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ABSTRACT 

 

Streaming media has contributed to a significant amount of today’s Internet traffic. Like 

conventional web objects (e.g., HTML pages and images), media objects can benefit from 

proxy caching; yet their unique features such as huge size and high bandwidth demand 

imply that conventional proxy caching strategies have to be substantially revised. This 

article discusses the critical issues and challenges of cache management for proxy-assisted 

media streaming. We survey, classify, and compare the state-of-the-art solutions. We also 

investigate advanced issues of combining multicast with caching, cooperating among 

proxies, and leveraging proxy caching in overlay networks. 
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1. INTRODUCTION 

With widespread penetration of the broadband Internet, multimedia service is getting 

increasingly popular among users and has contributed to a significant amount of today’s Internet 

traffic. Media objects can be accessed similar to conventional text and images using a download-

and-play mode; but most users prefer to quickly initiate and then continuously play back a media 

object while it is being downloaded, i.e., to use a real-time streaming mode. We have witnessed 

the initial and incremental deployment of streaming applications like RealNetworks RealPlayer 

and Microsoft Windows Media Player in recent years. The performance of such applications 

however is still far from satisfactory, especially during the peak hours.  

To reduce client-perceived access latencies as well as server/network loads, an effective means 

is to cache frequently used data at proxies close to clients. It also enhances the availability of 

objects and mitigates packet losses, as a local transmission is generally more reliable than a 

remote transmission. Proxy caching thus has become one of the vital components in virtually all 

web systems. Streaming media, particularly those pre-stored, could also benefit significant 

performance improvement from proxy caching, given their static nature in content and highly 

localized access interests. However, existing proxies are generally optimized for delivering 

conventional web objects (e.g., HTML pages or GIF images), which may not meet the 

requirements of steaming applications. In the following, we list some important and unique 

features of streaming media and discuss their implications to proxy cache design. 

Huge size: A conventional web object is typically on the order of 1K to 100K bytes. Hence, a 

binary decision works well for proxy caching: either caching an object in its entirety or not 

caching. In contrast, a media object has a high data rate and a long playback duration, which 

combined yield a huge data volume. For illustration, a one-hour standard MPEG-1 video has a 

volume of about 675 MB; caching it entirely at a web proxy is clearly impractical, as several such 

large streams would exhaust the capacity of the cache. One solution is to cache only portions of 

an object. In this case, a client’s playback needs a joint delivery involving both the proxy and the 

origin server. To cache which portions of which objects thus has to be carefully managed, such 

that the benefit of caching outweighs the synchronization overhead of the joint delivery. 

Intensive bandwidth use: Streaming nature of delivery requires a significant amount of disk 

and network I/O bandwidth, sustaining over a long period. Hence, minimizing bandwidth 

consumption becomes a primary consideration for proxy cache management, even taking 

precedence over reducing access latencies in many cases. Moreover, the bandwidth bottleneck 
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limits the number of clients that a proxy can simultaneously support; employing multicast 

delivery and cooperation among proxies thus become particularly attractive for media streaming 

applications. 

High interactivity: The long playback duration of a streaming object also enables various 

client-server interactions. As an example, recent studies found that nearly 90% media playbacks 

are terminated prematurely by clients [1]. In addition, during a playback, a client often expects 

VCR-like operations, such as fast-forward and rewind. This implies the access rates might be 

different for different portions of a stream, which potentially complicates the cache management.  

Given these unique features of media objects, novel caching algorithms have been developed in 

the literature. The objective of this article is to review the state-of-the-art caching techniques 

dedicated to streaming media caching. We begin with discussions on a generic proxy caching 

architecture and some protocol considerations. The caching strategies for streaming media are 

classified, examined, and compared in Section 3. Section 4 investigates some advanced issues. 

Finally, Section 5 concludes the article. 

2. ARCHITECTURE AND PROTOCOLS FOR STREAMING CACHING 

Streaming applications generally support diverse client-server interactions and have stringent 

demands on packet delay and jitter to ensure discontinuity-free playback. To meet these 

requirements, the Internet Engineering Task Force (IETF) has developed the RTP/RTCP/RTSP 

protocol suite.  A generic system diagram of proxy-assisted media streaming using this suite is 

depicted in Fig. 1.   

