consider that (H3) holds. From (h) and the continuity of Ψ it holds that

∀y ∈ (−∞,∞)
Ψ(y + s)

Ψ(y)
=

Ψ(a1 + s)

Ψ(a1)
= C ∈ (0,∞)

Iterating this equality we have Ψ(y + 2s) = Ψ(y+2s)
Ψ(y+s)

Ψ(y+s)
Ψ(y) Ψ(y) = C2Ψ(y), and then for all n ∈ Z

and all y
Ψ(y + ns) = CnΨ(y).

Then, if C ≥ 1, we have

Cn

∫ 1

0

Ψ(y) dy =

∫ 1

0

Ψ(y + ns) dy =

∫ ns+1

ns

Ψ(y) dy −→
n→∞

0,
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which is a contradiction. A similar contradiction is obtained if C < 1, because Ψ(y−ns) = C−nΨ(y)
and then

C−n

∫ 0

−1

Ψ(y) dy =

∫ 0

−1

Ψ(y − ns) dy =

∫ −ns

−(1+ns)

Ψ(y) dy −→
n→∞

0,

proving that g̃ cannot be a minimizer, and the result is shown.

Remark. Examples of distributions that satisfies the hypothesis of the previous Proposition are
the exponential distribution µf (dx) = e−x dx for x ≥ 0, the normal distribution N(0, 1) and the
uniform distribution µf (dx) = dx for x ∈ [0, 1]. In the uniform case, we obtain an explicit solution
for the minimizer of f ∈ Lp(Ω,F, µ). For all k ≥ 1 this unique minimizer is g = ℓ ◦ f , where

ℓ =

k∑

i=1

2i− 1

2k
1[ i−1

k
, i
k
),

independently of p ∈ [1,∞).

2.2 The case of an infinite measure, p ∈ [1,∞)

The case of infinite measure needs an extra work and use some ideas already developed in the finite
measure case.

Theorem 2.7. Let (Ω,F, µ) be an infinite measure space, p ∈ [1,∞) and k ≥ 1. Then Gp,k is
proximinal.

Moreover, if f ∈ Lp(Ω,F, µ) and g =
q∑

i=1

bi1Ai
∈ PGp,k

(f) is a minimizer, with q ≤ k, −∞ <

b1 < ... < bq < ∞, {Ai}1≤i≤q a partition of Ω such that µ(Ai) > 0 for all i ∈ {1, ..., q} and a
unique 1 ≤ s ≤ q such that bs = 0. Then, there exists a minimizer g̃ ∈ PGp,q

(f) in f -special form

g̃ =

q∑

i=1,i6=s

Mp(f, f
−1(Ci))1f−1(Ci) + 01f−1(Cs),

where

• r1 = −∞, rq+1 = ∞ and ri =
bi−1+bi

2 for all i ∈ {2, ..., q} (notice that rs < 0 < rs+1);

• Ci = f−1([ri, ri+1)) for i ∈ {1, ..., q − 1} and Cq = f−1([rq, rq+1]);

• if µ(f−1(Ci)) > 0 and i 6= s, then bi is a p-th mean of f on f−1(Ci);

If q is the smallest among all minimizers, then µ(Ci) > 0 for all i.

Proof. For k = 1 the result is obvious since Gp,1 = {0}. So for the rest of the proof we assume that
k ≥ 2.

Let f ∈ Lp(Ω,F, µ) and consider a sequence (gn)n ∈ Gp,k such that gn =
∑q(n)

i=1 ai,n1Ai,n
, where

a1,n < ... < aq(n),n ∈ R, {Ai,n}1≤i≤q(n) is a measurable partition with sets of positive measure and
q(n) ≤ k for all n ∈ N, and such that

‖f − gn‖p → Dp,k(f).

Since gn ∈ Lp(Ω,F, µ) there exists a unique 1 ≤ s(n) ≤ q(n) such that as(n),n = 0 and we have
that µ(Ai,n) < ∞ for all i 6= s(n). Passing to a subsequence, we can assume that 1 ≤ s(n) = s ≤

q(n) = q ≤ k. Define r1 = r1,n = −∞, rq+1,n = ∞ and ri,n =
ai−1,n+ai,n

2 for i ∈ {2, ..., q}. We

17



point out that if q = 1, then gn = 0, for all n and so h = 0 is a minimizer. Then for the rest of the
proof, we assume q ≥ 2.

Now, consider Ii,n = [ri,n, ri+1,n) and the corresponding Ci,n = f−1(Ii,n) for all i ∈ {1, ..., q}.
For all n ∈ N, define

g̃n =

q∑

i=1

ai,n1f−1(Ii,n).

If i, j ∈ {1, ..., q}, we have that |f(x) − ai,n| ≥ |f(x) − aj,n| for all x ∈ Cj . It follows that for all
n ∈ N

‖f − gn‖
p
p =

q∑

i=1

∫

Ai

|f(x)− ai,n|
pdµ(x) =

q∑

j=1

q∑

i=1

∫

Ai∩Cj

|f(x)− ai,n|
pdµ(x)

≥

q∑

j=1

q∑

i=1

∫

Ai∩Cj

|f(x) − aj,n|
pdµ(x)

=

q∑

j=1

∫

Cj

|f(x)− aj,n|
pdµ(x) = ‖f − g̃n‖

p
p

proving that (g̃n)n is also a minimizing sequence.
For all i ∈ {1, ..., q}, the sequence (ai,n)n has a convergent subsequence in R. Then we can also

assume that ai,n → ai ∈ R for all i ∈ {1, ..., q}. We denote by z1 < ... < zℓ the different values in
{a1, ..., aq}, where ℓ ≤ q. We point out that zt = 0 for some 1 ≤ t ≤ ℓ. For each 1 ≤ m ≤ ℓ, we
denote Lm = {i : 1 ≤ i ≤ q and ai = zm}. Each Lm is an interval in N, because we have assumed
a1,n < ... < ai,n < ... < aq,n, for each n. We define i−m = min{Lm} and i+m = max{Lm} for all
m ∈ {1, ..., ℓ} and also i−ℓ+1 = ℓ+ 1. Note that Lm = {i−m, ..., i+m} for all m ∈ {1, ..., ℓ}.

Assume that zℓ = ∞ or z1 = −∞. In this situation ℓ ≥ 2, because zt = 0. As in the case of
finite measure we can modify (g̃n)n to get a uniformly bounded minimizing sequence. Consider
first the case zℓ = ∞ and recall that i−ℓ = min{Lℓ} ∈ {s+ 1, ..., q}. Then, we have

ri−
ℓ
,n =

ai−
ℓ
−1,n + ai−

ℓ
,n

2
→ ∞,

because ai−
ℓ
−1,n ≥ as,n = 0 and then ai−

ℓ
−1,n → ai−

ℓ
−1 = zℓ−1 ∈ [0,∞). Consider

ĝn =
∑

i<i−
ℓ

ai,n1f−1(Ii,n) + ai−
ℓ
−1,n1f−1([r

i
−
ℓ

,n
,∞)) =

∑

i<i−
ℓ
−1

ai,n1f−1(Ii,n) + ai−
ℓ
−1,n1f−1([r

i
−
ℓ

−1,n
,∞))

An important fact is that
∫
{f≥r

i
−
ℓ

,n
}
|f(x)− ai−

ℓ
−1,n|

p dµ(x) → 0, because (ai−
ℓ
−1,n)n is a bounded

sequence and ri−
ℓ
,n → ∞. Then

‖f − ĝn‖
p
p ≤ ‖f − g̃n‖

p
p +

∫

{f>r
i
−
ℓ

,n
}

|f(x)− ai−
ℓ
−1,n|

p dµ(x) → (Dp,k(f))
p.

Then, the sequence (ĝn)n is a minimizing sequence, which is uniformly upper bounded. Similarly,
we can modify this sequence to get a minimizing sequence, which is uniformly bounded. Then, in
what follows we assume (g̃n)n is uniformly bounded and −∞ < z1, zℓ < ∞.

Now we consider 2 different cases.
Case 1: ℓ = 1. In this situation a1 = ... = aq = 0. Notice that rq,n =

aq−1,n+aq,n

2 → 0, so if
0 < f(x) < ∞, then g̃n(x) = aq,n for all large n and g̃n(x) → 0. In the same way, if f(x) < 0, then
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g̃n(x) = a1,n for all large n and g̃n(x) → 0. On the other hand, if f(x) = 0, then g̃n(x) = 0. Then
by Fatou’s Lemma we conclude

lim inf
n

‖f − g̃n‖
p
p ≥

∫
lim inf

n
|f(x)− g̃n|

p dµ(x) = ‖f‖pp,

and we obtain Dp,k(f) ≥ ‖f‖p, showing that h = 0 is a minimizer.
Case 2: ℓ ≥ 2. For all m ∈ {1, ..., ℓ} recall that i−m = min{Lm} and i−ℓ+1 = ℓ + 1. Then, for all

2 ≤ m ≤ ℓ

ri−m,n → rm :=
zm−1 + zm

2
.

and r1 = −∞ < r2 < ... < rℓ < rℓ+1 := ∞. Now, we choose a particular subsequence (n′)n′ .
We start with (ri−2 ,n)n. If there exist an increasing subsequence of (ri−2 ,n)n, we fix one of these

subsequences as (n(2)) and we put T (2) = in, for increasing. Otherwise we take (n(2)) so that
(ri−2 ,n(2))n(2) is strictly decreasing, and we put T (2) = sd, for strictly decreasing. We repeat this

procedure for (ri−3 ,n(2))n(2) , to obtain, if possible, (n(3)) a subsequence of (n(2)) so (ri−3 ,n(3))n(3) is

increasing, and put T (3) = in. Otherwise we take (n(3)) a subsequence of (n(2)) so that (ri−3 ,n(3))n(3)

is strictly decreasing, and we put T (3) = sd. We continue until m = ℓ. We also put T (1) = in and
T (ℓ+ 1) = in. Denote by (n′) = (n(ℓ)).

Now, we define the intervals that give a minimizer. For all m ∈ {1, ..., ℓ} let

Im =





[rm, rm+1) if T (m) = in, T (m+ 1) = in

[rm, rm+1] if T (m) = in, T (m+ 1) = sd

(rm, rm+1) if T (m) = sd, T (m+ 1) = in

(rm, rm+1] if T (m) = sd, T (m+ 1) = sd

(2.10)

We notice that ∪ℓ
m=1Im = [−∞,∞), and for all m ∈ {1, ..., ℓ} and all n′, we define Jm,n′ =

∪i∈Lm
[ri,n′ , ri+1,n′ ) = [ri−m,n′ , ri−m+1,n

′). Then, it holds

1f−1(Jm,n′) → 1f−1(Im) a.e.

The last piece of information we need is that the set ∪m 6=tf
−1(Jm,n′) is contained in a fixed

set of finite measure Ã for large n′. If t = ℓ, then ∪m 6=tf
−1(Jm,n′) ⊂ f−1((−∞, rt,n′ ]) ⊂ Ã =

f−1((−∞, rt
2 ]), for large n′, because rt,n′ → rt = zt−1

2 < zt = 0, and then Ã has finite measure.

