
Proxy Ecology - Cooperative Proxies with Artificial Life
James Wang 

Department of Computer Science 
Clemson University 
Clemson, SC 29634 

864-656-7678 

jzwang@cs.clemson.edu 

Ratan Guha 
School of EECS 

University of Central Florida 
Orlando, FL 32816 

407-823-2956 

guha@cs.ucf.edu 
 

 

ABSTRACT 
Proxy servers have been widely used by institutions to 
serve their clients behind firewalls.  Recently many 
schemes have been proposed to organize the proxy servers 
into a cooperative proxy cache system.  However most of 
existing proxy cache schemes require manual configuration 
of the cooperative proxies based on the network 
architecture.  In this paper, we propose a novel P2P proxy 
caching scheme using an individual based model.  We 
borrow the ideas from the ecological system as well as the 
economical system to manage the cooperative proxies 
through data and information exchange among individual 
proxies.  Data flow among the proxy nodes creates artificial 
life for the proxies.  Proxy servers with artificial life can 
automatically configure themselves into a Virtual Proxy 
Graph.  The aggregate effect of caching actions by 
individual peer proxies forms a proxy ecology which 
automatically distributes data to nearest clients and 
balances workload.  Our simulation results show that the 
proposed proxy caching scheme tremendously improves 
system performance.  In addition, the individual based 
design model ensures simplicity and scalability of the cache 
system. 
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1. INTRODCUTION 
The World Wide Web (WWW) can be viewed as a large 
distributed information system that provides access to 
shared data objects.  The rapid growth of the internet and 
the WWW has enabled an increasing number of users to 
access vast amount of information stored at geographically 
distributed sites.  The number of Web sites on the WWW 
has grown exponentially since the start of Internet era.  
Figure 1 shows the growing numbers of Web sites on the 
Internet since 1996, based on the survey conducted by 
Netcraft*.   

The WWW contains a wide range of information, such as 
news, education, sports, entertainment, shopping, etc., 
attracting different interests.  Due to bandwidth limitation, 
the performance of Web surfing is suffering from network 
congestion and server overloading.  Especially when some 

                                                                 
* http://www.netcraft.com/survey/ 

special event happens, Web servers who have the related 
information always experience unusual number of HTTP 
requests on those information.  Recent studies [1, 2, 3, 4, 5] 
have shown that caching popular objects at locations closer 
to clients is an effective solution to improving Web 
performance.  Caching can reduce both network traffic and 
document access latency.  By caching replies to HTTP 
requests and using the cached replies whenever possible, 
client-side Web caches reduce the network traffic between 
clients and Web servers, reduce the load on the Web 
servers and reduce the average user-perceived latency of 
document retrieval.  Because HTTP was designed to be 
stateless for servers, client-driven caching has been easier 
to deploy than server-driven replication.   

 

 

 

 

 

 

 

 

 

 

Caching can be implemented at various points on the 
network.  Since early 90’s, a special type of HTTP servers 
called “proxy” has been used to allow users hiding behind a 
firewall to access the internet [6].  For security reasons, 
organizations run proxy servers on their firewall machines.  
The proxy servers act as agents for the client browsers, to 
route the client requests to the remote Web servers and to 
send the replies back to the clients.  Since the same proxy 
server is normally shared by all clients inside the firewall, 
those clients likely share common interests.  Therefore 
caching documents from previous HTTP requests might 
result in future cache hits.  Figure 2 depicts a typical proxy 
server. 

Although using caching proxy can reduce both network 
traffic and document access latency, researchers have found 
that a single proxy cache can be a bottleneck due to its 
bandwidth and storage limitations [7, 8, 9, 10].  The proxy 
server tends to be overloaded as the client number increases 
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Figure 1: The growth of the WWW. 



and hence causes a lot of cache missing.  On the other 
hand, a single naive proxy cache system in a heterogeneous 
bandwidth environment might actually degrade the Web 
performance and introduce instability to the network [11].  
To solve the problem, organizations normally use many 
servers to serve as a cooperative proxy cache system.  
Using current proxy caching schemes, those caching 
proxies can be manually configured as either a cluster or a 
hierarchy.  Manual configuration of the cooperative proxy 
cache system requires knowledge of the network 
architecture as well as extensive administrators’ 
involvement.  Especially in a large corporation whose 
departments are physically located at different regions of 
the world, different departments maintain their own subnets 
and proxies.  Configuring a distributed cooperative proxy 
cache system in such an environment requires significant 
collaboration among the administrators in different 
departments.  The similar situation also exists in some 
single location institutions such as universities. 

 

 

 

 

 

 

 

 

 

 

There are many different cache architectures proposed in 
cooperative Web caching.  Hierarchical cooperative 
caching was first introduced in the Harvest project [7].  The 
Harvest cache system organizes proxy caches in a hierarchy 
and uses a cache resolution protocol called Internet Cache 
Protocol (ICP) [12] to search the cached documents.  
Adaptive Web Caching [13] extends the Harvest cache 
hierarchy by grouping the cache servers into a tight mesh of 
overlapping multicast groups.  There are many problems 
associated with the hierarchical cache systems [14, 15].  To 
setup a hierarchy, cache servers often need to be placed at 
the key access points in the network.  It requires some 
manual configuration or significant coordination among the 
participating servers.  In addition, higher levels of the 
hierarchy sometimes become the bottlenecks.  To solve the 
problems, some distributed caching systems have been 
proposed [15, 16, 17, 18, 19, 20, 21, 22, 23].  In distributed 
Web caching systems, all cache proxies are viewed as the 
same level within the caching system.  Several approaches 
have been proposed to design cooperative caches in a 
distributed environment.  Internet Cache Protocol (ICP) 
[12] supports discovering and retrieving documents from 
sibling caches as well as parent caches despite its 
hierarchical origin.  Adaptive Web Caching (AWC), an 
extension of Harvest cache hierarchy, is a cluster based 
distributed cooperative caching architecture.  AWC relies 
on multicasting to discover and retrieve the cached 

