
1

Proxy Caching for Media Streaming over the Internet

Jiangchuan Liu

School of Computing Science
Simon Fraser University

Burnaby, BC, Canada
csljc@ieee.org

Jianliang Xu

Department of Computer Science
Hong Kong Baptist University

 Hong Kong
 xujl@comp.hkbu.edu.hk

ABSTRACT

Streaming media has contributed to a significant amount of today’s Internet traffic. Like

conventional web objects (e.g., HTML pages and images), media objects can benefit from

proxy caching; yet their unique features such as huge size and high bandwidth demand

imply that conventional proxy caching strategies have to be substantially revised. This

article discusses the critical issues and challenges of cache management for proxy-assisted

media streaming. We survey, classify, and compare the state-of-the-art solutions. We also

investigate advanced issues of combining multicast with caching, cooperating among

proxies, and leveraging proxy caching in overlay networks.

Keywords: Streaming Media, Proxy, Caching, Overlay Networks

2

1. INTRODUCTION

With widespread penetration of the broadband Internet, multimedia service is getting

increasingly popular among users and has contributed to a significant amount of today’s Internet

traffic. Media objects can be accessed similar to conventional text and images using a download-

and-play mode; but most users prefer to quickly initiate and then continuously play back a media

object while it is being downloaded, i.e., to use a real-time streaming mode. We have witnessed

the initial and incremental deployment of streaming applications like RealNetworks RealPlayer

and Microsoft Windows Media Player in recent years. The performance of such applications

however is still far from satisfactory, especially during the peak hours.

To reduce client-perceived access latencies as well as server/network loads, an effective means

is to cache frequently used data at proxies close to clients. It also enhances the availability of

objects and mitigates packet losses, as a local transmission is generally more reliable than a

remote transmission. Proxy caching thus has become one of the vital components in virtually all

web systems. Streaming media, particularly those pre-stored, could also benefit significant

performance improvement from proxy caching, given their static nature in content and highly

localized access interests. However, existing proxies are generally optimized for delivering

conventional web objects (e.g., HTML pages or GIF images), which may not meet the

requirements of steaming applications. In the following, we list some important and unique

features of streaming media and discuss their implications to proxy cache design.

Huge size: A conventional web object is typically on the order of 1K to 100K bytes. Hence, a

binary decision works well for proxy caching: either caching an object in its entirety or not

caching. In contrast, a media object has a high data rate and a long playback duration, which

combined yield a huge data volume. For illustration, a one-hour standard MPEG-1 video has a

volume of about 675 MB; caching it entirely at a web proxy is clearly impractical, as several such

large streams would exhaust the capacity of the cache. One solution is to cache only portions of

an object. In this case, a client’s playback needs a joint delivery involving both the proxy and the

origin server. To cache which portions of which objects thus has to be carefully managed, such

that the benefit of caching outweighs the synchronization overhead of the joint delivery.

Intensive bandwidth use: Streaming nature of delivery requires a significant amount of disk

and network I/O bandwidth, sustaining over a long period. Hence, minimizing bandwidth

consumption becomes a primary consideration for proxy cache management, even taking

precedence over reducing access latencies in many cases. Moreover, the bandwidth bottleneck

3

limits the number of clients that a proxy can simultaneously support; employing multicast

delivery and cooperation among proxies thus become particularly attractive for media streaming

applications.

High interactivity: The long playback duration of a streaming object also enables various

client-server interactions. As an example, recent studies found that nearly 90% media playbacks

are terminated prematurely by clients [1]. In addition, during a playback, a client often expects

VCR-like operations, such as fast-forward and rewind. This implies the access rates might be

different for different portions of a stream, which potentially complicates the cache management.

Given these unique features of media objects, novel caching algorithms have been developed in

the literature. The objective of this article is to review the state-of-the-art caching techniques

dedicated to streaming media caching. We begin with discussions on a generic proxy caching

architecture and some protocol considerations. The caching strategies for streaming media are

classified, examined, and compared in Section 3. Section 4 investigates some advanced issues.

