
Proximity Based IoT Device Authentication

Jiansong Zhang1†, Zeyu Wang2†, Zhice Yang2, and Qian Zhang2

Microsoft Research1 The Hong Kong University of Science and Technology2

jiazhang@microsoft.com1, {zwangas, zyangab, qianzh}@cse.ust.hk2

Co-primary Authors†

Abstract—Internet of Things (IoT) devices are largely embed-
ded devices which lack a sophisticated user interface, e.g., touch
screen, keyboard, etc. As a consequence, traditional Pre-Shared
Key (PSK) based authentication for mobile devices becomes
difficult to apply. For example, according to our study on home
automation devices which leverage smartphone for PSK input,
the current process does not protect against active impersonating
attack and also leaks the Wi-Fi password to eavesdroppers, i.e.,
currently these IoT devices can be exploited to enter into critical
infrastructures, e.g., home networks. Motivated by this real-
world security vulnerability, in this paper we propose a novel
proximity-based mechanism for IoT device authentication, called
Move2Auth, for the purpose of enhancing IoT device security. In
Move2Auth, we require user to hold smartphone and perform one
of two hand-gestures (moving towards and away, and rotating)
in front of IoT device. By combining (1) large RSS-variation and
(2) matching between RSS-trace and smartphone sensor-trace,
Move2Auth can reliably detect proximity and authenticate IoT
device accordingly. Based on our implementation on Samsung
Galaxy smartphone and commodity Wi-Fi adapter, we prove
Move2Auth can protect against powerful active attack, i.e., the
false-positive rate is consistently lower than 0.5%.

I. INTRODUCTION

The Internet of Things (IoT) has quickly moved from hype

to reality. Gartner estimates that the number of deployed

IoT devices will reach 20.8 Billion in 2020 [1]. Like other

disruptive technologies, such as smartphones and cloud com-

puting, IoT holds the potential for societal scale impact by

transforming many industries as well as our daily lives.

However, IoT also brings security challenges due to its large

scale and embedded device nature [2]. In this paper we discuss

security of a basic IoT device function, i.e., associating to

Internet gateway (e.g., Wi-Fi access point). In particular, we

found authenticating an IoT device is non-trivial, and existing

design actually leads to security vulnerability in practice. For

example, according to our experimental study on a popular

home automation brand, we can obtain the secrets that are

sufficient for stealing home Wi-Fi password from all (million

of) the devices based on our attack on one device. From further

discussion on this real world example, we show the need for a

carefully designed IoT device authentication mechanism. We

will elaborate the experiments and discussion in section II-A.

In Figure 1, we take home automation scenario as an

example to describe IoT device authentication. Home Wi-Fi

router needs to authenticate home automation devices (e.g.,

smart power switch) before allowing them to connect. On the

mean time, a nearby attacker (e.g., deployed attacking device

around home) can perform (1) passive attack by sniffing all

Home Wi-Fi router

Home Automation Device

Smartphone

Attacker

eavesdropping

impersonating
(a)

(b)

(c)

Fig. 1. We take home automation device as an example to illustrate the IoT
device authentication problem. (a) Home Wi-Fi router needs to authenticate
the device before connecting. (b) Smartphone is leveraged to input Wi-Fi
password. (c) An attacker can eavesdrop by sniffering Wi-Fi channel, or
impersonate the IoT device to connect to router/smartphone.

message exchanges on Wi-Fi channel, or (2) active attack by

impersonating the home automation device and connecting to

home router. Therefore, a successful attack may obtain sensi-

tive information (e.g., home Wi-Fi password as we observed

in section II-A), or get the access to home network which

enables further attack.

From Wi-Fi router point of view, an IoT device is all the

same as a mobile device (e.g., smartphone or tablet), on which

Pre-Shared Key (PSK) is widely used for device authenticate.

Specifically, 802.11 standards incorporate a Diffie-Hellman

key exchange based mechanism, called Simultaneously Au-

thentication of Equals (SAE) [3], for mutual authentication

between router and device. SAE plus a limited number of

retries provides solution against the attacks shown in Figure 1.

However, from device point of view, IoT brings new challenge

because the devices usually lack means for PSK (e.g., Wi-Fi

password) input, as they are mostly embedded devices. Specif-

ically, in this paper we assume the IoT device (1) does not

contain sophisticated user interface like screen or keyboard, (2)

does not equip sensors like camera, accelerometer, gyroscope,

NFC, microphone, etc. (3) is not easy to move (e.g., power

switch plugged on walls).

Many IoT device vendors leverage smartphone to input

PSK. As shown in Figure 1(b), they connect IoT device

to smartphone first. As long as the connection between s-

martphone and IoT device is secure, IoT device can obtain

PSK from smartphone and perform PSK based authentication

with router as mentioned above. In this way, the problem

is reduced from router-IoT authentication to smartphone-IoT

authentication. In this paper, we also take this solution and

focus our study on IoT-to-smartphone authentication.

In literatures, there are a set of mobile/wearable device-

Sensor trace

Vs.

RSSI trace

Encrypted

message exchanges

(a) Move towards and away

(b) Rotate

Fig. 2. Proximity based IoT device authentication. User holds smartphone
and performs small gestures (a. move towards and away, b. rotate) in front
of IoT device while IoT device is transmitting. Smartphone compares sensor
trace with rssi trace to determine whether the device is in proximity.

pairing solutions [4]–[9]. We notice that those solutions are not

prefered in our problem because of IoT devices’ constraints

mentioned above (three assumptions). For example, moving

both devices together [4] or along predefined path [5] will

not apply because IoT device does not equip accelerome-

ter/gyroscope and does not move. We will discuss related

authentication problems and solutions in details in section II-B

to further explain why our problem calls for new design.

In this paper, we propose a proximity based mechanism for

smartphone to authenticate IoT devices, called Move2Auth.