Similarly, if t = 1, then ∪m 6=tf
−1(Jm,n′) ⊂ f−1([r2,n′ ,∞]) ⊂ Ã = f−1([ r22 ,∞)), for large n′. This

set has finite measure because r2 > 0. In the general case, 1 < t < q, we have for large n′

∪m 6=tf
−1(Jm,n′) ⊂ Ã = f−1((−∞, rt/2]) ∪ f−1([rt+1/2,∞)),

which has finite measure because rt < 0 < rt+1.
Now, consider the decomposition

‖f − g̃n′‖pp =
∫
|f(x)− g̃n′(x)|p1f−1(Jt,n′ ) dµ(x) +

∑
m 6=t

∫
f−1(Jm,n′)

|f(x)− g̃n′(x)|p dµ(x).

We use now Fatou’s Lemma for the first term and the Dominated Convergence Theorem for the
second term. In the first term, we have the a.e. convergence

|f − g̃n′ |1f−1(Jt,n′ ) → |f |1f−1(It)

With respect to the second term, for large n′, we have max1≤i≤q |ai,n′ | ≤ max{|z1|, zℓ} + 1 := C,
also

|f(x)− g̃n′(x)|p 1∪m 6=tf−1(Jm,n′) ≤ 2p−1 (|f(x)|p + Cp)1Ã ∈ L1(Ω,F, µ),
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g̃n′
1∪m 6=tf−1(Jm,n′) →

∑
m 6=t zm1f−1(Im) a.e. and f1∪m 6=tf−1(Jm,n′) → f1f−1(∪m 6=tIm) a.e. So, we

get

lim inf
n′

‖f − g̃n‖
p
p ≥

∫

f−1(It)

|f(x)|p dµ(x) +
∑

m 6=t

∫

f−1(Im)

|f(x)− zm|p dµ(x)

and then h =
∑ℓ

m=1 zm1f−1(Im) is a minimizer, where the intervals {Im}1≤m≤t are either open,

closed or semi-closed, they are disjoint and ∪ℓ
m=1Im = R (see (2.10)).

From here it is clear that a minimizer exists in f -special form as we have done in the finite
measure case. Also notice that if m 6= t and 0 < µ(f−1(Im)), we must have zm is a p-th mean for
f in f−1(Im), since h is a minimizer.

2.3 The case p = ∞

In this section we shall prove that G∞,k is proximinal. We start with a lemma.

Lemma 2.8. Let (Ω,F, µ) be a measure space and f ∈ L∞(Ω,F, µ). Then, for all k ≥ 1, we have
that D∞,k(f) = ηk(f) where

ηk(f) = inf
h=f a.e

inf{α > 0 | h(Ω) can be covered by at most k closed balls of radius α}.

Proof. Let ε > 0 and let g ∈ G∞,k such that ‖f−g‖∞ ≤ D∞,k(f)+ε. Write g =
∑k

i=1 ai1Ai
where

{Ai}1≤i≤k is a partition of Ω. For every i, the set Ci = {x ∈ Ai : |f(x) − ai| > ‖(f − g)1Ai
‖∞}

has measure 0 and therefore h = f1Ω\∪jCj
+

k∑
j=1

aj1Cj
satisfies h = f a.e. and

h(Ω) ⊂
k⋃

i=1

[ai − D∞,k(f)− ε, ai + D∞,k(f) + ε].

It follows that ηk(f) ≤ D∞,k(f) + ε and since ε is arbitrary, we obtain that ηk(f) ≤ D∞,k(f). To
prove the other inequality, let again ε > 0 and pick l ≤ k, a1, ..., al ∈ R and h = f a.e. such that

h(Ω) ⊂
l⋃

i=1

[ai − ηk(f)− ε, ai + ηk(f) + ε].

For 1 ≤ i ≤ l, define Ai = h−1([ai − ηk(f) − ε, ai + ηk(f) + ε]) ∈ F. Now define B1 = A1 and

Bi = Ai \
⋃i−1

j=1 Ai for i ∈ {2, ..., l}. Then {Bi}1≤i≤l is a partition of Ω. Defining g =
∑l

i=1 ai1Bi
∈

G∞,k, it is clear that ‖f − g‖∞ ≤ ηk(f) + ε. It follows that D∞,k(f) ≤ ηk(f) + ε and then
D∞,k(f) ≤ ηk(f).

Proposition 2.9. Let (Ω,F, µ) be a measure space. Then G∞,k is proximinal for all k ≥ 1.

Proof. For all n ∈ N, let αn = ηk(f) +
1
n . So, for all n ∈ N, there exist an1 , ..., a

n
ln

∈ R with

1 ≤ ln ≤ k and hn = f a.e. such that hn(Ω) ⊂
⋃ln

i=1[a
n
i − αn, a

n
i + αn]. Of course there exists i0

such that µ(h−1
n ([ani0 − αn, a

n
i0 + αn])) > 0. If for some i it holds µ(h−1([ani − αn, a

n
i + αn])) = 0,

we can redefine hn on a set of measure 0, to have hn(w) = ai0 for all w ∈ h−1
n ([ani −αn, a

n
i +αn]).

So, we can assume for all i it holds µ(h−1
n ([ani − αn, a

n
i + αn])) > 0. Consider

ti,n =
1

µ(h−1
n ([ani − αn, ani + αn]))

∫

h−1
n ([an

i −αn,an
i +αn])

hn(x) dµ(x) ∈ [ani − αn, a
n
i + αn],

which obviously satisfies |ti,n| ≤ ‖hn‖∞ = ‖f‖∞. Then, for all i, n, it holds

|ani | ≤ |ti,n|+ |ani − ti,n| ≤ ‖f‖∞ + αn ≤ ‖f‖∞ + ηk(f) + 1,
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which implies that the set {ani : 1 ≤ i ≤ ln n ∈ N} is bounded.
Considering a subsequence if necessary, we can suppose that ln = l ∈ {1, ..., k} for all n ∈ N. By

compactness and taking a further subsequence, we can also assume that ani → ai for all i ∈ {1, ..., l}.
Define

C = {ω ∈ Ω | ∀n ∈ N f(ω) = hn(ω)} ∈ F

and note that µ(Cc) = 0. Let us show that f(C) ⊂
⋃l

i=1[ai − ηk(f), ai + ηk(f)]. In fact, if ω ∈ C
then for all n ∈ N there exists i(ω, n) ∈ {1, ..., l} such that f(ω) = hn(ω) ∈ [ani(ω,n)−αn, a

n
i(ω,n)+αn].

There exists a subsequence φ(n) = φ(n)(ω) such that the sequence (i(ω, φ(n)))n is constant and

equal to some i0(ω) ∈ {1, ..., l}. It follows that f(ω) ∈ [ai0(ω) − ηk(f), ai0(ω) + ηk(f)] ⊂
⋃l

i=1[ai −

ηk(f), ai+ηk(f)]. Define h = f1C+t1Cc where t is any real belonging to
⋃l

i=1[ai−ηk(f), ai+ηk(f)].

We have that f = h a.e. and h(Ω) ⊂
⋃l

i=1[ai − ηk(f), ai + ηk(f)]. For 1 ≤ i ≤ l, define

Ai = h−1([ai − ηk(f), ai + ηk(f)]) ∈ F. Now define B1 = A1 and Bi = Ai \
⋃i−1

j=1 Ai for i ∈

{2, ..., l}. Then {Bi}1≤i≤l is a partition of Ω. Defining g =
∑l

i=1 ai1Bi
∈ G∞,k, it is clear that

‖f − g‖∞ = ‖h− g‖∞ ≤ ηk(f). Moreover, we have that D∞,k(f) = ηk(f) by the previous Lemma
and so we conclude that ‖f − g‖∞ = D∞,k(f).

2.4 Extra properties of minimizers and the sets (Gp,k)p,k

In this section we include some extra properties of the sets (Gp,k)p,k as well as some natural
questions like uniqueness of minimizers and the existence of a continuous selection for PGp,k

.
Let us start by proving that Gp,k is a closed set, for all p ≥ 1, k ≥ 1, something that it is not

straightforward to do. Nevertheless, this is a direct consequence of the previous results.

Corollary 2.10. Let (Ω,F, µ) be a measure space, p ∈ [1,∞] and k ≥ 1. Then Gp,k is closed.

Proof. Assume (gn)n ⊂ Gp,k converges in Lp(Ω,F, µ) to g. Then

inf{‖g − h‖p : h ∈ Gp,k} = 0.

From the previous results, there exists a minimizer h̄ ∈ Gp,k, that is g = h̄ a.e. and the result is
shown.

A question that appears when proving the existence of minimizers is the following. Assume
there exists a best approximation of f by an element of Gp,k which is in fact an element of Gp,m for
some m < k, then it is natural to think that f should belong to Gp,m. This is true when p ∈ [1,∞)
and it is not true for p = ∞. Before doing that we require the following lemma.

Lemma 2.11. Assume that f ∈ Lp(Ω,F, µ), for 1 ≤ p < ∞, and A = f−1(I) is a set of positive
and finite measure, where I is an interval. Assume b is a p-th mean of f on A, then b ∈ Ī.

Proof. Assume the interval Ī = [c, d], where c, d ∈ R and let us prove that b ≥ c. If c = −∞
it is clear that c < b. So assume c is finite. By contradiction, if b < c we have |f(x) − b| =
f(x)− c+(c− b) > f(x)− c = |f(x)− c|, for all x ∈ f−1(I) and then, since µ(f−1(I)) > 0, we get

∫

f−1(I)

|f(x)− b|p dµ(x) >

∫

f−1(I)

|f(x)− c|p dµ(x),

which is contradiction. Similarly, it is shown that b ≤ d.

Proposition 2.12. Assume f ∈ Lp(Ω,F, µ) with p ∈ [1,∞). Let m, k ∈ N such that 1 ≤ m < k.
Suppose that there exists g ∈ Gp,m ∩ PGp,k

(f). Then f ∈ Gp,m.
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Proof. Suppose that the measure is finite. We can assume that

g =

r∑

i=1

bi1f−1(Ii),

where r ≤ m, {Ii}1≤i≤r is a family of disjoint intervals such that {f−1(Ii)}1≤i≤r is a partition
of Ω and b1 < ... < br. Suppose by contradiction that f /∈ Gp,m. Then in particular it holds
that µ(f−1({b1, ..., br}c) > 0. Since Θ = {b1, ..., br}c is open, it is a countable union of open
intervals (Jn)n and therefore for some n0 we should have µ(f−1(Jn0)) > 0. By the continuity of
the measure, there exists a closed bounded interval J ⊂ Jn0 such that µ(f−1(J)) > 0, and therefore
µ(f−1(J ∩ Ii0 )) > 0, for some i0. Hence, we obtain

∫

f−1(Ii0∩J)

|f −Mp(f, f
−1(Ii0 ∩ J))|p dµ(x) <

∫

f−1(Ii0∩J)

|f − bi0 |
p dµ(x),

since an equality in the previous formula would imply that bi0 ∈ Ii0 ∩ J ⊂ J ⊂ {b1, ..., br}c, by the
previous Lemma. If we define

h =
r∑

i=1,i6=i0

bi1f−1(Ii) + bi01f−1(Ii0∩Jc) +Mp(f, f
−1(Ii0 ∩ J))1f−1(Ii0∩J) ∈ Gp,r+1 ⊂ Gp,k,

we have that ‖f − h‖p < ‖f − g‖p which contradicts the minimality of g. We conclude that
f ∈ Gp,m.

In case the measure is infinite, with the same notation as above, we know that bi1 = 0 for
some i1. As above there exists a closed and bounded interval J ⊂ {b1, ..., br}c ⊂ {0}c, such that
µ(f−1(J)) > 0. Without loss of generality we can assume that J ⊂ [a,∞), for some a > 0. Then

µ(f−1(J))ap ≤ ‖f‖p,

proving that f−1(J) has finite and positive measure. The argument now goes as in the case of
finite measure.

