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PROXIMITY OF INFORMATION IN GAMES 
WITH INCOMPLETE INFORMATION 

DOV MONDERER AND DOV SAMET 

Existing notions of proximity of information fail to satisfy desired continuity properties of 
equilibria in games with incomplete information. We demonstrate this failure and propose a 
topology on information structures which is the minimal one that satisfies those continuity 
requirements. This topology is defined in terms of the common belief players have about the 
proximity of each player's information. 

1. Introduction. Over the last decade several authors have studied notions of 
similarity of information (e.g. Allen 1983, 1984; Cotter 1986; VanZandt 1988; and 
Stinchcombe 1990). In the economic context this similarity should be defined such 
that agents behave similarly when information is similar. By similarity of information 
we mean closeness of partitions, or o-fields, where prior probabilities remain fixed. 
Milgrom and Weber (1985) and Kajii and Morris (1994) study closeness of informa- 
tion when r--fields are held fixed while prior probabilities change. That is, behavior 
should reveal some continuity with respect to the topology defined on information. 
This paper is motivated by the observation that the existing notions concerning 
proximity of information, while guaranteeing similarity of behavior for similar infor- 
mation when a single agent is involved, fail to imply an analogous sameness of 
behavior in models in which agents interact. In the latter models, similarity of 
information for each single agent does not imply similarity of behavior for the group. 
We show that similarity of group information, for games with incomplete information, 
should be defined in terms of the common belief players have concerning the 
similarity of individuals' information. We define such a metrizable topology on group 
information, prove its adequacy for certain continuity properties of equilibria and 
show that it is the coarsest one that satisfies these properties. Continuity refers here 
to some sort of lower hemi-continuity. Roughly speaking, for a given information 
structure, a game with this structure, and an equilibrium of the game, close informa- 
tion structures have E-equilibria which are close to the given equilibrium. This type of 
continuity is considered also in Kajii and Morris (1994), while Milgrom and Weber 
(1985) consider upper hemi continuity. The basic concept and properties of common 
belief are taken from Monderer-Samet (1989) (see also Fudenberg-Tirole 1990 for 
new results) but various variants of common belief are studied here to enable explicit 
definition of the metric. The notion of common belief, which is so central to our 
definition of proximity of information structure, does not appear in the works of 
Milgrom and Weber (1985) or Kajii and Morris (1994), in which prior probabilities 
vary. The relation between their notions of proximity and ours awaits further 
research. 

In Allen's work, and ensuing studies by others, information is given as a cr-field 
over a state space. Using a metric, defined by Boylan (1971), on the space of all 
sub-cr-fields of a given r-field, Allen proves the continuity of demand and other 
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economic quantities. In this paper we restrict ourselves to purely atomic o-fields or, 
equivalently, to countable partitions. This is done to drive home our point without 
using heavy tools of mathematical analysis and more importantly, since we are dealing 
with equilibria of games with incomplete information, to ensure a setup in which such 
equilibria always exist. 

The continuity properties of equilibria that our newly defined metric exhibits are of 
the same nature and form as those of single-agent optimal plans with respect to the 
Boylan metric. We start then with the latter case. 

The following statement describes continuity of optimal plans with respect to the 
Boylan metric and claims that the Boylan topology induced by this metric is the 
minimal one satisfying this continuity. 

Two partitions are close iff, for any decision problem over the state space, a 
plan which is optimal under one of the partitions can, by changing it a little, be 
made an almost optimal plan under the other partition. 

By an "almost optimal plan" we mean one that pays the agent in expectation, given 
his information, almost the same as an optimal one (see ?6). 

An example will clarify this statement. The price of a stock is known to be 
uniformly distributed between $0 and $10. John knows whether it is below $5 or 
above it. Suppose the payoffs are such that his optimal plan is to buy the stock if it is 
below $5 and sell it otherwise. Consider now a different information structure. John 
knows whether the price is below $5.02 or above it. The previous plan is not feasible 
with this information but a small change makes it feasible: Let John sell the stock 
when it is below $5.02 and buy it otherwise. This plan may not be optimal but clearly 
it is almost optimal. 

Consider now a game with incomplete information. We call a list of partitions, one 
for each player, an information structure. We want to define a metrizable topology on 
information structures such that the continuity of equilibria with respect to it will be 
analogous to the aforementioned continuity of single-agent optimal plans with respect 
to the Boylan topology. We simply substitute "information structures" for "partitions," 
"game" for "decision problem" and "equilibrium" for "optimal plan." Thus our 
objective is to define proximity of information structures by which: 

Two information structures are close iff, for any game over the state space, an 
equilibrium of the game under one information structure can, by changing it a 
little, be made an almost equilibrium under the other information structure. 

An "almost equilibrium" is defined along the same lines as the almost optimal plan of 
a single agent. It is a strategy profile such that each player's strategy, given the 
player's information, pays him almost the same as his best response. Clearly our 
continuity requirement itself can serve as a definition of a topology on information 
structures. The point is that we want to express the topology in terms of the 
information structures themselves and not in terms of all possible games. 

In ?2 we examine the most natural candidate for the required topology, that is, the 
product topology on information structures, using the Boylan topology on each 
coordinate. As we show in Example 2 of this section the product topology fails to 
achieve the desired continuity: We present a sequence of information structures 
which converges in the product topology and a game for which continuity of equilibria 
fails. (A weaker continuity still holds for this topology, one in which almost equilib- 
rium is defined in terms of ex-ante payoffs rather than ex-post payoffs which we use 
in our definition of continuity.) 

Section 3 provides the standard definitions and notations for games with incom- 
plete information. We introduce the notions of belief and common belief as well as 
some results concerning these concepts. 
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In ?4 we take a closer look at common belief. We introduce new variants of this 
notion as it appears in the previous sections. General results about belief operators 
are presented and used to show that all the variants share some common features. 
These variants are used in the next section to define explicitly the metric that induces 
our topology. 

In ?5 we define, for a given pair of information structures, the event that each 
player considers his partitions in the two information structures to be close. The 
event that the previous event is common belief is used to formulate several conditions 
which describe convergence of information structures. The basic idea is that two 
information structures are close if there is a high probability that players share a 
common strong belief that all of them consider their partitions to be close. We then 
state formally a continuity property for this topology and prove that even a weaker 
one requires a topology as strong as the one we define. 

In ?6 we look at the case of a single agent, namely, one partition. The previous 
results apply to this as a special case and we show that the topology thus defined on 
partitions coincides with the Boylan topology. Moreover, the characterization of the 
general topology by means of continuity of equilibria gives rise, as a special case, to a 
characterization of the Boylan topology in terms of continuity of optimal plans. 

