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Abstract

Creation and exchange of knowledge depends on collaboration. Recent work has suggested 

that the emergence of collaboration frequently relies on geographic proximity. However, 

being co-located tends to be associated with other dimensions of proximity, such as social 

ties or a shared organizational environment. To account for such factors, multiple dimen-

sions of proximity have been proposed, including cognitive, institutional, organizational, 

social and geographical proximity. Since they strongly interrelate, disentangling these 

dimensions and their respective impact on collaboration is challenging. To address this 

issue, we propose various methods for measuring different dimensions of proximity. We 

then present an approach to compare and rank them with respect to the extent to which they 

indicate co-publications and co-inventions. We adapt the HypTrails approach, which was 

originally developed to explain human navigation, to co-author and co-inventor graphs. We 

evaluate this approach on a subset of the German research community, specifically aca-

demic authors and inventors active in research on artificial intelligence (AI). We find that 

social proximity and cognitive proximity are more important for the emergence of collabo-

ration than geographic proximity.

Keywords Dimensions of proximity · Co-authorships · Co-inventorships · Embedding 

techniques · Collaboration

Introduction

Collaboration is a powerful tool to advance the frontier of knowledge in science and inno-

vation. Both, the share of co-authored research articles and the average number of authors 

per paper increased strongly in the past decades and patents follow similar trends (Wuchty 

et  al., 2007). These developments add to the importance of better understanding the emer-

gence and effects of research collaboration. Numerous studies have highlighted the impact of 

geographic closeness for collaboration in science and innovation. However, geography is only 
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one of several dimensions of proximity upon which collaboration builds. Further proximities 

are cognitive, institutional, organizational and social, which have been shown to be relevant 

in prior research (Boschma, 2005; Broekel & Boschma, 2011). As geographic co-location is 

often associated with similarity in prior knowledge (cognitive proximity; Nooteboom (2001)), 

and also with high levels of social, institutional, and organizational proximity   (Breschi & 

Lissoni, 2009; Heinisch et al., 2016), disentangling their impacts is challenging (Bode et al., 

2019). In this paper, we explore how the various dimensions of proximity are related to the 

emergence of successful collaboration in research on artificial intelligence (AI). In our case 

study, we focus on the German AI landscape since Germany has a rapidly emerging AI com-

munity, with about 100 new professorships to be created in the near future 1 and AI is expected 

to have a strong impact on future technological and economic development. To identify aca-

demic collaboration in AI research, we employ the German AI Network (GAI), a novel data 

set that incorporates bibliographic information for 2131 researchers. The GAI builds upon the 

DBLP data set (Ley, 2009) and includes both journal publications and contributions to confer-

ences in computer science and related fields of research. This allows us to consider conference 

proceedings in which the outcomes of successful collaboration in AI research are often com-

municated. In addition to co-authorships, we trace co-inventions of AI researchers employing 

the Crios-Patstat patent data set  (Tarasconi, 2014). These bibliographical data sets are used 

to construct several similarity functions measuring how close researchers are to each other 

in terms of cognitive, institutional, organizational, social and geographic proximity. In con-

structing these proximity measures, bibliographic information is complemented by web data 

and information about academic genealogies. We also employ similarity measures for the text 

documents in our data set based on Natural Language Processing (NLP). We then adapt the 

Bayesian HypTrails approach (Singer et al., 2015), which originally was designed to compare 

explanations of human navigation, to the domain of co-authorship and co-inventorship. This 

allows to rank proximity dimensions according to how well they explain the collaboration pat-

terns observed in our data. Our results indicate that social proximity is a key factor in the 

emergence of successful collaboration in German AI research.

The present paper contributes to the scientometric literature in terms of data, methods 

and results. First, we curate a novel data collection of German researchers from the domain 

of artificial intelligence and integrate rich data from various sources to obtain an encom-

passing view of their activities and mutual relationships. Second, regarding our contribu-

tion to research methods, we adapt the HypTrails approach to provide a new way of assess-

ing the relative ability of various factors to explain the observable patterns in collaboration 

data. Third, we contribute to the discussion on proximity dimensions started by Boschma 

(2005). Specifically, our results suggest that social proximity is the key factor for success-

ful collaboration between AI researchers in Germany.

Dimensions of proximity

Collaborative research activities, i.e., joint efforts to produce new knowledge, enable 

researchers to combine their individual knowledge base and thus to arrive at findings that 

they might not achieve individually  (Katz and Martin, 1997). Research collaboration has 

been the subject of extensive scholarly attention (e.g., Newman, 2001; Newman, 2004; Lee & 

Bozeman, 2005). There is substantial evidence that the quantity and quality of scientific out-

put may increase by collaboration (Glänzel & Schubert, 2005; Wuchty et al., 2007; Werker 

1 https:// knowl edge4 policy. ec. europa. eu/ ai- watch/ germa ny- ai- strat egy- report_ en.

https://knowledge4policy.ec.europa.eu/ai-watch/germany-ai-strategy-report_en.
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et al., 2019), even though too large team size may discourage creative insights (Heinze et al., 

2009). In line with these empirical findings, policy makers and funding agencies encour-

age collaborative research activities. For collaboration among researchers to be successful, 

the exchange of knowledge should result in meaningful ideas, which requires suitable col-

laboration partners. Recent work suggests that various forms of proximity are relevant for 

how researchers find partners. Specifically, Boschma (2005) distinguishes five dimensions of 

proximity: cognitive, institutional, organizational, social and geographic proximity.

Cognitive proximity is defined by the similarity of knowledge of two actors. To exchange 

knowledge and jointly discover new findings, collaborating researchers need mutual under-

standing, which requires overlap in their knowledge bases. Successful research collabo-

ration moreover depends on common interests in collaboration outcomes. We therefore 

expect that researchers are more likely to collaborate if they are cognitively close to each 

other. At the same time, researchers can only learn from each other if their prior knowl-

edge is not entirely identical. This suggests that there is an optimal degree of cognitive 

distance between collaborating researchers which is above zero (Nooteboom, 2001). Cog-

nitive proximity of researchers is widely investigated. For example, Liu et al. (2018) show 

that doctoral students are cognitively close to their advisors, and Hautala (2011) studies 

cognitive proximity in international research teams. Intuitively the knowledge of authors is 

reflected in their research. Hence, we assume that cognitive proximity can be approximated 

by the content of their publications. Specifically, overlaps in keywords  (Xu et  al., 2016) 

and technology classes of patents (Jaffe et al., 1993), but also similar uses of language and 

scientific jargon can be manifestations of cognitive proximity.