The following result shows that, for p ∈ [1,∞), the error in the approximation by functions in
Gp,k decreases strictly with k until eventually reaching zero.

Corollary 2.13. Assume that f ∈ Lp(Ω,F, µ) with p ∈ [1,∞) and consider Dp,∞(f) = 0. Define
k∗ = min{k : Dp,k(f) = 0} ∈ [1,∞]. Then, (Dp,k(f))k≤k∗ is strictly decreasing and Dp,k(f) = 0
for all k ≥ k∗, that is

k∗ = min{k : Dp,k+1(f) = Dp,k(f)} = min{k : Dp,k(f) = 0}.

The previous results are not true for p = ∞. In fact, we have the following example:

Example. Consider the Lebesgue measure in [0, 1], the function

f(x) =

{
x for x /∈ (13 ,

2
3 )

1
3 for x ∈ (13 ,

2
3 )

and k = 3. It is not difficult to show that D∞,3(f) =
1
6 , where there are multiple minimizers, for

example

h =
1

6
1[0, 13 ]

+
1

2
1( 1

3 ,
2
3 )

+
5

6
1[ 23 ,1]

is a minimizer, but also

g =
1

6
1[0, 23 )

+
5

6
1[ 23 ,1]

∈ G∞,2

is a minimizer, in particular D∞,3(f) = D∞,2(f) > 0. Nevertheless, f /∈ G∞,k for all k. This also
shows that G∞,3 is not Chebyschev.
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In Proposition 2.6, we have shown that under certain conditions on f , there exists a unique
minimizer. An important question then is if Gp,k is Chebyschev, that is, if there is a unique
minimizer for all f . As we have seen in the previous example this is not true for p = ∞, and we
complement this for all p.

Example. Consider again the Lebesgue measure in [0, 1]. Then Gp,2 is not Chebyshev for any
p ∈ [1,∞]. To see that, let f = −1[0, 13 )

+ 01[ 13 ,
2
3 )

+ 1[ 23 ,1]
. A possible minimizer in G2,2 has the

form g = a1f−1((−∞,r2))+b1f−1([r2,∞]), for suitable a, b, r2 (see Theorem 2.3). If r2 ≤ −1 or r2 > 1,

a candidate to be a minimizer is g1 = 0. For −1 < r2 ≤ 0 the candidate is g2 = −1[0, 13 )
+ 1

21[ 13 ,1]
.

Finally, for 0 < r2 < 1 the candidate is g3 = − 1
21[0, 23 )

+ 1[ 23 ,1]
. The corresponding errors are

‖f − g1‖
2
2 =

2

3
, ‖f − g2‖

2
2 = ‖f − g3‖

2
2 =

1

6
,

showing that g2 and g3 are two minimizers and then G2,2 is not Chebyschev. Finally, for every
p ∈ [1,∞] both g2 and g3 are minimizers in Gp,2, showing that this set is not Chebyschev for any
p. Moreover, for 1 < p < ∞, it can be proved that g2, g3 are the only minimizers. For p = 1, there
is a continuum of minimizers since

ga = −1[0, 13 )
+ a1[ 13 ,1]

is a minimizer for all a ∈ [0, 1]. For p = ∞, there is also a continuum of minimizers since

hb = b1[0, 13 )
+

1

2
1[ 13 ,1]

is a minimizer for all b ∈ [−3
2 , −1

2 ].

Remark. We have proved that Gp,k is proximinal and closed for all k ≥ 1 and p ∈ [1,∞]. However,
Gp,k is not Chebyshev in general as we have shown in the previous examples. Then, it is natural
to ask if PGp,k

admits a continuous selection. If such continuous selection exists, then Gp,k has to
be almost-convex (see Lemma 5 in [14]). Remember that a subset K of a Banach space is said to
be almost-convex (see [14]) if for every closed ball B such that K ∩ B = ∅, there exists a closed
ball B′ of arbitrary large radius such that K ∩ B′ = ∅ and B ⊂ B′. If p ∈ (1,∞), a subset K is
almost-convex if and only if K is convex (see Lemma 2 in [14]). So, the question is if Gp,k can be
convex. For k ≥ 2 and p < ∞, Gp,k is convex if and only if Lp(Ω,F, µ) is finite dimensional and
Lp(Ω,F, µ)) = Gp,k. Indeed, assume k ≥ 2 and that Gp,k is convex. Then it is direct to show that
Gp,k is a vector space, because it is homogeneous. Then Gp,ℓ = Gp,k, for all ℓ ≥ k. This is done by

induction, so the only interesting case is ℓ = k + 1. Take g =
∑k+1

i=1 ai1Ai
, which can be seen as

the sum of three elements g1, g2, g3 ∈ Gp,k

g1 =
k−1∑

i=1

ai1Ai
+ 01Ak∪Ak+1

, g2 = ak1Ak
+ 01∪j 6=kAj

, g3 = ak+11Ak+1
+ 01∪j 6=k+1Aj

.

Therefore, Gp,k = ∪ℓGp,l is dense and closed in Lp(Ω,F, µ), which implies Gp,k = Lp(Ω,F, µ). The
conclusion is that the unit ball of Lp(Ω,F, µ) is UA and then Lp(Ω,F, µ) is finite dimensional (see
Theorem 4.7 in Section 4.3).

3 The p-variation

In this part we introduce a new notion of variation for functions in Lp(Ω,F, µ). There are sev-
eral notions of variation or oscillation for functions. Our notion notion could be contrasted with
the definition of oscillation given in [4] (p.296), which helps to characterize compact sets in L1.
However, both concepts are not comparable, in general.
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Definition 3.1. Let p ∈ [1,∞). For f ∈ Lp(Ω,F, µ) and A a measurable set of finite measure, we
define varp(f,A), the p-variation of f in A, as

varp(f,A)
p =

{
1

µ(A)

∫
A×A

|f(x) − f(y)|p dµ(x)dµ(y) if µ(A) > 0

0 otherwise.

Given P = (Ai)i, a finite collection of disjoint measurable sets each one of finite measure, which
we also assume it contains at least one set of positive measure, we define the total p-variation of f
in P as

varp(f,P) =

(
∑

i

varp(f,Ai)
p

)1/p

=


 ∑

i: µ(Ai)>0

1

µ(Ai)

∫

Ai×Ai

|f(x)− f(y)|p dµ(x)dµ(y)




1/p

.

For a measurable set A of finite measure, we define the k-th total p-variation of f as

Varp,k(f,A) = inf
{
varp(f,P) : P is a partition of A, |P| ≤ k

}

where the infimum is taken over the set of finite measurable partitions of A consisting of at most
k measurable sets. Finally, we define the total p-th variation of f as

Varp,k(f) = sup
A∈F

µ(A)<∞

Varp,k(f,A)

Note that if µ is finite then Varp,k(f,Ω) ≤ Varp,k(f), and it is not clear if both measures of total
variation are equivalent, something that we study below (see Proposition 3.3).

Remark. Notice that the sets in P that have measure 0 can be removed by gluing them to an
element of P with positive measure. We redefine a new collection P̃, which has fewer elements and
varp(f,P) = varp(f, P̃). So, in what follows, we can always assume that P is a collection with sets
of positive and finite measure.

We compile some basic properties of Varp,k(•,Ω) and Varp,k(•) in the next result:

Proposition 3.1. Let (Ω,F, µ) be a measure space and p ∈ [1,∞). Then (Varp,k)k≥1 is a decreas-
ing family of continuous semi-norms on Lp(Ω,F, µ) such that Varp,k(•) ≤ 2‖ • ‖p for all k ≥ 1.
The same properties hold for (Varp,k(•,Ω))k≥1, in the case µ is a finite measure.

Proof. The fact that Varp,k is a semi-norm is easy and is left to the reader. The monotony of
(Varp,k)k≥1 follows directly from the definition. Let f ∈ Lp(Ω,F, µ) and A be a measurable
set of finite and positive measure. First note that varp(f,A) ≤ 2‖f1A‖p. In fact, using that
(a+ b)p ≤ 2p−1(ap + bp) holds for all nonnegative numbers a, b and Fubini’s theorem, we have that

varp(f,A)
p =

1

µ(A)

∫

A×A

|f(x)− f(y)|p dµ(x)dµ(y)

≤
2p−1

µ(A)

∫

A×A

|f(x)|p + |f(y)|pdµ(x)dµ(y) (3.1)

= 2p‖f1A‖
p
p.

It follows that if P is a finite measurable partition of A then Varp(f,P) ≤ 2‖f1A‖p and therefore,
we deduce that Varp,k(f) ≤ 2‖f‖p. In particular, Varp,k is continuous. In case the measure is
finite we have

Varp,k(f,Ω) ≤ Varp,k(f) ≤ 2‖f‖p.
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Remark. Assume that µ is a finite measure. We notice that for a fixed function f ∈ Lp(Ω,F, µ),
we have limk→∞ Varp,k(f,Ω) = 0. Indeed, let k ∈ N and define the sets

Ai =

{
x :

i

k
≤ f(x) <

i + 1

k

}
, for i ∈ {−k2, ..., k2 − 2},

Ak2−1 =
{
x : k − 1

k ≤ f(x) ≤ k
}

and Ak2 = {x : |f(x)| > k}. Then, we have, for all i ∈
{−k2, ..., k2 − 1}

varp(f,Ai) ≤
µ(Ai)

1
p

k

and for i = k2

varp(f,Ak2 ) ≤ 2‖f1Ak2‖p.

Thus,

Varp,k(f,Ω)
p ≤

1

kp
µ(Ω) + 2p

∫

|f |>k

|f(x)|p dµ(x),

and then limk Varp,k(f,Ω) = 0.
We also notice that the same property holds for (Varp,k(f))k, in general measure spaces, but

its proof is more involved and we postponed to Corollary 3.4.

The following lemma proves that the variation of a function can always be computed on a
σ-finite set if the measure has no atoms of infinite mass.

Lemma 3.2. Assume (Ω,F, µ) is a measurable space such that µ has no atoms of infinite mass
and p ∈ [1,∞). Let f ∈ Lp(Ω,F, µ) and fix k ≥ 1. Then there exists an increasing sequence of
finite measure sets (Ω∗

n)n ⊂ F such that

Varp,k(f) = lim
n

Varp,k,n(f) = Varp,k,∗(f),

where

• Varp,k,∗(f) is the total variation of f |Ω∗ computed in (Ω∗,F|Ω∗ , µ|Ω∗) with Ω∗ =
⋃

n Ω
∗
n;

• Varp,k,n(f) is the total variation of f |Ω∗
n
computed in (Ω∗

n,F|Ω∗
n
, µ|Ω∗

n
).

Proof. We can obviously suppose that µ is infinite. Define F = {x : f(x) = 0}. In case F has

finite measure, we define D̃ = F . If F has infinite measure, we consider a subset D̃ ⊂ F which is
σ-finite and of infinite measure. Note that such a set exists. Indeed, take

a = sup
D∈F,D⊂F,µ(D)<∞

µ(D).