As shown in Figure 2, we require user to hold smartphone

and perform one of two hand gestures (randomly picked by

smartphone) in front of the IoT device, while on the mean time

the IoT device is keep sending packets. The two gestures, i.e.,

moving smartphone towards and away from IoT device, and

rotating smartphone, both lead to significant (around 15dB)

variation in Received Signal Strength (RSS) because of fast-

changing attenuation and antenna polarization, respectively. In

Move2Auth, we combine (1) large RSS-variation detection,

and (2) matching between RSS-trace and smartphone’s sensor-

trace, to perform reliable proximity detection, where (1) can

effectively differentiate devices in-proximity and far-away,

and (2) can protect against powerful active attacker who can

arbitrarily tune transmission power.

We implement Move2Auth on Samsung Galaxy smartphone

and commodity Wi-Fi adapter. We invite 5 users to test our

prototype and conduct experiments on a test-bed containing

12 IoT device locations. The evaluation results show that (1)

Move2Auth is reliable in differentiating sender-in-proximity

and sender-far-away. (2) Move2Auth is reliable against active

attacker who can tune transmission power or even has user’s

historical gesture traces. The false-positive rate in proximity

detection is consistently lower than 0.5%.

In this paper, we make two major contributions.

• We take experiments to study the security of IoT device

association and find (unreported) vulnerability on popular

home automation brand. This study motivates the design

of IoT-specific device authentication mechanism.

• We design, implement and evaluate Move2Auth which

provides a reliable IoT device authentication mechanism.

II. MOTIVATION AND RELATED WORK

In this section, we present our experimental study on

IoT device association, during which we observe unreported

security vulnerability from a popular (millions of devices)

home automation brand. We analyze this case and argue that

an IoT-specific device-authentication mechanism is needed.

Based on detailed discussion of related authentication prob-

lems and solutions, we motivate the design of a new mecha-

nism which we propose in this paper.

A. Vulnerability in IoT Device Association

Recently, IoT has raised many security concerns and also

attracted a lot of research interests [2], [10]. In this paper,

our study on device association is motivated by several re-

cent reports that home automation devices may leak Wi-Fi

password while associating to home Wi-Fi router [11], [12].

Specifically, during the process shown in Figure 1, password

leakage happens while smartphone is sending password to the

device, because the transmission is all in plain text.

While the case appears like an implementation issue, we

further take our own experiments and find that the issue is

actually non-trivial to fix. We tried a popular home automation

brand Belkin Wemo which provides a rich set of products,

such as smart power switch, motion detector, camera, lighting

LED, etc. [13]. Wemo’s association process is also the same

as in Figure 1. When we capture the message exchanges

between smartphone and Wemo devices, we found Wemo did

add protection for the password leakage issue by encrypting

the password. Figure 3(a) shows an example of encrypted Wi-

Fi password which was captured by wireshark. Deriving from

the format, the password is encoded using Base64 [14] (after

some encryption algorithm).

However, the encryption is not sufficient to protect pass-

word. Since Wemo devices can decrypt the password, Wemo

devices must have carried all the secrets for decryption (e.g.,

key, initial vector, salt, encryption algorithm, etc.). Therefore,

we read out Wemo firmware and took binary analysis to

retrieve the secrets. Figure 3(b) show the flywires we made

between the SPI flash chip on Wemo logic board (Various

Wemo devices contain the identical logic board) and a USB

flash reader ($10). After obtaining Wemo firmware from the

flash memory, we perform binary analysis as follows. First,

with simple string analysis, we can learn that wemo firmware

is built on top of the popular embedded operating system

OpenWRT. Then, we use firmware analysis tool (e.g., bin-

walk [15]) to recover the entire file system as well as individual

program binaries. After manually locating the related programs

(mostly by program names), we finally leverage disassembler

tool (e.g., IDA [16]) to convert program binaries to assembly

codes and retrieve the secrets from the codes. As we expected,

the encryption algorithm calls openssl libaries [17] and takes

a combination of device ID and MAC address as key, initial

vector and salt.

More importantly, we have actually obtained the secrets for

decrypting all (millions of) the Wemo devices! Because Wemo

do not carry any device specific secret (e.g., a secret code in the

firmware of each Wemo device) except device ID and MAC

address, and device ID and MAC address must be sent from

Wemo device to smartphone before password encryption, as

we have captured in Figure 3(a).

Wemo logic board

SPI flash reader

MAC Address & Device ID

Encrypted Wi-Fi password

(a) Captured message exchanges (b) Read out firmware binary

Fig. 3. Our experiment retrieved the secrets which can be used to decrypt
home Wi-Fi password from all (millions of) Wemo devices. (a) Captured
message exchanges between smartphone and Wemo device. First, Wemo
device sends device ID and MAC address to smartphone (up message).
Then, smartphone sends encrypted Wi-Fi password to Wemo device (bottom
message). (b) We made flywires between the SPI flash chip on Wemo logic
board and a USB flash reader ($10). We then use this tool to obtain Wemo
firmware binary and perform binary analysis to retrieve the secrets.

To conclude our experiments, the protection implemented

by device vendor (i.e., Wemo designer) is indeed not sufficient

to fix the password leakage issue. In the following, we discuss

this defeated solution as well as other two possible solutions.

We will show that carefully-designed device authentication

mechanism is a must for secure device association.

1) Defeated Vendor Solution: Encrypting Wi-Fi password

actually provides a low cost solution for device authentication,

i.e., even an attacker is connected to smartphone, it will not be

able to retrieve the Wi-Fi password if the secrets are unknown.

Unfortunately, the secrets are identical to all the devices,

therefore we can defeat the entire solution by attacking only

one device.

2) Unique Secrets for Every Device: Security will be

enhanced if unique secrets are allocated for every device, as

attacking one device will not help in cracking other devices.

However, we would argue that the cost of unique secrets can

be too high to afford, because IoT devices come in large scale.