documents.  Similar to the idea of AWC, LSAM [16] is 
also a multicast based distributed Web cache architecture 
providing automated multicast push of Web pages to self-
configuring interest groups.  LSAM is essentially a 
hierarchical structure because the system includes server 
side pumps and client side filters managed by active 
middleware.  Cache Array Routing Protocol (CARP) [17] 
divides the URL-space among an array of loosely coupled 
caches and lets each store only the documents of which 
URLs are hashed into it.  Provey and Harrison proposed a 
hierarchical metadata-hierarchy [18], in which directory 
servers are used to replace the upper level caches in 
hierarchical cache structure, to efficiently distribute the 
location hints about the cached documents in proxies.  Push 
Caching [15] proposed a similar distributed Web cache 
using a scalable hierarchy of location hints combined with 
caching these hints near clients.  CRISP [19] cache adopts a 
centralized global mapping directory for caches.  
CacheMesh [20] builds a routing table for clients to 
forward the Web requests to the designated server who was 
selected to cache documents for a certain number of Web 
sites.  Proxy sharing [21] tries to make multiple servers 
cooperate in such a way that a client can randomly pick a 
proxy server as the master server and the master server will 
multicast the requests to the other cooperative caches if it 
can not satisfy the client’s request.  Summary Cache [22] 
and Cache Digest [23] keep local directories to locate 
cached documents in the other caches.  In those two cache 
systems, the cooperative servers have to exchange 
summary or digests of the documents in their caches to 
keep the local directories up to date.  

In the hierarchical caching architecture, not only organizing 
and maintaining a cache hierarchy require significant 
administrative involvement, but also increasing levels of 
hierarchy tend to create bottleneck at higher levels.  In 
distributed caching architectures, most schemes focus on 
maximizing the global cache hit ratio by implementing 
sophisticated directory lookup or search schemes.  
Increasing global hit ratio does not always imply reduction 
of request latencies [24] in distributed environment.  To 
reduce the user request latencies, the Web documents need 
to be cached closer to clients.  However, some of the 
current caching protocols often ignore the retrieving cost of 
the cached document.  For instance, the popular Cache 
Array Routing Protocol (CARP) designates Web servers to 
certain proxy servers by hashing.  The documents from the 
Web servers can only be cached in their hashed proxy 
servers.  Using this protocol and some other similar 
protocols, clients get the cached documents only from the 
designated servers which might not be close to them.  In 
those caching schemes, not all cache hits are good for user 
request latencies [24].  In addition, those cache protocols 
also create hot spots when some Web documents become 
very hot.  To solve the hot spot problem, Karger et al 
proposed a consistent hashing technique to construct per-
server distribution trees to balance the workload among 
proxy servers [25].  However implementing consistent 
hashing and random tree requires a lot of changes of 
current Internet infrastructure [26].  On the other hand, the 
distributed caching schemes, which use a centralized 
directory server or use multicast middleware to manage the 
complexity of Web caching, have to deal with high 
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Figure 2: A proxy serving a group of clients 
inside the subnet. 



connection times, higher bandwidth usages and 
administrative issues [14].  Because most those schemes 
concentrate on reducing the miss rates, load balance among 
proxy servers are not thoroughly discussed.  In reality, 
balancing the workload is very important in quality and 
fairness of services.  Especially in a heterogeneous 
environment, load balance is not only affected by user 
request patterns, but also by characteristics of proxy 
servers, such as storage capacity and network bandwidth 
[27].  Kaiser et al. proposed a selective caching scheme 
[28] to distribute the web documents to cooperative proxies 
to achieve the load balance.  But their approach focused on 
the clustering environment where all caching proxies are 
close in the network.  Ideally a proxy cache system should 
possess the following properties [29]: 

• Minimized latencies: Reducing user request latencies 
is the top priority of any cache system. 

• Robustness/Availability: Availability is another 
important measurement of Web service.  Self-recovery 
from failures is a very important feature for a proxy 
cache system. 

• Transparency: A Web caching system should be 
transparent to users.  It is desirable to have a self-
configured and self-managed proxy cache system.  

• Efficiency: A Web caching system should efficiently 
utilize all available resources in proxy servers. 

• Flexibility: It is desirable that a Web caching system is 
not tied to any predetermined system configuration.  
Instead, it can adapt to the dynamic changing of user 
demand and network environment. 

• Stability: A Web caching scheme should not introduce 
instabilities into network. 

• Load balancing: A good caching protocol should 
automatically balance the workload among the 
cooperative proxies. 

• Scalability: A good caching scheme should scale well 
along the increasing size and density of network and 
application. 

• Simplicity: A Web caching mechanism should be 
simple to implement and easy to deploy.  Complexity 
would hinder the scalability of the cache system and 
increase the cost of administration. 

It is important to design and implement a Web caching 
scheme to possess all those properties.  However, none of 
those aforementioned caching schemes satisfy all the 
requirements for such an ideal cache system.  Scalability 
and simplicity are the biggest problems in current Web 
caching schemes.  To solve the problems, we propose a 
novel P2P caching scheme using an individual based model 
in order to implement a self-configured, self-managed 
massively scalable cooperative proxy cache system.  In this 
proxy cache system, cooperation among proxy servers is 
handled naturally by simulating an ecological system - 
flocking.  Load balance is achieved by data caching and 
data replication based on demand.  The design of this proxy 
cache system is so unique that it satisfies all desirable 

properties for a Web caching system mentioned above.  We 
must note here that the proposed P2P proxy cache system is 
different from some client-level Web document sharing 
schemes [30, 31].  Those schemes adopt the concepts or 
search algorithms from some popular P2P file sharing 
systems [32, 33, 34].  However, they are not transparent to 
the clients and inherit the inevitable fairness, security, 
reliability and efficiency problems from the P2P file 
sharing systems as pointed out by recent studies [35, 36, 
37]. 