In this system, the basic functionalities for data transferring are provided by the Real-Time 

Transport Protocol (RTP), including payload identification, sequence numbering for loss 

detection, and time stamping for playback control. Running on top of UDP, RTP itself does not 

guarantee Quality-of-Service (QoS), but relies on its companion, the Real-Time Control Protocol 

(RTCP), to monitor the network status and provide feedback for application-layer adaptation. The 

Real-Time Streaming Protocol (RTSP) coordinates the delivery of media objects and enables a 

rich set of controls for interactive playback. For the proxy-assisted streaming, the proxy has to 

relay these control messages between the client and the server. The problem is particularly 

involved if only part of a media object is cached at a proxy. In this case, the proxy must reply to 

the client PLAY request and initiate transmission of RTP and RTCP messages to the client for the 

cached portion, while request the uncached portion(s) from the server. Such fetching can be 
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achieved through an RTSP Range request specifying the playback points. The Range request also 

enables clients to retrieve different segments of a media object from multiple servers or proxies, if 

needed. 

Beside this classical client/server paradigm, peer-to-peer streaming and other overlay streaming 

paradigms have also attracted much attention recently, which will be discussed in Section 4.C.  
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 Figure 1. A generic system diagram of proxy-assisted media streaming using RTP/RTCP/RTSP. 

 

3. CACHING STRATEGIES FOR STREAMING MEDIA 

Due to the aforementioned features of streaming media objects, media caching has many 

distinct focuses from conventional web caching. On one hand, since the content of a media object 

is rarely updated, management issues like cache consistency and coherence are less critical in 

media caching. On the other hand, given high resource requirements of media objects, effective 

management of proxy cache resources (i.e., space, disk I/O, and network I/O) becomes more 

challenging. In this section, we survey the state-of-the-art media caching strategies for both 

homogenous clients and heterogeneous clients, with an emphasis on how the strategies minimize 

resource demands.  

A. Stream Caching for Homogeneous Clients 

Most existing caching algorithms focus on homogeneous clients, which have identical or 

similar configurations and capabilities behind a proxy. As such, a single version of an object 

would match the bandwidth and format demands of all requests to the object. Nevertheless, what 

to cache (which portions of which objects) and how to manage cache (e.g., cache placement and 

replacement) at the proxy remain challenges. According to the selection of the portions to cache, 
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we classify existing algorithms into four categories: sliding-interval caching, prefix caching, 

segment caching, and rate-split caching.  

Sliding-Interval Caching [2]: This algorithm caches a sliding interval of a media object to 

exploit sequential access of streaming media. For illustration, given two consecutive requests for 

the same object, the first request may access the object from the server and incrementally store it 

into the proxy cache; the second request can then access the cached portion and release it after the 

access. If the two requests arrive close in time, only a small portion of the media object needs to 

be cached at any time instance, and yet the second request can be completely satisfied from the 

proxy (see Fig. 2). In general, if multiple requests for an object arrive in a short period, a set of 

adjacent intervals can be grouped to form a run, of which the cached portion will be released only 

after the last request has been satisfied.  

     
 

 

 

 

(a) Time 0: request 1 arrives (b) Time 1-2: frames 1 and 2 
accessed by request 1 and cached; 
request 2 arrives.  

(c) Time 2-3: frame 3 accessed by 
request 1 and cached;  frame 1 
read by request 2 and released. 

Figure 2. An illustration of sliding-interval caching. The object consists of 9 frames, each 
requiring one unit time to deliver from the proxy to a client. Requests 1 and 2 arrive at times 
0 and 2, respectively. To serve request 2, only two frames need to be cached at any time 
instance. 

Sliding-interval caching can significantly reduce network bandwidth consumption and start-up 

delay for subsequent accesses. However, as the cached portion is dynamically updated with 

playback, the sliding-interval caching involves high disk bandwidth demands; in the worse case, 

it would double the disk I/O due to the concurrent read/write operations. In addition, its 

effectiveness diminishes with the increase of the access intervals. If the access interval of the 

same object is longer than the duration of the playback, the algorithm is degenerated to the 

unaffordable full-object caching. To address these issues, it is preferable to retain the cached 

content over a relatively long time period. Most of the caching algorithms to be discussed in the 

rest of this section fall into this category.  
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Prefix Caching [3]: This algorithm caches the initial portion of a media object, called prefix, at 

a proxy. Upon receiving a client request, the proxy immediately delivers the prefix to the client 

and, meanwhile, fetches the remaining portion, the suffix, from the server and relays to the client 

(see Fig. 3). As the proxy is generally closer to the clients than the origin server, the start-up 

delay for a playback can be remarkably reduced. 

 

 

 

 
 
 
 

 

 
 

Figure 3. A snapshot of prefix caching with workahead smoothing. 