Specifically, every device can be assigned a unique key during

manufacturing. The key can be (1) printed on device, or (2)

recorded in a database and indexed by device ID or MAC

address. When the device needs to be authenticated, the printed

key can be directly read by user and inputted in the other party

(e.g., smartphone), or the stored key can be queried from the

database. In case (1), the problem is that the same key should

be stored simultaneously at two places, i.e., hardcoded inside

firmware and printed on device. While manufacturing in large

scale, maintaining a sufficiently low mismatch rate will be a

big challenge to device vendors. In case (2), for symmetric

key, we need additional means for determining which user

can query the key of a device ID. Otherwise, the key will be

leaked to attackers. Private/public key pair might mitigate the

problem, for which each vendor can build an infrastructure

similar to the Public Key Infrastructure (PKI) [18]. Again, the

maintenance cost will be a big challenge when devices come

in large scale.

3) Encrypting the Channel between Smartphone and IoT

device: Encrypting the channel can prevent eavesdroppers

from capturing the message exchanges. However, while en-

crypting the channel is not difficult, for example, generating

symmetric key using Diffie-Hellman key exchange or provid-

ing private/public key pair from either side, encryption does

not prevent active attackers. In the Wemo case (as well as

many other home automation devices we tried), device sets

itself as Wi-Fi access point for smartphone to connect. As in

Figure 1, an active attacker can impersonate the Wemo device

by broadcasting the same SSID and using the same MAC

address. If smartphone is connected to the attacker, home Wi-

Fi password will be sent to the attacker directly.

To conclude the discussions, we argue that IoT device

authentication is practically needed and non-trivial to fulfill,

IoT-specific mechanism is desired.

B. Related Authentication Problems and Solutions

In this subsection, we discuss related authentication prob-

lems and mechanisms in literatures and in practice. We use the

discussion to motivate the new design proposed in this paper.

The most related problem is authenticating some other em-

bedded devices, such as Wi-Fi router, wireless display adapter,

embedded wearable (bluetooth earphone), etc. Different from

IoT devices which lack user interface, Wi-Fi router and wire-

less display adapter actually contain display. For example, user

can assign arbitrary password to Wi-Fi router by connecting it

to a laptop through Ethernet port. Wireless display adapter is

by default connected to a display, therefore the same device

key pre-assigned in firmware can be shown on display (instead

of printed on device). Similar to IoT devices, Bluetooth

earphone does not contain display, therefore the same security

problem also exists. In particular, convenient mechanism like

pushing button simultaneously on both sides does not prevent

active impersonating attack [19]. Therefore, in practice PSK

is used. But for the sake of convenience, usually an identical

pin is used for all device, such as "0000", which completely

defeats the purpose of PSK. However, we would notice that

the same security problem on embedded wearables does not

raise as much as the concerns on IoT devices, because active

attack on wearable device is more difficult to play as device

association can happen anywhere (together with the user),

while IoT devices are usually operating in fixed locations (e.g.,

home appliances).

Mobile device pairing (e.g., two smartphones) is also similar

to our problem, except that IoT devices are usually difficult

to move and do not equip popular sensors. Therefore, mecha-

nisms using sensors on both side do not apply, such as biomet-

ric [20], accelerometer and gyroscope [4], [5], microphone [9],

etc. Moreover, mechanisms using explicit out-of-band channel

also do not apply, such as infrared [6], touch [7], visible

light [8], etc.

Sensor network devices are also a type of embedded devices

therefore are related. However, we would argue that, unlike

IoT devices which will be connected to unknown access point,

sensor network devices are usually designed for specific appli-

cations, e.g., ocean or wildlife monitoring, and manufactured

in batch [21]. Therefore, identical PSK can be distributed into

a set of sensor network devices during manufacturing.

Proximity based mechanisms using radio interface [4], [22]–

[25] are closely related to our proposed solution in this paper.

0 2 4 6
-50

-40

-30

-20

-10

0

Antenna angle (radian)

A
n
te

n
n
a
 g

a
in

 (
d
B

)
(a) Antenna emits polarized radio wave (b) Deep fading in theory

Fig. 4. Antenna polarization primer. (a) The physics behind antenna po-
larization is radio wave polarization. Radio antenna (e.g., dipole) essentially
emits polarized radio wave. (b) Deep fading exists in certain antenna angle
accroding to the Malus’s law.

We divided them into two types: passive and active. In passive

solutions [22], [23], two nearby devices determine the prox-

imity by common ambient radio environment. However, they

require rich variation of ambient signal to provide sufficient

information for reliable proximity detection, which is non-

trivial to fulfil in practice. To enrich the information, they

may require shaking device together, or equipping customized

radio to sense additional signal like FM and TV [23], which

are not prefered in our problem. Moreover, they may require a

sufficiently short distance between two devices, e.g., few cen-

termeters on Wi-Fi frequency. On the other hand, in active so-

lutions, Castelluccia [4] requires two devices to shake together

to confuse eavesdroppers, therefore does not apply to our

problem. Cai [24] and Pierson [25] rely on multiple antennas

to detect the proximity by the large signal-strength difference.

They actually partially inspired our solution. However, our so-

lution differs in various ways. (1) Instead of multiple-antenna,

we propose hand-gesture to create signal-strength difference,

therefore our solution can be applied to smartphones which

usually contain single antenna. (2) In our design, we not only

use the event of large signal-strength difference, but also take

advantage of the correlation between device movement and

signal-strength variation, therefore can reliably protect against

powerful active attacker. (3) In addition to distance, we also

explore device angle (because of antenna polarization) which

also provides large signal-strength difference in proximity.

III. PROXIMITY DETECTION BASED ON RSS VARIATION

In this paper, we propose a Received Signal Strength (RSS)

based scheme for proximity detection on single antenna de-

vices. The basic idea is that when two devices are in proximity,

small device movement can cause significant RSS-variation.

Specifically, we explored two types of movement which both

lead to around 15dB RSS-variation, i.e., moving towards and

away from each other, and rotating, as shown in Figure 2.

The large RSS-variation upon moving towards and away

are caused by the fast-changing channel attenuation when

two devices are in proximity. While it has been introduced

before [24], [25], in the following, we focus on introducing

antenna polarization which leads to large RSS-variation upon

(relative) rotating when two devices are in proximity.