2. Examples. Our first example shows a case in which information structures 
converge in the product topology (i.e., each player's partitions converge) and continu- 
ity of equilibrium does hold. 

EXAMPLE 1. Consider the state space Q = [0, 1] equipped with the Lebesgue 
measure. Let IIl = {[0,2), [, 1]} and IIl = {[0, + 1), [ - , 11] be partitions of H 
for agent 1. For big n we consider the partitions I1 and HII to be close and indeed it 
is hard to think of any notion of proximity for which this is not the case. In particular 
under the Boylan metric fII -* I1. There are several ways to express the continuity 
property of optimal plans in a single-agent decision problem with respect to this 
convergence (most of them are equivalent). We follow the one that was given in the 
introduction and which can be easily generalized to games. Suppose that agent 1 
faces a decision problem over H with payoffs bounded to the interval [-1, 1]. That is, 
he has to choose an action where his utility depends on this action and the state o. If 
8 is an optimal plan when the information is given by I1 then for each n > 4 there 
exists a plan 8n which coincides with 8 except for a set of measure 1 and is 8-optimal 
(i.e., given the information agent 1 has, he cannot improve upon an by more than 8). 

Indeed, suppose 8 assigns action a in the interval [0, ) and action b in the interval 
[?, 1]. Consider the plan 8n according to which a is selected over [0, + n) and b 
over [2 + 1, 1]. Clearly 8n coincides with 8 every where except for the interval 
[1, + n) and 8n can be improved upon, in each of the sets [0,2 + n) and [2 - 1], 
by no more than 8. 

Let us now add another agent with information given by 1I2 = {[0,?), [1 , 1]} and 
consider the information structures II = (ll, 112), and HIn = (IIn, 1I2). Here again it 
seems that any two games which differ only in their information structures, one 
having nI the other In, are close for big n. The continuity of equilibria with respect 
to this closeness is very similar to the one we have for optimal plans in the case of a 
single-agent decision problem. Indeed suppose that F is a game with payoffs bounded 
to the interval [-1, 1], and let o- be an equilibrium of (II). It is very easy to see that 
for each n there is a strategy "n which coincides with ao except maybe for a set of 
measure n and is 8-ex-post equilibrium in (IIn) (i.e. that given his information no 
player can improve upon o-" by more than 8). The construction of o sn is done 
precisely the same way 8n was constructed for the decision problem. 
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The question we pose is what conditions on information structures II and n" 
guarantee that the continuity property we have described above holds. This example 
may be misleading as to the simplicity of such conditions. The following example 
demonstrates the difficulties and hints to the solution. In particular it shows that it is 
not enough that the partitions of each agent are close in order that the information 
structures are. 

EXAMPLE 2. Consider a two player game where the state space fl is the set of 
integers {...,- 2, - 1,0, 1, 2,... }. Nature chooses n e Qf with probability /x(n) = 
(X)")lnl. Both players have the same set of strategies {Even, Odd, Cooperate). The 
payoffs depend on the actions and the state as follows. If a player chooses Odd than 
he is paid 6 if the state is odd and 0 if it is even, independently of the action of the 
other player. Similarly if he chooses Even he is paid 6 if the state is even and 0 
otherwise, independently of the action of the other player. If both players choose 
Cooperate they are paid 4 each, while if only one of them play Cooperate he is paid 0. 

Consider now the information structure 1 = (I , I2) where 

HI = {(2k,2k + l)lk is a whole number} and 

n2 = {(2k + 1,2k)lk is a whole number}. 

The resulting game is denoted by (II). The strategy ac according to which each 
player is choosing Cooperate regardless of the information he receives is an equilib- 
rium of F(I). Under this strategy each player receives 4 in each state. to see that 
deviation to either Odd or Even is costly note that for each player the posterior 
probability that the state is odd or even is approximately 2 (more precisely, (4,) or 
(5,) depending on whether the state is positive or negative). Thus by choosing, 
in a given information set, Odd or Even a player can expect approximately ?6 + 

I0 = 3 which is less than the 4 he receives by playing or. 
We change now the information structure of the game and consider games r(In) 

where the information structure HI = (H l, Hn) is given by 

l = i \ {(2n,2n + 1)} U {(2n)} U {(2n + 1)} and Hn = H2. 

That is, 2's information has not changed and l's information has changed by splitting 
his information set (2n, 2n + 1) into two. 

First we note that for big n, H1 and HII are close in the sense explained above. For 
any decision problem of agent 1, any optimal plan when information is given by I1 
can be made by small changes an almost optimal plan under IH. (In this example the 
second "almost" is not required. By changing the optimal plan over (2n) and 
(2n + 1), we get an optimal plan for Hl). 

Examine now the game r(Hn). This game has a unique equilibrium. In state 2n 
player 1 can guarantee 6 by playing Even and this is the only strategy that pays him so 
well so he must play Even in 2n. When player 2 is informed (2n - 1, 2n) he assigns a 
probability of approximately 

2 
that player 1 is playing Even and therefore if he plays 

Cooperate he can expect 14 + 
2 

0 = 2 (if the other play Cooperate) or l0 + l0 = 0 (if 
the other did not play Cooperate). By playing Even he can guarantee approximately 3 
and therefore this is what he will play. This argument, extended by induction, shows 
that in the unique equilibrium of this game none of the player plays Cooperate in any 
state. Moreover a simple but tedious computation shows that even if players only E 
optimize in each state, where E < 0.1 than in any e-equilibrium of r(In) the 
probability of playing Cooperate does never accede 0.04 no matter how big n is. Thus, 
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unlike the previous example, an equilibrium of (II) cannot be approached by 
e-equilibria of the games r(In). 

We are therefore led to the conclusion that II and I"n should not be considered 
close even for big ns. This is despite the fact the partitions of player 1 are the same in 
both information structures and those of player 2 are close. The phenomenon 
observed here is that the small, local, difference between the personal information of 
individuals in IIn and II, propagates in the whole space by the interlacing of 
partitions of different agents. We use here the notion of common belief to express 
and measure this propagation effect. It was used in Monderer and Samet (1990) to 
give a full account of how lack of cooperation propagates in the electronic mail game 
described by Rubinstein (1989). Such propagation effects are studied in a different 
way by Sorin (1994). We discuss this example again, at the end of ?4, after 
introducing the formal definition of metric on information structures and stating the 
continuity properties of equilibrium with respect to this metric. 