The degree of institutional proximity of two actors can be measured by comparing their 

institutional environment. Here, institutional environment refers to the routines, regulations 

and laws an actor is subject to (Nooteboom, 2001; Edquist & Johnson, 1996). To a large 

extent, the institutional environment is shaped at the societal macro level (Boschma, 2005). 

However, relevant institutional differences may also exist between different societal sub-

sectors. In our empirical context, we expect that institutional differences between public 

research institutions and corporate R&D affect the likelihood of researchers to collabo-

rate (Perkmann et al., 2013; Stern, 2004; Hirv, 2018).

Not only the type of organization that a given researcher is affiliated with (e.g., university 

or company), but also the specific individual affiliation is an important factor for collabora-

tion. Membership in the same organization thus provides a basic measure of organizational 

proximity (Crescenzi et al., 2016). It increases the likelihood of chance encounters, but more 

importantly collaborative research may be based on strategic decision making within the 

organization. That is, researchers can be allocated to research projects by their superiors 

within the organization. We can further refine the measure of organizational proximity by 

considering the departmental structure within organizations as well as relationships between 

organizations (Broekel & Boschma, 2011) that are independent of respective agents.

Social proximity reflects the extent to which actors are linked by social relations. Such 

relations can be based on kinship, friendship, familiarity based on prior contact or other 

kinds of social ties (Boschma, 2005). Their relevance for the emergence of research col-

laboration is twofold. On the one hand, actors linked by social ties tend know each other 

and may be aware of each other’s interests. Thus, social proximity enhances the potential to 

engage in collaboration. On the other hand, social ties affect the level of trust in potential 

collaboration partners and their competence. Accordingly, they may increase the willing-

ness to start a collaboration. In empirical studies of science and innovation, social proxim-

ity is frequently measured by pre-existing co-authorship  (Hardeman, 2015) or co-inven-

torship (Breschi & Lissoni, 2009) relations, including higher-degree connections (Balland, 
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2012). While these measures are not without limitations  (Katz and Martin, 1997), it is 

plausible that joint work establishes social ties among the collaborators.

Finally, geographical proximity is defined by the proximity of two agents in physical 

space. The importance of geographic proximity for innovation has been discussed at least 

since Marshall (1890), and it was rediscovered when the interest in industry clusters re-

emerged in the 1980s and 1990s (Audretsch & Feldman, 1996; Delgado et al., 2010). Fun-

damentally, the relevance of geographic proximity derives from the difficulty of communi-

cating tacit knowledge (Polanyi, 1966) other than through face-to-face interaction. Recent 

work demonstrates its significance even within organizations and at small geographic 

scales (Catalini, 2018).

Geographic proximity facilitates encounters and may allow face-to-face communication 

and observational learning, even if agents are not characterized by high levels of proximity 

in any of the other dimensions (Hoekman et al., 2010). However, there is a large body of 

prior work indicating that geographic proximity often reflects proximity in another dimen-

sion, such as social  (Breschi & Lissoni, 2009) or organizational  (Buenstorf & Klepper, 

2010) proximity. Since there are also overlaps between these other dimensions, our knowl-

edge about their individual roles is limited. In the remainder of this paper, we will develop 

a new approach to disentangle their individual role in the emergence of collaboration in 

German AI research. As the first step in this endeavor, the next section provides a detailed 

account of our empirical measures of the individual proximity dimensions.

Measuring and quantifying proximity

In this section we propose methods to quantify and compute proximity with respect to 

the different dimensions covered in previous section. These methods result in similar-

ity functions reflecting proximity of researchers given the respective dimension. An 

overview of the similarity functions is given in Table  1. These methods are intended 

for data sets of the following kind: We assume that R is a set of researchers, A a set of 

affiliations, P a set of publications and U a set of URLs. We then consider the follow-

ing relations: is_author_of ⊆ R × P , has_affiliation ⊆ R × A , PhD_at ⊆ R × A and 

has_homepage ⊆ R × U . In the section “Empirical context: the German AI community”, 

we present concrete data providing this information.

Cognitive proximity

Since publications reflect the creation and distribution of knowledge in the academic com-

munity, we use their content to capture the research topics of authors. Cognitive proximity 

between authors can then be measured using the text of their respective publications. Meas-

uring the similarity of text documents is a well studied research topic. Recently, a plenitude 

of methods for representation learning have been developed (Le & Mikolov, 2014; Sinoara 

et al., 2019). Representation learning, also called embedding, refers to the transformation 

of any data, for example text, into real-valued vector spaces, where the measurement of 

distances is well studied. Transforming text into vector representations can be accom-

plished by using weighted word counts  (Jones, 1972), approaches based on matrix-fac-

torization (Deerwester et al., 1990) or modern neural network architectures (Devlin et al., 

2019). To utilize these methods on researchers to extract their respective research topics, 

we first apply them on the set of publications P. Here, we use concatenations of titles and 
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abstracts of documents as input to generate a vector representation v
p
 for each publication 

p ∈ P . Then, a representation for a researcher is computed as the mean point vector of the 

respective publication vectors. To calculate a similarity of two researchers, we then apply 

cosine similarity.

In this study, we use three approaches to create vector representations for each document 

and hence each researcher. Two approaches use TF–IDF factorization, whereas the last one 

is based on neural networks. For the first two approaches, the abstracts of the documents 

are encoded in a TF–IDF matrix M ∈ ℝ
m×n . Here, the entry Mi,j reflects how often the j-th 

term occurs in the i-th document normalized by the count of occurrences in all documents. 

This weighting scheme incorporates the significance of a term for a given document and 

does not overweight words that are frequently used over all documents.