The rest of the paper is organized as follows.  In section 2, 
we discuss the fundamental of the proposed P2P proxy 
cache system and describe the design details.  In section 3, 
we design a simulation model to exam our observations and 
prove the effectiveness of our proposed P2P proxy cache 
system.  The simulation results are presented in section 4.  
We have our conclusion and discuss future studies in 
section 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. P2P PROXY CACHING SCHEME 
A distributed proxy cache system consists of many proxy 
servers inter-connected through network.  Each proxy 
server or a cluster of proxy servers normally serve a group 
of clients within an institution.  In a large corporation, there 
might be many proxy servers or clusters distributed across 
a wide area network.  Figure 3 depicts a typical distributed 
proxy cache system on the internet.  In a distributed proxy 
cache system, proxies serve requests from their clients as 
well as requests from peer proxies.  They fetch the 
requested documents either from Web servers or from the 
cooperative proxies to minimize the latencies for their 
clients.  Due to historical and financial reasons, not all 
proxy servers have the same available caching resources, 
such as storage capacity and network bandwidth.  Hence, 
managing a heterogeneous distributed proxy cache system 
is complicated.  The complexity of management grows 
exponentially with the growth of network and cache 
system.  Further more, using complex caching scheme adds 
more complexity to the cache system and in turn hinders 
manageability and scalability of the cache system. 

Figure 3: A typical distributed proxy cache system. 
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2.1 An Individual-Based Model 
In real world, there are two proven mechanisms that can 
successfully self-manage massive distributed cooperative 
systems.  One is the economic system in which millions of 
clothes can be distributed among the same magnitude 
number of people without the centralized control.  The 
distribution of clothes follows a simple supply-by-demand 
policy.  The other mechanism is the ecological system 
where within a specific environment natural selection 
creates cumulative advantages for evolving entities.  For 
many years, people have enjoyed the beauty of bird flocks 
and fish schools in natural world.  A flock exhibits many 
contrasts.  It is made up of discrete birds yet overall motion 
seems fluids; it is simple in concept yet is so visually 
complex; it seems randomly arrayed and yet is 
magnificently synchronized.  Perhaps most puzzling is the 
strong impression of intentional, centralized control.  Yet 
all evidence indicates that flock motion must be merely the 
aggregate result of actions of individual animals acting 
solely based on the basis of their own local perception of 
the world. 

Researchers have tried to find a simple model to simulate 
the nature flock in computer animation until the paper 
“Boids†” published at SIGRAPH in 1987 [38].  Since then 
the Boids model has become an oft-cited example of 
principles of Artificial Life.  The basic flocking model 
consists of three simple steering behaviors which describe 
how an individual boid maneuvers based on the positions 
and velocities of its nearby flockmates: 

 

Separation: steer to 
avoid crowding local 
flockmates. 

 

Alignment: steer 
towards the average 
heading of local 
flockmates. 

 

Cohesion: steer to 
move toward the 
average position of 
local flockmates. 

In the Boids model, interaction between simple behaviors 
of individuals produces complex yet organized group 
behavior.  The component behaviors are inherently 
nonlinear, so mixing them gives the emergent group 
dynamics a chaotic aspect.  At the same time, the negative 
feedback provided by the behavioral controllers tends to 
keep the group dynamics ordered.   

A distributed proxy cache system can be viewed as a flock 
of individual cache proxies having life-like group behavior.  
A significant property of life-like behavior is 
unpredictability over moderate time scales while being 
predictable within a short time span.  Data caching in a 
distributed proxy cache system possesses this property due 
to the unpredictability of Web requests over a longer period 
                                                                 
† http://www.red3d.com/cwr/boids/index.html 

of time.  In a shorter time frame, Web requests seem to be 
very predictable because of the flock like behavior of 
human interests.  Thus modeling the distributed proxy 
cache system using similar approach as Boids’ is feasible.  
Actually long before Internet flourished, flocks and schools 
were given as examples of robust self-organizing 
distributed systems in the literature of parallel and 
distributed computer systems [39].  The Boids model is an 
example of an individual-based model‡, in which a class of 
simulation used to capture the global behavior of a large 
number of interacting autonomous agents.  Individual-
based models are also used in biology, ecology, economics 
and other fields of study. 

In this paper, we use individual-based model to design a 
self-configured, self-managed proxy ecology in which 
individual proxy servers exchange data and information 
using some simple rules.  The aggregate effect of caching 
actions by individual proxy servers automatically 
distributes web documents to nearest clients and also 
automatically balances the workload. 

2.2 Virtual Proxy Graph 
As an individual-based cache model, the proxy needs to 
find its neighbors with whom it exchanges data and 
information.  Unlike some other existing schemes, in which 
architecture of the proxy cache system is manually 
configured, individual proxy servers in our proxy cache 
system should automatically discover their neighbors and 
virtually link the cooperative proxies together into a Virtual 
Proxy Graph (VPG).  By forming the VPG, proxies are 
restricted to only exchange data and information with their 
neighbors.  The neighbor proxies help each others in 
searching for cached data and balancing workload.  This is 
similar to Boids model where individual boid maneuvers 
based on the positions and velocities of its nearby 
flockmates.  Figure 4 demonstrates a VPG with 7 nodes. 