3. Preliminaries. States and partitions: We fix throughout the discussion a mea- 
sure space (H, E, A), where H is the state space, X is a o field, and t a probability 
measure. Denote by E* the subset of E which consists of all non-null sets. Let 7 be 
the space of all partitions of 2f, the elements of which are in E*. For each HII e 
and o E f, we denote by H(w) the element of II which contains w. The ac field 
generated by II is denoted by n. 

Games and information structures: A finite set N is the set of players. An element of 
the form II = (rdi)i E N in 9N is called an information structure. A game F consists 
of the following elements. For each player i E N there is a finite set Ai of actions, 
where we denote A = IIe NAi, a partition nIi e< and a payoff function ui: 
A x 1 -> R which is bounded and for each a E A, ui(a, ) is measurable. By F(I') 
we denote the game which is the same as F except that the information structure is 
I'. The set of mixed actions of player i (i.e. probability distribution over Ai) is 
denoted by Ai and we write A for the set of mixed actions Hi N Ai. The payoff 
functions ui are extended naturally to A X fl. We write u for (ui)i E N For x E RN, liXII 
is the max norm of x. We say that F is bounded by M if lulil < M. 

Strategies and equilibria: An individual strategy of player i in the game F = r(I) is 
a function o-^: f -> Ai which is Hli-measurable. a = (ai)i N is called a strategy. For 
a strategy a = (cri)i N and an individual strategy or', we write (ar i') for the strategy 
which results from replacing ari by aoi'. We extend the payoff functions to strategies by 
defining it as the expected payoff, i.e., ui(r) = E(ui((('), )). A strategy a is an 
equilibrium if for each i E N and individual strategy cri' of i, ui(r) > ui(o-'lri). It is 
an e-ex-post equilibrium if a is e-optimal in each information set, that is if for each i 
and o-i, 

E(ui(o.(-), -)lIn,) 
> 

E(ui((olo-ji)(-), ')lI,) 
- E. 

This equilibrium should be contrasted with e-ex-ante equilibrium in which for each i 
and ri', ui(a) > ui(o-lri') - e. Observe that there is no distinction between ex-post 
and ex-ante for equilibria, since ui(ao) > ui(o-lri') iff 

E(ui(o (-), )In,i) 2 E(u,((aajoi')(-), )Irn,i) 

Beliefs and common beliefs: We say that player i p-believes event E at state o, if i 
assigns a posterior probability of at least p to E in state o, i.e., if L(EIlni(to)) 2 p. 
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We denote the event that player i, p-believes E by PP(E) (or BP(E) when no 
confusion may result) i.e., 

BPi(E) = {)| a(EIHIi(o)) p}. 

The event that all players p-believe E at ow is denoted by BP(E) (or simply BP when 
II is clear from the context), that is 

B (E) = nfB (E). 
iEN 

We can apply BP iteratively and thus for example BP(BP(E)) = (B)2(E) is the 
event that all p-believe that all p-believe that E. The event that E is common 
p-belief is 

CPI(E) = n (BP)n(E). 
n>2 

A state co is in Cf(E) iff all p-believe that all p-believe... that all p-believe that E, 
for any number of iterations of "all p-believe that." 

4. Beliefs and common beliefs. In order to define a metric on 9N we introduce 
two variants of common belief-the common repeated belief and the joint common 
repeated belief. We also define acceptance operators which are useful in handling 
lack of common belief. 

We start with some general remarks concerning operators on E. Consider two 
properties of an operator B: E -* S. 

(a) Continuous monotonicity: If En I E (i.e., En is a decreasing sequence and 
nEn = E) then B(En) B(E). 

(b) Subpotency: (B)2(E) c B(E). 
Any continuously monotonic, subpotent operator B: E -> X is called a belief 

operator. It is easy to verify that B BP B and Ci are all belief operators. Note also 
that these three operators satisfy also a third condition: 

(c) Continuous monotonicity in p: If Pn t p then BPN(E) BP(E). 
Continuous monotonicity implies simple monotonicity. That is, if E c F than 

B(E) c B(F). The interpretation of this is straight forward: If event E implies event 
F then if E is believed so must be F. Note that continuous monotonicity holds only 
for decreasing sequences and not for increasing ones. Subpotency means that beliefs 
concerning beliefs are always correct. That is, if one believes that he believes E then 
indeed he does believe E. 

The following proposition is proved in Monderer-Samet (1989). 

PROPOSITION 4.1. Let B be a belief operator and E an event. Then co E n, > 1B"n(E) 
iff there exists an event S such that co E S and 

(4.1) S c B(S) n B(E). 

Moreover, (4.1) is satisfied with equality by rn > 1 Bn(E) as S. 

For a fixed E E consider the operator Bf(E n ) which is defined by 
B/(E n * XF) = B(E n F). Denote also by BP(E n ) the intersection 
n ie NBP(E n ). The event that E is common repeated p-belief is: 

CP(E) = f (B(E n))(E). 
n>1 
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Thus o e Cij(E) iff at oC, all p-believe that E and that all p-believe that E and 
that... all p-believe that E, for any number of iterations of "all p-believe that E and 
that." The "repeated" in this definition refers to the repetition of the belief in E in 
each iteration. 

PROPOSITION 4.2. co E CP(E) iff there exists an event S such that co c S and 

(4.2) S c BP(S nE). 

Moreover, (4.2) is satisfied with equality by Cj(E) as S. 

PROOF. It is easy to see that BP(E n *) is a belief operator and therefore by 
Proposition 4.1 for any F, ) e n , > [BP(E n * )]n(F) iff there exists an event S such 
that co E S and 

(4.3) S c BP(E n S) n BP(E nF). 

Moreover, (4.3) is satisfied with equality by n n2 1[BP(E n * )]n(F) as S. Substituting 
E for F in (4.3) and noting that BP(E n *) is monotonic we see that (4.3) is 
equivalent to (4.2). o 

We want now to express the fact that an event E is common p-believed simultane- 
ously in two information structures II? and I11. This is done by looking at the 
operator Bf,o ril which is defined for each E by: 

Bno Ii(0E) = Bfo(E) n Bfi(E). 

Using BPo r1i we define for a given E, BPjo ,i(E n ) by: 

Bio,(E n ) = Bo(E ) n (E n) n B(E n ). 

Thus BPo r1(E n - )(F) is the event that all p-believe E and F under either 
information structure. The event that E is joint common repeated p-belief is: 

CP, rIl(E) = n (BP j(E n ))"(E). 
n>1 

Clearly co e C,o jnj(E) whenever at tc all p-believe under either information struc- 
ture that E and that all p-believe under either information structure that E and 
that... all p-believe under either information structure that E, for any number of 
iterations of "all p-believe under either information structure that E and that." 