In detail, if we have documents P = {p1,… , pm} , that are modeled as finite sequences 

over a set of terms T = {t1,… , t
n
} , then entry Mi,j is the product of the frequency of term tj 

(the term-frequency) in document pi with the inverse frequency of tj in all documents (the 

inverse-document-frequency). Based on this, we use Latent semantic analysis (LSA) (Deer-

wester et al., 1990) and non-negative matrix factorization (NMF) (Lee & Seung, 1999, Lee 

& Seung, 2000) to generate vector representations for publications p ∈ P.

LSA computes vector representations for a set of documents by computing a singular 

value decomposition of the TF–IDF matrix. Building up on this, a low-rank approxima-

tion is computed. LSA is well established in the realm of text mining  (Foltz, 1996; Foltz 

et al., 1998) and is intended to identify different words with similar meaning and to reveal 

the semantic structure of a given set of documents (Deerwester et al., 1990). Hence, LSA is 

known to compute vector representations where the measurement of distances is meaningful. 

In detail, LSA works as follows. It produces a factorization of the form M = U�V
tr , with 

U ∈ ℝ
m×m

, V ∈ ℝ
n×n

,� ∈ ℝ
m×n such that � is a diagonal matrix. Let Ud

∈ ℝ
m×d be the 

matrix that results by extracting only the first d columns of U and let �
d
∈ ℝ

d×d be the diago-

nal matrix that consists only of the first d rows and columns of � . Then the document vectors 

Table 1  Overview of similarity functions with their respective proximity dimension

Proximity Dimension Similarity Function Explanation

Cognitive sim
LSA

Latent Semantic Analysis

sim
NMF

Non Negative Matrix Factorization

sim
BERT

BERT embedding

Institutional sim aff_type Do two researchers have both a university or 

non-university affiliation?

Organizational sim
Affiliation

Amount of same affiliations

sim
URL

URLs sharing the same hosts

sim Hyperlink Distances in the Syntactic Hyperlink Graph

sim Hierachy Hierarchical distance between homepages

Social sim Diss_Loc Dissertation at same location?

sim DeepWalk DeepWalk embeddings

sim Node2vec-small-p node2vec embeddings using p = 0.25, q = 4

sim Node2vec-large-p node2vec embeddings using p = 4, q = 0.25

sim
HOPE

HOPE embeddings

Geographic sim
Geo

Shortest geographic distance between affili-

ations of two authors
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with dimension d are given by the rows of the matrix Md
∶= U

d
�

d . For more details, we refer 

the reader to (Manning et al., 2008).

Another approach to compute vector representations for a document corpus is given by 

NMF, which generates the vectors by factorizing the TF–IDF matrix into two non-negative 

matrices. Here, a specific row of the first matrix represents for the corresponding document a 

distribution over different topics and the rows of the second matrix represents to which extent 

a specific topic is connected to specific words. Hence, NMF can be used to compute under-

standable topic distributions for documents and therefore is commonly applied in the realm of 

text mining, for example for document clustering (Xu et al., 2003) or document summariza-

tion (Lee et al., 2009). In detail, NMF works as follows: To produce vector representations 

with dimension d ∈ ℕ for all publications p ∈ P , NMF factorizes the TF-IDF matrix M into 

two non-negative matrices W ∈ ℝ
m×d

≥0
, H ∈ ℝ

d×n

≥0
 such that M ≈ WH . Here, the rows of W are 

the vector representations of the documents.

The third approach to create vector representations is based on BERT (Devlin et al., 2019). 

BERT is designed for sentence inputs, where ‘sentence’ not necessarily refers to a linguistic 

sentence, but to an ordered sequence of words/tokens with a reasonable size. Hence, in our 

scenario, we are able to use the whole abstract of a given document as input. That BERT takes 

its input as an ordered sequence of terms is an important difference to the previous approaches, 

i.e. LSA and NMF. These are based on the TF-IDF matrix that is independent of the order 

of words. Therefore, similar use of language and scientific jargon will only be captured using 

BERT as an embedding approach. More specifically, BERT is a neural network model that is 

built upon multiple transformer layers  (Vaswani et  al., 2017). These models are pre-trained 

using a large corpus of text data, which allows them to incorporate a general language under-

standing. This has been shown to lead to impressive results in a variety of NLP tasks (Dev-

lin et al., 2019). To receive a vector representation for a given document, we use the title and 

abstract as input into the pre-trained BERT model and extract the vector representation from 

the output of the neural network’s last layer. While Devlin et al. (2019) provides multiple BERT 

models itself, we use SciBERT (Beltagy & Cohan, 2019), which is pre-trained using additional 

scientific texts and therefore better suited for the representation of scholarly publications.

The three approaches explained above lead to three embedding functions that map publica-

tions (i.e., their titles concatenated with their abstracts) to real-valued vectors. We name these 

functions f LSA , f NMF , f BERT . For a given embedding function f ∈ {f LSA , f NMF , f BERT } , we 

then compute the vector representation of a researcher r ∈ R by f (r) ∶=
1

�Pr�
∑

p∈Pr
f (p) , with 

Pr ∶= {p ∈ P ∣ (r, p) ∈ is_author_of } . For m ∈ {LSA , NMF , BERT } we then define a 

similarity function sim
m
 via cosine similarity:

Institutional proximity

As mentioned in previous section, institutional proximity of two actors can be understood as 

the proximity of the regulations and laws they are subject to. Quantifying this kind of proxim-

ity is challenging and is seldom done in related work, especially with data that is freely acces-

sible. However, as a first step towards measuring institutional proximity, we assume that insti-

tutional circumstances differ in the private sector and the academic landscape. Hence, we state 

that two actors are close on the institutional level if they are both publishing from affiliations 

sim m(r1, r2) ∶=
⟨fm(r1), fm(r2)⟩

‖fm(r1)‖‖fm(r2)‖
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located in the private sector or if they both are working in academic research facilities. This 

binary differentiation of academic and non-academic affiliations does not capture nuanced 

affinities that may reflect, e.g., similarities between private companies and application-ori-

ented university departments. Nevertheless, previous work show its justification to serve as 

indicator for institutional proximity.  (Ponds et al., 2007). Research positions in industry are 

sufficiently different from those at universities (Aghion et al., 2008) that scientists may prefer 

worse-paid university positions (Stern, 2004). The resulting similarity function looks as fol-

lows: For each affiliation a ∈ A let ac (a) = 1 if a is an academic affiliation and ac (a) = 0 oth-

erwise. Here, non-university research institutions are considered as non-academic affiliations. 