 

 

 

 

 

 

 

 

 

The construction of the VPG follows some simple rules.  
First, neighbors must be close to each others.  This rule 
makes sure the network distance between two neighbors is 
short so that communication latencies among the neighbors 
are low.  Second, the number of allowable links to a proxy 
is determined by its available cache space, its network 
bandwidth, and its computing power.  Normally a high 
power proxy server who has more cache space and large 
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network bandwidth will link with more neighbors.  On the 
other hand, a proxy server that has limited network 
bandwidth should not link with many neighbors.  Assigning 
the number of links to a proxy based on its computing 
resources is the key for automatic load balance.  We briefly 
discuss the automatic VPG configuration process in 
following paragraphs. 

When a proxy server wants to join the proxy cache system, 
the following steps are needed: 

1. Token request:  A proxy server must request for a 
permission token before joining the proxy cache 
system.  It first broadcasts a token-request message to 
all the nodes in the network asking for the token.  If 
within certain period of time the proxy server does not 
get any response from any other nodes or no proxy has 
been found holding the token, it will create a token 
and assume itself to be the first proxy in the proxy 
cache system.  If there are existing proxies in the 
proxy cache system, one of them must hold the token.  
This proxy will send the token to the requesting proxy 
if it has finished its own configuration, otherwise it 
tells the requesting proxy to wait.  The other proxies in 
the cache system will only notify the requesting proxy 
that they are part of the proxy cache system. 

2. Information gathering:  Once the proxy gets the 
token, it starts configuring itself into the proxy cache 
system.  It first multicasts a request-for-join message 
to the existing cache proxies.  An existing cache proxy 
replies the request-for-join message with an 
acknowledge-to-join message that contains its 
characteristic information, including storage capacity, 
network bandwidth, the maximum allowed distance to 
its neighbors, and the number of its linked neighbors 
or the IP addresses of its linked neighbors.  Based on 
information gathered from the other existing proxies, 
the requesting proxy decides which existing proxies to 
link with to form a new VPG. 

3. Configuration:  Many factors affect the number of 
links that a new proxy can establish.  Besides its own 
storage capacity, network bandwidth and the user’s 
tolerance to response latencies, the characteristics of 
all other exiting proxies also contribute to the final 
decision.  In general, the neighbors should be close to 
each other in network in order to get fast responses for 
the requests sent to neighbor proxies; the number of 
links for each cache proxy should not exceed its 
processing capability.  Without getting into too much 
detail, we give a simple description on how this new 
proxy selects its neighbors here.  First, the new proxy 
determines the maximum allowed distance to its 
neighbors.  It is decided by its user’s tolerance to 
request latencies.  Normally the round trip distance to 
the neighbors should not be larger than the average 
user request latency directly from the Web servers.  
Second, the new proxy needs to decide how many of 
those close proxies it wants to link to.  Using the 
information it gathered from the existing proxies, the 
new proxy can calculate the average Storage Capacity 
Per Link (SCPL) and the average Network Bandwidth 
Per Link (NBPL) for the existing proxies.  Then it sets 

up its allowable links to a number so that it SCPL and 
NBPL are comparable to it peers.  Third, after the 
number of allowable links has been determined, the 
new proxy selects the closest proxies to link.  For any 
selected proxy, the round trip distances from this 
proxy to the new proxy must be less than its maximum 
allowable neighbor distance.  After selecting the links, 
the new proxy also recalculates the SCPL and NBPL 
for the involving proxies to make sure the new SCPLs 
and NBPLs are still comparable.  Selection adjustment 
can be made at this point if necessary. 

4. Updating VPG:  After the new proxy selects its 
neighbors, it builds a neighbor table for later lookup 
and then notifies its neighbors on the selections.  An 
entry in the neighbor table includes an ID which is 
normally a small integer and the IP address to the 
neighbor.  If the IP addresses of the neighbors for all 
the existing cache proxies have been sent to the new 
proxy, a VPG can be built and stored locally for later 
reference.  If each proxy only stores its neighbor table, 
the VPG is actually distributed among all the proxies. 
Nevertheless, storing the VPG locally at every proxy 
might be a good idea because it would definitely help 
in quick searching the cached documents.  Because 
our individual based model does not require the 
individual proxy to exchange information with the 
non-neighbor proxies, storing the VPG locally at every 
proxy is only an enhancement option.   

There are several advantages of constructing a VPG.  With 
the VPG, the proxies only exchange the data and messages 
with their neighbors.  So the management at each proxy is 
simpler than those schemes that use multicast or broadcast 
to retrieve documents from all other proxies.  A VPG can 
be easily reconstructed based on the dynamic changing of 
workload and network environment.  This reconfigurable 
feature makes the cache system not only adaptive to the 
changes in network environment but also robust to the 
failure of some proxies.  With the VPG, the aggregate 
effect of data movement among the proxy neighbors creates 
a life-like group behavior that automatically distributes the 
data close to clients with less complexity.  The VPG 
configuration process also provides a well balanced 
distributed cache structure that does not depend on the 
underlying network architecture. 

2.3 Network Cache Model 
Cache was originally designed for hierarchical storage 
systems in computer architecture for fast access the 
frequently accessed data.  Traditionally a cache line 
consists of cached data, tag and state bits.  Tag field is used 
to identify the data page or instruction; State bits are used 
for cache coherency protocols.  The size and content of the 
State bits vary depending on the cache coherency protocols.  
Figure 5 shows a traditional cache line. 