PROPOSITION 4.3. co E Co, ri(E) iff there exists an event S such that ) e S and 

(4.4) S C Bi0, r ) (S n E) = B0o(S E ) n Bfi,(S E E). 

Moreover (4.4), with equality, is satisfied by Cro, n,(E) as S. 

PROOF. Consider the information structure H which consists of the 21NI parti- 
tions in HI? and l1. Then Bio r,i = BiP and the claim follows from Proposition 4.3. 

We omit the easy proof of the following proposition. 

PROPOSITION 4.4. C( and Co, n, are belief operators and also continuously mono- 
tonic in p. 
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In order to describe the event that some other event is not common p-belief we 
introduce a new operator. We say that player i p-accepts E at o if (EIni(c)) > p. 
Denote by AP (E) the event that i p-accepts A, i.e., 

APi(E) = {oJI/(EIH/i(c)) >p}. 

The operator Ai is very similar to Bp except that unlike the latter it is defined with 
a strong inequality. But we are using acceptance here in its statistical meaning and 
prefer to think of p as being small (as opposed to the p in the belief operator). Thus 
if we think of E as being a null hypothesis then it is enough that its probability is 
small, say 0.05, in order that we accept it or rather not reject it. 

Clearly, BP(E) = AI(E) where we denote by X the complement of an event X 
and = 1 - p. The event that someone p-accepts E is obviously UiENAP(E), 
which we denote by Af (E). Here again BP(E) = A (E). It easily follows now that: 

C(E) = U (A?)n(E). 
n2l 

Thus E is not common p-belief at w if someone p-accepts that someone p-accepts 
that... that someone p-accepts E, for some finite repetition of "someone p-accepts." 
The next proposition follows easily from the definition of Api. 

PROPOSITION 4.5. The operators AP and AP are continuously monotonic w.r.t. 
increasing sequences of events. That is, if En T E then APi(E) T A (E) and 
API(E )? An(E). 

5. The main results. As was demonstrated in Example 2 of ?2, two information 
structures II and II' may differ very much game theoretically even when for each i 
the partitions Ili and I' are close. We want to define proximity of information 
structures such that if II and I' are close then for any game r(II), each equilibrium 
of this game can be approximated by some almost-equilibrium of (II'). We formal- 
ize in this section the following notion of proximity and show its adequacy to our 
purpose. 

H and II' are close if, with high probability, there is a common strong belief 
that the information each i receives under the partition IIi is almost the same 
as the one he receives under the partition HIi. 

Moreover, we will show that this notion of proximity is also necessary to guarantee 
the continuity of equilibria that we require. 

Since common p-beliefs are applied to events we have to define first the event that 
the information each i receives under the partition Ii is almost the same as the one 
he receives under the partition HI. Clearly c is in this event if for each i, the sets 
nI (o) and II (o) are very "close." In order to grasp this latter notion of closeness we 
define a pseudo metric on events which expresses sameness of information. We 
cannot use the standard pseudo metric on E which for given two sets A and B is the 
measure of the symmetric difference of the sets ,I((A \ B) u (B \A)). Any two small 
sets are considered close by this metric. But at a given Ct in A n B the information 
given by A may be viewed very differently from that given by B, despite the fact that 
the sets are small. We are looking thus for a metric that measures the differences 
between the sets, ex-post, i.e. relative to the size of the sets. Therefore we take into 
account ,u(A \ BIA) and ,t(B \AIB). When these terms are small it means that most 
of A is in B, and most of B is in A. 
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Formally, we define a pseudo metric do on E* such that for any A, B E E* 

do(A, B) = min{max{ A(A \BIA), Li(B \AIB)} ,}. 

The half in this formula is there to guarantee that do is bounded by 4. This bound is 
required for the triangle inequality. Since we are interested only in convergence in 
this metric it does not reflect anywhere in the sequel. 

PROPOSITION 5.1. do is a pseudo metric on E*. 

PROOF. We need only to prove the triangle inequality d(A,C) < d(A,B) + 
d(B, C) for any measurable sets A, B and C. Denote ,(A \BIA) = a1, ,(B \AIB) 
= a2, X(C \BIC) = cl, X(B \ CIB) = c2. We may assume that a, a2,c, c2< , 
otherwise the inequality holds trivially. Note that 

(1 - a1)J(A) = u(A n B) and (1 - a2)/(B) = ,u(A n B). 

Similar equations hold for B and C. Let 

a = (1 -a)/( - a2) and c = (1 - )/(l - c2). 

Then, 

(5.1) /(B) = a/u(A), 

(5.2) p(B) = c,(C). 

Now, ,u(A \ C) < ,(A \B) + u/(B \ C) = a1, (A) + c2 p(B). Substituting z(B) 
from (5.1) we have ,(A \ C) < g(A)(a1 + c2a) and therefore, 

(5.3) ( A \ CIA) < a1 + c2a. 

Similarly, 

(5.4) ((C\AIC) < c1 + a2c. 

It is enough now to prove that, 

max{al + c2a, c1 + a2c < max{al, a2} + max{cl, c2}. 

Because of the symmetry it suffices to show that the first element on the left hand 
side is less than the right hand side. We examine two cases. If a1 > a2 then a < 1 
and hence, 

al + c2a < al + C2 < max{al, a2} + max{c, c2}. 

Suppose now that a1 < a2. It is enough to show that, a1 + c2a < a2 + c2 or equiva- 
lently that, c2(a - 1) < a2 - a1. This is reduced to c2(a2 - al)/(l - a2) < a2 - al, 
or c2 < 1 - a2, which follows from the assumption that all as and bs are less than 4. 

Now let n and n' be information structures and co a state. Using this pseudo 
metric do we can easily measure the indifference of player i between II and I' at 
co. This will simply be do(Hi,(o), i(co)). Thus we say that Hi and Ili are e-close at 
co, if do(HIi(co), nIi(c))) < e. The set of states at which all players' partitions are 
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E-close is denoted by In, n'(e), i.e., 

In,nI() = n {wldo(Hni(), ni(o)) < }. 
ieN 

Note that III n'(E) is continuously monotonic in E w.r.t. decreasing sequences, i.e., if 
e , E then In, n,(en) In, n,(e). 

After identifying the event that the individual partitions are almost the same with 
the set In n'(e), we go back to the informal definition of proximity that we gave in 
the beginning of this section. Three parameters determine the proximity of informa- 
tion structures II and II'. The measure of sameness of private information--, the 
strength of the common belief in this sameness-p, and the probability that such 
common belief holds- t(CR(In, n,(E))). The two information structures are closer, 
the closer is the first parameter, E, to 0 and the other two to 1. The following 
theorem presents several ways in which a topology on aN can be described using 
these parameters, and states that this topology is metrizable. 