To ensure discontinuity-free playback with a start-up delay of s, the proxy has to store a prefix 

of length maxmax{ ,0}d s− , where maxd  is the maximum delay from the server to the proxy. If 

cache space is abundant, the proxy can also devote some space to assist in performing workahead 

smoothing for variable-bit-rate (VBR) media [3]. With this smoothing cache, the proxy can 

prefetch large frames in advance of each burst to absorb delay jitter and bandwidth fluctuations of 

the server-to-proxy path. The delay of prefetching can be hided by the prefix caching. Similar to 

sliding-interval caching, the content of the smoothing cache is dynamically updated with 

playback. However, the purposes are different: the former is to improve cache hit for subsequent 

requests, while the latter is to facilitate workahead smoothing. 

Segment Caching [1, 4, 5, 6]: Segment caching generalizes the prefix caching paradigm by 

partitioning a media object into a series of segments, differentiating their respective utilities, and 

making caching decision accordingly (see Fig. 4). Various segment caching algorithms have been 

proposed in the literature by employing different segmentations and utility calculations. Wu et al. 

[4] suggested to group the frames of a media object into variable-sized segments, with the length 

increasing exponentially with the distance from the start of the media, i.e., the size of segment i  

is 12i− , which consists of frames 12i− , 12 1i− + , …, 2 1i − . The motivation is that a proxy can 

quickly adapt to the changing access patterns of cached objects by discarding big chunks as 

needed. The utility of a segment is calculated as the ratio of the segment reference frequency over 

its distance from the beginning segment, which favors to cache the initial segments as well as 

cached prefix 
current playback to be prefetched 
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those with higher access frequencies. Chen et al. [1], however, argued that neither the use of a 

predefined segment length nor the favorable caching of the initial segments is the best strategy for 

reducing network traffic. They suggested postponing segmentation as late as possible (called lazy 

segmentation), thus allowing the proxy to collect a sufficient amount of access statistics to 

improve the effectiveness.  

 

 
 
 

 

Figure 4. An illustration of segment caching. 

A salient feature of segment-based caching is its support to VCR-like operations, such as 

random access, fast-forward, and rewind. As an example, Fahmi et al. [6] proposed to cache some 

key segments of a media object, called hotspots, which are identified by content providers. When 

a client requests the object, the proxy first delivers the hotspots to provide an overview of the 

stream; the client can then decide whether to play the entire stream or quickly jump to some 

specific portion introduced by a hotspot. Furthermore, in fast-forwarding and rewinding 

operations, only the corresponding hotspots are delivered and displayed, while other portions are 

skipped. As such, the load of the server and backbone network can be greatly reduced, but the 

client will not miss any important segments in the media object.  

Rate-Split Caching [7]: While all the aforementioned caching algorithms partition a media 

object horizontally along the time axis, the rate-split caching partitions a media vertically along 

the rate axis: the upper part will be cached at the proxy, whereas the lower part will remain stored 

at the origin server (see Fig. 5). This type of partitioning is particularly attractive for VBR 

streaming, as only the lower part of a nearly constant rate has to be delivered through the 

backbone network. For a QoS network with resource reservation, the bandwidth reserved should 

be equal to the peak rate of a stream; caching the upper part at the proxy clearly reduces the rate 

variability and improves the backbone bandwidth utilization. A critical issue here is how to select 

the cut-off rate or, equivalently, the size of the upper part for caching. Zhang et al. [7] studied the 

impact of the cut-off rate for a single stream through empirical evaluation, and found that a 

significant bandwidth reduction can be achieved with a reasonably small cache space. They also 

cached segments 
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formulated the multiple-stream case as a knapsack problem with two constraints: disk bandwidth 

and cache space, and developed several heuristics, e.g., caching popular objects only, or caching 

those with high bandwidth reduction.  

 

Figure  5. An illustration of rate-split caching.  

Summary and Comparison: Table 1 summarizes the caching algorithms reviewed for 

homogeneous clients. While these features and metrics provide a general guideline for algorithm 

selection, the choice for a specific streaming system also largely depends on a number of practical 

issues, in particular, the complexity of the implementation. In fact, only a few simple algorithms 

have been employed in commercial systems, though recently-built prototypes have practically 

demonstrated the viability and superiority of the intelligent algorithms, such as lazy segmentation 

[1].  

 

TABLE I. COMPARISONS OF THE CACHING ALGORITHMS FOR HOMOGENEOUS CLIENTS 

*  There is no reduction for the first request in a run.  
** Assume the initial segment is cached. 