 

 

 

Unlike in traditional hierarchical cache where cached data 
is normally a data page or an instruction from lower level 
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Figure 5: A traditional cache line 



storage devices, the cached data in Web caching is a Web 
document which may migrate to current proxy node from 
its neighbors instead of directly from the original Web 
server.  To cope with the new data type and proxy cache 
architecture, a Web cache line should include more 
information than that in traditional cache line.  Figure 6 
depicts a Web cache line in our proxy cache system.  

 

 

 

 

 

 

 

A Web cache line is made up of two portions.  The body 
portion is used to store the Web document itself.  The head 
portion consists of ID, state bytes and link fields.  The ID 
field contains an UUID which the URL of the cached Web 
document will be hashed to.  The Tag is the name of the 
document.  State bytes are used to store information for 
cache coherency control as well as some other statistical 
data, such as number of replicas of the Web document 
known to this node in the proxy cache system and shortest 
distance to the nearby replicas.  Because the cached 
document might be replicated from other nodes in the 
proxy cache system, link fields are needed in a Web cache 
line to provide the link information.  A link field is 
organized as a pair of integer <NID, Dist>.  NID is an 
integer used to lookup the neighbor table to get the 
neighbor’s IP address.  Dist is round trip distance in finding 
the cached document through the neighbor specified by 
NID. 

2.4 Data Search and Data Flow 
The heart of this proposed proxy cache system is to link the 
Web documents across the proxies by flowing Web cache 
lines or Web cache line heads among the neighbor proxies.  
The data flow should bring the Artificial Life to the proxies 
and generate a life-like group behavior so that the aggregate 
effect of caching actions by individual cache proxies 
automatically distributes data close to clients interested in 
the cached data.  To achieve this goal, we must find a set of 
well designed rules that individual cache proxies would use 
to route the search messages and cache the Web 
documents.   

Efficiently searching the cached Web documents is the 
most important function in the proxy cache system.  A 
good search algorithm should possess the following 
properties: 

• Quickness:  A search algorithm should quickly find 
the location of the cached Web document. 

• Low cost:  The overhead of the search should be low. 

• Simplicity:  The algorithm should be very simple to 
implement in individual proxies. 

• Load balance:  The search algorithm should not cause 
hot spots in the proxy cache system. 

Because our P2P proxy cache system is designed on an 
individual-based model, the search algorithm runs on all 
proxies simultaneously and each proxy only queries its 
neighbors for Web documents.  When a new request for a 
document comes in to certain proxy from its clients, the 
proxy server takes actions based on three different 
situations as follows: 

1. The entire Web cache line is cached:  In this case, the 
Web document is sent to the client and the request is 
satisfied.  

2. Only head of the Web cache line is cached:   

• If the proxy contains only the Head of the Web 
cache line, it checks the shortest distance to a 
replica stored in the Head.  If the distance to the 
nearest replica is larger than its expected 
response time by requesting from the Web server 
directly, it issues a HTTP request to the Web 
server. 

• If the shortest distance is less than the expected 
response time by requesting directly from the 
Web server, the proxy searches the neighbor table 
to find the link with the shortest distance to a 
replica.  Then a query is sent to the neighbor that 
link points to.  A query message should contain 
ID and Tag of the Web document, the time when 
the message is sent, and maximum waiting time 
the requesting proxy will tolerate. 

• If the requesting proxy could not get a response 
within the maximum waiting time, a query will 
be issued directly to the Web server. 

• When a proxy gets a request from its neighbor, it 
checks current status of the query message first.  
If the waiting time is expired, the query message 
is discarded.  This will prevent the query message 
being sent to unnecessary proxy nodes. 

• If the waiting time is not expired, the proxy 
checks the proper Web cache line status to see if 
the Web document is cached. 

• If only the head of the Web cache line is cached, 
it checks the link fields of the Web cache line and 
finds a link field having shortest distance to the 
cached replica.  Then the query message is routed 
to its neighbor that the link points to. 

• Using this method, the nodes linked by Web 
cache lines relay the query message to eventually 
reach a proxy that has a cached Web document. 

3. Nothing is cached at this proxy:   

• If the proxy does not contain a Web cache line of 
the requested Web document, then this proxy 
node has to multicast a query message to all its 
neighbors.  After that, the requesting proxy waits 
for the query results until the waiting time 
expires.  A query message should include ID and 
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Figure 6: A web cache line. 
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Tag of the Web document.  The ID is created by 
hashing the Web document URL into an UUID.  
The Tag can be the name of the Web document.  
The message issuing time and maximum waiting 
time of the requesting proxy will also be included 
in the query message. 

• If a proxy receives a query message from its 
neighbor, it first checks whether the message 
waiting time is expired.  If the time is expired, it 
discards the query message.  Otherwise, the 
proxy searches the Web cache lines in its cache 
to find a match. 

• Once a proxy finds a Web cache line matching 
the ID and Tag given in query message, it sends a 
response to its neighbor where the query message 
comes from.  Then the proxy involved in search 
routes the response all the way back to the 
requesting proxy.   

• A response message must include a field to 
indicate the distance to the cached replica from 
the responding server and the time of the 
response message is sent.  The proxies who route 
the response message should be able to create a 
Head of the Web cache line from the response 
message and cache the Head in their own caches 
to benefit the later search.  The distance to replica 
field in the response message should be updated 
(increase) along the path on which the response 
message is propagated to the requesting proxy. 

• During the response message travels back to the 
requesting server, a proxy may discard the 
response message if it finds the maximum 
waiting time in the original query message is 
expired. 

• The requesting proxy checks all response 
messages received before the waiting time is 
expired and creates appropriate Web cache lines 
to benefit later requests.  The requesting proxy 
then finds the shortest distance to a replica among 
in those new Web cache lines.  The rest of the 
process would be same as in case 2.   