0 0.5 1 1.5 2 2.5
−15

−10

−5

0

5

10

15

Time(s)

N
o

rm
a

liz
e

d
 R

s
s
(d

B
)

Far Away In Proximity

0 0.5 1 1.5
−15

−10

−5

0

5

10

15

Time(s)

N
o

rm
a

liz
e

d
 R

s
s
(d

B
)

Far Away In Proximity

Fig. 5. Smartphone movement caused RSS-variation under sender-in-
proximity vs. sender-far-awary. Sender-in-proximity can lead to more than
15dB RSS-variation while sender-far-away only leads to 5dB RSS-variation
due to small-scale fading. Upper: moving towards and away. Bottom: Rotating.

A. Antenna Polarization

The key idea of Move2Auth is leveraging antenna polariza-

tion to generate deep fading events in near field, which is also

undetectable in far field. In this section, we provide a brief

introduction for antenna polarization.

The physics behind antenna polarization is radio wave

polarization [26]. Radio antenna essentially emits polarized

radio wave. Figure 4(a) shows an illustrative example using

dipole antenna which is the most popular antenna type in

today’s radio devices. As shown in the figure, the electric field

always oscillates along antenna direction because it is the only

possible direction for the electrons inside antenna to move.

Antenna polarization causes a phenomenon that RSS

changes with the angle between transmitting (TX) antenna and

receiving (RX) antenna. The relationship is described by the

Malus’ law [27] as follows.

Gθ = G0 cos
2 θ (1)

where θ is the angle between TX antenna and RX antenna,

Gθ is the antenna gain with angle θ, and G0 is the maximum

antenna gain achieved when TX and RX antennas are parallel.

Figure 4(b) shows simulation results with various θ. When TX

and RX antenna are perpendicular to each other, antenna gain

will be zero which we call it deep fading. Therefore, when we

rotate one of the devices, we will observe large RSS variation.

In practice, equation 1 only holds when two devices are in

proximity. The reason is the rich-multipath wireless channel.

A deep fading angle on one path will be overwhelmed by re-

ceived signal on other paths, because polarization direction of

radio wave changes upon reflection. Moreover, scattering and

diffraction, which is also rich in microwave bands (e.g., Wi-

Fi, cellular, bluetooth, Zigbee, etc.) because of the comparable

wavelength with many objects [28], further make deep fading

unobservable in longer distance.

B. RSS-Variation in Practice

Figure 5 shows examples of RSS-trace when sender is in-

proximity or far-away, where the far-away sender is placed in

a neighbor room of the receiver (smartphone). The upper sub-

figure shows RSS-traces while user moves smartphone towards

and away from sender. When sender is in-proximity, the fast-

changing attenuation leads to more than 15dB RSS-variation.

The bottom sub-figure shows RSS-traces when user rotates

smartphone. When sender is in-proximity, antenna polarization

leads to around 15dB RSS-variation. We notice that the RSS-

trace appears different from Figure 4 because smartphone

is rotated only 90° around the deep fading angle. Finally,

RSS-variation from far-away sender is usually much smaller

(around 5dB) and mainly caused by small-scale fading [28].

IV. MOVE2AUTH DESIGN

In this section, we elaborate the design of Move2Auth which

provides a novel mechanism for IoT device authentication.

While the design can be easily extended to other radio

technologies, we introduce in the context of Wi-Fi.

A. Goal and Threat Model

Our goal is to build a device-authentication mechanism for

the purpose of facilitating IoT device to securely associate

to Wi-Fi router. In particular, we leverage smartphone in

the way that connecting IoT device to smartphone first, and

input the password of Wi-Fi router on smartphone, as we

discussioned in the Introduction and Figure 1. As a result,

the whole process can be considered secure as long as the

IoT-smartphone connection is secure.

We consider attacker who can receive the packets from

IoT device and smartphone, but is not physically close to

IoT device, e.g., outside of the home as in home automation

scenario. We consider powerful attackers. For example, the

attacker can sniff all the Wi-Fi channels and capture all the

packets; he may have arbitrarily high-sensitivity receiver; he

can actively connect to smartphone by impersonating the IoT

device; he may have arbitrarily high transmission power and

can adjust the transmission power arbitrarily; he may have full

knowledge of our scheme; he may have exact copy of the IoT

device; he may know the exact location of the IoT device.

In the following, we focus on one-way authentication, i.e.,

smartphone authenticates IoT device. The other way, i.e.,

IoT device authenticates smartphone, is not necessary in our

problem, as we will discuss in section IV-I.

B. Basic Scheme

We assume IoT device is not moveable. When an IoT

device is in pairing mode, it keeps sending encrypted packets

(section IV-G). On the mean time, we require user to hold

smartphone in front of (e.g., 20cm distance) the IoT device and

perform small gesture for a while (e.g., three seconds). User

will be asked to perform one of two gestures, i.e., moving

towards and away from IoT device and rotating, as shown

in Figure 2. The gesture is randomly picked by smartphone.

While the gesture is performed, smartphone receives a series of

packets with significantly-varying RSS, as the reasons shown

in section III.

Smartphone determines whether the packets are sent from

a nearby device based on two criteria, i.e., (1) RSS-variation

exceeds a threshold, (2) RSS-trace matches with smartphone

sensor trace. In our design, we set 10dB as the RSS-variation

threshold for both gestures.

Matching between RSS-trace and sensor-trace is an impor-

tant building block of Move2Auth. The idea behind trace-

matching is that, both traces can precisely describe smartphone

movement when two devices are in proximity, but when two

devices are far-apart, RSS-trace will not reflect the movement

well. In our design, we not only consider shape of traces, but

also involve timing for trace-matching. Timing information

creates big-barrier for attacker who can fake large RSS-

variation (e.g., by tuning its transmission power). Even if the

faked RSS-variation reflects the pace of smartphone-movement

well, the faked RSS trace will not exactly match smartphone-

movement because of their different start time. In our design,

both sensor-trace and RSS-trace are recorded on smartphone

so that we can easily synchronize them using smartphone

clock. In section IV-C and IV-D, we will discuss how we

transform one of the traces to perform trace-matching.