Then for two researchers r1, r2 ∈ R we have

Here, authors with academic and non-academic affiliations are then considered institu-

tional proximate to all other authors, since they are subject to regulations and laws from the 

academic and private sector.

Organizational proximity

In this work we measure organizational proximity in multiple ways. First, we argue that 

researchers share a relevant amount of organizational relations if they work at the same affili-

ation. Here, we consider affiliations from the academic and the private sector. In detail, the 

similarity score of two researchers is the amount of shared affiliations:

Second, we are using the distance of the respective web pages as representative for organi-

zational proximity. Partnerships, internal hierarchies, individual researchers and projects 

of an organisation are usually reflected in their web appearance. Therefore, the hyper-

link structure is used to derive a representation of organizational proximity for individual 

researchers. Overall three similarity functions are build upon web data.

The first one simply matches hosts: Authors are considered proximate, if they have a home-

page on the same host. Since authors can have multiple homepages, we evaluate their similar-

ity by counting joint hosts. More formally, let host (u) be the host for a URL u ∈ U . Then, we 

can compute the similarity of two researchers via:

The next similarity function is an extension of sim
URL

 and abstracts the distance between 

homepages u
1 and u

2 to the distance of their respective hosts. A connection between 

two hosts h1 and h2 exists, if any page (corresponding to a URL) from host h1 contains a 

hyperlink to a URL from h2 . Then distances are computed as the shortest path distance 

d Hyperlink (u1, u2) between two URLs u1, u2 ∈ U using their respective hosts. We scale 

these distances to be between 0 and 1. To compute the distance d Hyperlink (r1, r2) between 

researchers r1, r2 ∈ R , we average the distances between their URLs. This accounts for the 

sim aff_type (r1, r2) ∶=

⎧
⎪
⎨
⎪
⎩

1 ∃(r1, a1), (r2, a2) ∈ has_affiliation

ac (a1) = ac (a2)

0 otherwise

sim Affiliation (r1, r2) ∶= |{a ∈ A ∣ (r1, a), (r2, a) ∈ has_affiliation }|

sim
URL

(r1, r2) ∶= |{ host (u) ∣ (r1, u) ∈ has_homepage ,

∃(r2, v) ∈ has_homepage ∶ host (u) = host (v)}|



9854 Scientometrics (2021) 126:9847–9868

1 3

fact, that authors may have multiple homepages and we capture the authors’ multi-presence 

in the academic landscape. We define the corresponding similarity function via

Finally, the third similarity function is based on the hierarchy of web pages. Here we 

assume, that the hierarchy of the web is reflect in the URL paths. The distance between 

two authors is expressed as the shortest path between their homepages u, whereas it is only 

allowed to ‘climb’ or ‘descend’ in the hierarchy. For example, the distance between the 

URLs host.example.com/path1/author1 and host.example.com/path2/author2 would be 4. 

After climbing to the node host.example.com, which are two steps, we then descend to the 

target node with two more steps. Overall, we compute the distance d hierarchy (r1, r2) of two 

researchers r1, r2 ∈ R by their shortest connection. Again, we scale the distances and com-

pute the corresponding similarities of two researchers r
1
 and r

2
 as mean of all distances via

Assuming that universities have their own hosts and that university departments are placed 

as subdomains, this similarity function allows us to measure proximity on an intra-univer-

sity level. Hence it can be seen as a refinement of the similarity function sim
Affiliation

.

Social proximity

We present different similarity functions to approximate social proximity. As first approxi-

mation, we have a binary indicator stating two researchers as close with respect to social 

proximity if they have finished their PhD at the same affiliation. We expect that actors with 

the same roots (in terms of dissertation) will stay in contact and communicate  (Burris, 

2004). The similarity function is given by

where Diss_Loc maps researchers r ∈ R to their dissertation location.

For a second approach to measure social proximity, we compute the co-author relation 

{(r1, r2) ∈ R × R | ∃p ∈ P ∶ (r1, p), (r2, p) ∈ is_author_of } and build the co-author graph 

from this relation. Following the explanation of the relationship between social proxim-

ity and co-author graphs in section “Dimensions of proximity”, we argue that the social 

proximity of two researchers can be approximated by closeness in the co-author graph. 

However, quantifying the similarity of researchers in the co-author network is not straight-

forward. The naive approach would be to use the shortest path distance as a measure for 

social distances.2 However, since the shortest path distance produces a low amount of dif-

ferent values  (Watts, 2003), it would provide only a very shallow insight into similarity 

and distances. To overcome this issue, we use embedding methods. These methods use the 

structure of the graph to compute vector representations of nodes which incorporate mul-

tiple aspects of the surroundings of each node, for example, overlapping neighborhoods, 

direct connections or similar roles of nodes. To quantify the similarity of two researchers 

in the co-author network, we use node embeddings based on the co-author graph. Having 

an embedding of the researchers at hand, we again compute the corresponding similarity 

sim Hyperlink (r1, r2) ∶= 1 − d Hyperlink (r1, r2).

sim Hierachy (r1, r2) ∶= 1 − d Hierachy (r1, r2).

sim Diss_Loc (r1, r2) ∶=

{

1 if Diss_Loc (r1) = Diss_Loc (r2)

0 otherwise
,

2 And thus as a measure for similarity under the common assumption that a lower distance corresponds to 

a higher similarity.
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via the cosine similarity of the embedding vectors. We focus on the following embedding 

techniques. The first embedding technique is DeepWalk  (Perozzi et al., 2014). It was the 

first work that applied the skip-gram (SG) approach (Mikolov et al., 2013b, Mikolov et al., 

2013a) on graphs. The SG approach was originally designed for word embeddings. Here, 

sentences are given as input to a two-layer network that is then trained to predict for a given 

word the words around it. Afterwards, the weights of the first layer matrix are used as vec-

tor representations. DeepWalk transfers this procedure to graphs in the following manner: 

For a given graph G = (V , E) , the nodes v ∈ V  are treated as the ‘words’ of the vocabu-

lary. To generate embeddings, ‘sentences’ of nodes are generated via random walks. Today, 

DeepWalk is regularly used for node embeddings, since the embeddings (1) are adaptable 

to the emergence of new edges, (2) are capable of providing vectors where the measure-

ment of similarity is meaningful and (3) have proven to outperform handcrafted node fea-

tures in classification tasks (Perozzi et al., 2014).