Finally, Section 5 concludes the article.

2. ARCHITECTURE AND PROTOCOLS FOR STREAMING CACHING

Streaming applications generally support diverse client-server interactions and have stringent

demands on packet delay and jitter to ensure discontinuity-free playback. To meet these

requirements, the Internet Engineering Task Force (IETF) has developed the RTP/RTCP/RTSP

protocol suite. A generic system diagram of proxy-assisted media streaming using this suite is

depicted in Fig. 1.

In this system, the basic functionalities for data transferring are provided by the Real-Time

Transport Protocol (RTP), including payload identification, sequence numbering for loss

detection, and time stamping for playback control. Running on top of UDP, RTP itself does not

guarantee Quality-of-Service (QoS), but relies on its companion, the Real-Time Control Protocol

(RTCP), to monitor the network status and provide feedback for application-layer adaptation. The

Real-Time Streaming Protocol (RTSP) coordinates the delivery of media objects and enables a

rich set of controls for interactive playback. For the proxy-assisted streaming, the proxy has to

relay these control messages between the client and the server. The problem is particularly

involved if only part of a media object is cached at a proxy. In this case, the proxy must reply to

the client PLAY request and initiate transmission of RTP and RTCP messages to the client for the

cached portion, while request the uncached portion(s) from the server. Such fetching can be

4

achieved through an RTSP Range request specifying the playback points. The Range request also

enables clients to retrieve different segments of a media object from multiple servers or proxies, if

needed.

Beside this classical client/server paradigm, peer-to-peer streaming and other overlay streaming

paradigms have also attracted much attention recently, which will be discussed in Section 4.C.

Control Channel
(RTSP, RTCP)

Scheduler

Media
Repository

ServerMedia Proxy

Proxy Manager

Enterprise
Network

Cache

Player

Buffer

Client

Backbone
Network

Data Channel
(RTP)

As
se

m
bl

er
/S

w
itc

he
r

Data Channel
(RTP)

Control Channel
(RTSP,RTCP)

 Figure 1. A generic system diagram of proxy-assisted media streaming using RTP/RTCP/RTSP.

3. CACHING STRATEGIES FOR STREAMING MEDIA

Due to the aforementioned features of streaming media objects, media caching has many

distinct focuses from conventional web caching. On one hand, since the content of a media object

is rarely updated, management issues like cache consistency and coherence are less critical in

media caching. On the other hand, given high resource requirements of media objects, effective

management of proxy cache resources (i.e., space, disk I/O, and network I/O) becomes more

challenging. In this section, we survey the state-of-the-art media caching strategies for both

homogenous clients and heterogeneous clients, with an emphasis on how the strategies minimize

resource demands.

A. Stream Caching for Homogeneous Clients

Most existing caching algorithms focus on homogeneous clients, which have identical or

similar configurations and capabilities behind a proxy. As such, a single version of an object

would match the bandwidth and format demands of all requests to the object. Nevertheless, what

to cache (which portions of which objects) and how to manage cache (e.g., cache placement and

replacement) at the proxy remain challenges. According to the selection of the portions to cache,

5

we classify existing algorithms into four categories: sliding-interval caching, prefix caching,

segment caching, and rate-split caching.

Sliding-Interval Caching [2]: This algorithm caches a sliding interval of a media object to

exploit sequential access of streaming media. For illustration, given two consecutive requests for

the same object, the first request may access the object from the server and incrementally store it

into the proxy cache; the second request can then access the cached portion and release it after the

access. If the two requests arrive close in time, only a small portion of the media object needs to

be cached at any time instance, and yet the second request can be completely satisfied from the

proxy (see Fig. 2). In general, if multiple requests for an object arrive in a short period, a set of

adjacent intervals can be grouped to form a run, of which the cached portion will be released only

after the last request has been satisfied.

(a) Time 0: request 1 arrives (b) Time 1-2: frames 1 and 2
accessed by request 1 and cached;
request 2 arrives.