THEOREM 5.2. There exists a pseudo metric d on ?N such that the following 
conditions are equivalent: 

(a) d(II, ln) -O 0. 
(b) There exists sequences p, -> 1 and en --> 0 such that /(C'(In n( (en))) > 1. 
(c) For all sequences pn - 1 and En - - 0 .,(CjI(In, i n(en))) 1. 

(d) There exist sequences pn -> 1 and En -> 0 such that /,(Cf'n(IH r nn())) 1. 
(e) For all sequencespn -> 1 and En -- 0 (CPn(In, rn (En))) -" 1. 

PROOF. For the purpose of constructing the pseudo metric d we need the 
stronger notion of common belief Coi, ri. Consider the set CloE,n(Ino, ni())-the 
event that Ino, ni(e) is joint common repeated (1 - e)-belief. For small e there is a 

strong joint common repeated belief over this set that the players are very indifferent 
between the two information structures. Consider further the intersection 

Dro0 I(6E) 
= 

CIIoE ,(I?o,I(E)) fn Io0, ni(). 

Note that both Ino ii(E) and CAonli are continuously monotonic in e w.r.t. decreas- 
ing sequences and Crl-o,n is continuously monotonic w.r.t. its arguments and there- 
fore it follows that Dno nl(e) is also continuously monotonic in e w.r.t. decreasing 
sequences. 

We define now the pseudo metric d on yn such that for each 1l?, II1 E _n 

d(II?, 1') = min{El I(Do ni,(E)) > 1 - E}. 

Observe that the continuous monotonicity of Dno, n and /t guarantee that the 
minimum in the definition of d is attained. 

PROPOSITION 5.2.1. d is a pseudo metric on n. 

In the proof of this proposition we use the following two lemmata. 

LEMMA 5.2.2. Suppose e < 2. If o E Ino n1(e) then for each i E N, 

Ino, n(e) n H0( w) = Ino, nH() n ri( O). 
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PROOF. For such an o, do(In?(wo), [I(w)) < E for each i E N. Let w' E II?() \ 
nII(w). Then 

do(HI( cw), rI( ')) = do(H?(w ), 1( w')) 2 (II?( wo) \ HI( co')lI?()) 

> jt(n/?(o) n Hi(o)rIn?(()) 2 1 - E > E. 

Thus o' Ino ni(E). 
LEMMA 5.2.3. If 1t(AllB) > 1 - E1 and /(A2IB) > 1 - E2, then /,(A2A1A n B) 

> (1 - 1- E2)/(1 - E1). 

PROOF. Denote 

a = 
t(AX nRA2IB), 8 = ](A1 nAA2IB), 

y= j(A, nA2lB), 8 = i(A1 nA2IB). 

Clearly these numbers sum to 1, a + 3 ?< E2 and a + y < E1. We want to show that 
5/( p + 8) > (1 - e1 - E2)/(1 - E1), which is equivalent to /3(1 - E1 - E2) < 8E2. 
Using the above inequalities we conclude 

3(1 
- 

E1 
- 

E2) < 3(1 - (a + 3) - (a + y)) 

= p(8 - a) < < (a + 3) < 562 ] 

PROOF OF PROPOSITION 5.2.1. We need to prove the triangle inequality. Suppose 
that d(H?, IIj) = ej for j = 1, 2. Since d is bounded by 2 it is enough to consider the 
case that E = E1 + E2 < ~ for j = 1,2. Denote for j = 1,2: 

Ij = Ino, n (), Cj = CoE i(Ij), DJ = C, n I, 

and also D = D1 n D2 and I = III, H2(). By the given distances it follows that 

tI(Dj) > 1 - ej and therefore x(D) > 1 - e. We will show that: 

(5.5) Dc DnIl, 2(E) 

and thus /(D,l n2(e)) > 1 - e which proves that d(H1, H2) < E. We observe first 
that if w E I n I2, then for each i E N, and j = 1, 2, d(II?(o), nIj(o)) < ej and by 
the triangle inequality d(LI1(o ), ?12(w)) < E. Hence I, n I2 c I and therefore D c I. 
Since Dnl, n2(e) = C nlT,2(I) n I we need only to prove D c Cn1n'2(I) in order to 
show (5.5). By Proposition 4.3 it suffices to show that 

D cBi1T(D nI)nBir2E(D nI). 

By symmetry it is enough to prove that D c B1 '(D n I). To see this we have to 
show that for each o e D and i e N, I(D n IIllj(c)) > 1 - . But D cI and 
therefore the last inequality is reduced to: 

(5.5) p(DIF(co)) > 1 - . 

Since w E D c Cj it follows from Proposition 4.3 that for j = 1, 2 

,(DjIIn?( c)) > 1 - e. 

717 

(5.7) 



D. MONDERER AND D. SAMET 

By Lemma 5.2.3, 

(5.8) U(D2lD1 n n?(It)) > (1 - )/(1 - E1). 

Now, 

(5.9) /4(Dil(wo)) = I(D1 n D21il( )) = ,I(D21D1 n It(o)),(DllIn( )). 

But o E I1 and thus by Lemma 5.2.2, 1 n nI?() = I, n TI(w)), and therefore 
C1 n I n nI?(o) = C1 n 1, n In(w), i.e., D1 n rl?(o) = D1 n Il,l(o). Substituting 
D1 n nI?(t) for D1 n Il(w) in (5.9) gives: 

/(DIHn(w)) = - (D2ID1 n n?( w))t(DlnIIK c)). 

By (5.7) and (5.8) the last equality guarantees 

p4(DnI(l(w)) > (1 - El)(1 - e)/(1 - E) = 1 - . 

This is the inequality (5.6) which was needed to complete the proof. o 
After constructing the pseudo metric d we turn now to prove the equivalences in 

Theorem 5.2. We use the following lemma which gives a bound to the distance 
between two information structures II and II' in terms of p, e and /u(CfI(In, n(e))). 

LEMMA 5.2.4. Let e < 2 and denote 8 = (2p - 1)(1 - E) and 7 = 

(2p - l)t(Cfi(Ir, (e))). Then d(H, I') < max{e, 1 - 5, 1 - 7}. 

PROOF. Denote I = InIn,(e), C = Cf(Irn, (e)) and D = C n I. We first find a 
lower bound for the measure of D. By Propositions 3.1 and 3.2, 

(5.10) C = BP(C) n BP(I) c BP-I (C n I) = B2P-'(D). 

