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I. INTRODUCTION 

The usual treatment of the deformed optical model for analysis ofheavy .i.ou 

induced inelastic scattering data involves a deformed (target) radius, a 

spherical·(projectile) radius and a potential strength dependent on the surface 

separation along the line between the two centers. Expressed in terms of the 

target deformation parameters 8L the center line potential has the form 

.V(r,e) = 

where 

V f(r-R( 9)) 
0 

(1) 

(2) 

with Rp the spherical projectile radius, RT for the target, and f the radial 

form factor, often taken to be a_ t.Zoods-Saxu•1 shape 

1 
f(r-R(9)) = ---r--=R':"7(.,..a) 

l+exp --a 

(3) 



Several authors us1ng various approaches have shown that this center line 

potential is geometrically inadequate especially for description of higher L 

deformation parameters probed in heavy ion induced inelastic scattering 

experiments 1- 3• Yet despite its inadequacy ~he center-line potential continues 

to be commonly used. Perhaps it is .because the center-line prescription works 

·fairly -well for the most commonly measured 62 deformation parameter., and none of 

the more sophisticated treatments is perceived as being either definitive 

(they still contain serious geometrical approximations) or easily related to the 

Woods-Saxon potential (they are expressed in density. folding or Thomas Fermi 

f\lrms). 

In this paper we work out a quantitatively adequate form of the deformed 

proximity potential suitable for use with 4 coupled channels reaction code in 

the analysis of inelastic scattering data above the Coulomb barrier. A major 

objective is to be able to extract reliably higher deformed multipole moments 

from such data. The deformed potential calculated in the folding model will 

serve as a geometrically exact benchmark to evaluate the accuracy of the 

proximity potential prescriptions. 

II. THE SPHERICAL PROXIMITY POTENTIAL 

The proximity potential as discussed by Blocki et al.~ and by Brink and 

Stancu5 is based on a Thomas-Fermi treatment of the energy density of the 

ion-ion system. However we are interested in the tail of the potential for 

inelastic scattering analysis, and it is in just that region that the 

Thomas-Fermi method breaks down. Thus we will frame our development in terms of 

a model which should have its greatest validity in the tail of the potential, 

namely the folding model. We are not particularly interested in the 

normalization of the basic ingredients of the folding model since the object of 

our consideration 1s the geometry of the deformed heavy ion potential. The 

normalization can be obtained from a fit to data. We take a single folding 
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approach in which the nucleon-projectile optical potential (obtained 

empirically) is folded over the density of the target .. We have for the folded 

potential VF 

(4) 

where Vp(;-ib is the nucleon-projectile real optical potential and pT(;) is 

the target density •. This.integral may be evaluated exactly on a computer. To 

obtain its proximity form we follow the approach taken by Brink and Stancu in 

. the related Thomas-Fermi problem. Due to spherical symmetry Eq. (4) .can be 

reduced to a two-dimensional integral over r1 and r2 

wi~h the limits of integration 

From this form Brink and Stancu obtain a two term proximity potential 

where S is the distance betwen the two surfaces, 

E: (s) 
n = I 

s 

3. 

(5) 

(6) 

(7) 
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and in our folding potential case 

CD 

e(S') = J (8) 
-CD 

This form contains the next correction for finite curvature in co~parison to 

more approximate form of Blocki et al. 

(9) 

If we assume that both the nucleon-projectile potential and the target 

density have the same Fermi function form (with the same diffuseness a) 

vo 
Vp(r T) 

p 
(10) = 

l+eltp(rT:RT) 

0 

pT(r p) 
PT 

(11) = 
(r R · l+exp R: pj · 

Then Eq. (5) has theanalytical solution 

e(S) = (12) 
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Brink6 suggested this form for the one term proximity form of the folding 

.potential Eq. (9), which becomes 

"" 
F 

V Pl {R) 
S dS (13) 

We have adapted Eq. (12) also for the two term proximity potential Eq. (6) and 

obtain 

S dS 
s 

exPA -1 

"" 
f 
R-R -R T p 

.. (14) 

To test the validity of the proximity potential approximation we have made 

comparisons of .the one and t~0 te~m proximity potentials generated by Eq. (13) 

and (14) with exact resuits obtained by numerical folding on a computer. Five 

representative cas~s ar~ taken, spanning the re~ion of h~avy ion reactions: 

cases r 0 is set to 1.2 and a to .65 for both target and projectile Woods-Saxon 

densities. 