(c) Time 2-3: frame 3 accessed by
request 1 and cached; frame 1
read by request 2 and released.

Figure 2. An illustration of sliding-interval caching. The object consists of 9 frames, each
requiring one unit time to deliver from the proxy to a client. Requests 1 and 2 arrive at times
0 and 2, respectively. To serve request 2, only two frames need to be cached at any time
instance.

Sliding-interval caching can significantly reduce network bandwidth consumption and start-up

delay for subsequent accesses. However, as the cached portion is dynamically updated with

playback, the sliding-interval caching involves high disk bandwidth demands; in the worse case,

it would double the disk I/O due to the concurrent read/write operations. In addition, its

effectiveness diminishes with the increase of the access intervals. If the access interval of the

same object is longer than the duration of the playback, the algorithm is degenerated to the

unaffordable full-object caching. To address these issues, it is preferable to retain the cached

content over a relatively long time period. Most of the caching algorithms to be discussed in the

rest of this section fall into this category.

 1 2 3 4 5 6 7 8 9

cached at proxy

1 4 5 6 7 8 9 3 4 5 6 7 8 9

r1 r1r2 r1 r2

1 2 2 3

6

Prefix Caching [3]: This algorithm caches the initial portion of a media object, called prefix, at

a proxy. Upon receiving a client request, the proxy immediately delivers the prefix to the client

and, meanwhile, fetches the remaining portion, the suffix, from the server and relays to the client

(see Fig. 3). As the proxy is generally closer to the clients than the origin server, the start-up

delay for a playback can be remarkably reduced.

Figure 3. A snapshot of prefix caching with workahead smoothing.

To ensure discontinuity-free playback with a start-up delay of s, the proxy has to store a prefix

of length maxmax{ ,0}d s− , where maxd is the maximum delay from the server to the proxy. If

cache space is abundant, the proxy can also devote some space to assist in performing workahead

smoothing for variable-bit-rate (VBR) media [3]. With this smoothing cache, the proxy can

prefetch large frames in advance of each burst to absorb delay jitter and bandwidth fluctuations of

the server-to-proxy path. The delay of prefetching can be hided by the prefix caching. Similar to

sliding-interval caching, the content of the smoothing cache is dynamically updated with

playback. However, the purposes are different: the former is to improve cache hit for subsequent

requests, while the latter is to facilitate workahead smoothing.

Segment Caching [1, 4, 5, 6]: Segment caching generalizes the prefix caching paradigm by

partitioning a media object into a series of segments, differentiating their respective utilities, and

making caching decision accordingly (see Fig. 4). Various segment caching algorithms have been

proposed in the literature by employing different segmentations and utility calculations. Wu et al.

[4] suggested to group the frames of a media object into variable-sized segments, with the length

increasing exponentially with the distance from the start of the media, i.e., the size of segment i

is 12i− , which consists of frames 12i− , 12 1i− + , …, 2 1i − . The motivation is that a proxy can

quickly adapt to the changing access patterns of cached objects by discarding big chunks as

needed. The utility of a segment is calculated as the ratio of the segment reference frequency over

its distance from the beginning segment, which favors to cache the initial segments as well as

cached prefix
current playback to be prefetched

7

those with higher access frequencies. Chen et al. [1], however, argued that neither the use of a

predefined segment length nor the favorable caching of the initial segments is the best strategy for

reducing network traffic. They suggested postponing segmentation as late as possible (called lazy

segmentation), thus allowing the proxy to collect a sufficient amount of access statistics to

improve the effectiveness.

Figure 4. An illustration of segment caching.

A salient feature of segment-based caching is its support to VCR-like operations, such as

random access, fast-forward, and rewind. As an example, Fahmi et al. [6] proposed to cache some

key segments of a media object, called hotspots, which are identified by content providers. When

a client requests the object, the proxy first delivers the hotspots to provide an overview of the

stream; the client can then decide whether to play the entire stream or quickly jump to some

specific portion introduced by a hotspot. Furthermore, in fast-forwarding and rewinding

operations, only the corresponding hotspots are delivered and displayed, while other portions are

skipped. As such, the load of the server and backbone network can be greatly reduced, but the

client will not miss any important segments in the media object.