C. Trace Transformation - Moving Towards and Away

We require user to move smartphone for around 20cm,

and the shortest distance to IoT device is around 20cm. This

smartphone movement causes around 15dB RSS-variation.

In our design, moving smartphone towards and away from

IoT device is captured by accelerometer. For the sake of

simplicity, we assume smartphone moves strictly on a line

(towards IoT device). Therefore, the accelerometer-reading can

be reduced from 3-dimension to 1-dimension.

Since converting acceleration into distance (by integration)

will introduce accumulative error, we choose to transform

RSS-trace into accelerometer-trace. Specifically, we first con-

vert RSS-trace into distance-trace as described in [24], then we

convert distance into acceleration by performing difference-

operation for two times, i.e., from distance to speed, then to

acceleration. In order to avoid parameter-setting, e.g., absolute

distance to IoT device, we normalize both converted trace and

real accelerometer trace into the same scale, e.g., [0,1].

Finally, we synchronize two traces and calculate correlation.

We determine whether two traces match with each other using

a threshold on correlation result. We will discuss threshold

setting in section VI.

D. Trace Transformation - Rotating

We require user to rotate smartphone for around 180°, so

that RSS deep fading caused by antenna polarization will be

reliably captured which provides around 12dB RSS-variation.

In our design, rotation is captured by gyroscope. As dis-

cussed in section III and in Figure 4, rotation causes deep-

fading in RSS-trace because of antenna polarization. How-

ever, on the rest of RSS-trace, RSS is relatively flat. As a

consequence, we will not be able to capture the turns (i.e.,

from clockwise to counter-clockwise, and vice versa) from

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Time(s)

C
o
rr

e
la

ti
o
n

Far Away In Proximity

Fig. 6. Correlation results for trace-matching based on smartphone rotation.
Three-second gesture clearly differentiates sender-in-proximity and sender-
far-away. We notice that RSS-variation will further enhancing differentiation.

RSS-trace. Therefore, we choose to transform gyroscope-trace

into RSS-trace, i.e., we first reduce gyroscope-reading from

3-dimension to 1-dimension, then we derive RSS-trace using

Equation 1.

Moreover, in order to provide better usability, we do not

make assumption on IoT device’s antenna angle, e.g., vertical,

horizontal, etc. Instead, from gyroscope-trace we try all pos-

sible angles and derive RSS-trace accordingly. We calculate

correlation between all the derived RSS-traces and the real

RSS-trace (after normalization), and choose the maximum as

correlation result. According to our experiments, our design

choice still provides sufficiently-low false-positive rate, as we

will discuss in section VI.

E. Duration of User Gesture

In our current design, we require user to push a (virtual)

button on smartphone to start the user gesture.

We derive proper duration of user gesture from experiment

results. In Figure 6 we show the correlation results of trace-

matching based on smartphone rotation. We calculate correla-

tion from part of the trace (# of seconds from starting point).

Error bar shows the deviation on 50 traces. When the traces

are longer than three seconds, correlation result can clearly

differentiate sender-in-proximity and sender-far-away. We also

notice that RSS-variation will further enhance the differenti-

ation. And rotating already represents high correlation results

for sender-far-away, as we have discussed in section IV-D.

As a result, in Move2Auth we require user to perform a

gesture for at least three seconds. Every sensor trace is also

cut to three-second before trace-matching.

F. Dealing with RSS Inaccuracy

A practical problem for our scheme is RSS Saturation that

RSS will saturate to a value (e.g., −10dBm on our platform)

when transmitter is very close (e.g., 20cm). Therefore, we

require the IoT device to transmit in a lower power-level.

According to our experience, 20dB lower transmission power

is sufficient to avoid RSS saturation, which is easy to realize

on commodity Wi-Fi chipsets.

Another problem is that RSS reading will be inconsistent

with different data rates (more specifically, different packet

preambles [24]). Therefore, we require IoT device to use the

basic rate (i.e., 6Mbps) during authentication.

G. Encryption

Besides the authentication scheme we described above, we

also need to encrypt the communication channel between

smartphone and IoT device to protect against eavesdropping.

[29], [30] provide approaches to derive a shared key from

characteristics of the wireless channel.

Alternatively, we could use cryptographic techniques to

derive a shared secret. We notice that key generation does

not affect the authentication scheme, because authentication

only measures RSS from the preamble of each packet while

key generation uses the payload of the packet.

We propose a straightforward key generation protocol,

where IoT device sends a public key to smartphone at the

beginning. Then IoT device sends a series of identical pack-

ets encrypted by the corresponding private key (to facilitate

authentication). The packet content contains smartphone’s in-

formation, e.g., MAC address. Upon successful authentication,

smartphone verify the received public key by decrypting the

packets. Finally, smartphone generates a random shared key

and sends it to the authenticated IoT device in a packet

encrypted by the verified public key.

H. Move2Auth Protocol

Our final protocol integrates both device authentication and

key generation, as described below.

1) User triggers pairing mode by pressing a button on

the IoT device for three seconds. IoT device clears its

states in pairing mode, and sets itself as access point for

smartphone to connect.

2) User finds IoT device’s Wi-Fi network by SSID, and

connect smartphone to the IoT device.

3) Upon receiving the connection from smartphone, IoT

device sends a random public key and a series of identical

packets encrypted by the corresponding private key.

4) Smartphone determines whether the IoT device is in

proximity by both checking the strength of RSS-variation

and matching its sensor trace with RSS trace, as described

in section IV-C and IV-D.

5) Upon successful authentication by determining the IoT

device is in proximity, smartphone verifies the public key

by decrypting the packets and checking packet contents.

6) Upon successful decryption and content checking, smart-

phone encrypts a random shared session key using the

verified public key and sends to IoT device.

7) Finally, a secure communication channel is established

with the shared session key. User can perform IoT-to-

router association on smartphone with this secure com-

munication channel.

8) If one the above steps fails, user should re-trigger pairing

mode, as we will explain in section IV-I.

I. Security Analysis

In this subsection, we briefly analyze the security of

Move2Auth by considering various attacks.