The second embedding technique is node2vec  (Grover & Leskovec, 2016), which 

extends Deepwalk with two parameters p, q ∈ ℝ
≥0 that allow to bias the random walk pro-

cedure. While a low p value corresponds to walks that prefer a “breadth-first behavior”, 

low q values bias the walk towards a “depth-first behavior”. The additional parameters have 

proven to enlighten DeepWalk in common machine learning tasks such as node classifica-

tion or link prediction. As a drawback, the two additional parameters have to be chosen 

reasonable or have to be determined via grid-search. In our analysis, we use the p and q 

parameters to generate embeddings with distinctive, but reasonable properties to capture 

different aspects of the underlying graph. For this, we refer to (Grover & Leskovec, 2016), 

where the authors do parameter searching in {0.25, 0.5, 1, 2, 4} for p and q. Following this, 

we generate two different embeddings and thus two corresponding similarity functions by 

the “extreme” choices of p = 0.25, q = 4 and p = 4, q = 0.25.

The third embedding technique is HOPE  (Ou et  al., 2016). While DeepWalk and 

node2vec use “sentences of nodes” as input to compute the embeddings, HOPE encodes 

the input graph via a similarity matrix and then computes the vector representations via 

factorization. Here, different similarity matrices that incorporate different information 

of the graphs are possible. To generate embeddings of the co-author graph, we employ 

the Katz–Index similarity  (Katz, 1953), which is defined in the following manner. Let 

G = (V , E) be a graph with adjacency matrix A ∈ ℝ
n×n , � ∈ ℝ>0

 and let I
n
 be the n-th 

dimensional identity matrix. The similarity matrix with respect to � is then given by 

S�(G) ∶= (I
n
− �A)−1�A. For a given d ∈ ℕ , HOPE then computes matrices U, V ∈ ℝ

n×d 

such that S� ≈ UV  . To get a vector representation of a node, the corresponding rows of U 

and V are concatenated.

Having the embedding methods at hand, we use the co-author graph to com-

pute functions that map researchers to vectors. We denominate the result-

ing functions with f DeepWalk , f Node2vec-small-p , f Node2vec-large-p and f
HOPE

 . For each 

m ∈ {DeepWalk , Node2vec-small-p , Node2vec-large-p , HOPE } and for all researchers 

r1, r2 ∈ R , we define a corresponding similarity function via

sim m(r1, r2) ∶=
⟨fm(r1), fm(r2)⟩

‖fm(r1)‖‖fm(r2)‖
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Geographic proximity

As explained in previous section, geographic proximity reflects the spatial separation of 

two actors. We simplify it by considering the longitudinal and lateral coordinates of the 

city associated with the affiliation of the author. As a measure of separation of two cities, 

we use the great-circle distance d Geo
 . Furthermore, all similarity scores are scaled between 

0 and 1. The similarity score of two researchers r1, r2 ∈ R is is then calculated by

 

Ranking hypotheses about the origin of collaboration

The methods introduced in the previous section allow to quantify proximity between 

authors in various dimensions. Now, we present an approach, namely HypTrails, that 

allows to rank and compare these dimensions with respect to their impact on the emer-

gence of cooperation in the form of joint publications and patents. In the following, we will 

shortly repeat the basics of HypTrails and introduce the needed adoption for our setting.

HypTrails is a descriptive approach which was originally developed to compare different 

hypotheses about human navigation. Human navigation can be represented by any kind of 

sequences, such as geographical movement  (Singer et  al., 2015), tagging behavior  (Nie-

bler et al., 2016b) or click trails in the web (Niebler et al., 2016a). Using the example of 

web trails, possible navigation behaviors could be browsing, e.g. clicking links randomly 

or links to items with a discount, or searching, where the clicks leads to a specific target 

page (Koopmann et al., 2019). Given a click sequence made by a user, HypTrails is able 

to compare different intuitions of navigation. More generally, HypTrails generates a rank-

ing of hypotheses H = {H1, H2,… , H
n
} with respect to their plausibility for the observed 

data D. Here, D represent the users click trails, which are transformed into an adjacency 

matrix N. Each entry Ni,j in the matrix expresses the amount of observed transitions 

between discrete states S = {s1, s2,… , s
m
} . Therefore HypTrails leverages the first order 

Markov Model and hence ignores second level dependencies when creating the matrix. In 

the web navigation example, the states represents web pages and the entries represents the 

normalized amount of clicks between pages by users. Furthermore, each hypothesis H ∈ H 

is expressed by its own transition matrix Q constructed on the belief of users on a specific 

navigation behaviour property. The “browsing” hypothesis could be a uniform distribution 

to express the random clicking behaviour or a matrix with high transition probability for 

clicks to discounted items.

For a given hypothesis H, HypTrails uses Bayesian inference to calculate the marginal 

likelihood P(D|H), also called evidence, with respect to the observed data D. The input of 

the model are two adjacency matrices. Q is representing a hypothesis (also called prior) 

and N is created from the data transitions. To calculate the evidence, Hyptrails adapt the 

Trial-roulette method  (Gore, 1987). This method incorporates a concentration factor k, 

which displays the belief in the given hypothesis. Here, k reflects the ratio of uniform dis-

tributed transitions and transitions that directly follow the hypothesis. Hence, k indicates 

how strongly the underlying hypothesis influences the transitions. For more detail on the 

computation of the evidences, we refer the reader to Singer et al. (2015).