Let us prove that a = ∞. Consider a sequence (Dl)l of subsets of F , each one of finite measure

such that liml µ(Dl) = a. It is clear that D̃l = ∪i≤lDi is an increasing sequence of sets of finite

measure, included in F which satisfies µ(Dl) ≤ µ(D̃l), proving that µ(D̃l) ↑ a and D̃ = ∪lD̃l

satisfies µ(D̃) = a. If a is finite then, F \ D̃ has infinite measure. By hypothesis this set contains a

set H of finite and positive measure. Then µ(D̃∪H) = µ(D̃)+µ(H) > a, which is a contradiction.
Now consider a sequence of sets of finite measure (An)n such that

Varp,k(f,An) ≥ Varp,k(f)−
1

n
.
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For everym ≥ 1 the set Cm =
{
x : |f(x)| > 1

m

}
has finite measure. The set Ω∗ = ∪nAn∪∪mCm∪D̃

is σ-finite and it has infinite measure, because µ(
⋃

mCm ∪ F ) = µ(Ω) = ∞. We consider

Ω∗
n =

{
∪i≤nAi ∪ Ci ∪ D̃ if µ(D̃) < ∞

∪i≤nAi ∪ Ci ∪ D̃i if µ(D̃) = ∞
,

which is an increasing sequence of sets of finite and positive measure, such that Ω∗
n ↑ Ω∗. Define

Varp,k,n(f) the total variation of f |Ω∗
n
computed in (Ω∗

n,F|Ω∗
n
, µ|Ω∗

n
), that is

Varp,k,n(f) = sup
A∈F,A⊂Ω∗

n

Varp,k(f |Ω∗
n
, A) = sup

A∈F,A⊂Ω∗
n

Varp,k(f,A) ≤ Varp,k(f).

Similarly, we define Varp,k,∗(f), which is the total variation of f |Ω∗ computed in (Ω∗,F|Ω∗ , µ|Ω∗).
It is clear that for every n, by construction,

Varp,k(f)−
1

n
≤ Varp,k(f,An) ≤ Varp,k,n(f) ≤ Varp,k,∗(f) ≤ Varp,k(f),

and also that (Varp,k,n(f))n is increasing, showing that

Varp,k,n(f) ↑ Varp,k(f)

and Varp,k,∗(f) = Varp,k(f).

The next proposition shows that the variation and Dp,k have the same behaviour. This will be
a fundamental tool to caracterize the uniform approximability of sets.

Proposition 3.3. Assume (Ω,F, µ) is a measurable space and p ∈ [1,∞). For any k ≥ 1 and any
f ∈ Lp(Ω,F, µ), we have

(i)
Dp,k+1(f) ≤ Varp,k(f) ≤ 2Dp,k(f).

(ii) If the measure µ is finite, it holds

Dp,k(f) ≤ Varp,k(f,Ω) ≤ Varp,k(f) ≤ 2Dp,k(f) ≤ 2Varp,k(f,Ω).

(iii) If µ has no atoms of infinite mass, we have that

Dp,k(f) ≤ Varp,k(f) ≤ 2Dp,k(f).

Proof. (i) For the upper bound, consider g ∈ Gk ∩ Lp(Ω,F, µ) a function such that

Dp,k(f)
p = ‖f − g‖pp.

Assume that g =
∑k

i=1 ci1Ai
, where {Ai}1≤i≤k is a finite partition of Ω. Clearly if µ(Ai) = ∞,

then ci = 0. For A a set of finite measure define a partition of A by P = {A∩Ai}1≤i≤k. Using that
(a+ b)p ≤ 2p−1(ap + bp) for all positive numbers a and b, we get for all i such that µ(A ∩ Ai) > 0

varp(f,A∩Ai)
p =

1

µ(A ∩ Ai)

∫

(A∩Ai)×(A∩Ai)

|f(x)−f(y)|pdµ(x)dµ(y) ≤ 2p
∫

A∩Ai

|f(z)−ci|
pdµ(z).

Then,

varp(f,P)
p ≤ 2p

∑

i

∫

A∩Ai

|f(z)− ci|
pdµ(z) ≤ 2p‖f − g‖pp.
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Therefore, we get
Varp,k(f,A) ≤ 2‖f − g‖p = 2Dp,k(f).

For the lower bound let ε > 0 and take a set A of finite measure such that ‖f1Ac‖pp < ε. By
definition of Varp,k(f,A), there exists a finite partition P = {Ai}1≤i≤n of A, with n ≤ k, such that
(we assume all the sets in P has positive measure)

varp(f,P)
p =

∑

i

1

µ(Ai)

∫

Ai×Ai

|f(x)− f(y)|pdµ(x)dµ(y)

≤ (Varp,k(f,A))
p
+ ε ≤ (Varp,k(f))

p
+ ε.

For every i ≤ n by the definition of Mp(f,Ai), we have

1Ai
(y)

∫

Ai

|f(x)−Mp(f,Ai)|
p dµ(x) ≤ 1Ai

(y)

∫

Ai

|f(x)− f(y)|p dµ(x),

and therefore, integrating over y we get

∫

Ai

|f(x)−Mp(f,Ai)|
p dµ(x) ≤

1

µ(Ai)

∫

Ai×Ai

|f(x)− f(y)|p dµ(x),

and then ∑

i

∫

Ai

|f(x)−Mp(f,Ai)|
p dµ(x) ≤ varp(f,P)

p.

Finally, define g =
∑

i Mp(h,Ai)1Ai
+ 01Ac ∈ Gp,k+1 ∩ Lp(Ω,F, µ) to obtain that

‖f1A − g‖pp ≤ varp(f,P)
p ≤ (Varp,k(f))

p
+ ε

To finish this part, notice that

‖f − g‖pp = ‖f1A − g1A‖
p
p + ‖f1Ac − g1Ac‖pp

= ‖f1A − g‖pp + ‖f1Ac‖pp ≤ (Varp,k(f))
p
+ 2ε

which implies that Dp,k+1(f) ≤ Varp,k(f).

(ii) The proof is similar to (i). The upper bound follows immediately from the lower bound to
be proved. For the lower estimate, in the above proof we can take A = Ω.

(iii) Let (Ω∗
n)n ⊂ F and Ω∗ =

⋃
n Ω

∗
n given by Lemma 3.2, such that

Varp,k(f) = lim
n

Varp,k,n(f) = Varp,k,∗(f).

We first assume that f is bounded by some constant C > 0. Then, using the result we have
shown for the finite measure case, we have on Ω∗

n

inf{‖f |Ω∗
n
− g‖p : g ∈ Gp,k(Ω

∗
n)} ≤ Varp,k,n(f).

By Theorem 2.3, the left hand side is attained at some function gn defined in Ω∗
n, which is also

bounded by C. We can assume this minimizer has the following form

gn =

q(n)∑

i=1

bi,n1Bi,n
,
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where {Bi,n}1≤i≤q(n) is a partition of sets of positive measure of Ω∗
n and

−C ≤ b1,n < ... < bq(n),n ≤ C,

r1,n = −C − 1, rq(n)+1,n = C + 1, ri,n =
bi−1,n + bi,n

2
for i ∈ {2, ..., q(n)},

Bi,n = f−1([ri,n, ri+1,n))∩Ω∗
n for i ∈ {1, ..., q(n)−1} and Bq(n),n = f−1([rq(n),n, rq(n)+1,n])∩Ω∗

n,

bi,n = Mp(f,Bi,n) for i ∈ {1, ..., q(n)}

and q(n) ≤ k. As before, we can assume by passing to a subsequence that q(n) = q is constant and
the vector vn = (r1,n, b1,n, r2,n, ..., rq,n, bq,n, rq+1,n) converges to a vector in [−C−1, C+1]3q, which
we denote by v = (r1, b1, r2, ..., rq, bq, rq+1). Also we denote by L = (b1, ..., bq) and w1 < ... < wm

the different values in L, where m ≤ q.
Let us show that wt∗ = 0 for some t∗. For that, remark that Ω∗

n = ∪q
i=1Bi,n and therefore,

there exists an index i(n), such that

µ(Bi(n),n) ≥
1

q
µ(Ω∗

n),

showing that limn µ(Bi(n),n) = ∞. We can assume that i(n) = i is constant, by passing to a
subsequence if necessary. Using the optimality of bi,n = Mp(f,Bi,n), we get

|bi,n|pµ(Bi,n) ≤ 2p−1
(∫

Bi,n
|f(x)−Mp(f,Bi,n)|p dµ(x) +

∫
Bi,n

|f(x)|p dµ(x)
)
≤ 2p‖f‖pp.

This shows that bi,n → bi = 0, and the claim holds by taking t∗ such that wt∗ = bi = 0.
Consider It = {j ∈ {1, ...q} : bj = wt} for t ∈ {1, ...,m}. Notice that each It is a nonempty

interval of I = {1, ..., q}. Assume that It = {l(t), ..., u(t)}, then we have rl(t)+1,n → wt, ..., ru(t),n →
wt, bl(t),n → wt, ..., bu(t),n → wt and

lim
n

rl(t),n = rl(t) =
bl(t)−1 + wt

2
< wt <

bu(t)+1 + wt

2
= ru(t)+1 = lim

n
ru(t)+1,n,

with the obvious modifications in the case l(t) = 1 or u(t) = q. By construction we have for all
i < l(t∗) it holds ri+1,n ≤ rl(t∗),n <

rl(t∗)

2 = r−, for all large n, because rl(t∗) < 0. Similarly, for all

i ≥ u(t∗) we have ri+1,n ≥ ru(t∗)+1,n >
ru(t∗)+1

2 = r+ > 0, for all large n. This implies that, for
large n ⋃

i<l(t∗)

Bi,n ⊂ f−1([−C − 1, r−]),

which is a set of finite measure: µ(f−1([−C − 1, r−])) < ∞. Consider a modification of gn given
by

ℓn =
∑

i/∈[l(t∗),u(t∗)]

bi1Bi,n
+

∑

l(t∗)≤i≤u(t∗)

bi,n1Bi,n
.

We have ‖gn − ℓn‖p converges to zero. Indeed, this follows from the inequality

‖gn − ℓn‖
p
p =

∑
i/∈{l(t∗),...,u(t∗)}

|bi − bi,n|
pµ(Bi,n)

≤ maxj |bj − bj,n|pµ
(
f−1([−C − 1, r−]) ∪ f−1([r+, C + 1])

)
→ 0.

Using the triangular inequality and the optimality of gn, we get

‖f |Ω∗
n
− gn‖p ≤ ‖f |Ω∗

n
− ℓn‖p ≤ ‖f |Ω∗

n
− gn‖p + ‖gn − ℓn‖p,
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and we plan to use Fatou’s Lemma. Before doing that, we will fix a subsequence with certain
monotonic properties. Since r1,n, rq+1,n are constant, there is no restriction here. For i ∈ {2, ..., q}
we choose a subsequence in the following order. If (r2,n)n has an strictly decreasing subsequence,
we consider this as n(2) and define T (2) = sd (for strictly decreasing) otherwise, we consider n(2) so
that (r2,n)n is increasing along this subsequence and T (2) = in (for increasing). Now, we construct
n(3). If (r3,n(2))n(2) has an strictly decreasing subsequence we take this as n(3) and T (3) = sd,

otherwise we take n(3) so that (r3,n(3))n(3) is increasing, and T (3) = in. We continue in this way

until we define n(q). We put T (1) = in and T (q + 1) = sd. We call n′ = n(q). In this way we have
the a.e. convergence

1f−1([ri,n′ ,ri+1,n′))∩Ω∗
n′

→





1f−1([ri,ri+1])∩Ω∗ if T (i) = in, T (i+ 1) = sd

1f−1([ri,ri+1))∩Ω∗ if T (i) = in, T (i+ 1) = in

1f−1((ri,ri+1])∩Ω∗ if T (i) = sd, T (i+ 1) = sd

1f−1((ri,ri+1))∩Ω∗ if T (i) = sd, T (i+ 1) = in

We call Ji the interval, with extremes ri, ri+1, according to the above classification. An important
remark is that ∪iJi = [−C − 1, C + 1].