By Proposition 3.3, for each i, 1/j(D) > (2p - 1),/(B2P-'(D)), and since B2p-'(D) c 

B2P-'(D) it follows using (5.10) that 

(5.11) p(D) > (2p- 1),x(C) = r. 

Now we evaluate the posterior of D at each oc C with respect to [I'. Since 
Co E I, do((IIi(o), IIi(w)) < e for each i and therefore, 

(5.12) A(n,(oj()) > /(II,(o ) n nI(o)) > (1 - e)/(II(w)). 

By Lemma 5.2.2, D n II((t) = D n nr'i(). Using this equality, (5.12) and (5.10) we 
conclude: 

tL(Dmlfi(&)) = t(D n Hn'())/1(H.(c)) 

= t(D n nIi( ))/l(nIi(o)) 

2 (1 - E)/L(D n ni( o))//(FI( co)) 

= (DI/n(o))(1- e) 

> (2p- 1)(1 - e) 

= , 
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i.e., w) e Br,(D). This is true for all w c C and hence: 

(5.13) Cc B( D). 

By (5.13), (5.10), the monotonicity of Cp in p and since 8 < 2p - 1: D c C c 
B2p-1(D) n B 5,(D) c B ,(D). Therefore by Proposition 4.3: 

(5.14) D CC n ,(D) 

Since D c I we have from (5.14) and the monotonicity of C and Dn,, , 

(5.15) D c Ci, .(I) n I c Dn l(max6,1 - S}). 

By (5.15) and (5.11): pu(Dr 1,(max{e, 1 - 8}) > 7, which by the monotonicity of 

Drn, I shows that d(II, n') < max(e, 1 - , 1 - 7r). o 
We complete the proof of Theorem 5.2. Suppose d(H, In) -> 0, then there exist a 

sequence E -> 0 such that a,(Dn nn(En)) > 1 - en. By Proposition 4.3, Dn, n(En) C 
B E-'(In, n(En)), and therefore (b) follows for Pn = 1- E,. The same argument 
applies for (d). (c) and (e) follow by the continuous monotonicity of all the functions 
involved. Clearly (c) implies (b) and (e) implies (d). Each of (c) and (e) imply (a) by 
Lemma 5.2.4. o 

Note that common belief in the similarity of private information can be measured 
in either the fixed information structure [I (in (a) and (b)) or from the information 
structures In" which approach II (in (c) and (d)). 

With this topology we now can prove the following continuity properties. 

THEOREM 5.3. For each e > 0 there exists 8 > 0 such that for any information 
structures II and IT', every game F and any equilibrium ao of r(II), if d(II, II') < 8 
then r(H') has an eM-equilibrium a' such that ,u({wlJa(W) ao'(c)}) < , and 

therefore also ui({oQlu(aT((), w) - u(r'(co), w)}) < E, where M is a bound on the 

payoffs in F. 

PROOF. Let 8 = 4 and suppose d(T, II') < 8. Without loss of generality 8 < -. 
Denote D = D0, ,(8) and I = In, n(8). Let F be a game with payoffs bounded by 
M and suppose a is an equilibrium of r(II). 

We construct a strategy a' for the game F(I'). Define first ri' for each player i 
over those elements in 1li which intersect D. Let wo D. Then for each 

i, d(II(,(c), ITi(c)) < 8 and moreover since 8 < 2, Hi(o) is the only element A in Hi 
for which d(A, I'(co)) < 8. Thus we can define unambiguously ai' over II'(o) to be 
oi(co). Let us denote by ?i the set of points over which ai' has not been yet defined, 
i.e., the set of all cos such that IIH(to) does not intersect D. Consider now the game F0 
which is defined as follows. The set of players is No = {iltfi 4: 0}. Strategies for 

player i E No are I1i measurable functions ri: fli -> Ai. For a strategy = 
(i)i, N 

the payoff for i is given by E(ui(-(to), o)) where the expectation is taken over all of 
fl and ?i for each i E No is defined by Ti(w) = ri(c) if wc E fi and i()t) = -i(W)) 
otherwise. The strategy spaces of the players in F0 are compact metric spaces and the 
payoff functions are multilinear and thus F0 has an equilibrium. Denote such an 
equilibrium by r and for each i E No let ri'(o) = ri(co) for each co E fQi. This 
completes the definition of ar'. 

Clearly a' can differ from a only in D which is of measure 8 = 4 at most. 
It remains to show that a' is an eM-equilibrium of R(II'). By the construction of 

a', tri' is best response over fli. We will show now that over Ili, ri' can be improved 
by at most eM. Let (' be a strategy in F(II') and Ai any strategy in (II) which 
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coincides with ai' on D. Consider the two functions: 

f(o)) = Ui((c)), ()) - Ui((oi^)(w), 0)), 

g(o ) = Ui( o'()), O))) - Ui((ori)(WC), Wc). 

Then f(o) = g(o) for all w E D. We compare now the conditional expectation of g 
and f over nI'i() and Il((o) respectively for ao e D. By the definition of D and 
Proposition 4.3, 

Dc Cn-,(I) = B n(Cn,n-(I) n I) = Bn-,(D a c"= Bn n, ) = ,(D). 

Therefore for each ct e D: 

(5.16) (D|ln,(w)) > 1- 8, /L(DlnI'()) 2 1- 5. 

But by Lemma 5.2.2, D n Tfi(o) = D n nhi(w). Denote this intersection by E. 
By (5.16): 

(5.17) t(EIni(c))) > 1 - 8, ,L(EInr( o)) 1 - 6. 

Denote A = Ii(co) and B = nI(co). Now: 

(5.18) 
1 1 

f (B \ E) M + 
1 

5.18 
(B) 

g - (A) f(A) A (B)f g 

itt(A\E)M 1 f 
_ (A) M - A) 

>_ -28M+ 
1 

- ( )ff 
2 -2 \f+.lu(B) A(A))IE 

28 
> -28M - 

2 
M (E) 

Lc(A) 

2 -48M 

= -EM. 

Since a is an equilibrium in r(II), l/i(A)fAf > 0 and hence by (5.18), 
1/iL(B)fBg > - EM which shows that or' is an EM-equilibrium. o 

The following theorem states that the topology induced by d is the smallest one 
that satisfies a continuity property which is even weaker than the one in Theorem 5.3. 
Note also that the continuity with respect to d, in Theorem 5.3, holds uniformly over 
information structures while in the following theorem, which is stated in topological 
terms, such uniformity is not claimed. 