For a given k, the marginal likelihoods {P(D|H) | H ∈ H} are used to generate an order 

of the hypotheses H . More precise, hypotheses H1, H2 ∈ H can be compared with the 

sim Geo (r1, r2) = 1 − dgeo(r1, r2).
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Bayes factor B1,2 =
P(D|H1)

P(D|H2)
 . However, determining an appropriate k is challenging. There-

fore, we use a range of concentration factors to compare a set of hypotheses H.

Our setting HypTrails originally analyses sequential navigation data. Graphs can be 

interpreted as a generalization of sequences. Therefore, Espín-Noboa et al. (2017) showed, 

that the transition probabilities required for HypTrails can also be inferred from so-called 

attributed multi-graphs. Here an attributed multi-graph describes an undirected, weighted 

graph, which contains descriptive attributes for its nodes. Since co-author and co-inventor 

can be interpreted as such graphs, HypTrails can be applied as follows: The discrete states 

are given by the researchers R = {r1,… , r
m
} and the transitions Ni,j of matrix N are collab-

orations (co-authorships or co-inventions) between the researchers r
i
 and rj . Furthermore, 

the matrices corresponding to the hypotheses H can be extracted by leveraging attributes 

for author pairs, which in our case are the values from the similarity functions presented in 

section  “Measuring and quantifying proximity”. More specifically, for a similarity func-

tion sim from Table 1, we derive a hypothesis H with corresponding adjacency matrix Q 

via Qi,j = sim (ri, rj) . Here, for a given similarity function sim , the belief of the hypothesis 

H ∈ H is, that a high similarity value sim (r, s) for researchers r, s ∈ R indicates the emer-

gence of collaboration between r and s. In the following, we will not differentiate anymore 

between a similarity function and the corresponding hypothesis and thus use the terms 

interchangeably.

The result is a ranked list of hypotheses based on the extent to which they indicate an 

influence on collaboration. By selecting one hypotheses for each dimension of proximity, 

our approach allows to rank these dimensions.

Empirical context: the German AI community

To measure proximity dimensions and their impact on collaboration in the German AI 

landscape, we employ a data foundation that captures publication activities and inventions 

in this community.

The German AI network

The German AI Network (GAI) is a bibliometric data set of German AI researchers and 

their publications. The GAI is publicly available via Zenodo (Stubbemann & Koopmann, 

2020). It is built upon the DBLP data set (Ley, 2009),3 which contains bibliographic infor-

mation of publications in the realm of computer science. DBLP is, in our experience, 

impressively tidy and consistently structured, especially for the amount of covered data. 

Furthermore, it contains information about conference proceedings, which are the pre-

dominant publishing channels in computer science. To identify the academic authors that 

belong to the domain of artificial intelligence, we rely on the work by Kersting et al. (2019), 

which provides a collection of central AI venues and the relevant venues that belong to the 

expanded environment of AI. Furthermore we identify German authors by using the affilia-

tions provided by DBLP. In detail, we create the data set as follows:

3 We use the DBLP dump from 2020-01-01, which can be found at https:// dblp. org/ xml/ relea se/ dblp- 2020- 

01- 01. xml. gz.

https://dblp.org/xml/release/dblp-2020-01-01.xml.gz
https://dblp.org/xml/release/dblp-2020-01-01.xml.gz
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– First, we extract all publications that were published in one of the venues mentioned in 

Kersting et al. (2019).

– Next, we identify all authors of these papers as (international) AI authors.

– Afterwards, we filter the German authors by using the given affiliations from DBLP. In 

detail, we search for the substring Germany in each affiliation. We discovered that well-

formated affiliations are formed such as University of Kassel, Germany, for example.

– The data set consists of all authors identified in the step above and all of their respective 

publications, not limiting to publications of AI venues.

We optimize the construction of the data set and matching of German authors towards high 

precision. Accordingly, authors are included only if they are identified with a high level 

of confidence as German AI authors. This results in a comparatively smaller subset of the 

German AI community, but a small to non-existent number of false positives. While DBLP 

provides comparatively well disambiguated bibliographic data, it does not contain informa-

tion of citations or abstracts. To enrich our data with the latter, we link it with the Semantic 

Scholar Corpus (Ammar et al., 2018).4 The linking process primarily relies on titles. How-

ever, as different papers with equal titles can result in false positives, we add further linking 

constraints such as DOIs, years and the fact whether both publications are pre-prints or not. 

Basic statistics of the GAI can be found in Table 2.

The German AI inventors

We define the German AI inventors as authors who work and publish in the academic 

domain of artificial intelligence, which we covered with the GAI data set, and also contrib-

ute to technological change as patenting inventors. To extract these author-inventors, we 

use the GAI (defined above) as our starting point. We link this data set, based on names, 

with CIROS-Patstat5  (Tarasconi, 2014) only considering inventors listed with a German 

residence.6 This approach yields 423 possible candidates with the same name in both 

data sets. As before, we aim towards a high precision and hence want to ensure to have as 

few false positives in our sample as possible. This is achieved by analyzing the publica-

tion neighborhood. More specifically, we compare co-inventors and co-authors for each 

candidate. If a candidate has at least one identical co-author and co-inventor (as before 

based on names), we consider this candidate as a true positive. This approach leads to 

212 individuals. While this is a relatively small number, given our search strategy it rep-

resents the subset of publishing AI researchers in Germany who also patent. This focus 

Table 2  Basic statistics of the German AI Network. We display, from left to right, (1) Number of German 

AI authors, (2) Number of publications (3) Number of publications on AI venues (4)Number of authors 

with at least one collaboration (5)Number of co-authorships

Authors Publications AI publications Coll. authors Co-author-

ships

2131 127,780 11,344 1937 6064

4 We use the Semantic Scholar dump from 2020-01-01.
5 CRIOS – Patstat provides a disambiguated data set based on the European Patent Office.
6 We prepossess the date and also respect German umlauts.
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on author-inventors is consistent with our interest in research collaboration, as it ensures 

that both collaborating partners are active researchers. Table 3 provides a summary of the 

resulting data. We name the resulting data set the German AI inventors (GAI-I).

The German academic web

We complement the previously mentioned data sets with web information, which allows to 

to capture additional information about AI researchers. In contrast to the bibliometric data, 

the German Academic Web (GAW) reflects an expression of the hierarchical organizational 

structure. At the same time, the web allows everybody to freely display their research inter-

ests and link themselves with other authors.