Rate-Split Caching [7]: While all the aforementioned caching algorithms partition a media

object horizontally along the time axis, the rate-split caching partitions a media vertically along

the rate axis: the upper part will be cached at the proxy, whereas the lower part will remain stored

at the origin server (see Fig. 5). This type of partitioning is particularly attractive for VBR

streaming, as only the lower part of a nearly constant rate has to be delivered through the

backbone network. For a QoS network with resource reservation, the bandwidth reserved should

be equal to the peak rate of a stream; caching the upper part at the proxy clearly reduces the rate

variability and improves the backbone bandwidth utilization. A critical issue here is how to select

the cut-off rate or, equivalently, the size of the upper part for caching. Zhang et al. [7] studied the

impact of the cut-off rate for a single stream through empirical evaluation, and found that a

significant bandwidth reduction can be achieved with a reasonably small cache space. They also

cached segments

8

formulated the multiple-stream case as a knapsack problem with two constraints: disk bandwidth

and cache space, and developed several heuristics, e.g., caching popular objects only, or caching

those with high bandwidth reduction.

Figure 5. An illustration of rate-split caching.

Summary and Comparison: Table 1 summarizes the caching algorithms reviewed for

homogeneous clients. While these features and metrics provide a general guideline for algorithm

selection, the choice for a specific streaming system also largely depends on a number of practical

issues, in particular, the complexity of the implementation. In fact, only a few simple algorithms

have been employed in commercial systems, though recently-built prototypes have practically

demonstrated the viability and superiority of the intelligent algorithms, such as lazy segmentation

[1].

TABLE I. COMPARISONS OF THE CACHING ALGORITHMS FOR HOMOGENEOUS CLIENTS

* There is no reduction for the first request in a run.
** Assume the initial segment is cached.

Sliding-Interval

Caching
[2]

Prefix
Caching

[3]

Segment
Caching
[1,4,5,6]

Rate-Split
Caching

[7]

Cached Portion Sliding
intervals Prefix Segments Portion of

higher rate

VCR-like support No No Yes No

Disk I/O High Moderate Moderate Moderate

Disk Space Low Moderate High High Resource
Demand

Sync Overhead Low Moderate High High

Bandwidth
Reduction High* Moderate Moderate Moderate Performance

Improvement Start-up Latency
Reduction High* High High** Moderate

cut-off rate

cached at proxy

9

In addition, we emphasize that these algorithms are not necessarily exclusive with each other,

and a combination of them may yield a better performance. For example, segment caching

combined with prefix caching of each segment can reduce start-up latency for VCR-like random

playback from any key-segment. Combination with conventional data caching algorithms has also

been examined.

B. Stream Caching for Heterogeneous Clients

Owing to diverse network models and device configurations, clients behind the same proxy

often have quite different requirements on the same media object, in terms of streaming rates or

encoding formats. To accommodate such heterogeneity, a straightforward solution is to produce

replicated streams of different rates or formats, each targeting on a subset of clients. Though

being widely used in commercial streaming system, the storage and bandwidth demands of this

approach can be prohibitively high [8]. An alternative is to transcode a media from one form to

another of a lower rate or a different encoding format in an on-demand fashion [9]. The intensive

computation overhead of transcoding however prevents a proxy from supporting a large, diverse

client population.

Yet a more efficient approach to this problem is the use of layered encoding and transmission.