• If the requesting proxy does not get any response 
within the maximum waiting time, it queries the 
Web document directly from the Web server. 

Once a cached Web document is found in the proxy cache 
system, it can be routed to the requesting proxy along the 
way the query message was propagated.  The proxies 
involved in search process then have a chance to cache the 
Web document at their caches to serve the later requests 
when they route the cached Web document to the 
requesting proxy.  Alternatively, the cached Web document 
can be sent to the requesting proxy directly from the proxy 
where the cached replica being located.  In this later case, 
we need include the IP address of the requesting proxy in 
the query message.  Obviously, including requesting 
proxy’s IP will increase the size of the query message.  We 
must note here that sending the cached Web document 
directly to the requesting proxy does not necessarily reduce 

the network traffic in the proxy cache system, because the 
Web document might travel through the same set of proxies 
transparently due to the network routing.  But routing the 
Web document via searching proxies would add process 
overhead to the intermediate proxies.   

The effect of the data flow in a proxy cache system is 
illustrated by the VPG depicted in Figure 4.  Assume 
document a, b and c are originally cached in nodes 3, 3 and 
2 respectively.  After clients at node 1, 5, and 6 request the 
document a, b, and c correspondingly, those documents 
will be routed to and replicated at the requesting proxy 
nodes through the search paths.  The accumulative result of 
the data caching and data flow distributes the data to where 
they are mostly demanded and hence reduces the user 
response latencies.  If we store the VPG in every proxy 
nodes, we should be able to find a better search algorithm.  
We will not discuss the search algorithm with the VPG 
stored locally because it is out of the scope of this paper. 

2.5 Cache Replacement 
An efficient cache replacement algorithm can increase the 
cache hit ratio.  A good cache replacement algorithm 
considers many parameters such as storage capacity, access 
frequency to the objects, size of the objects, user access 
prediction, and some other historical statistic information.  
Besides the traditional Least Recent Used (LRU) and Lease 
Frequently Used (LFU) schemes, some other replacement 
policies have been proposed in recent years.  Pitkow and 
Pecker [40] proposed a cache replacement algorithm based 
on dynamic user access patterns.  A size weighted Web 
cache replace policy is discussed in [41].  A cost based 
replacement algorithm is proposed in [42].  Some LRU 
variants, such as LRU-MIN [43], LRU-Threshold [43], 
Size-Adjusted LRU [44] have also been discussed in past 
years.  Rizzo and Vicisano replace the Web document 
based on Lowest Relative Value (LRV) [45].  A Least 
Normalized Cost Replacement algorithm (LCN-R) [46] 
employs a rational function of the access frequency, the 
transfer time and the size to select replacement victims.  A 
sample based randomized algorithm is discussed in [47].  
Starobinski and Tse introduced new randomized 
replacement policies [48] based on an extended version of 
the IR model.  Kelly et al present a biased cache 
replacement algorithm [49] which is a simple 
generalization of LFU algorithm that is sensitive to varying 
levels of server valuation for cache hits.  Some studies [50, 
27] have found that Web access pattern follows a Zipf like 
distribution and proposed the cache replacement policies 
according to this observation. 

Most existing cache replacement policies are proposed for a 
single proxy or a proxy cluster.  Cache replacement policies 
have not been thoroughly studied in a cooperative proxy 
environment.  Especially, our proposed proxy cache system 
is an individual-based cooperative proxy cache system.  
Unlike some other proxy cache systems where a directory 
server is aware of all cached documents in the cache 
system, the individual proxy in our proxy cache system has 
only limited global information from its neighbors.  On the 
other hand, querying the other proxies for global data 
distribution information is not desirable.  Thus the cache 
replacement policy can only base on individual proxy’s 



own local perception of the cache system.  In addition, our 
network cache model divides the Web cache line into two 
portions.  The head portion contains link information for 
cached Web document.  So our cache replacement 
algorithm must treat the head and body of the Web cache 
line differently.  Usually we should leave the head of the 
Web cache line in the cache system as long as possible to 
maintain the links among the cached replicas.  In case we 
have to remove the entire Web cache line, an invalidating 
message should be sent to its neighbors to update the link 
information in the related Web cache lines.  The state bytes 
also play an important role in selecting the victim for 
replacement.  For instance, it might not be wise to replace a 
cached Web document when it is the last replica in the 
linked proxy group. 

When a proxy runs out of cache space, a replacement 
victim must be selected.  The criteria for choosing the 
replacement victim include access frequency of the 
document, size of the document, number of replicas of the 
document and time since the last access to the document.  
Assume access frequency, size, replica number and time 
since last access are f, s, r and t respectively for a cached 
Web document, the replacement value of the document V 
should be a function of those four parameters: 

),,,( trsfFV = .  For instance, V could be calculated 

using the following simple function: 

trs
f

V ⋅+⋅+⋅+= νµβα                   (1) 

where α, β, µ, ν are some predetermined constants.  We 
calculate replacement value V for all cached Web document 
and choose the document whose V value is largest as the 
replacement victim.  We may determine the four constants 
(α, β, µ, ν) using experimental study.  Due to space 
limitation, we will not discuss how to determine those 
constants.  Instead we use the simple LRU algorithm in our 
simulation in this paper.  We may also use another 
enhancement option for our cache replacement policy.  
When a proxy server runs out of cache space, it may flow 
its cached replica to one of its neighbors instead of 
removing the Web document from the cache system. 

