Proxy Ecology - Cooperative Proxies with Artificial Life

James Wang

Department of Computer Science
Clemson University
Clemson, SC 29634

864-656-7678

jzwang@cs.clemson.edu

ABSTRACT

Proxy servers have been widely used by institutitms
serve their clients behind firewalls. Recently man
schemes have been proposed to organize the provgrse
into a cooperative proxy cache system. Howevert rabs
existing proxy cache schemes require manual coraiigun

of the cooperative proxies based on the network
architecture. In this paper, we propose a novél pdxy
caching scheme using an individual based model. We
borrow the ideas from the ecological system as alihe
economical system to manage the cooperative proxies
through data and information exchange among indalid
proxies. Data flow among the proxy nodes creatifecél

life for the proxies. Proxy servers with artificidfe can
automatically configure themselves into a Virtuab®
Graph. The aggregate effect of caching actions by
individual peer proxies forms a proxy ecology which
automatically distributes data to nearest clientsd a
balances workload. Our simulation results show tha
proposed proxy caching scheme tremendously improves
system performance. In addition, the individuakdzh
design model ensures simplicity and scalabilitthef cache
system.

Keywords

Proxy ecology; P2P proxy cache; individual basediefio
artificial life; group behavior.

1. INTRODCUTION

The World Wide Web (WWW) can be viewed as a large
distributed information system that provides accéss
shared data objects. The rapid growth of the rreteand
the WWW has enabled an increasing number of ugers t
access vast amount of information stored at gedigally
distributed sites. The number of Web sites on\WA&W
has grown exponentially since the start of Interas.
Figure 1 shows the growing numbers of Web siteshen
Internet since 1996, based on the survey condubted
Netcraff.

The WWW contains a wide range of information, sash
news, education, sports, entertainment, shopping, e
attracting different interests. Due to bandwidthitiation,
the performance of Web surfing is suffering fronwerk
congestion and server overloading. Especially wémne

" http:/www.netcraft.com/survey/

Ratan Guha

School of EECS
University of Central Florida
Orlando, FL 32816
407-823-2956

guha@cs.ucf.edu

special event happens, Web servers who have thtedel
information always experience unusual number of ATT
requests on those information. Recent studieg, [3, 4, 5]
have shown that caching popular objects at locattoser

to clients is an effective solution to improving ke
performance. Caching can reduce both networkidraffd
document access latency. By caching replies to HTT
requests and using the cached replies wheneveibfmss
client-side Web caches reduce the network traffitveen
clients and Web servers, reduce the load on the Web
servers and reduce the average user-perceivectyatgn
document retrieval. Because HTTP was designedeto b
stateless for servers, client-driven caching hashbeasier

to deploy than server-driven replication.

Number of web sites on the internet

40,000,000
35,000,000 —
30,000,000 -
25,000,000 —
20,000,000 -
15,000,000 —
10,000,000 -

5,000,000 +

0 =DDH

1996 1997 1998 1999 2000 2001
Figure 1: The growth of the WWW.

Caching can be implemented at various points on the
network. Since early 90’s, a special type of HTSEPvers
called “proxy” has been used to allow users hidirgind a
firewall to access the internet [6]. For securigasons,
organizations run proxy servers on their firewadflamines.
The proxy servers act as agents for the client beosy to
route the client requests to the remote Web seedsto
send the replies back to the clients. Since theesaroxy
server is normally shared by all clients inside finewall,
those clients likely share common interests. Tioeee
caching documents from previous HTTP requests might
result in future cache hits. Figure 2 depicts@adyl proxy
server.

Although using caching proxy can reduce both networ
traffic and document access latency, researcheesfoand
that a single proxy cache can be a bottleneck duitst
bandwidth and storage limitations [7, 8, 9, 10heTproxy
server tends to be overloaded as the client numberases

and hence causes a lot of cache missing. On ther ot
hand, a single naive proxy cache system in a hgteepus
bandwidth environment might actually degrade thebWe
performance and introduce instability to the netwfrl].