Overall, the GAW data set (Paris & Jäschke, 2020) has been created in an effort to 

establish a knowledge base of the academic landscape in Germany. It is an accumulation 

of semi-annual crawls since 2012, containing web pages of 150 major universities and 

research institutions. To match and find home pages of authors, we use URLs given by 

DBLP and reduce them by matching to GAW crawl seeds7. This allows us to remove hosts 

such as “gitlab” or “Orcid”, which do not represent the homepage of an author. With this 

process we are able to find 1,163 researchers of the GAI in the GAW data set.

Analysis: ranking of proximity dimensions

Previous sections explained how we measure different forms of proximity, how we intend 

to compare them and which data we use. In this section, we describe our analysis which 

compares the proximity dimensions with respect to the extent they indicate collaboration.

Analytical setup

The aim of the analysis is to compare different hypotheses for the emergence of collabora-

tion between different researchers. Every similarity function corresponds to a hypothesis 

H and the resulting pairwise similarity scores are used as entries for the prior adjacency 

matrix Q. The similarity functions introduced earlier depend on different hyperparameters. 

We display the names of the used hypotheses, the similarity functions and the used param-

eters in Table 4. The hyperparameters follow default choices of Scikit-Learn or from the 

papers where the methods were introduced. Overall, we run two different analysis. First, we 

study academic collaboration, where we consider co-published publications and secondly, 

Table 3  Basic statistics of the German AI Inventors. We display, from left to right, (1) Number of German 

AI inventors (2) Number of inventions (3) Number of inventions with at least two inventors (4) Number of 

inventors with at least one collaboration (5)Number of co-inventorships

Inventors Innovations Co-inventions Coll. inventors Co-inventor-

ships

212 1,007 55 72 92

7 We use the most recent snapshot from 2019/12.



9860 Scientometrics (2021) 126:9847–9868

1 3

we analyze collaboration in terms of co-patentships. Some hypotheses use external infor-

mation, which are not in the GAI. Here, we briefly explain the underlying data sources. 

The hypothesis Diss Loc leverages dissertation data from DNB8. Here, we are able to col-

lect 1035 relevant dissertations. Hypotheses that are based on web data use the linked URls 

from DBLP with the GAW. Geographic distances between authors are computed using the 

coordinates of German cities, which we extract from Wikidata. 9 

Setup for the analysis of co-authorships. The hypotheses in the realm of social prox-

imity, namely the graph embeddings, are build upon the co-author graphs and hence 

rely on the co-authorships we want to explain in our first analysis. Additionally, future 

collaborations should just be explained with data from previous co-authorships and pub-

lications. To tackle this problems, we split the publications and hence the co-author-

ships into two parts. We use all publications published until 2017 to create the hypoth-

eses that are build upon text and graph embeddings. To create the observed transition 

matrix N, which contains the collaboration we want to analyse, we use the weighted 

co-author graph of 2018 and 2019. Setup for the analysis of co-inventorships.  For the 

second analysis, we compare hypotheses with respect to the question, to which extent 

they describe co-patentships. Here, the matrix N of the observed transitions is given by 

the adjacency matrix of the weighted co-inventor graph. Due to the linking process, we 

have pairwise similarity scores for all inventors in the co-inventor graph. Therefore we 

Table 4  Overview of the hypotheses. For each hypothesis, we display the corresponding similarity function 

and the choice of hyperparameter, if needed. d: dimensions of the embedding, w: window size, � : walks per 

node, t: walk length, p, q: node2vec bias parameters, � : parameter for HOPE embedding

Proximity dim. Hypothesis similarity function parameter settings used data

Cognitive LSA sim
LSA

d = 100 GAI

NMF sim
NMF

d = 100 GAI

BERT sim
BERT

d = 768 GAI

Institutional Academic sim aff_type – GAI

Organizational Affiliation sim
Affiliation

– GAI

URL – GAI,GAW 

Hyperlink sim Hyperlink – GAI,GAW 

Hierarchy sim Hierachy – GAI,GAW 

Social Diss Loc sim Diss_Loc – GAI,DNB

DeepWalk sim DeepWalk d = 100, w = 10 , � = 10, GAI

t = 80

Node2vec sim Node2vec-small-p d = 100, w = 10 , � = 10, GAI

Small p t = 80, p = 0.25, q = 4

Node2vec sim Node2vec-large-p d = 100, w = 10 , � = 10, GAI

Large p t = 80, p = 4, q = 0.25

Hope sim
HOPE

d=100, � = 0.1 GAI

Geographic Geo sim
Geo

– GAI,

Wikidata

8 The DNB is the German National Library. The data set is based on Heinisch and Buenstorf (2018), and 

supplemented from the DNB homepage if necessary.
9 https:// query. wikid ata. org/ on 2020-05-07.

https://query.wikidata.org/
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can use the same hypotheses H as in the first analysis with one difference. No overlap 

between data for the hypotheses and the observed data has to be prevented. In conse-

quence, we omit the time split from our fist analysis. Only a small subset of German AI 

researchers do indeed collaborate over inventions. This can be seen when comparing 

GAI and GAI-I with 1, 937 AI authors which collaborate over co-publications and only 

72 authors that collaborate over co-inventions. Since the aim of this work is to find key 

factors of collaboration, we only consider these 72 inventors for the data matrix and 

all hypotheses. In detail, for a given hypothesis H, represented by a adjacency matrix 

N, we omit the rows and columns that correspond to authors without any edges in the 

co-inventorship graph. Evaluation setup As a baseline hypothesis, we use a Random 

Co-author hypothesis, which is build by assuming that researchers choose their co-

authors randomly. This works as follows. For a publication with l authors and for each 

of its authors we create an artificial publication with l − 1 randomly selected co-authors. 

We scale all plots with respect to this baseline. To clearly arrange the results, we first 

analyze each proximity dimension separately. Then, we use the hypothesis with the 

highest evidence as representative for each dimension of proximity and compare the 

different dimensions of proximity. Since institutional and geographical proximity only 

have one hypothesis, we only include them in the comparison over the different dimen-

sions. When comparing the different dimensions of proximity, we also include the True 

hypothesis, which represents the actual transitions as hypothesis. Hence, it is the best 

possible explanation and can be understand as ground truth.