1) Eavesdropping: As long as the public/private key cryp-

tography is not defeated, an attacker will not obtain any

information from sniffing the packet transmissions.

2) Impersonating IoT device: During smartphone-IoT pair-

ing, an attacker may impersonate the IoT device by broadcast-

ing the same SSID/MAC-address and using higher transmis-

sion power. Smartphone could be connected to the attacker

instead of IoT device because of the higher signal strength.

In Move2Auth, we protect against this attack by checking

whether the connected device is in proximity. Specifically, we

consider an attacker who follows the protocol in section IV-H

to send a series of packets. We discuss two cases. First,

if the attacker does not tune its transmission power. RSS-

variation (caused by smartphone movement) will be small and

mismatch with sensor trace. The sender will be determined

not in proximity and authentication will fail. Second, if the

attacker tunes its transmission power to create high RSS-

variation, we will mainly rely on trace-matching to detect

proximity. Our experiments show that the trace-matching leads

extremely-low false-positive rate because we consider both the

shape of traces and their exact timing. We will present details

in section VI.

3) Denial-of-Service (DoS) attack: DoS attacks can be

performed in various ways. For example, jamming the wireless

channel to breach the communications. In Move2Auth, we

do not explicitly protect against DoS attack. However, we

believe DoS attack will unlikely cause serious troubles which

are difficult to deal. For example, we will be able to locate

the attacker with the help of pinpointing tool and remove it.

4) The other direction - Should IoT device authenticate

smartphone?: We explain why authentication in the other

direction is not necessary in our problem. Firstly, an already-

connected IoT device (with either router or smartphone) will

not enter pairing mode unless user triggers. Secondly, on

IoT-router link, a rogue AP may send dis-associate packet

to break the link and cheat IoT device to connect to it (by

impersonating the router). We can protect against this attack

by requiring IoT device to always perform PSK-based secure

association, because IoT device will also authenticate router in

this way. Thirdly, during smartphone-IoT pairing, an attacker

may successfully connect to the IoT device. In order to avoid

any harm on this temporary illegitimate connection, we require

IoT device to only accept one connection in pairing mode. In

this way, this attacker-IoT connection will be easily detected

if smartphone fails to connect to IoT device. And user should

re-trigger pairing mode by pressing the IoT device button.

Moreover, in pairing mode, IoT device should clear all its

states and data. Therefore, nothing will be leaked to attacker

on the temporary attacker-IoT connection. Finally, given the

short attacker-IoT connection time, we assume attacker will

not be able to completely compromise the IoT device and turn

it into a "zombie" (e.g., by pushing a fake firmware update).

J. Discussion

1) Usability: Since the two gestures in Move2Auth are

both straightforward, in our current design, we require user to

perform the gesture strictly, e.g., moving on the line towards

IoT device, or rotating in a plane which is perpendicular to

the line between smartphone and IoT device. In theory, we

2

3

1

4

5

6

7

8

9

10

11

12

Fig. 7. We tested 12 locations, where we assume user and smartphone are at
location 1 as shown in the figure. Most locations are within the same room
but only contain non-line-of-sign paths to smartphone.

can perform sophisticated gesture recognition and remove the

requirements. We take this as our future work.

2) Requirement on Computation: Taking Wemo as an ex-

ample, it equips a 320MHz MIPS processor which is capable

to call openssl libraries and run in real-time. We believe the

computation of public/private key cryptography also can be

fulfilled on many other today’s IoT devices. On smartphone

side, similar computation is easy to fulfill as smartphone has

become very powerful today.

3) Antenna types: Most antennas today are dipole which

generates linearly-polarized radio wave as shown in Figure 4.

Many other antenna types also emit polarized radio wave such

as patch antenna. According to our experience on smartphones

and IoT devices, e.g., iPhone, Samsung Galaxy, Wemo devices,

etc., antenna polarization holds on all these devices.

4) Other IoT security issues: We notice that there are other

security problems reported for IoT devices [2]. For example, a

home automation device could be accessed and controlled re-

motely. We believe these problems call for additional security

mechanisms. However, these are out of scope of this paper.

V. IMPLEMENTATION
We implemented a prototype of Move2Auth on Android

smartphone and commodity Wi-Fi adapter. We tried Atheros

and Intel Wi-Fi adapters on Linux PC to act as IoT device.

We successfully decreased transmission power and fixed data

rate on both Wi-Fi chipsets to fulfill Move2Auth. In order to

obtain RSS on smartphone, we installed a customized Wi-Fi

driver which can turn smartphone Wi-Fi into monitor mode.

Currently, the driver only works on Samsung Galaxy 2 and 3.

In Move2Auth, we record accelerometer and gyroscope output

upon a (virtual) button press, as discussed in section IV-E.

We added timestamp to RSS trace and sensor trace to faciliate

trace-matching. To implement public/private key cryptogrophy,

we called the openssl library. In our current implementation of

Move2Auth, we programmed IoT device (Linux PC) to send

packets every 1ms, i.e., 1000Hz RSS sampling rate.

VI. EVALUATION

In this section, we present our evaluation for Move2Auth.

We focus on reliability of proximity detection and consider two

cases which may cause false-positive detection, i.e., another

far-away IoT device which is also in pairing mode and an

active attacker who can arbitrarily tune transmission power.

We present two cases in section VI-B and VI-C, respectively.

We set up a testbed as shown in Figure 7, where we tested

12 IoT device locations inside and outside an office room

3

4

5

6

7

8

9

10

11

12

13

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 R
S

S
 V

a
ri

a
ti

o
n

 (
d

B
)

C
o

rr
e

la
ti

o
n

Location Index

Correlation

RSS Variation

4

5

6

7

8

9

10

11

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12

R
S

S
 V

a
ri

a
ti

o
n

 (
d

B
)

C
o

rr
e

la
ti

o
n

Location Index

Correlation

RSS Variation

Fig. 8. Correlation and RSS-variation at 12 locations. We present average and error bar (maximum and minimum) from all the tests conducted at a location.
User and smartphone is fixed to location 1, so location 1 represents in-proximity case. Left: gesture moving towards and away; Right: gesture rotating.