2.6 Cache Coherency 
Currently there are two types of Web cache coherency 
protocols provide different level of cache consistency.  
Strong cache consistency is normally implemented through 
client validation or server invalidation.  Client validation is 
implemented by client polling server for every access [51].  
Server invalidation is accomplished by server sending an 
invalidating message to the clients whenever there is a 
change on the Web document at server side [52, 53].  Since 
an ideal proxy cache system should be transparent to 
clients, client validation is not a good approach.  On the 
other hand, since our cache coherency protocol should not 
depend on server actions, we will not use the server 
invalidation approach as well.  Contrary to the strong cache 
consistency protocols, the other type of cache coherency 
protocols who provide weak cache consistency is very 
popular in Web caching.  The adaptive TTL [54] and its 
variants [55] take advantage of the fact that file lifetime 

distribution tends to be bimodal [56].  They handle the 
problem by adjusting a document’s Time-To-Live (TTL) 
based on observations of its life-time.  Most existing proxy 
servers [6, 7, 12] use the adaptive TTL approach.  Another 
weak cache consistency protocol is Piggyback Cache 
Validation (PCV) [57] which capitalizes on requests sent 
from the proxy cache to the Web server to improve cache 
coherency.   

Cache coherency protocols influence the performance of a 
cooperative proxy cache system [58].  In our proxy cache 
system, a cache coherency protocol not only needs to 
maintain the consistency between the original Web 
document and the cached Web document, but also needs to 
maintain the consistency among the cached documents in 
cooperative proxies.  Furthermore our cache coherency 
protocol must be individual-based, i.e., individual cache 
proxy validates/invalidates the Web documents based on its 
local prospect of the replica.  Because of our unique 
network cache model, our cache coherency protocol can 
take advantage of peer cooperation to design a Peer 
Invalidation (PI) method to maintain the consistency of the 
cached documents in the proxy cache system.  Our cache 
coherency protocol is described as follows. 

Each individual cache node maintains a Time-To-Live 
(TTL) field in cached Web document’s URL.  TTL is a 
priori estimate of how long the document will remain 
unchanged.  This field is supported by current HTTP 
protocol for cache consistency.  Whenever there is a 
request for the cached Web document, the proxy checks if 
the TTL of the document is expired.  If the TTL is expired, 
the cache proxy sends an “if-modified-since” HTTP request 
to the Web server.  This special HTTP request contains the 
URL of the document and a timestamp.  Upon receiving the 
request, the Web server checks whether the document has 
been modified since the timestamp.  The Web server 
returns the status code “200” and the new data to the proxy 
cache if the data has been modified.  Otherwise, a code 
“304” is returned. 

Once the new data received at the proxy, it invalidates the 
other cached replicas in the proxy cache system.  The Peer 
Invalidation (PI) process can be implemented in two 
different modes: 

Aggressive Mode: The invalidating message will be 
propagated to all proxy servers in the cache system so 
that all staled replicas can be invalidated. 

Conservative Mode: The invalidating message will only be 
sent to the neighbors that current Web cache line has a 
link to so that only the staled replicas in a linked group 
will be invalidated. 

The Peer Invalidation may be invoked after a proxy has 
retrieved a Web document directly from Web server due to 
the existing cached replicas are too far from the current 
proxy.  Final step of the invalidation process is to update 
the staled replicas.  A staled replica can be removed from 
the cache system or be replaced by the new Web document.  
In either case, the relative Web cache lines need to be 
modified. 



Besides maintaining the cache consistency, there are some 
other fields need to be updated to reflect current state of the 
cached Web replicas, whenever a replication or removal 
takes place.  For instance, when a Web document is 
replicated or a cached Web replica is removed, the number-
of-replica fields and the related link fields in every linked 
web cache lines have to be updated.  The updates on any 
proxy node will be solely based on the information passed 
in by its neighbors and the information stored locally.  The 
proxy nodes will also propagate the updated information to 
the linked neighbors for them to update their state bytes and 
link bytes accordingly. 

2.7 Dynamic Reconfiguration 
Availability is an important measurement of the service of 
quality for the distributed systems [59, 60].  When some 
proxies crash or shut down for maintenance, the other 
proxies in the P2P proxy cache system should continue 
operating normally without being noticed by their 
respective clients, although the efficiency of the Web 
caching and the load balance might temporarily suffer from 
the failures of those proxies.  Because our proxy cache 
system is not tied to any predetermined hardware 
configuration or network structure, it can automatically 
recover from the failure of some proxies and automatically 
reconfigure a new VPG to efficiently serve the clients with 
the available resources.  The automatic system 
reconfiguration has not been studied thoroughly in existing 
proxy cache systems because some of them require manual 
configuration and the others rely on the network routing 
protocols for failure recovery.  The dynamic 
reconfiguration scheme needs deal with two scenarios.   

A proxy server shuts down for maintenance:  The proxy 
being brought down should inform the neighbors of its 
departure.  The neighbors would update the cached 
information at their sites and propagate the information 
to the other proxies to reflect the current state of the 
system.  The proper actions should be taken to 
reconfigure the VPG.   

A proxy server crashes:  If a proxy has not received any 
query or response message from one of its neighbor for 
certain period of time, it sends a status checking 
message to that proxy in order to see if it is still alive.  
Once a proxy is determined to be dead, the similar 
reconfiguration process should be invoked. 

3. SIMULATION MODEL 
There are many factors affect the performance of the 
system.  Those factors include user request pattern, storage 
capacity of the proxy servers, and network bandwidth of 
the proxy servers.  In this paper, we focus on study the 
feasibility of our proxy caching scheme.  Without loss of 
generality, we configure a proxy cache system based on 
some simple assumptions.  Then we examine the hit ratios 
and user response times on this simplified simulation 
model.  First we assume there are 64 proxy servers existing 
in the network.  The distribution of those 64 servers is so 
uniform that we can automatically configure them into a 
mesh-like VPG so that all proxies have 4 neighbors each, 
excepting those proxies on the edge and the corner.  Those 
edge and corner proxies have 3 and 2 neighbors each 

respectively.  We further assume all the servers are 
identical in computation power, storage capacity and 
network bandwidth.  The distances between the neighbors 
are all equal. 