Using the Dominated Convergence Theorem we conclude that

∑

i/∈{l(t∗),...,u(t∗)}

∫

Bi,n′

|f(x)− bi|
p dµ(x) →

∑

i/∈{l(t∗),...,u(t∗)}

∫

f−1(Ji)

|f(x)− bi|
p dµ(x).

On the other hand, using Fatou’s Lemma we conclude

lim inf
n′

∑
i∈{l(t∗),...,u(t∗)}

∫
Bi,n′

|f(x)− bi,n′ |p dµ(x) ≥
∫
lim inf

n′
|f(x)− gn(x)|p1Bn′ dµ(x)

≥
∫
|f(x)|p1f−1(J̄)∩Ω∗ dµ(x).

where Bn′ =
⋃

i∈{l(t∗),...,u(t∗)} Bi,n′ and J̃ =
⋃

i∈{l(t∗),...,u(t∗)} Ji. Here, we have used that for all
x ∈ Bn′ we have

|gn′(x)| ≤ max
i∈{l(t∗),...,u(t∗)}

|bi,n′ | → 0.

Hence,
|f(x)|1Bi,n′ ≤ |f(x)− gn′(x)|1Bi,n′ +maxi∈{l(t∗),...,u(t∗)} |bi,n′ |1Bi,n′

|f(x)− gn′(x)|1Bi,n′ ≤ |f(x)|1Bi,n′ +maxi∈{l(t∗),...,u(t∗)} |bi,n′ |1Bi,n′ ,

showing that
lim inf

n′
|f(x)− gn′(x)|1Bi,n′ = |f(x)| lim inf

n′
1Bi,n′ .

Putting all together, we conclude that

Varp,k(f) ≥ lim inf
n′

‖f |Ω∗
n′

− gn′‖p ≥ ‖f |Ω∗ − ℓ‖p,

where the function ℓ ∈ Gp,q(Ω
∗) is defined on Ω∗ as

ℓ =
∑

i/∈{l(t∗),...,u(t∗)}

bi1f−1(Ji)∩Ω∗ + 01f−1(J̃)∩Ω∗ .

Notice that for i /∈ {l(t∗), ..., u(t∗)}, we have µ(f−1(Ji)∩Ω∗) ≤ µ
(
f−1([−C − 1, r−] ∪ f−1([r+, C + 1])

)
<

∞ and so µ(f−1(J̃) ∩ Ω∗) = ∞.
Since bi = 0 for some i and f = 0 outside Ω∗, we can extend ℓ by 0 outside Ω∗ and still this

extension ℓ̄ belongs to Gp,q ⊂ Gp,k. So, we get that

Dp,k(f) ≤ ‖f − ℓ̄‖p ≤ Varp,k(f).
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and the result is shown in the case f is bounded.
Now, for the general case, consider ε > 0 and a large C > 0, such that ‖f1|f |>C‖p ≤ ε. From

the domination Varp,k(•) ≤ 2‖f‖p, and the seminorm property of Varp,k we conclude

Varp,k(f1|f |≤C) ≤ Varp,k(f) + Varp,k(f − f1|f |≤C) ≤ Varp,k(f) + 2ε.

Using what we have shown, we get there exists and ℓ ∈ Gp,k such that

‖f1|f |≤C − ℓ‖p ≤ Varp,k(f1|f |≤C) ≤ Varp,k(f) + 2ε.

On the other hand, we have

‖f − ℓ‖p ≤ ‖f1|f |≤C − ℓ‖p + ‖f1|f |≤C − f‖p ≤ ‖f1|f |≤C − ℓ‖p + ε,

which shows that
Dp,k(f) ≤ Varp,k(f) + 3ε,

and the result is shown.

Remark. Examples that satisfies (iii) in the previous Proposition are the σ-finite measures. In
particular, it can be applied to ℓp = Lp(N,P(N), δ), where δ is the counting measure. But, there
are non σ-finite measures that satisfies that hypothesis as well, the counting measures on any
uncountable space.

Corollary 3.4. Assume (Ω,F, µ) is a measurable space and p ∈ [1,∞). For all f ∈ Lp(Ω,F, µ) it
holds that lim

k→∞
Varp,k(f) = 0.

Proof. This follows directly from the previous proposition since limk Dp,k(f) = 0 by density of the
simple functions.

A question of some interest is when Varp,k(f) = 0, for a function f ∈ Lp(Ω,F, µ). Clearly, if
f ∈ Gp,k then Varp,k(f) = 0. The next result answers the converse.

Proposition 3.5. Let (Ω,F, µ) be a measure space and p ∈ [1,∞). Let k ≥ 1. We have

(i) if µ is a general measure, then Gp,k ⊂ Var−1
p,k({0}) ⊂ Gp,k+1.

(ii) if µ has no atoms of infinite mass, then Var−1
p,k({0}) = Gp,k.

Proof. (i). Let f ∈ Lp(Ω,F, µ) satisfying Varp,k(f) = 0. From (i) of Proposition 3.3, we have

Dp,k+1(f) ≤ Varp,k(f) = 0,

which implies that f = g a.e. for some g ∈ Gp,k+1 (see Theorems 2.3 and 2.7). The other inclusion
is obvious.

(ii) The proof is similar to (i) and uses (iii) in Proposition 3.3.

Remark. Notice that if µ has an atom of infinite mass it may happens that Varp,k(f) = 0, but
f ∈ Gp,k+1 \ Gp,k. Indeed, assume Ω = {1, ..., k + 1}, where the mass of each atom in {1, ..., k} is
one and the mass at atom {k+1} is infinite. Every function in Lp(Ω,F, µ) for p ∈ [1,∞) satisfies
f(k + 1) = 0. The function f given by f(i) = i for i ∈ {1, ..., k} and f(k + 1) = 0 belongs to
Gp,k+1 \ Gp,k. Nevertheless, Varp,k(f) = 0, which is exactly the case (i) in Proposition 3.5. Also,
this example explains why the lower bound in Proposition 3.3 (i) is computed over Gp,k+1 and not
over Gp,k, in general.
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4 Uniform approximability

In this section, we investigate some properties of uniformly approximable sets (see Definition 1.1).

4.1 Uniform integrability

In this subsection, we prove that the class of uniform approximable sets is strictly larger than
the class of uniform integrable sets. Assume that (Ω,F, µ) is a measure space and let p ∈ [1,∞).
Remember that a subset A ⊂ Lp(Ω,F, µ) is uniformly integrable (in short, UI) if

inf
g∈Lp

+(Ω,F,µ)
sup
f∈A

∫

|f |>g

|f(x)|p dµ(x) = 0,

where Lp
+(Ω,F, µ) is the set of nonnegative functions in Lp(Ω,F, µ). Note that if µ is a finite

measure, then this definition coincides with the usual one, that is A is UI in Lp(Ω,F, µ) if and
only if (see [7], page 254)

lim
a→∞

sup
f∈A

∫

|f(x)|≥a

|fp(x)| dµ(x) = 0.

Proposition 4.1. Let (Ω,F, µ) be a measure space and p ∈ [1,+∞). Assume A ⊂ Lp(Ω,F, µ) is
UI. Then, A is UA.

Proof. Consider ε > 0, and take g ∈ Lp
+(Ω,F, µ), such that

sup
f∈A

∫

|f |>g

|f(x)|p dµ(x) ≤
εp

3
.

Fix f ∈ A . Consider n ∈ N, large enough such that
∫
g>n

gp(x) dµ(x) +
∫
g< 1

n

gp(x) dµ(x) ≤ εp

3 .

The set Bn =
{
x : 1

n ≤ g(x) ≤ n
}
∩ {x : |f(x)| ≤ g(x)} ⊂ Cn =

{
x : 1

n ≤ g(x) ≤ n
}
has finite

measure. Notice that over Bn we have |f | ≤ n. Take now k ≥ 2 such that
(
n
k

)p
µ(Cn) ≤

εp

3 and
define

Ai = Bn ∩

{
x :

ni

k
≤ f(x) <

n(i+ 1)

k

}

for i ∈ {−k, ..., k − 2}, Ak−1 = Bn ∩
{
x : n(k−1)

k ≤ f(x) ≤ n
}
and

h =
k−1∑

i=−k

in

k
1Ai

+ 01Bc
n
∈ Gp,2k+1.

Then, we have

∫
Bn

|f(x) − h(x)|p dµ(x) =
k−1∑
i=−k

∫
Ai

|f(x)− h(x)|p dµ(x) ≤
(
n
k

)p k−1∑
i=−k

µ(Ai)

≤
(
n
k

)p
µ(Bn) ≤

(
n
k

)p
µ(Cn) ≤

εp

3 .

On the other hand, Bc
n = (Cc

n ∩ {x : |f(x)| ≤ g(x)}) ∪ {x : |f(x)| > g(x)} and so

∫
Bc

n
|f(x)− h(x)|p dµ(x) =

∫
Bc

n
|f(x)|p dµ(x) =

∫
Cc

n∩|f |≤g |f(x)|
p dµ(x) +

∫
|f |>g |f(x)|

p dµ(x)

≤
∫
Cc

n
gp(x) dµ(x) +

∫
|f |>g

|f(x)|p dµ(x) ≤ 2εp

3

Finally, we have ‖f − h‖p ≤ ε, and the result is shown.
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Remark. Note that the converse of Proposition 4.1 is not true in general. In fact Gp,2 is UA,
but this set is not UI in Lp(Ω,F, µ) in general. Indeed, assume the space has finite measure and
there exists a sequence (Bn)n of measurable sets with positive measure such that µ(Bn) → 0. Then
fn = µ(Bn)

−1/p
1Bn

belongs to Gp,2, each one has norm 1 and the subfamily (fn)n is not UI, since
for all a ≥ 0, we have

sup
n

∫

fn>a

fp
n dµ = 1.

The conclusion is that UA is weaker than UI.

Remark. If (Ω,F, µ) is a finite measure space, the following examples are UI in Lp(Ω,F, µ), for
p ∈ [1,∞),

- A is bounded in Lq(Ω,F, µ) for some q > p;

- A is bounded by a fixed function g ∈ Lp(Ω,F, µ).

The following result can be prove using the fact that totally boundedness implies UI in Lp(Ω,F, µ)
for p ∈ [1,∞). However, since the case p = ∞ needs a proof, we give a more direct argument:

Proposition 4.2. Let (Ω,F, µ) be a measure space and p ∈ [1,+∞]. If A is totally bounded in
Lp(Ω,F, µ) then A is UA.

Proof. Let ε > 0. There exist finitely many functions f1, ..., fn such that A ⊂
⋃n

j=1 B(fj , ε). By
density of the simple functions, there exist k ∈ N and gj ∈ Gp,k such that ‖fj − gj‖p ≤ ε for all
j ∈ {1, ..., n}. Now if f ∈ A then, there exists j0 = j0(f) ∈ {1, ..., n} such that ‖f − fj0‖p ≤ ε. It
follows that

‖f − gj0‖p ≤ ‖f − fj0‖p + ‖fj0 − gj0‖p ≤ 2ε

and the proof is complete.