 
Sliding-Interval 

Caching 
[2] 

Prefix      
Caching 

[3] 

Segment 
Caching 
[1,4,5,6] 

Rate-Split 
Caching       

[7] 

Cached Portion Sliding 
intervals Prefix Segments Portion of 

higher rate 

VCR-like support No No Yes No 

Disk I/O High Moderate Moderate Moderate 

Disk Space Low Moderate High High Resource 
Demand 

Sync Overhead Low Moderate High High 

Bandwidth 
Reduction High* Moderate Moderate Moderate Performance 

Improvement Start-up Latency 
Reduction High*  High High** Moderate 

cut-off rate 

cached at proxy 
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In addition, we emphasize that these algorithms are not necessarily exclusive with each other, 

and a combination of them may yield a better performance. For example, segment caching 

combined with prefix caching of each segment can reduce start-up latency for VCR-like random 

playback from any key-segment. Combination with conventional data caching algorithms has also 

been examined. 

B. Stream Caching for Heterogeneous Clients  

Owing to diverse network models and device configurations, clients behind the same proxy 

often have quite different requirements on the same media object, in terms of streaming rates or 

encoding formats. To accommodate such heterogeneity, a straightforward solution is to produce 

replicated streams of different rates or formats, each targeting on a subset of clients. Though 

being widely used in commercial streaming system, the storage and bandwidth demands of this 

approach can be prohibitively high [8]. An alternative is to transcode a media from one form to 

another of a lower rate or a different encoding format in an on-demand fashion [9]. The intensive 

computation overhead of transcoding however prevents a proxy from supporting a large, diverse 

client population.  

Yet a more efficient approach to this problem is the use of layered encoding and transmission. 

A layered coder compresses a raw media object into several layers: the most significant layer, 

called the base layer, contains the data representing the most important features of the object, 

while additional layers, called enhancement layers, contain the data that can progressively refine 

the quality. A client thus can subscribe to a subset of cumulative layers to reconstruct a stream 

commensurate with its capability. For layered caching, Kangasharju et al. [10] assumed that the 

cached portions are semi-static and only completed layers are cached. To maximize the total 

revenue, they developed effective heuristics based on an analytical stochastic knapsack model to 

determine the cache content. In their model, the client population and the distribution of their 

capacities are known a priori. For layered streaming under dynamic conditions, Rejaie et al. [11] 

studied segment-based cache replacement and prefecting policies to achieve efficient utilization 

of cache space and available bandwidth (see Fig. 6a). The main objective is to deal with the 

congestion problem for individual clients. To this end, the proxy keeps track of popularities of 

each object on a per layer basis. When the quality of the cached layers is lower than the 

maximum deliverable quality to an interested client, the proxy sends requests to the server for 

missing segments within a sliding prefetching window. On cache replacement, a victim layer is 
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identified based on popularities, and its cached segments are flushed from the tail until sufficient 

space is obtained. 

A critical drawback of the existing layered streaming systems is that the number of layers is 

pretty small, typically 2 or 3 only; hence, their adaptation granularity remains coarse. Fortunately, 

recent development in the coding area has demonstrated the possibility of fine-grained post-

encoding rate control. An example is the MPEG-4 Fine-Grained Scalable (FGS) coder with 

bitplane coding, which generates embedded streams containing several bitplanes and each can be 

partitioned at any specific rate. As such, for narrowband clients, the proxy can reduce the 

streaming rate using a bitplane filter; for wideband clients, the proxy can fetch some uncached 

portion (i.e., higher-order bitplanes) from the server and assemble it with the cached portion to 

generate a high-rate stream. As illustrated in Fig. 6b, the available bandwidth of a client can be 

almost fully utilized, and, more importantly, both the filtering and the assembling operations in 

FGS can be done with fast response. Hence, we envision the FGS-based streaming and caching as 

a very promising solution to media steaming over the Internet comprising highly heterogeneous 

end-systems. Several caching algorithms have been proposed to minimize the bandwidth 

consumption and/or improve the client utility [8].  

 

 

 

 
 
 
 

(a) Coarse-grained layering                                                 (b) Fine-grained layering 

Figure 6. Caching for layered streaming. (a) Coarse-grained layering; (b) Fine-grained layering.  
 

4. ADVANCED ISSUES 

So far we consider a standalone proxy with only unicast delivery. While it can noticeably 

reduce the access latencies and backbone bandwidth demands, the scalability and robustness of 

this simple architecture are still restricted. We now discuss two effective enhancements: multicast 

and proxy cooperation; we also address the role of proxy in the recently popularized overlay 

communication paradigms.  

available 
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A.  Combining Proxy Caching with Multicasting 

Like caching, multicasting also explores the temporal locality of client requests. Specifically, it 

allows a media server to accommodate concurrent client requests with shared channels through 

batching, patching, or periodic broadcast. However, multicast delivery suffers from two important 

deficiencies. First, to save more bandwidth, it is better to accommodate more requests in one 

multicast channel by using a large batching/patching window, which however leads to long start-

up latencies. Second, while IP multicast is enabled in virtually all local-area networks, its 

deployment over the global Internet remains limited in scope and reach. Hence, it is unlikely that 

a multicast streaming protocol can be used for geographically dispersed servers and clients.    