A layered coder compresses a raw media object into several layers: the most significant layer,

called the base layer, contains the data representing the most important features of the object,

while additional layers, called enhancement layers, contain the data that can progressively refine

the quality. A client thus can subscribe to a subset of cumulative layers to reconstruct a stream

commensurate with its capability. For layered caching, Kangasharju et al. [10] assumed that the

cached portions are semi-static and only completed layers are cached. To maximize the total

revenue, they developed effective heuristics based on an analytical stochastic knapsack model to

determine the cache content. In their model, the client population and the distribution of their

capacities are known a priori. For layered streaming under dynamic conditions, Rejaie et al. [11]

studied segment-based cache replacement and prefecting policies to achieve efficient utilization

of cache space and available bandwidth (see Fig. 6a). The main objective is to deal with the

congestion problem for individual clients. To this end, the proxy keeps track of popularities of

each object on a per layer basis. When the quality of the cached layers is lower than the

maximum deliverable quality to an interested client, the proxy sends requests to the server for

missing segments within a sliding prefetching window. On cache replacement, a victim layer is

10

identified based on popularities, and its cached segments are flushed from the tail until sufficient

space is obtained.

A critical drawback of the existing layered streaming systems is that the number of layers is

pretty small, typically 2 or 3 only; hence, their adaptation granularity remains coarse. Fortunately,

recent development in the coding area has demonstrated the possibility of fine-grained post-

encoding rate control. An example is the MPEG-4 Fine-Grained Scalable (FGS) coder with

bitplane coding, which generates embedded streams containing several bitplanes and each can be

partitioned at any specific rate. As such, for narrowband clients, the proxy can reduce the

streaming rate using a bitplane filter; for wideband clients, the proxy can fetch some uncached

portion (i.e., higher-order bitplanes) from the server and assemble it with the cached portion to

generate a high-rate stream. As illustrated in Fig. 6b, the available bandwidth of a client can be

almost fully utilized, and, more importantly, both the filtering and the assembling operations in

FGS can be done with fast response. Hence, we envision the FGS-based streaming and caching as

a very promising solution to media steaming over the Internet comprising highly heterogeneous

end-systems. Several caching algorithms have been proposed to minimize the bandwidth

consumption and/or improve the client utility [8].

(a) Coarse-grained layering (b) Fine-grained layering

Figure 6. Caching for layered streaming. (a) Coarse-grained layering; (b) Fine-grained layering.

4. ADVANCED ISSUES

So far we consider a standalone proxy with only unicast delivery. While it can noticeably

reduce the access latencies and backbone bandwidth demands, the scalability and robustness of

this simple architecture are still restricted. We now discuss two effective enhancements: multicast

and proxy cooperation; we also address the role of proxy in the recently popularized overlay

communication paradigms.

available
bandwidth

available
bandwidth

streaming rate

cached at proxy

layer 2

layer 1
(base layer)

layer 3

11

A. Combining Proxy Caching with Multicasting

Like caching, multicasting also explores the temporal locality of client requests. Specifically, it

allows a media server to accommodate concurrent client requests with shared channels through

batching, patching, or periodic broadcast. However, multicast delivery suffers from two important

deficiencies. First, to save more bandwidth, it is better to accommodate more requests in one

multicast channel by using a large batching/patching window, which however leads to long start-

up latencies. Second, while IP multicast is enabled in virtually all local-area networks, its

deployment over the global Internet remains limited in scope and reach. Hence, it is unlikely that

a multicast streaming protocol can be used for geographically dispersed servers and clients.

Interestingly, both deficiencies can be alleviated through the use of proxies. Specifically, a

request can be instantaneously served by a cached prefix while waiting for the data from a

multicast channel [12,13], and proxies can bridge unicast networks with multicast networks, i.e.,

employing unicast for server to proxy delivery while batching and/or patching local accesses.

Wang et al. [13] have derived the optimal length of the prefix to be cached for most typical

multicast protocols, and showed that a careful coupling of caching and multicasting can produce

significant cost savings over using the unicast service, even if IP multicast is supported only at

local networks.