4.2 Characterization of the uniform approximability

If M is a metric space, we recall that the covering numbers of M are defined for every ε > 0 by

N(M, ε) = inf {N ≥ 1 : M can be covered by N closed balls of radius ε} .

For more informations about covering numbers and its applications to Machine Learning, we refer
the reader to [15] and [2].

If (Ω,F, µ) is a measure space, we define the covering numbers of a measurable function f by

N(f, ε) = inf{N(g(Ω), ε) : g measurable function such that f = g a.e.}.

This notion allows us to caracterize the uniform approximability in L∞(Ω,F, µ) in terms of uni-
formly bounded covering numbers. Before doing that, we notice that if f ∈ L∞(Ω,F, µ), then
N(f, ε) < ∞. Indeed, we know that |f | ≤ ‖f‖∞ holds a.e., so by considering g = f1{|f |≤‖f‖∞}, we
have g = f a.e. and

N(f, ε) ≤
2

ε
‖f‖∞ + 1.

If f is a measurable function and N(f, ε) < ∞ then f ∈ L∞(Ω,F, µ). On the other hand, by
definition of infimum, there exists a measurable function g such that f = g a.e., and

N(f, ε) ≤ N(g(Ω), ε) ≤ N(f, ε) +
1

2
,

showing that N(f, ε) = N(g(Ω), ε).
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Theorem 4.3. Let (Ω,F, µ) be a measure space and let A ⊂ L∞(Ω,F, µ). The following assertions
are equivalent:

(i) A is UA;

(ii) supf∈A N(f, ε) < ∞ for all ε > 0.

In this case, we have that N∞,ε(A ) = supf∈A N(f, ε) for all ε > 0.

Proof. Let ε > 0 and suppose supf∈A N(f, ε) = ∞. Fix k ≥ 1 and choose f ∈ A such that
N(f, ε) ≥ 10(k + 1). Changing the representant of f is necessary, we can suppose that mε :=
N(f, ε) = N(f(Ω), ε). So there exists a collection J of closed balls {Ii = [ai, bi]}1≤i≤mε

, of radius
ε, such that

f(Ω) ⊂
mε⋃

i=1

Ii

Using the minimality of this covering each interval cannot be covered by the other intervals, so for
i 6= j we have Ii \ Ij 6= ∅. Consider the measurable sets Ai = f−1(Ii). We shall prove that the
minimality of J implies that µ(Ai) > 0. Indeed, assume that for some i we have µ(Ai) = 0. Take
any j 6= i (notice that we have assumed that mε is at least 10(k + 1) > 2) and a ∈ Ij \ Ii. The
measurable function

h = f1Ac
i
+ a1Ai

coincides with f up to measure 0 and h(Ω) ⊂
⋃
r 6=i

Ir , soN(h(Ω), ε) ≤ mε−1, which is a contradiction.

We say that a subcollection C ⊂ J is ε-separated if for two different intervals I, J ∈ C, we have
the distance between them d(I, J) is greater than ε. Notice that a collection with only one interval
from J is ε-separated. Take C∗ a maximal ε-separated subcollection with respect to inclusion. Now,
if I ∈ J\C∗ there exists an interval L = [a, b] ∈ C∗ such that d(I, L) ≤ ε, otherwise the maximality
of C∗ is contradicted. Then,

I ⊂ [a− 4ε, a− 2ε] ∪ [a− 2ε, a] ∪ [a, b] ∪ [b, b+ 2ε] ∪ [b+ 2ε, b+ 4ε],

showing that the collection

D = {[ai − 4ε, ai − 2ε], [ai − 2ε, ai], [ai, bi], [bi, bi + 2ε], [bi + 2ε, bi + 4ε] : [ai, bi] ∈ C∗},

is a covering of f(Ω) with closed balls of radius ε. Therefore

mε ≤ |D| ≤ 5|C∗|,

showing that n = |C∗| ≥ 1
5mε (here |C∗| is the cardinal of C∗).

Consider now g ∈ G∞,k. We say that an interval I ∈ C∗ is unmarked if d(g(Ω), I) > ε. There
are at least n− 2k ≥ 1

5mε − 2k = 2( 1
10mε − k) > 1 unmarked intervals in C∗. Consider Ii ∈ C∗ any

unmarked interval, then for all x ∈ Ai = f−1(Ii), we have

|f(x)− g(x)| > ε.

Since µ(Ai) > 0, we conclude that ‖f − g‖∞ > ε and therefore N∞,ε(A ) > mε

10 − 1, showing that
N∞,ε(A ) = ∞. So we have proved that (i) implies (ii).

Now, let us show that (ii) implies (i). So, we are assuming that Mε = supf∈A N(f, ε) < ∞ for
all ε > 0. Fix ε > 0 and let f ∈ A . Suppose that mε := N(f, ε) = N(f(Ω), ε) ≤ Mε. Again we
can write

f(Ω) ⊂
mε⋃

i=1

Ii
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where Ii = [ai, bi] are closed balls of radius ε. We assume that the left extremes are ordered
increasingly: a1 < a2 < ... < amε

. We define recursively ã1 = a1, b̃1 = b1 and for i ≥ 2

ãi = max{bi−1, ai}, b̃i = bi.

Define Ĩi = [ãi, b̃i] for i ∈ {1, ...,mε}. The fact that every interval Ii cannot be covered by the
intervals {Ij}j 6=i allows us to show the following facts about the new intervals {Ĩi}1≤i≤mε

∀i Ĩi = Ii \
i−1⋃
j=1

[aj , bj), ∀i
i⋃

j=1

Ij =
i⋃

j=1

Ĩj ,

int(Ĩi) = (ãi, b̃i) 6= ∅,

∀i < j : Ĩi ∩ Ĩj ⊂





∅ if j − i ≥ 2

{b̃i} if j = i+ 1

.

Thus, {Ĩi}1≤i≤mε
is a collection of closed balls of radii at most ε, that covers f(Ω), which are

disjoint except for consecutive intervals that can intersects at one extreme.

With this new intervals we can produce a partition of f(Ω), by choosing Î1 = Ĩ1 and for i ≥ 2

Îi =





(ãi, b̃i] if Ĩi ∩ Ĩi−1 6= ∅

Ĩi otherwise

We now define Âi = f−1(Îi), which is a partition of Ω (maybe some of them are empty). If x ∈ Âi

then f(x) ∈ Îi ⊂ Ii = [ai, bi] and therefore |f(x)− ai+bi
2 | ≤ ε. Define the simple function

g(x) =

mε∑

i=1

ai + bi
2

1Âi
,

that belongs to G∞,mε
and satisfies for all x ∈ Ω

|f(x)− g(x)| ≤ ε,

showing that ‖f − g‖∞ ≤ ε. We conclude that N∞,ε(A ) ≤ supf∈A N(f, ε).

To finish, we prove that N∞,ε(A ) = supf∈A N(f, ε). For that purpose consider k = N∞,ε(A ),
which means that for all f ∈ A , there exists g ∈ G∞,k, such that ‖f − g‖∞ ≤ ε. We assume that

g =
∑k

i=1 ci1Bi
, where (Bi)

k
i=1 is a partition of Ω. For any i ∈ {1, ..., k} we have

‖(f − ci)1Bi
‖∞ ≤ ‖f − g‖∞ ≤ ε,

which means that Ai = {x ∈ Bi : |f(x)−ci| > ε} is a measurable set of measure 0. Since µ(Ω) > 0,
not all the sets Bj can have measure 0, so we assume without loss of generality that µ(B1) > 0.

Consider B = Ω \
k⋃

i=1

Ai, h = f1B + c11Bc and g̃ = c11B1∪Bc +
∑k

i=2 ci1Bi\Ai
. We notice that

f = h a.e. and g̃ = g a.e. On the other hand, B1 ∪ Bc, B2 \ A2, ..., Bk \ Ak is a partition and
g̃ ∈ G∞,k. Also, it is clear that B1 \A1, ..., Bk \Ak, B

c is a partition and

g̃ = g1B + c11Bc .
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With these modifications, we have for all x ∈ Ω

|h(x)− g̃(x)| ≤ ε.

This is clear for x ∈ B. For x ∈ Bc, we have h(x) = c1 = g̃(x) and the claim is shown. Finally, the
collection of closed ball of radius ε given by: {[ci − ε, ci + ε]}1≤i≤k is an ε-cover of h(Ω), showing
that N(f, ε) ≤ k. The conclusion is that

sup
f∈A

N(f, ε) ≤ k = N∞,ε(A ),

and the result is shown.

Corollary 4.4. Let (Ω,F, µ) be a finite measure space and A be a set of measurable functions.
Assume that A is UA in Lq(Ω,F, µ) for some q ∈ [1,∞], then A is UA in Lp(Ω,F, µ) for all
p ∈ [1, q] and for all ε > 0 it holds

Np,ε(A ) ≤ Nq,εµ(Ω)−r (A ),

where r = 1
p − 1

q .

In particular if supf∈A N(f, ε) < ∞ for all ε > 0, then A is UA in Lp(Ω,F, µ) for all p ∈ [1,∞]

and for all ε > 0 it holds Np,ε(A ) ≤ supf∈A N(f, εµ(Ω)
−1
p ).

Proof. This is a direct consequence of Hölder’s inequality. In fact, assume that p ≤ q and consider
g ∈ Gp,k, f ∈ A then, we have

‖f − g‖p ≤ ‖f − g‖q(µ(Ω))
r

where r = 1
p − 1

q . From this it follows that A is UA in Lp(Ω,F, µ) and

Np,ε(A ) ≤ Nq,εµ(Ω)−r (A ).

The second assertion follows from Theorem 4.3

The previous result gives a large class of UA sets when the measure is finite. For example
suppose that Ω is a bounded metric space, F is the Borel σ-algebra and µ is a finite measure on
F. Then the set of 1-Lipschitz functions is UA in Lp(Ω,F, µ) for any p ∈ [1,+∞].

The following result is a characterization of UA in Lp for p ∈ [1,∞), where we shall prove that
a class is UA if and only Varp,k(f) converges toward 0, when k → ∞, uniformly in the class.

Theorem 4.5. Let (Ω,F, µ) be a measure space, p ∈ [1,∞) and let A ⊂ Lp(Ω,F, µ). Then, the
following are equivalent

(i) A is UA in Lp(Ω,F, µ);

(ii) limk→∞ supf∈A Varp,k(f) = 0.

In this case if we define rε(A ) = min{k ∈ N : supf∈A Varp,k(f) ≤ ε}, we have that for all ε > 0

r2ε(A ) ≤ Np,ε(A ) ≤ rε(A ) + 1.

Moreover, if the measure µ is finite both properties (i), (ii) are equivalent to

(iii) limk→∞ supf∈A Varp,k(f,Ω) = 0.
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In this case if we define mε(A ) = min{k ∈ N : supf∈A Varp,k(f,Ω) ≤ ε}, we have that for all
ε > 0

m2ε(A ) ≤ r2ε(A ) ≤ Np,ε(A ) ≤ mε(A ) ≤ rε(A )

Proof. Suppose that A is UA and fix ε > 0. Then we have that Dp,k(f) ≤ ε for all f ∈ A , where
k = Np,ε(A ). By Proposition 3.3, we deduce that Varp,k(f) ≤ 2ε for all f ∈ A . It follows that
r2ε(A ) ≤ Np,ε(A ), implying that (ii) holds. Now suppose that (ii) holds. Using Proposition 3.3
again, it is easy to see that Np,ε(A ) ≤ rε(A ) + 1, from what we deduce that (i) is true. In the
case that µ is finite, the equivalence between (ii) and (iii) and the last assertion of the theorem
follow directly from Proposition 3.3.