(10m × 8m). We fixed user’s location (and smartphone) to

locaion 1, as shown in the figure. We moved the IoT device

to each of 12 locations, then perform both gestures to collect

RSS-trace and sensor-trace. We also invited five users for the

tests. Among them, two users performed tests for all the IoT

device locations, rest of the users (three) only performed tests

at location 1 and 12. We tested two gestures separately and

repeat all the tests with both gestures. For each test, we repeat

10 times and present statistics. Collectively, we get 600 sensor-

traces and RSS-traces in total.

In all the experiment, the threshold for RSS-variation is

10dB, and threshold for correlation (trace-matching) is 0.6.

A. Detection Rate In Proximity

We first study successful-detection rate when smartphone

and IoT device are in proximity. Figure 8 shows the statistic

for all the tests on a location, where we also mix tests from

different users. Two sub-figures represent two gestures. At

location 1, both correlation and RSS-variation are clearly

higher than other locations. Since all the correlation and RSS-

variation at location 1 (50 for each gesture) exceed thresold,

proximity detection was always successful in the tests i.e.,

false-negative rate is zero.

B. Reliability against Another Far-Away IoT Device

Then, we consider the case that another far-away IoT device

is also in pairing mode. In this way, we study the false

detection rate that smartphone actually authenticate a far-away

IoT device. Location 2 ∼ 12 represents far-away IoT device

locations. As shown in Figure 8, at location 2 ∼ 12, false-

positive rate is zero because correlation and RSS-variation

never exceeds the thresholds simultaneously. Actually, usually

neither of them exceeds threshold.

Comparing two gestures, we found rotating leads to higher

correlation results. This is expected result as we have explained

in section IV-D. However, rotating also leads relatively lower

RSS-variation. Therefore, both gestures can perform well in

the case of far-away IoT device.

C. Reliability against Active Attacker

Then, we consider an active attacker who can arbitrarily

tune transmission power. In this case, RSS-variation threshold

will be eaily defeated. Therefore, we only consider correlation

(trace-mapping). Although we conducted the tests for both

gestures, due to page limit, we only present the results

from rotating gesture. As we have mentioned above, rotating

represents the more challenging case because the correlation

tends to be high (explained in section IV-D).

We consider four types of RSS wave that attacker can create.

The first one is sine wave where we assume attacker has

no knowledge of user’s gesture. Specifically, attacker may try

different frequency of sine wave. In the tests, we tried 16

frequencies uniformly distributed from 0.5Hz to 4Hz. We

assume attacker transmit the RSS wave continuously. The

tests was conducted by setting different starting time for a

real gesture (sensor trace), and we performed trace-matching

between sensor-trace and sine RSS wave (i.e., calculating

correlation). We notice that we actually assume the RSS-

variation caused by gesture is much smaller than the RSS

wave created by attacker. We plot the cumulative distribution

function (CDF) of correlation results on left-top of Figure 9.

With correlation threshold of 0.6, the false-positive is 0.27%.

The second one is RSS wave derived from gesture of

another user, e.g., attacker himself. Specifically, we collect the

RSS-traces from all five users when they are at location 1 (in-

proximity). We calculate correlation between all combination

of different users. Also, we include different trace start time.

Right-top of Figure 9 shows the CDF of the correlation result

for this case. The false-positive rate is 0.31%. It is interesting

to see that gesture information from different user actually

does not help in the attack, because different user usually

perform gestures in different pace, speed and extent, even the

gesture is as simple as rotating.

The third one is historical RSS wave recorded from the

same user. Specifically, we collect all the RSS traces from the

same user at location 1 (in proximity). We calculate correlation

between all combination of different traces from the same

user. We also include different trace start time. Left-bottom of

Figure 9 shows the CDF of the correlation result in this case.

The false-positive rate is 0.28%. It is also interesting to see

that the historical information from the same user actually does

not help a lot, because the details differ when a user perform

a gesture again. We believe this difference is more significant

with simple gestures like rotating, but for complicated gestures

like writing a signature would be more consistent.

Finally, we consider a non-real case that attacker knows

user’s gesture in advance. Specifically, we calculate the exactly

same trace but consider different trace starting time. As shown

in right-bottom of Figure 9, the false-positive rate increases,

but is still as small as 8.2%. We notice that the timing

information plays important role in trace-matching, which can

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Correlation

C
D

F

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Correlation

C
D

F

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Correlation

C
D

F

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Correlation

C
D

F

Fig. 9. CDF of correlation (trace-matching) results between sensor trace and
RSS-variation created by attacker. Left top: attacker sending sine RSS wave
with different frequencies from 0.5Hz to 4Hz, false-positive rate is 0.27%.
Right top: attacker sending RSS wave recorded from other user’s gesture
(e.g., attacker’s), false-positive rate is 0.31%. Left bottom: attacker obtained
RSS wave recorded from user’s previous gesture, false-positive rate is 0.28%.
Right bottom: attacker knows what gesture the user will perform, practically
infeasible, false-positive rate is 8.2%.

prevent even the (non-real) most strongest attacker. However,

this attack itself will not happen in practice.

To conclude our evaluation, Move2Auth provides reliable

proximity detection with zero false-negative rate in our tests.

Move2Auth effectively prevents smartphone to authenticate a

far-away IoT device, the false-positive rate is also zero in

our tests. Move2Auth also effectively protect against strong

attacker that can arbitrarily tune transmission power, the false-

positive rate is consistently lower than 0.5% in practical cases.

VII. CONCLUSION

Motivated by our observation of IoT security vulnera-

bility in real world, we propose a novel proximity based

authentication mechanism for IoT devices called Move2Auth.

Move2Auth detects proximity by checking (1) large RSS-

variation and (2) matching between RSS-trace and smartphone

sensor-trace during two user gestures, i.e., moving smartphone

toward or away from IoT device, and rotating smartphone. We

implement Move2Auth on Samsung smartphone and prove its

reliability against powerful active attacker.