The results seen 1n Figure 1 are conclusive: the proximity potential in 

its two term formis in excellent agreement with the folding model for all heavy 

1on reactions, not only in shape, but in absolute magnitude. Furthermore, with 

a slightly increased normalization, the one term proximity potential is also 
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essentially identical to the folding model. Brink and Stancu5 make the 

statement that the one term proximity potential should ·be a less acc·urate 

approximation in the folding model than in their extended Thomas-Fermi case, but 

in fact our accuracy is comparable to their case. The two term expression is 

even more suited to the folding model than to the more complicated angle 

dependent Thomas-Fermi case of Brink and Stancu. 

III. THE DEFORMED PROXIMITY POTENTIAL 

A natural picture to use in representing the deformed optical potential is 

that of the proximity potential because of its dependence on the radius of 

curvature of the two interacting nuclei. We generalize from the spherical to 

the deformed proximity potential by assuming that the operative curvature of the 

deformed nucleus is taken at the point on the surface closest to the spherical 

nucleus and that the separation distance is also taken at this point. This is 

the approach taken by Randrup and Vaagen 3, but approximations that they took for 

the curvature make their numerical results quantitatively inadequate for 

extraction of higher multipole moments. 

In discussing an optical potential involving a deformed target nucleus one 

must carefully define the orientation of the deformed nucleus as well as its 

separation from the spherical projectile. We will express the potential for a 

give~ orientation in terms of the radius of curvature of the spherical nucleus 

and in terms of two local principal radii of curvature at the point on the 

surface of the deformed nucleus closest to the spherical nucleus (see Fig. 2). 

Our approach will be semi-nUI!lerical: while we will derive analytical 

expressions for the radii of curvature, we use a computer search to find the 

point on the deformed nucleus closest to the spherical nucleus. It is from this 

point that we calculate the radii of curvature; R1 and R2 , as well as the 

separation, S, between the two nuclei. 
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In order to derive principal radii of curvature of the deformed nucleus we 

choose a coordinate system with the z axis ,along the symmetry axis of the 

deformed .nucleus (Fig. 2). The· center of the sphere is in the y-z plane. We 

assume the shape of the deformed nucleus is a spheroid with the radius given by 

R(6) = RoO+ I: SL Y~(e)) where 6 = arctan (z ,y). The radius of curvature in the 

y-z plane (Rl) is given by the well known expression 

(15) 

The second principal radius of curvature is then determined by the 

intersection of the spheroid and a plane perpendicular to the y-z plane and 

normal to R(6). The form of this radius of curvature may be determined 

algebraically or geometrically and the final expression obtained is 

Rsine [R2+(dR/d6 >2 ] 1/ 2 

(dr/d6)cos6 - Rsin6 

Generation of the deformed one term proximity potential is then 

(16) 

straightforward. One takes· a geometric mean of the two perpendicular curvature. 

factors to obtain 

(17) 
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In an analogous fashion a two term proximity potential can be defined as 

the geometric mean of the two spherical proximity potentials corresponding to 

the two perpendicular radii of curvature of the deformed nucleus. 

a 1 (e)Rp R2 (6)Rp 

Rl (S)+Rp+S \ R
2

(S)+Rp+S 

X (18) 

In both these expressions e:a(S) and q(S) are the one dimensional slab on 

slab functions of the separation (Eq. 7,8,12) of the two nuclei. 

Up to now we have only really treated the real part of the optical 

potential. One does not expect the folding picture to have much validity for 

the imaginary potential. We will assume, however, that the geometrical picture 

of the deformed proximity potential can be taken over to.the imaginary potential 

1n conjunction with a Woods-Saxon or other empirical potent1al for the slab on 

slab radial form. ln fact on~ can show in the proximity picture that the 

Woods-Saxon potential form can be seen to arise out of a surface-surface 

folding .. This picture does not seem geometrically unreasonable for the 

generation of a heavy ion imaginary potential. Adopting· a one term proximity 

potential treatment of the deformed imaginary potential we obtain 

WPl (R,S) = 
R2 <e>~ 
R

2
{S)+Rp 

I \ 

( 

R.r+Rp\ 

R R J 
p y 

(19) 

where tv( S) is any empirical potential form and RT ts the. spherical radius of 

the deformed radius Rl(S). 
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This potential form might also be utilized for the real potential if o~e 

did not want to abandon empirical Woods-Saxon potentials, but nevertheless 

wanted. to provide a geometrically more correct treatment of deformat·ion. · 

For comparison we will calculate the angular momentum components of the 

angle dependent optical potentials for both folded and proximity potentials 

(20) 

The.se components are evaluated on a computer using eight gauss points per 

· quadrant. 