4.3 The unit ball of Lp

Now we investigate when the unit ball of Lp(Ω,F, µ), denoted byBLp(Ω,F,µ) = {f ∈ Lp : ‖f‖p ≤ 1},
is UA. The case p = ∞ is simple:

Proposition 4.6. Let (Ω,F, µ) be a measure space. Then BL∞(Ω,F,µ) is UA. More precisely we

have that N∞,ε(BL∞(Ω,F,µ)) ≤
[
2
ε

]
+ 1 (where [.] is the integer part) for all ε > 0.

Proof. It is a direct consequence of theorem 4.3.

The main objective of this section is to prove the following result:

Theorem 4.7. Let (Ω,F, µ) be a measure space and p ∈ [1,+∞). The following assertions are
equivalent:

(i) BLp(Ω,F,µ) is UA;

(ii) Lp(Ω,F, µ) is finite dimensional;

(iii) µ is atomic and has only a finite number of atoms with finite measure, up to measure 0.

More precisely, if the previous assertions are false then Np,ε(BLp(Ω,F,µ)) = ∞ for all ε ∈ (0, 1).

This theorem will be proved thanks to several intermediary results. We start with the following
result:

Proposition 4.8. Let (Ω,F, µ) be a measure space and p ∈ [1,+∞). Suppose that there exists
a sequence of disjoint measurable sets (An)n of positive measure such that µ(An) → 0. Then
BLp(Ω,F,µ) is not UA. More precisely, we have that Np,ε(BLp(Ω,F,µ)) = ∞ for all ε ∈ (0, 1).

Proof. We are going to prove that for all k ≥ 1

sup
f∈Lp(Ω,F,µ),f 6=0

inf
h∈Gp,k

‖f − h‖pp
‖f‖pp

= 1. (4.1)

Note that this equality implies easily that Np,ε(BLp(Ω,F,µ)) = ∞ for all ε ∈ (0, 1). Consider r ≥ 2
and consider a subsequence (nk)k such that µ(Ank

) ∈ (r−nk−1, r−nk ]. We further assume that
nk+1 − nk ≥ 2. With this sequence we consider

fN(x) =
N∑

j=1

µ(Anj
)

−1
p
1Anj

(x).

36



for all N ≥ 1 and note that ‖fN‖pp = N . Let h ∈ Gp,k and N > 2 + 2k. We say that an index

1 < j < N is unmarked if Im(h) ∩
(
r

nj−1
p , r

nj+1
p

)
= ∅. Note that there are at least N − 2 − 2k

unmarked indexes. For such unmarked index j, we have for x ∈ Anj

fN (x) = µ(Anj
)

−1
p ≥ r

nj
p > r

nj−1

p > r
nj−1

p ≥ h(x), or

fN (x) = µ(Anj
)

−1
p < r

nj+1

p < r
nj+1

p ≤ h(x).

In the first case we have

fN (x)− h(x) ≥ fN(x) − r
nj−1

p ≥ fN (x)− r
−1
p fN (x) =

(
1− r

−1
p

)
fN(x).

In the second case we get

h(x) − fN(x) ≥ r
nj+1

p − fN(x) ≥ r
nj+2

p − fN (x) = r
1
p r

nj+1

p − fN(x) >
(
r

1
p − 1

)
fN(x).

Notice that

θ = 1− r
−1
p =

r
1
p − 1

r
1
p

< r
1
p − 1.

So, we have |fN(x) − h(x)| ≥ θfN (x) on Anj
. Then, we conclude that

‖fN−h‖pp ≥
∑

j:unmarked

∫

Anj

|fN(x)−h(x)|p dx ≥ θp
∑

j:unmarked

∫

Anj

|fN (x)|p dx ≥ θp(N−2−2k).

Hence, we have
‖fN − h‖pp
‖fN‖pp

≥ θp
N − 2− 2K

N
,

and we get

sup
f∈Lp(Ω,F,µ),f 6=0

inf
h∈Gp,k

‖f − h‖pp
‖f‖pp

≥ θp = (1 − r
−1
p )p.

Now, it is enough to make r ↑ ∞.

An inmediate corollary is obtained for diffuse measures.

Corollary 4.9. Assume that µ is a non trivial diffuse measure, then for all p ∈ [1,∞) the unit
ball BLp(Ω,F,µ) is not UA and Np,ε(BLp(Ω,F,µ)) = ∞, for all ε ∈ (0, 1).

Proof. This follows directly from Sierpiński’s theorem (see [12]). In fact, consider a measurable
set B0 such that 0 < µ(B0) = a < ∞ (if such set does not exists then Ω is an atom of µ). Then,
there exists B1 ⊂ B0 such that µ(B1) = a

2 . Applying the same idea to B0 \ B1, there exists

B2 ⊂ (B0 \B1) such that µ(B2) =
µ(B0\B1)

2 = a
4 . Inductively, we construct a sequence of disjoint

subsets (Bk)k such that

Bk+1 ⊂ B0 \
k⋃

i=1

Bi,

and

µ(Bk+1) =

µ

(
B0 \

k⋃
i=1

Bi

)

2
=

a

2k+1

for all k ∈ N. The result follows from the previous Proposition.
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Proposition 4.10. Assume that (Ω,F, µ) is an atomic measure space and p ∈ [1,∞). Then the
following are equivalent:

(i) µ has a finite number of atoms of finite measure, up to measure 0;

(ii) The space Lp(Ω,F, µ) is finite dimensional;

(iii) The unit ball BLp(Ω,F,µ) is UA.

Moreover, if the previous assertions are false then Np,ε(BLp(Ω,F,µ)) = ∞ for all ε ∈ (0, 1).

Proof. Assume (i) holds. Denote by {Ak}1≤k≤n a finite collection of atoms of finite measure,
such that all other atom C of finite measure coincides with some of them up to measure 0. Take
B = Ω \ ∪n

k=1Ak. If µ(B) > 0 there there exists an atom C ⊂ B. This atom C satisfies that
µ(C \ Ak) = µ(C) > 0 and it cannot coincide with Ak up to measure 0. Then C has infinite
measure. Then either µ(B) = 0 or µ(B) = ∞ and contains no measurable subset of positive finite
measure. Then, Lp(Ω,F, µ) is generated by the finite collection {1Ak

}1≤k≤n, so (ii) holds. Clearly
(ii) ⇒ (iii).

So, for the rest of the proof we assume that there exists a countable collection of disjoint atoms
(An)n each one of finite positive measure. Here there are two different situations. The first one
is the existence of an infinite subsequence of atoms (Ank

)k such that µ(Ank
) → 0. Then, we can

apply Theorem 4.8, to conclude that the unit ball BLp(Ω,F,µ) is not UA.
The second possibility is the existence of a constant a > 0 such that µ(An) ≥ a, for all n. We

now procede to prove that BLp(Ω,F,µ) is not UA. We do it for p = 1, the other cases are treated
similary.

In what follows we fix k ≥ 2 and R > 1, and we consider the partial sums

Si =
∑

2i−1≤j<2i

µ(Aj) ≥ a2i−1,

for i ≥ 1, and we construct a strictly increasing sequence of integers (tq)q such that the interval
[Rtq , Rtq+1) contains at least one of these partial sums. We call Siq any such partial sums, for
example the smallest one, that is, for q such that [Rtq , Rtq+1) ∩ {Si}i≥1 6= ∅, we take

iq = min{r ∈ N : Rtq ≤ Sr < Rtq+1}.

We also define

Bq =

2iq−1⋃

j=2iq−1

Aj ,

the union of the atoms that has mass Siq . We consider the function

f =

M+2∑

q=3

R−tq
1Bq

,

where M is a large integer. For the moment we choose M > 2kR. Take h ∈ G1,k and as before we
say that 3 ≤ q ≤ M + 2 is an unmarked index if

Im(h) ∩ (R−tq−1, R−tq+1) = ∅.

There are at least M −2k unmarked indexes. For an unmarked index q and x ∈ Bq, we either have

f(x)− h(x) ≥ R−tq −R−tq−1 ≥ f(x)
(
1− 1

R

)
= f(x)R−1

R , or

h(x)− f(x) ≥ R−tq+1 −R−tq ≥ f(x)(R − 1).
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In any case, we have for x ∈ Bq

|f(x)− h(x)| ≥ f(x)
R− 1

R
,

and then

‖f − h‖1 ≥ R−1
R

∑
q: unmarked

R−tqµ(Bq) =
R−1
R

(
∑
q
R−tqµ(Bq)−

∑
q:marked

R−tqµ(Bq)

)

≥ R−1
R (‖f‖1 − 2kR) = ‖f‖1

R−1
R

(
1− 2kR

‖f‖1

)

Now, we estimate the norm of f . Clearly, we have ‖f‖1 =
∑

q R
−tqµ(Bq), which gives the lower

estimate
M ≤ ‖f‖1, (4.2)

and then the lower bound

‖f − h‖1 ≥ ‖f‖1
R − 1

R

(
1−

2kR

M

)
. (4.3)

So, we conclude that for f̃ = f/‖f‖

inf{‖f̃ − g‖1 : g ∈ G1,k} ≥
R− 1

R

(
1−

2kR

M

)
,

and therefore

sup
f∈BL1(Ω,F,µ)

inf{‖f − g‖1 : g ∈ G1,k} ≥
R− 1

R

(
1−

2kR

M

)

Taking M ↑ ∞, we conclude that

sup
f∈BL1(Ω,F,µ)

inf{‖f − g‖1 : g ∈ G1,k} ≥
R− 1

R
.

Now we take R ↑ ∞, to get finally that

sup
f∈BL1(Ω,F,µ)

inf{‖f − g‖1 : g ∈ G1,k} ≥ 1

independently of k ≥ 2. For k = 1, we point out that G1,1 = {0} and so

sup
f∈BL1(Ω,F,µ)

inf{‖f − g‖1 : g ∈ G1,1} = 1.

Hence, N1,ε(BL1(Ω,F,µ)) = ∞, for all ε < 1.

In order to prove Theorem 4.7, we shall use a result in [9], where the notion of atomic and
nonatomic are different from the (standard) notions we are using. In this discussion we add an ∗
to distinguish the notions we are using and the corresponding in [9]. According to [9] a measurable
set A is an ∗-atom if µ(A) > 0 and for all E ∈ F either µ(A ∩E) = 0 or µ(A \E) = 0. It is direct
to show that if A is an ∗-atom for µ, then it is an atom for µ. Indeed, assume that B ⊂ A satisfies
µ(B) < µ(A), then µ(A \ B) = µ(A) − µ(B) > 0 and we conclude that 0 = µ(A ∩ B) = µ(B),
proving that A is an atom for µ. The converse is not always true (see the example below). It is
true if A has finite measure. In fact, suppose that A is an atom of finite measure and let E be a
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measurable set. If µ(A ∩ E) > 0 then µ(A) = µ(A ∩ E), showing that µ(A \ E) = 0 since E ∩ A
has finite measure, and therefore A is an ∗-atom.