We believe our study will help in building secure infras-

tructure for the coming IoT era.

ACKNOWLEDGEMENT

The research was supported in part by grants from

973 project 2013CB329006, RGC under the contracts

CERG M-HKUST609/13, 622613, 16212714, and

16203215,ITS/143/14FP-A, as well as the grant from

Huawei-HKUST joint lab, IoT WiFi key technologies.
REFERENCES

[1] “Gartner says 6.4 billion connected "things" will
be in use in 2016, up 30 percent from 2015,”
http://www.gartner.com/newsroom/id/3165317.

[2] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a
trillion (unfixable) flaws on a billion devices: Rethinking network
security for the internet-of-things,” in Proceedings of the 14th ACM

Workshop on Hot Topics in Networks. ACM, 2015, p. 5.
[3] D. Harkins, “Simultaneous authentication of equals: A secure,

password-based key exchange for mesh networks,” in Proceedings

of the 2008 Second International Conference on Sensor Technologies

and Applications, ser. SENSORCOMM ’08, 2008, pp. 839–844.

[4] R. Mayrhofer and H. Gellersen, “Shake well before use: Intuitive
and secure pairing of mobile devices,” Mobile Computing, IEEE

Transactions on, vol. 8, no. 6, pp. 792–806, 2009.
[5] I. Ahmed, Y. Ye, S. Bhattacharya, N. Asokan, G. Jacucci, P. Nurmi,

and S. Tarkoma, “Checksum gestures: continuous gestures as an
out-of-band channel for secure pairing,” in Proceedings of the 2015

ACM International Joint Conference on Pervasive and Ubiquitous

Computing. ACM, 2015, pp. 391–401.
[6] D. Balfanz, D. K. Smetters, P. Stewart, and H. C. Wong, “Talking

to strangers: Authentication in ad-hoc wireless networks.” in NDSS,
2002.

[7] D. G. Park, J. K. Kim, J. B. Sung, J. H. Hwang, C. H. Hyung, and
S. W. Kang, “Tap: touch-and-play,” in Proceedings of the SIGCHI

conference on Human Factors in computing systems.
[8] N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan, “Secure

device pairing based on a visual channel,” in Security and Privacy,

2006 IEEE Symposium on. IEEE, 2006, pp. 6–pp.
[9] D. Schurmann and S. Sigg, “Secure communication based on ambient

audio,” Mobile Computing, IEEE Transactions on, vol. 12, no. 2.
[10] E. Fernandes, J. Jung, and A. Prakash, “Security Analysis of

Emerging Smart Home Applications,” in Proceedings of the 37th

IEEE Symposium on Security and Privacy, May 2016.
[11] “Owners of heatmiser wifi thermostats warned

of password leaks and other vulnerabilities,”
https://www.grahamcluley.com/2014/09/heatmiser-wifi-thermostats-

password-leak/.
[12] “Kettles are leaking wifi passwords (and other failures of the internet

of things),” http://www.newstatesman.com/science-tech/future-

proof/2015/10/kettles-are-leaking-wifi-passwords-and-other-failures-

internet.
[13] “Belkin wemo home automation,”

http://www.belkin.com/us/Products/home-automation/c/wemo-

home-automation/.
[14] “Base64,” https://en.wikipedia.org/wiki/Base64.
[15] “Binwalk firmware analysis tool,” http://binwalk.org/.
[16] “Ida disassembler and debugger,” https://www.hex-rays.com/.
[17] “Openssl libraries,” https://www.openssl.org/.
[18] “Public key infrastructure,” https://en.wikipedia.org/wiki/Public key

infrastructure.
[19] “How does wi-fi protected setup work?” http://www.wi-fi.org/discover-

wi-fi/wi-fi-protected-setup.
[20] I. Buhan, B. Boom, J. Doumen, P. H. Hartel, and R. N. Veldhuis,

“Secure pairing with biometrics,” International Journal of Security

and Networks, vol. 4, no. 1-2, pp. 27–42, 2009.
[21] A. Perrig, J. Stankovic, and D. Wagner, “Security in wireless sensor

networks,” Communications of the ACM, vol. 47, no. 6.
[22] A. Varshavsky, A. Scannell, A. LaMarca, and E. De Lara, Amigo:

Proximity-based authentication of mobile devices. Springer, 2007.
[23] S. Mathur, R. Miller, A. Varshavsky, W. Trappe, and N. Mandayam,

“Proximate: proximity-based secure pairing using ambient wireless
signals,” in Proceedings of the 9th international conference on Mobile

systems, applications, and services. ACM, 2011, pp. 211–224.
[24] L. Cai, K. Zeng, H. Chen, and P. Mohapatra, “Good neighbor:

Secure pairing of nearby wireless devices by multiple antennas,”
in Proceedings of the 18th Annual Network and Distributed System

Security Symposium, 2011.
[25] T. J. Pierson, X. Liang, R. Peterson, and D. Kotz, “Wanda: securely

introducing mobile devices.” InfoCom, 2016.
[26] “Polarization (waves),” https :

//en.wikipedia.org/wiki/Polarization(waves).
[27] Z. Yang, Z. Wang, J. Zhang, C. Huang, and Q. Zhang, “Wearables

can afford: Light-weight indoor positioning with visible light,” in
Proceedings of the 13th Annual International Conference on Mobile

Systems, Applications, and Services, ser. MobiSys ’15, 2015.
[28] P. V. David Tse, “Fundamentals of wireless communications,” 2004.
[29] S. Jana, S. N. Premnath, M. Clark, S. K. Kasera, N. Patwari, and

S. V. Krishnamurthy, “On the effectiveness of secret key extraction
from wireless signal strength in real environments,” in Proceedings of

the 15th annual international conference on Mobile computing and

networking. ACM, 2009, pp. 321–332.
[30] S. Mathur, W. Trappe, N. Mandayam, C. Ye, and A. Reznik, “Radio-

telepathy: extracting a secret key from an unauthenticated wireless
channel,” in Proceedings of the 14th ACM international conference on

Mobile computing and networking. ACM, 2008, pp. 128–139.