To investigate various aspects of the deformed proximity potential we have 

chosen a case for which data exist and for which a coupled channels analysis 1 .. : 

has been performed: 72 MeV 160 + 152sm. Geometricaily, this is a typical case, 

a light heavy·ion projectile on a more massive deformed target. 

In numerical computations analogous to the resufts of Figure 1, optical •. 

·potential components generated in the two term proximity potential are 

practically indistinguishable from the foldi~g mod~l both in r~dial shape of all 

the components and in absolute magnitude. The one term proximity potential is 

slightly lower in magnitude for all components. 

Siace the v 0 component 1s ultimately fit to elastic data, the ratio of 

·computed components to the L = 0 component must be reliably calculated for 

reliable extraction -of muftipole moments. And since numerical investigations 

indicate that the one term proximity potential LS a reasonably good 

representation of the folding model for all L components when renormalized, we 

will only use the one term proximity potential in the following calculations. 
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The crucial point of this whol~ development is how the proximity model 

treatment differs from the centerline prescription when higher multipole 

components are extracted. We have plotted in Figure 3 the ratios of angular 

momentum components to the real monopole potential using the centerline 

prescription and the Woods-Saxon proximity potential of Eq. 19. Assuming the 

Woods-Saxon proximity potential has the more correct relative geometry for the 

given deformation lengths (82RN 2 = 1.65, S4RN4 = .29), we find that V4/v 0 

and V6/Vo are significantly overpredicted in the centerline prescription for the 

84RN 4 value of .29, implying a true value somewhat larger. In fact there is a 

discrepancy between this value obtained in Kim's heavy ion analysis and the 

values of a4R4 = .52 and .53 from electron scattering and Coulomb excitation 

respectively. I~ we keep 82RN2 at 1.65 and set s4R4 to .52 then we obtain 

ratios for theWoods-Saxon proximity model which are very close to the ratios of 

the center line prescription in Figure 3 probed by Kim's analysis. 

To further test these observations coupled channels calculations have been 

performed for this case using the coupled channels code QUICC 8• In Figure 4 

the solid line is a repetition of Kim's original calculation for the 4+ angular 

distribution, using the centerline prescription and 82RN 2 = 1.65, S4RN4 = 

.29, which fits the data. The dotted line is a Woods-Saxon proximity potential 

calculation with the sane parameters. The dashed line is a Woods-Saxon 

proximity potential calculation with S4RN 4 = .52 and all other parameters the 

same. Clearly the proximity potential calculation with S4RN!t = .52 

corresponds better to the centerline ·calculation of S4RN!t = .29 and thus to 

the data. Using the more correct proximity prescription has caused the 

discrepancy with the electron scattering and Coulomb excitation results to 

disappear. 
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IV . DISCUSSION 

We have mentioned three previous improved treatments of the· interaction of 

a spherical projectile on a deformed target. 1 The approach of Moffa et .al •. was 

a full_ folding of a spherical density with a deformed density, but the 

deformation of the density was only taken to first order as was appropriate for 

the vibrational nuclei which they considered. Hendrie's work2 considered the 

nuclei as touching, for his correction to the multipole moments generated by an 

angular shift relative to the centerline prescription. However he did not 

include effects of the angular change in the force due to the changing radius of 

curvature. Randrup and Vaagen 3 showed the importance of the lbcal radius of 

curvature as well as the effective angular shift, but considered the effect for 

only the 82 deformation .and for only one-separation of the two nuclei. 

Furthermore, their approximations for the radii of curvature, while 

qualitativelr_instructive, are not quantitatively useful for extracting 

multipole moments. For example at a = 0, these authors' first order 

approximation for the local radius of curvature Rl(e = 0) yields .6216 R for 

their parameters while our exact value is .8050 R for the same ·parameters. 

In conclusion we feel that we have presented a quantitatively adequate 

treatment of the deformed optical potential for extraction of multipole moments 

from heavy ion induced inelastic scattering on deformed nuclei. 
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Figure Captions 

·Fig. 1 Comparison of proximity and folding model calculations of the ion-ion 

potential. Both V~ and p~ are normalized to unity. 

Fig. 2 Coordinate system for a deformed optical potential including a volume 

element for folding. 

Fig. 3 Comparison of rati.os of L = 2, 4, 6 components of the Woods-Saxon 

potential of Ref. 7 to the L = 0 component using the centerline 

prescription and the one term proximity prescription. 

Fig. 4 Comparison of 152sm( 16o, 16o•) 152sm(4+) angular distributions. The value 

of the Woods-Saxon proximity real and imaginary potential depths have 

been reduced by 6% to correspond to the L = 0 potential strength of the 

conventional Woods-Saxon potential. 
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