A measure is ∗-atomic if every measurable set A of positive measure contains an ∗-atom. A
measure that has no ∗-atoms is said ∗-nonatomic. Here is an example of a ∗-nonatomic measure
which is atomic in the standard sense. Consider (R,P(R)) as a measurable space and

µ(A) =

{
∞ if A is uncountable

0 otherwise

If µ(A) > 0, then A is uncountable and can be splitted into two uncountable disjoint sets B and
C. Then µ(A ∩B) = ∞ and µ(A \ B) = ∞. So, there are no ∗-atoms and then according to the
above definition µ is ∗-nonatomic.

The other concept we need is the notion of ∗-singular. Two measures ν and λ are said ∗-singular
if for all measurable sets E, there exist two measurable sets F and G contained in E such that

ν(F ) = ν(E), λ(F ) = 0, and λ(G) = λ(E), ν(G) = 0.

The main theorem we need is the following.

Theorem 2.1 in [9]. Assume (Ω,F, µ) is a measure space. Then µ can be decomposed as µ = ν+λ,
where ν is ∗-atomic and λ is ∗-nonatomic. We can assume that ν, λ are ∗-singular, in which case
the decomposition is unique.

We are now ready to prove the main result of this subsection:

Proof of Theorem 4.7. It is clear that (iii) =⇒ (ii) =⇒ (i). Now suppose that (i) holds, that
is, BLp(Ω,F,µ) is UA. By Theorem 2.1 in [9], there is a unique decomposition µ = ν + λ where ν is
∗-atomic measure, λ is ∗-nonatomic and ν and λ are ∗-singular. Consider

C = {[A] : A is an ∗-atom for ν of finite ν-measure }

where [A] is the equivalence class of measurable sets B such that ν(A∆B) = 0. Notice that [A] ∈ C

if and only if A is an atom of finite ν-measure. Therefore, if [A] 6= [B] ∈ C then ν(A∩B) = 0, that
is, A and B are disjoint up to ν-measure 0.

If C is infinite, we take a countable collection (En)n of atoms for ν, which are disjoint up to
ν-measure zero, and each one has finite and positive ν-measure. For every n there exists Fn ⊂ En,
such that ν(Fn) = ν(En) and λ(Fn) = 0. Clearly, (Fn)n is a countable class of disjoint atoms for
ν, which have positive and finite measure. The measurable set A = ∪∞

n=1Fn satisfies λ(A) = 0.
This shows that µ|A = ν|A, so Lp(A,F|A, µ|A) and Lp(A,F|A, ν|A) can be identified.

On the other hand, the measure ν|A is atomic. Indeed, assume thatD ⊂ A has positive measure.
Then for some n it holds ν(D ∩ Fn) > 0 and then D ∩ Fn contains an ∗-atom H of ν, which has
finite measure, and therefore it is an atom for ν. We can apply Proposition 4.10 to conclude that
BLp(A,F|A,ν|A) is not UA, and a fortiori BLp(Ω,F,µ) is not UA, which is a contradiction.

The conclusion is that ν has a finite number of atoms (An)n∈J of finite measure, up to measure
0, where J is a finite (eventually empty) set. Therefore, if B = Ω \ ∪n∈JAn, then any measurable
C ⊂ B has 0 or infinite ν-measure.

On the other hand, there exists G ⊂ B such that ν(G) = 0 and λ(G) = λ(B). If there exists
H ⊂ B a measurable set such that 0 < λ(H) < ∞, then we arrive to a contradiction. Indeed,
consider K ⊂ H such that ν(K) = 0 and λ(K) = λ(H). Since λ(H) is finite, this means that
λ(H \K) = 0. Now, λ|K is a diffuse measure, because if there exists L ⊂ K an atom for λ, then this
atom has finite measure and therefore it is an ∗-atom for λ, which is not possible. The contradiction
is obtained because BLp(K,F|K ,µ|K) and BLp(K,F|K ,λ|K) can be identified and the latter is not UA,
according to Corollary 4.9.
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The conclusion is that λ(H) is 0 or infinite for every H ⊂ B. Since λ(Bc) = 0, we conclude
that λ(H) is either 0 or infinite for every measurable set H . Also, µ(H) is 0 or infinite, for any
H ⊂ B and µ = ν on A = Bc. Therefore, µ is an atomic measure and it has a finite collection of
disjoint atoms with finite measure, up to measure zero.

The last part of the Theorem follows from either Corollary 4.9 or Proposition 4.10.

4.4 Stability of the class of UA sets

In this subsection, we study the image of a UA set under classical operations. We start with the
following easy proposition:

Proposition 4.11. Let (Ω,F, µ) be a measure space and p ∈ [1,+∞]. Let A ,B ⊂ Lp(Ω,F, µ)
and ε > 0. Then:

(i) if A ⊂ B then Np,ε(A ) ≤ Np,ε(B);

(ii) Np,ε(A ) = Np,ε(A );

(iii) Np,|λ|ε(λA ) = Np,ε(A ) for all λ ∈ R;

(iv) Np,ε(A + B) ≤ mint,s>0,t+s≤ε Np,t(A )Np,s(B);

In particular if A and B are UA then A , λA and A + B are UA.

Proof. The proof is left to the reader.

In the next result, we prove that the closed convex hull of a bounded UA set is still UA.

Theorem 4.12. Let (Ω,F, µ) be a measure space and p ∈ (1,+∞). If A ⊂ Lp(Ω,F, µ) is a UA
set, then AK = {f ∈ co(A ) | ∀g ∈ A ‖f − g‖p ≤ K} is also UA for all K ≥ 0. More precisely,
we have that

Np,ε(AK) ≤ min
η∈(0,1)

(
Np,(1−η)ε(A )

)s(η)

for all ε > 0, where s(η) =
[
CK
ηε

] min{p,2}
min{p,2}−1

+ 1 and C is a constant depending on (Ω,F, µ) and p.

In particular, if A is bounded then co(A) is UA.

Proof. Fix K ≥ 0. For n ∈ N, define

con(A ) =

{
n∑

i=1

aifi | ai ≥ 0,

n∑

i=1

ai = 1, fi ∈ A

}
.

Remember that Lp(Ω,F, µ) has non-trivial Rademacher type r = min{p, 2} (see Theorem 6.2.14
in [1]). By Theorem 2.5 of [6], one has that

d(con(A ), f) ≤
CK

n1− 1
r

for all f ∈ AK and n ∈ N where C is a constant depending on (Ω,F, µ) and p. Therefore, if we

take ε > 0, η ∈ (0, 1) and n0 =
[
CK
ηε

] r
r−1

+1, we will have that d(con0(A ), f) < ηε, for all f ∈ AK .

Thus, if f0 ∈ AK there exists g0 =
∑n0

i=1 aifi ∈ con0(A ) such that ‖f0 − g0‖p < ηε. On the
other hand, since A is UA, there exists hi ∈ Gp,k where k = Np,(1−η)ε(A ) such that

‖fi − hi‖p ≤ (1− η)ε
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for all i ∈ {1, ..., n0}. One can deduce that

∥∥∥∥∥f −
n0∑

i=1

aihi

∥∥∥∥∥
p

≤ ‖f0 − g0‖p +

∥∥∥∥∥

n0∑

i=1

aifi −
n0∑

i=1

aihi

∥∥∥∥∥
p

≤ ηε+

n0∑

i=1

ai(1− η)ε = ε

with
∑n0

i=1 aihi ∈ Gp,kn0 . We conclude that Np,ε(AK) ≤ kn0 .

Remark. Note that if A is an unbounded UA set then co(A ) may not be UA. In fact, Gp,2 is UA
but co(Gp,2) = Lp(Ω,F, µ) (since co(Gp,2) is the set of simple functions) is not UA in general for
any p ∈ [1,∞]. Remark that the previous theorem is not interesting if p = ∞ since any bounded
set is UA by Proposition 4.6.

Remark. The previous theorem is false if p = 1. In fact remember that Bℓ1 = co(Ext(Bℓ1))
and Ext(Bℓ1) = {±δn}n∈N, where Ext(Bℓ1) is the set of extreme points of Bℓ1 . It follows that
Ext(Bℓ1) is UA but we have seen that Bℓ1 is not UA (see Theorem 4.7). More generally, using
the previous result, it is easy to show that there exists a UA set A ⊂ ℓp such that Bℓp = co(A ) if
and only if p ∈ {1,∞}.

In the next result we study stability properties of UA classes under Hölder transformations.
Recall that a real function Ψ is uniformly α-Hölder if there exists a constant K, such that

|Ψ(x)−Ψ(y)| ≤ K|x− y|α.

With this definition, the identity function is not uniformly α-Hölder for α < 1. To enlarge the
class of uniformly α-Hölder functions we consider the following classes of Hölder functions, denoted
H(K,α) for 0 < α ≤ 1, which consists of real functions Ψ such that for all x, y, it holds

|Ψ(x)−Ψ(y)| ≤ K(|x|+ |y|+ 1)1−α|x− y|α.

We can assume without loss of generality that K ≥ 1. We notice that H(K, 1) is the set of K-
Lipschitz functions. If 0 < β ≤ α, then H(K,α) ⊂ H(K,β). Also H(K,α) contains the class of
uniformly Hölder functions.

Proposition 4.13. Assume that (Ω,F, µ) is a finite measure space and A is UA in Lq(Ω,F, µ),
for some q ∈ [1,∞]. Consider α ∈ (0, 1], and we assume further that A is bounded in Lq(Ω,F, µ)
when α < 1. Then, the H(K,α)-transform of A given by

H(K,α)(A ) = {Ψ(f) : f ∈ A , Ψ ∈ H(K,α)}

is UA in Lp(Ω,F, µ) for any 1 ≤ p ≤ q. Moreover, for ε ∈ (0, 1]

Np,ε(H(K,α)(A )) ≤ N
q,(ε/Γ)

1
α
(A ),

where

Γ = Γ(α, p, q) = Kµ(Ω)−r





(
2B + 1 + µ(Ω)

1
q

)1−α

if α < 1

1 if α = 1

with B a bound for A in Lq(Ω,F, µ) and r = 1
p − 1

q .

Proof. The case α = 1 is straightforward so, we assume α < 1. We assume first that p = q.
Consider ε ∈ (0, 1], k = Nq,ε(A ), f ∈ A , g ∈ Gq,k such that ‖f − g‖q ≤ ε and Ψ ∈ H(K,α). We
have

∫
|Ψ(f(x)) −Ψ(g(x))|qdµ(x) ≤ Kq

∫
(|f(x)| + |g(x)|+ 1)q(1−α) |f(x)− g(x)|qαdµ(x).
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Now, we apply Hölder’s inequality for s = 1
α and its conjugated index t = 1

1−α to get

∫
|Ψ(f(x))−Ψ(g(x))|qdµ(x) ≤ Kq

(∫
(|f(x)| + |g(x)|+ 1)qdµ(x)

)1−α(∫
|f(x)− g(x)|qdµ(x)

)α

which implies

‖Ψ(f)−Ψ(g)‖q ≤ K (‖f‖q + ‖g‖q + ‖1‖q)
(1−α) ‖f − g‖αq .

If B is a bound for A , we conclude that ‖g‖q ≤ B + 1, which shows

‖Ψ(f)−Ψ(g)‖q ≤ K
(
2B + 1 + µ(Ω)

1
q

)(1−α)

εα = Γεα.

Since Ψ(g) ∈ Gq,k, we deduce that

Nq,Γεα(H(K,α)(A )) ≤ Nq,ε(A ),

and the result is shown in this case. The case p < q follows from Corollary 4.4.

We point out that under the hypothesis of the Theorem, we have A ⊂ H(K,α)(A ).
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