Interestingly, both deficiencies can be alleviated through the use of proxies. Specifically, a 

request can be instantaneously served by a cached prefix while waiting for the data from a 

multicast channel [12,13], and proxies can bridge unicast networks with multicast networks, i.e., 

employing unicast for server to proxy delivery while batching and/or patching local accesses. 

Wang et al. [13] have derived the optimal length of the prefix to be cached for most typical 

multicast protocols, and showed that a careful coupling of caching and multicasting can produce 

significant cost savings over using the unicast service, even if IP multicast is supported only at 

local networks.  

B. Cooperative Proxy Caching 

In general, proxies grouped together can achieve better performance than independent 

standalone proxies. Specifically, the group of proxies can cooperate with each other to increase 

the aggregate cache space, balance loads, and improve system scalability [14,15]. A typical 

cooperative media caching architecture is MiddleMan [14], which operates a collection of proxies 

as a scalable cache cluster. Media objects are segmented into equal-sized segments and stored 

across multiple proxies, where they can be replaced at a granularity of a segment. There are also 

several local proxies responsible to answer client requests by locating and relaying the segments. 

Note that, in cooperative web caching, a critical issue is how to efficiently locate web pages with 

minimum communication costs among the proxies. This is, however, not a major concern for 

cooperative media caching, as the bandwidth consumption for streaming objects is of orders of 

magnitude higher than that for object indexing and discovering. Consequently, in MiddleMan, a 

centralized coordinator works well in keeping track of cache states. On the other hand, while 

segment-based caching across different proxies facilitates the distribution and balance of proxy 

loads, it incurs a significant amount overhead for switching among proxies to reconstruct a media 
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object. To reduce such effects as well as to achieve better load balance and fault tolerance, Chae 

et al. [15] suggested a Silo data layout, which partitions a media object into segments of 

increasing sizes, stores more copies for popular segments, but still guarantees at least one copy 

stored for each segment.  

C.  Streaming Caching in Overlay Networks 

So far, we have focused on the client/server paradigm for media streaming, and proxies act as 

intermediaries between them. Generalizing the proxy functionalities into every end-host will shift 

the system to the recently popularized overlay communication paradigms, such as peer-to-peer 

communication or application-layer multicast. There have been many pioneering efforts on 

overlay streaming, which have demonstrated the superior scalability and deployability of these 

overlay systems; the enormous buffer capacities distributed in end-hosts also enable efficient 

client-side caching and sharing to improve content availability as well as to support asynchronous 

streaming [16, 17, 18, 19].  

Nevertheless, we are aware that, in contrast to the reliable and dedicated servers or proxies, the 

loosely-coupled autonomous end-hosts can easily crash, leave without notice, or even refuse to 

share its own data. Given that a media playback lasts a long time and consumes huge resources, 

we believe dedicated proxies will still play an important role in building high-quality media 

streaming systems; in particular, strategically placed proxies may effectively assist the 

construction and maintenance of large-scale overlays. On the other hand, we may also leverage 

the overlay paradigm in proxy design. As an example, Guo et al. [20] suggested a proxy and its 

clients be structured into a peer-to-peer system to collaboratively serve local 

streaming requests. Their work focused on local area collaboration. We believe that it can be 

extended to a two-level streaming overlay: a cluster of proxies forms an overlay in wide-area 

networks while each proxy collaborates with local client caches to form a local overlay. These 

two overlays well complement each other. The proxy-level overlay provides a dedicated storage 

and reliable service, while the local overlay provides a scalable storage for caching and 

significantly reduce the load of the proxy. 

5. CONCLUDING REMARKS 

Proxy caching is an effective means to reduce access latencies as well as resource 

consumptions for networked applications. Due to the unique features of media objects like huge 

size and high bandwidth demand, a number of novel streaming caching solutions have been 
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reported in the literature. This article serves as a pioneer survey to this field, though it by no 

means covers all aspects. Plenty of research issues have yet to be addressed, e.g., caching over the 

wireless mobile Internet, for large-scale dynamic overlays, and with advanced video coding 

scheme such as multiple description coding [18], as well as security and privacy for cached media 

objects, to name but a few. We envision that streaming media caching remains a fertile area, and 

both theoretical and practical solutions to the listed problems are urged with rising demands on 

ubiquitous multimedia services throughout the world.  
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