We assume the users have equal probability issuing Web 
requests at any proxies.  We also assume all Web 
documents have equal size.  The response time for a Web 
document is the time when first part of the document 
arrives at client’s workstation.  We compare the user 
response times using our proxy cache system with that 
using a single proxy server.  We assume the distance from a 
client to its proxy server is 100 ms.  If the requested 
document is cached in the proxy, the user response time is 
200ms ignoring the other overheads.  We assume the 
distance between the neighbor proxies is 200 ms, which is 
double the distance from client to its proxy.  So if a 
requested document is found in a neighbor node, the user 
response time is 600 ms.  We also assume there are 10,000 
distinct Web documents on the Web servers.  The average 
distance from the clients to the Web servers is 1500 ms.  
Thus the user response time for a cache miss is 3000 ms, 
ignoring all other overheads.  Those assumptions are based 
on the data collected by running the benchmark Polygraph§ 
on a Web caching appliance developed by Swell 
Technology** . 

Web requests follow a Zipf-like distribution according to 
our observation [27] and some other studies [48, 50].  The 
access frequency for each Web document i  is determined 
as follows:  
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where m  is the number of the Web documents in the 

system, and 10 ≤≤ z  is the Zipf factor [27].  A larger z 
value corresponds to a more skew condition, i.e., some 
objects are accessed considerably more frequently than 
other objects.  When z = 0, the distribution is uniform, i.e., 
all the objects have the same access frequency.  We 
simulate our proxy caching scheme on this automatically 
configured VPG.  Each node in the VPG performs as a 
single proxy as well. 

4. SIMULATION RESULTS 
We could have used Web traces†† to evaluate our P2P 
proxy cache system.  However, based on study conducted 
by Breslau et al [50], Web requests follow zipf-like 
distribution with various zipf factors in different Web 
caches.  We want to study how the Web request skew 
conditions affect the system performance, so using 
synthetic Web requests are easier to implement and using 
trace based performance study won’t help more in our 
evaluation.  Our simulator can run in two different modes, 
individual mode and cooperative mode.  The individual 

                                                                 
§ http://www.measurement-factory.com/ 
**  http://www.swelltech.com/products/caching.html 
†† http://www.web-caching.com/traces-logs.html 



mode is used to simulate the single proxy server.  The 
cooperative mode is used to simulate our P2P proxy cache 
system.  We collect the statistic data on simulations running 
in those two modes.  As in most of the previous studies, we 
use hit ratio and average response time as system 
performance metrics.   Total of 200,000 Web requests 
issued to the cooperative proxy cache simulator.  We start 
to collect statistic data after the first 50,000 Web requests 
being processed to avoid the inaccurate statistic data due to 
the startup of the simulation.  We observe the user response 
times and cache hit ratios at all proxies.   

4.1 Performance under Different Cache 
Rates 
In this performance study, we vary the cache rate on 
individual cache proxy from 0.2% to 2% while keep the 
Zipf factor at 0.7.  Increasing the cache rate will increase 
the cache hit ratios and in turn improve the system average 
response time for requests.  This is true in both individual 
proxy server and the cooperative proxy cache system.  
Simulation study shows our P2P proxy cache system 
increases cache hit ratios tremendously over the individual 
proxy server as shown in Figure 7.   

 

 

 

 

 

 

 

 

 

 

When each individual proxy caches only 1% of the total 
Web documents, the average hit ratio for individual proxies 
is only 7%.  On the other hand, our automatically 
configured P2P proxy cache system yields 57% hit ratio.  
In terms of user response times, Figure 8 shows our system 
also outperform individual proxy cache by large margin. 

 

 

 

 

 

 

 

 

 

 

 

4.2 Performance under Various Zipf 
factors 
Access skew condition determines the locality of the Web 
access.  The cache hit ratios increase when data access 
pattern are increasingly skewed.  In this simulation, we 
maintain the cache rate on each proxy at 1%.  We change 
the Zipf factor from 0.4 to 1.  As expected, when Zipf 
factor increases, the hit ratios of the proxy cache increase in 
both individual proxy server and the P2P cooperative proxy 
cache system.  We do not show data when Zipf factor is 
less than 0.4 because the Web access is highly skewed 
according to various studies [27, 50].  As shown in and 
Figure 10, our P2P proxy cache system outperforms the 
individual proxy server by very large margin.  For instance, 
when Zipf factor is at 0.6, the individual cache proxy’s hit 
ratio is less than 5% while our P2P proxy cache system 
yields more than 50% hit ratio as shown in Figure 9.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Concluding Remarks and Future 
Studies 
In this paper, we proposed a novel P2P cooperative proxy 
cache system using the individual-based cache model.  The 
accumulative results of the individual caching actions by all 
proxies automatically distribute the data close to the clients.  
Those caching actions create artificial life for the 
cooperative proxies.  The system can be self-configured 
into a Virtual Proxy Graph using simple rules.  Based on 
demand, data cache and data movement in our cache 
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system create proxy ecology.  This unique system design 
simplifies the management of the proxy cache system.  Our 
simulation results indicate the effectiveness and feasibility 
of our cache system.  We are currently conducting further 
investigation on the cache coherency and cache 
replacement options.  Dynamic reconfiguration of the cache 
system is another topic to be studied.  We are also 
implementing a prototype using our proposed proxy 
caching scheme. 
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