B. Cooperative Proxy Caching

In general, proxies grouped together can achieve better performance than independent

standalone proxies. Specifically, the group of proxies can cooperate with each other to increase

the aggregate cache space, balance loads, and improve system scalability [14,15]. A typical

cooperative media caching architecture is MiddleMan [14], which operates a collection of proxies

as a scalable cache cluster. Media objects are segmented into equal-sized segments and stored

across multiple proxies, where they can be replaced at a granularity of a segment. There are also

several local proxies responsible to answer client requests by locating and relaying the segments.

Note that, in cooperative web caching, a critical issue is how to efficiently locate web pages with

minimum communication costs among the proxies. This is, however, not a major concern for

cooperative media caching, as the bandwidth consumption for streaming objects is of orders of

magnitude higher than that for object indexing and discovering. Consequently, in MiddleMan, a

centralized coordinator works well in keeping track of cache states. On the other hand, while

segment-based caching across different proxies facilitates the distribution and balance of proxy

loads, it incurs a significant amount overhead for switching among proxies to reconstruct a media

12

object. To reduce such effects as well as to achieve better load balance and fault tolerance, Chae

et al. [15] suggested a Silo data layout, which partitions a media object into segments of

increasing sizes, stores more copies for popular segments, but still guarantees at least one copy

stored for each segment.

C. Streaming Caching in Overlay Networks

So far, we have focused on the client/server paradigm for media streaming, and proxies act as

intermediaries between them. Generalizing the proxy functionalities into every end-host will shift

the system to the recently popularized overlay communication paradigms, such as peer-to-peer

communication or application-layer multicast. There have been many pioneering efforts on

overlay streaming, which have demonstrated the superior scalability and deployability of these

overlay systems; the enormous buffer capacities distributed in end-hosts also enable efficient

client-side caching and sharing to improve content availability as well as to support asynchronous

streaming [16, 17, 18, 19].

Nevertheless, we are aware that, in contrast to the reliable and dedicated servers or proxies, the

loosely-coupled autonomous end-hosts can easily crash, leave without notice, or even refuse to

share its own data. Given that a media playback lasts a long time and consumes huge resources,

we believe dedicated proxies will still play an important role in building high-quality media

streaming systems; in particular, strategically placed proxies may effectively assist the

construction and maintenance of large-scale overlays. On the other hand, we may also leverage

the overlay paradigm in proxy design. As an example, Guo et al. [20] suggested a proxy and its

clients be structured into a peer-to-peer system to collaboratively serve local

streaming requests. Their work focused on local area collaboration. We believe that it can be

extended to a two-level streaming overlay: a cluster of proxies forms an overlay in wide-area

networks while each proxy collaborates with local client caches to form a local overlay. These

two overlays well complement each other. The proxy-level overlay provides a dedicated storage

and reliable service, while the local overlay provides a scalable storage for caching and

significantly reduce the load of the proxy.

5. CONCLUDING REMARKS

Proxy caching is an effective means to reduce access latencies as well as resource

consumptions for networked applications. Due to the unique features of media objects like huge

size and high bandwidth demand, a number of novel streaming caching solutions have been

13

reported in the literature. This article serves as a pioneer survey to this field, though it by no

means covers all aspects. Plenty of research issues have yet to be addressed, e.g., caching over the

wireless mobile Internet, for large-scale dynamic overlays, and with advanced video coding

scheme such as multiple description coding [18], as well as security and privacy for cached media

objects, to name but a few. We envision that streaming media caching remains a fertile area, and

both theoretical and practical solutions to the listed problems are urged with rising demands on

ubiquitous multimedia services throughout the world.

REFERENCES

[1] S. Chen, B. Shen, S. Wee, and X. Zhang, “Designs of high quality streaming proxy systems,” in Proc.
IEEE INFOCOM’04, Hong Kong, Mar. 2004.

[2] R. Tewari, H. M. Vin, A. Dan, and D. Sitaram, “Resource-based caching for Web servers,” in Proc.
SPIE/ACM Conf. on Multimedia Computing and Networking (MMCN'98), San Jose, CA, Jan. 1998.