THEOREM 5.4. The topology induced by d on 9N is the smallest one that has the 
following uniform (over games) continuity property. For each E > 0, information structure 
n and bound M there exists a neighborhood of II such that for each game F with bound 
M and an equilibrium o- in r(I), if H' is in that neighborhood then the game r(I') has 
an e-equilibrium a' such that E(tlu(r(-), -) - u(ro'(), . )11) < EM. 

PROOF. The continuity property of this theorem follows immediately from Theo- 
rem 5.1. In order to prove that this is the smallest topology which satisfies this 
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continuity we note that by Theorem 5.2 a neighborhood of II contains a set of the 
form {II'l (CrE (In, n(8))) < 1 - e}. Thus we can equivalently prove the following 
proposition. 

PROPOSITION 5.4.1. Fix M and 8 < 2. For each II and I' such that 
/L(C 8(In, n(8))) < 1 - 8, there exist some e, a game F bounded by M, and equilib- 
rium a- of Fr(I) such that all e-equilibrium o' of r(I') satisfy E(IIu(o('), )- 
u( O'(),. )11) > E. 

PROOF. A key element in the construction of F and o- is the set CI 8 (IInn,( 8)) 
at which there is no (1 - 8)-belief that In, r(8). As we have seen in ?4, this set has 
an alternative description as U n> l(A ^)n(In, n( 8 )). We show that a significant part 
of Un > 1(A,)n(Ir, ,( )) can be expressed in terms of finite number of elements 
from each H'i and Ili. This finiteness enables us to construct game F with finite 
number of actions. Assume that for each i the information structures fI' and 1Hi are 
ordered an denote by lII[k] and I'[k] the sets that contain the first k elements in II 
and Hn respectively. Let S, k be the union of the elements of Hi[k] and Sk = 
ni, N Si,,k The sets S', and S' are similarly defined for the partition II'. We define 
now an operator Ap k as follows. For each F E E: Ap, k(F) = Sk n AP(F). Let us 
also define E = In, ,(8) and Ek = E n Sk Sk. 

LEMMA 5.4.2. There exists k > 0 and m > 0 such that L(U Jm lA' k(Ek)) > 8. 

PROOF. Since /L(UJ=i(A',)j(E)) > 8 there exists some m such that 
(U J=(A,)j(E)) > 8. It is enough now to show that for each j= 1,...,m, 

(A, k)J(Ek)f k(AI,)j(E). This can be easily shown by induction on j since Sk T kI 
and S' T kl, and both A, and A', k satisfy the continuous monotonicity of 
Proposition 4.5. n 

Fix now k and m as in Lemma 5.4.2. We are ready now to define the game F 
starting with the sets of actions Ai. These actions will be interpreted as announce- 
ments that i makes concerning the information he has. 

Announcement about I: For each T E fi[k] there is an action aT in Ai which is 
interpreted as the announcement: "My information is T."There is also an action a in 
Ai which we interpret as saying: "I am informed according to Hii." 

Announcement about II': For each S e H'[k] such that for some T e 
Hi[k], /L(SIT) < 1 - 8 but iu(TIS) > 1 - 8 there is an action bs which is tanta- 
mount to saying: "My information is S." Note that for such S, d(S, T) > 8, but most 
of S is within T while a "lot" of T can be outside S. In a sense then S is more 
informative than T. 

The generic announcement: The action g in Ai is interpreted as avoiding a specific 
announcement about the information the player has. 

At each ov there is a unique action in Ai which we call the appropriate action for i 
at c. If o is in Si,k then an,(o) is the appropriate action for i at w. If co Si k then 
a is that action. 

We turn now to the payoff functions. We construct them under the assumption that 
M 2 2. The rescaling of payoffs for other cases is simple. 

Let a e A, then for each i if: 
-ci = g then ui(a, ) = 1 - 2 for all w, 

ai = bs then 

1 +38 w T n S, 
ui(a, o) = -2 co e T\S, 

[O T, 

where T is the unique element in IIH for which I.u(TIS) > 1 - 8. 
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-ai = a or a, = aT then ui(a, co) = 1 if for each player j, aj(c)) is appropriate for 
j at to, and ui(a, co) = 0 otherwise. 

Claim 1. The strategy cr in which the players chose in each co their appropriate 
actions is an equilibrium of F(II). 

PROOF. Player i receives 1 at each Co and therefore will not deviate to g which 
yields only 1 - 2. A deviation to a or any aT which are inappropriate to i in c yields 
0. A deviation to bs can benefit him only if he is informed that he is in T n S for the 
unique T which satisfies T(TIS) > 1 - 8 because outside this T n S, bs plays him 
naught or -2. But for this T, A(SIT) < 1 - 8 and therefore i's expected payoff, 
using bs is at most (1 - 8)(1 + 36) + 8(-2) which is less than 1. o 

Claim 2. Let o' be an A -equilibrium of r(I'). Then for each co e 
U l(Ah, k)j(Ek) there exists a player i who assigns a probability of no more than 4 
to the action that is appropriate to him at o. 

PROOF. We show first that the claim holds for each co in Ek. Indeed in each such 
(o there is a player i for whom d(IIi(w), II'()) > 8. There are two possible cases: 

1. ,dl(Ii(o)Ii(o)) < 1 - 8. By the definition of Ek, n i,() E ni[k] and therefore 
the appropriate action for i at o is an,(o). But this action is inappropriate for i 
outside l,(co) and thus the expected payoff for i using this action is at most 1 - 8, 
while he can receive 1 - j playing g. 

2. z(In,(o)ln,(co)) > 1 - 6, but /A(HI())lI/i(co)) < 1 - 8. Again 11'(c) e I1[k] 
and therefore the action b (o,) is well defined and yields i at least (1 - 8)(1 - 36), 
which for 8 < 2 is more than 1 + . 

In either case the appropriate action for i at co yields at least 2 less than the best 
response at Hi(c)). We use now and later the following simple fact, which we bring 
without a proof. 

LEMMA 5.4.3. An action that yields less than E1 than the best response, can be played 
in an E2-equilibrium with probability of at most E2/e1. 

It follows now that for each co Ek there is a player that in any 6 -equilibrium will 
use his appropriate action with probability which will not exceed (8/16)/(8/2)= 
1 1 
8 - 4? 

We prove now by induction on j that the claim holds for all co e (A, k)(Ek). 
This was already proved for j = 0 where (An, k)?(Ek) = Ek. Suppose now that we 

proved it for j - 1 for some j > 1. There exists some player i such that 

(5.19) ,|(AI k)Y-(Ek)l|i(o))> S. 