Analyzing co-authorships

Figure  1 shows the evidence scores over a selected range of k-values for different 

hypothesis. Figure 1a compares hypotheses that belong to cognitive proximity. For all 

concentration factors, the LSA hypothesis extracts cognitive proximity in a way, which 

yields the highest evidence scores. It is followed by the NMF and BERT hypotheses. 

Figure 1b shows the analysis of organizational proximity. For small k values, the Affili-

ation and URL hypothesis have the highest evidence scores. When increasing k, hence 

believing more in every transitions stated by the hypotheses, the Affiliation hypothesis 

drops below URL and Hyperlink. Interestingly, the Hierachy hypothesis has the low-

est evidence scores overall. Social proximity is depicted in Fig. 1c. Here, a gap between 

graph based hypotheses (upper four hypotheses) and the Diss Loc hypothesis can be 

observed. The Deepwalk hypotheses has overall the highest evidence, followed by both 

node2vec approaches and HOPE. Finally, Fig. 1d shows the comparison of all proxim-

ity dimensions. Overall, the representative of social proximity yields the best explana-

tion of collaboration. It is followed by the representative of cognitive proximity and 

organisational proximity. Institutional and geographic proximity conclude the ranking.

Analysing co-inventorships

Figure 2 shows the results for cognitive proximity. The results are similar to the previ-

ous analysis. The LSA hypothesis yields overall the highest evidence, followed by NMF 

and BERT. The organizational proximity is depicted in Fig.  2b. Here, all hypotheses 

lead to comparatively low evidence scores and even drop below the baseline for high 

k-values. For low k-values the Affiliation hypothesis ranks highest. On the other hand, 
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for high k-values the Hyperlink hypothesis has the highest evidence, followed by URL, 

affiliation and Hierachy hypothesis. The results for social proximity are depicted in 

Fig.  2c. Similar to the previous analysis, the Diss Loc is the worst indicator for col-

laboration. The highest evidence is achieved by the Hope hypothesis. Finally, Fig. 2d 

shows the combined view over the different proximities. As for the co-authorship, social 

Fig. 1  HypTrail graphs for co-author graphs. For Fig. 1d we choose the LSA hypothesis for cognitive prox-

imity, URL hypotheses as representative for organizational proximity and Deepwalk hypothesis for social 

proximity. Institutional and geographic proximity are represented by the only one hypothesis each
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proximity is the best indicator for collaboration. In contrast to previous analysis, for 

low k values organizational proximity represented by the Affiliation hypothesis achieves 

the second highest evidence. When increasing the believe (higher k factors), cognitive, 

institutional and geographic proximity have higher evidences.

Fig. 2  HypTrail graphs for co-inventorships. For Fig. 2d we choose the LSA hypothesis as representative 

for cognitive proximity, the affiliation hypothesis for organizational proximity and Hope hypothesis for 

social proximity. Institutional and geographic proximity are represented by only one hypothesis each
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Discussion

For both forms of collaboration, social proximity serves as the best indicator, followed by 

cognitive proximity. Both dimensions lead to higher results then geographic proximity, 

indicating that social connection between actors and similar knowledge are more impor-

tant for collaboration than being co-located. This is consistent with prior findings that the 

role of geography mostly derives from the localization of social networks (Breschi and 

Lissoni, 2009). Its relevance may be further reduced by the increasing adoption of com-

munication technologies. Our findings do not suggest that organizational proximity is an 

important driver of collaboration. However, our ability to analyze hypotheses based on web 

data is limited since we could not collect web pages for all researchers. URLs for only 1163 

of 2131 researchers can be found in the GAW. This effect amplifies in the second analy-

sis, which only considers a subset of German AI researchers. The Diss Loc hypothesis 

suffers from the same issue, where we found dissertation locations of 1035 researchers. 

Furthermore, we notice differences when comparing the ranking of proximities between 

co-authorship and co-inventorship. Organizational proximity seems to be a poor indica-

tor of co-inventorship, finding even less support than the hypothesis that co-inventorships 

are chosen randomly. Furthermore, for describing co-inventorship, institutional proximity 

is more important than geographic proximity, which does not hold for co-authorships. This 

result is plausible because we expect co-inventorships to be more common in industrial 

contexts, where both inventors are connected to a non-academic affiliation. Another issue 

influencing the results are missing time-stamps for affiliations and homepages. This leads 

to hypotheses being built upon all data. Additionally, in the case of co-inventorships no 

temporal split was made because the overall number of collaborations is rather small. Our 

analysis primarily serves to identify associations between various forms of proximity and 

collaboration, whereas it is not designed to find key factors for the identification of future 

collaboration. Finally, various alternative representations for the different dimensions of 

proximity have not yet been evaluated. For example, social media data can be used to cre-

ate reasonable similarity functions for social proximity.

Conclusion

In this study we presented methods to identify relationships between different dimensions 

of proximity and the emergence of collaboration. For each dimension, we proposed several 

methods to quantify the similarity of two researchers. These methods were used to cre-

ate hypotheses about the origin of collaboration. To compare them with respect to their 

plausibility, we adapted the HypTrails approach. For our analyses, we used a novel data 

set of 2131 German AI researchers. By linking author data with web data, we were able to 

compute similarity scores between authors based on their web presence. With these linked 

data, we analyzed two forms of collaboration, namely co-authorship and co-inventorship. 

For the latter, we additionally linked our data with patent date from CRIOS Patstat. Our 

findings suggest that social proximity is the key factor to explain collaboration.

In future work, we plan to investigate additional forms of proximity and collaboration. 

For example, present-day communication and interaction often relies on social media. 

Hence, hypotheses based on data from such sources would lead to further interesting prox-

imity measures. Furthermore, an interesting aspect is the influence of funded projects. 

Further research can study whether such projects indeed lead to more co-publications. 
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Additionally, joint projects can be interpreted as a form of collaboration. Hence, further 

investigation could tackle the question which dimensions of proximity are relevant for joint 

projects.
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