[3] S. Sen, J. Rexford, and D. Towsley, “Proxy prefix caching for multimedia streams,” in Proc. IEEE
INFOCOM’99, New York, NY, Mar. 1999.

[4] K. L. Wu, P. S. Yu, and J. L. Wolf, “Segment-based proxy caching of multimedia streams,” in Proc.
World Wide Web Conference (WWW10), Hong Kong, May 2001.

[5] Z. Miao and A. Ortega, “Scalable proxy caching of video under storage constraints,” IEEE J. Select.
Areas in Comm., vol. 20, no. 7, pp. 1315-1327, Sep. 2002.

[6] H. Fahmi, M. Latif, S. Sedigh-Ali, A. Ghafoor, P. Liu, and L. Hsu, “Proxy servers for scalable
interactive video support,” IEEE Computer, 43(9): 54-60, Sep. 2001.

[7] Z.-L. Zhang, Y. Wang, D. Du, and D. Su, “Video staging: A proxy-server-based approach to end-to-
end video delivery over wide-area networks,” IEEE/ACM Trans. Networking, 8(4): 429-442, 2000.

[8] J. Liu, X. Chu, and J. Xu, “Proxy Cache Management for Fine-Grained Scalable Video Streaming,”
Proc. IEEE INFOCOM'04, Hong Kong, Mar. 2004.

[9] X. Tang, F. Zhang, and S. T. Chanson, “Streaming media caching algorithms for transcoding proxies,”
in Proc. 31st Int. Conf. on Parallel Processing (ICPP’02), Aug. 2002.

[10] J. Kangasharju, F. Hartanto, M. Reisslein, and K. W. Ross, “Distributing layered encoded video
through caches,” IEEE Trans. Computers, 51(6), pp. 622-636, June 2002.

[11] R. Rejaie, H. Yu, M. Handley, and D. Estrin, “Multimedia proxy caching mechanism for quality
adaptive streaming applications in the Internet,” in Proc. IEEE INFOCOM’00, Tel Aviv, Israel, Mar.
2000.

[12] S. Ramesh, I. Rhee, and K. Guo, “Multicast with cache (Mcache): An adaptive zero-delay video-on-
demand service,” in Proc. IEEE INFOCOM’01, Anchorage, AK, Apr. 2001.

[13] B. Wang, S. Sen, M. Adler, and D. Towsley, “Optimal proxy cache allocation for efficient streaming
media distribution,” in Proc. IEEE INFOCOM’02, New York, NY, June 2002.

[14] S. Acharya and B. C. Smith, “Middleman: A video caching proxy server,” in Proc. 10th International
Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV’00),
June 2000.

[15] Y. Chae, K. Guo, M. M. Buddhikot, S. Suri, and E. W. Zegura, “Silo, rainbow, and caching token:
Schemes for scalable, fault tolerant stream caching,” IEEE J. Select. Areas in Comm., 20(7), pp. 1328-
1344, Sep. 2002.

[16] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava, “On peer-to-peer media streaming,” in Proc.
IEEE International Conference on Distributed Computing Systems (ICDCS’02), Wien, Austria, July
2002.

14

[17] S. Jin and A. Bestavros, “Cache-and-relay streaming media delivery for asynchronous clients,” in Proc.
the 4th International Workshop on Networked Group Communication (NGC), Boston, MA, USA, Oct.
2002.

[18] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai, “Distributing streaming media
content using cooperative networking,” in Proc. 12th International Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV’02), Miami, FL, USA, May 2002.

[19] Y. Cui, B. Li, and K. Nahrstedt, “oStream: Asynchronous Streaming Multicast in Application-Layer
Overlay Networks,” IEEE J. Select. Areas in Comm., 22(1), pp. 91-106, Jan. 2004.

[20] L. Guo, S. Chen, S. Ren, X. Chen, and S. Jiang, “PROP: a scalable and reliable P2P assisted proxy
streaming system,” in Proc.IEEE International Conference on Distributed Computing Systems
(ICDCS’04), Tokyo, Japan, Mar. 2004.