By the induction hypothesis at each cw' E (AI k)'i-(E) there is a player i' who 
employs his appropriate action at c' with probability of 4 at most. If i = i' then we 
are finished. Otherwise, by (5.19) the probability that i assigns that not all players 
their appropriate action is at least 3 8. Thus by playing in Hi,() his appropriate 
action at co, a,,(), player i can receive at most 1 - 5, while he can guarantee 4 

more by playing g. Thus by Lemma 5.4.7 in any i6-equilibrium, i will use at co his 
appropriate action with probability of at most (8/16)/(8/4) = 4. This completes the 
proof of claim 2. o 

We have shown that at each co in the set U J l(A ', k)j(Ek)-which is of measure 
8 at least-in any 1 -equilibrium ' at least one of the players plays with probability 3 

at least an action which is inappropriate for him in c. But for any a which includes 
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an inappropriate action Ilu(a, w) - 111 > 2. Thus 

E( Ilu( (.), ) - U('(.),l) I) > 8 2 

Any E which does not accede min{6, 2} is satisfactory for Proposition 5.4.1. This 
completes the proof of Theorem 5.4. o 

Reexamining Example 2 we can see now why the continuity of Theorem 5.3 does 
not hold there. In this example each player has exactly the same information under II 
and IPH in all states other than 2n and 2n + 1. Indeed for any e < 4, In n(E) = 

f \ {2n, 2n + 1}. But for any p > 4, 

BP (In, nn( )) = \{2n - 1, 2n, 2n + 1, 2n + 2}, 

since for example at state 2n - 1 player 2 assigns a probability of at least | that 
the state is 2n and therefore that the information 1 receives under II is very dif- 
ferent from the one he receives under IIn. Applying BP again and again gives 
CP(Ir, n,n(e)) = 0. Thus by Theorem 5.4, the sequence In does not converge to I 
and stays outside a neighborhood of II. 

6. The case of a single agent. When the set of players is a singleton, d becomes 
a pseudo metric on .9. In this case d has a simple form as is stated in the following 
proposition. 

PROPOSITION 6.1. For 1 and I' in 9, 

d(I, II) = min{elI(In,n,(e)) > 1 - e}. 

PROOF. We prove the proposition by showing that for any 11, I' in A and E, 
Dnr n(E) = In ,(E). Denote I = Ir, n(E). It suffices to show that I c C ,-I,(I) 
which will follow easily if we show that for each n > 1, I c (B-.,(I n . ))n(). For 
this we need only to prove that I c B1-~(I). This in turn can be proved by showing 
that I c B-'E(I) and I c Ci7e(I), and by the symmetry it is enough to show only 
the first of these. Let o e I then d(IH(o),II'(Go))< e. This inequality holds 
for all w)' e n()() n H'(wo) and therefore I(co) n fl'(w) c I. Hence LU(Il11n()) > 
L(H(l(o) nf H(o)IH()) > 1 - e. This shows that wo e Ce-'(I) and completes the 
proof. [ 

The Boylan pseudo metric 8 is defined on the set of all sub ao field of E. In 
particular we can define it on .9 by identifying each partition H with SnI-the sub a 
field of l generated by rI. The Boylan distance of a pair of information structures 11 
and I' is: 

8(11,11') = max min /I(EAF) + max min /U(EAF), 
Ee n F ,r E E, F en 

where EAF = (E \F) U (F \E). 

THEOREM 6.2. The pseudo metrics d and 8 define the same topology on 9. 

PROOF. We show first that any 8-ball contains a d-ball by showing that 
if d(I, II') < 4 than 5(1, 11') < E. Suppose than that d(I, I') < 4. Denote I = 

Ir, rn(). Then t(I) > 1 - 4. Now let Ae S I. Write A = U k Ak where for each 
k, Ak E n, for each k 1A Akn I # 0 and A0 n I = 0. For each k > 1, there exists 
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a set Bk E IH' such that pA(Ak \ Bk) < 4 (Ak). Denote B = U k Bk. Then 

k>1 k>l 
\A\B) ( UA\B)+ o)< (U k) ( ) 4. 

Because of the symmetry of H and I' this proves that 5(n, II') < e. 
Conversely, we show now that each 6-ball with radius e centered in H contains a 

d-ball. We assume w.o.l.g. that E < 2. Choose 7 > 0 small enough such that I = 
(AIA E HI, ,(A) > r} satisfies u(U I) > 1 - . Let 0= 2-. We show that if 
S(I, HI') < 0 then d(HI, I') < E. 

Consider A I . There exists B E , such that 

(6.1) x(A\B) < 0 and 

(6.2) /4(B\A) < 0. 

We can choose B to be a minimal set in E., (w.r.t. inclusion) which satisfies (6.2). 
Observe that ,u(A) > r7 = 2 > 40 and thus by (6.2), 

(6.3) uL(A n B) > 30. 

We prove now that B must be in I'. Suppose to the contrary that B e II' then there 
must be some C E En, which is a proper subset of B. by (6.3) we can choose C such 
that it satisfies 

(6.4) L(A n C) > 0, 

(if C does not satisfies it B \ C does). By the minimality of B also, 

(6.5) u(A \C) > 0. 

Now for C there must be some F E En such that A(C, F) < 0. But either F n A = 0 
in which case by (6.4) /t(D \ F) 2 ,(A n D) > 0, or A c F in which case by (6.5) 
iX(F \ D) >2 _(A \ F) > 0. This contradicts our assumption and proves that B E II'. 

Now by (6.2), 

6 E 
(6.6) Iu(A\BIA) < -= 

rl 2' 

Also ,u(C) > x(C n A) > /(A) - 0 > r - 0 and thus, 

0 0e 
(6.7) 4(B\AIB) < = 

E/2< . - 0 rl(1 - e/2) 1 - e/2 < e 

By (6.6) and (6.7) d(A, B) < e and hence, 

(6.8) A nB cI,n,(e). 

Since ,u(A n BIA) = 1 - t(A \BIA) > (1 - -) it follows that /x(A n C) > 

/x(A(1 - ). By (6.8) we conclude that ti(A n In, ,(e)) > (1 - 2)/4(A). This is true 
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for each A E HT and thus, 

n,U ( IIIH(E))) 2 (U f Inn, II(E)) 

>(1 2)E 

(i- (u 

> 1-6, 

which shows that d(fl, I') < E. [ 
A game with incomplete information of a single player is a decision problem and 

an equilibrium of such a game is an optimal plan. Thus applying Theorem 4.4 to the 
case of a single agent we find a continuity property of optimal plans which character- 
izes the Boylan topology. 
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