To solve the problem, organizations normally usenyna
servers to serve as a cooperative proxy cache msyste
Using current proxy caching schemes, those caching
proxies can be manually configured as either at@tus a
hierarchy. Manual configuration of the cooperatprexy
cache system requires knowledge of the network
architecture as well as extensive administrators’
involvement. Especially in a large corporation who
departments are physically located at differeniomsg of

the world, different departments maintain their csutonets
and proxies. Configuring a distributed cooperativexy
cache system in such an environment requires gignif
collaboration among the administrators in different
departments. The similar situation also existssame
single location institutions such as universities.

Figure 2: A proxy serving a group of clients
inside the subnet.

There are many different cache architectures pexpas
cooperative Web caching. Hierarchical cooperative
caching was first introduced in the Harvest proj@> The
Harvest cache system organizes proxy caches ierarbhy
and uses a cache resolution protocol called InteCaehe
Protocol (ICP) [12] to search the cached documents.
Adaptive Web Caching [13] extends the Harvest cache
hierarchy by grouping the cache servers into & tigesh of
overlapping multicast groups. There are many il
associated with the hierarchical cache systemsl8H, To
setup a hierarchy, cache servers often need tdasedat
the key access points in the network. It requseme
manual configuration or significant coordinationang the
participating servers. In addition, higher leves the
hierarchy sometimes become the bottlenecks. Tegbke
problems, some distributed caching systems have bee
proposed [15, 16, 17, 18, 19, 20, 21, 22, 23]distributed
Web caching systems, all cache proxies are viewethe
same level within the caching system. Several Gagres
have been proposed to design cooperative caches in
distributed environment. Internet Cache Protod@IP}
[12] supports discovering and retrieving documefndsn
sibling caches as well as parent caches despite its
hierarchical origin. Adaptive Web Caching (AWC) a
extension of Harvest cache hierarchy, is a clubtesed
distributed cooperative caching architecture. AWGes

on multicasting to discover and retrieve the cached

documents. Similar to the idea of AWC, LSAM [16] i
also a multicast based distributed Web cache athite
providing automated multicast push of Web pageseté
configuring interest groups. LSAM is essentially a
hierarchical structure because the system inclegeger
side pumps and client side filters managed by activ
middleware. Cache Array Routing Protocol (CARPJ][1
divides the URL-space among an array of looselyptali
caches and lets each store only the documents whwh
URLs are hashed into it. Provey and Harrison psedoa
hierarchical metadata-hierarchy [18], in which diogy
servers are used to replace the upper level cathes
hierarchical cache structure, to efficiently distiie the
location hints about the cached documents in psoxieush
Caching [15] proposed a similar distributed Web heac
using a scalable hierarchy of location hints corabimith
caching these hints near clients. CRISP [19] caclopts a
centralized global mapping directory for caches.
CacheMesh [20] builds a routing table for clients t
forward the Web requests to the designated serlierwas
selected to cache documents for a certain humb¥gvedf
sites. Proxy sharing [21] tries to make multipkrvers
cooperate in such a way that a client can randgidl a
proxy server as the master server and the mastearseill
multicast the requests to the other cooperativhazadf it
can not satisfy the client’s request. Summary €da2]
and Cache Digest [23] keep local directories toatec
cached documents in the other caches. In thoseasioe
systems, the cooperative servers have to exchange
summary or digests of the documents in their cadhes
keep the local directories up to date.

In the hierarchical caching architecture, not anyanizing
and maintaining a cache hierarchy require significa
administrative involvement, but also increasingelevof
hierarchy tend to create bottleneck at higher Eveln
distributed caching architectures, most schemeasfamn
maximizing the global cache hit ratio by implemagti
sophisticated directory lookup or search schemes.
Increasing global hit ratio does not always immguction

of request latencies [24] in distributed environmerTo
reduce the user request latencies, the Web docamertl

to be cached closer to clients. However, somehef t
current caching protocols often ignore the retrigwtost of
the cached document. For instance, the populahe&Cac
Array Routing Protocol (CARP) designates Web server
certain proxy servers by hashing. The documents the
Web servers can only be cached in their hashedyprox
servers. Using this protocol and some other simila
protocols, clients get the cached documents omlyn fthe
designated servers which might not be close to thém
those caching schemes, not all cache hits are fpragser
request latencies [24]. In addition, those cactwogols
also create hot spots when some Web documents lkeecom
very hot. To solve the hot spot problem, Kargerakt
proposed a consistent hashing technique to comngtere
server distribution trees to balance the workloatbrg
proxy servers [25]. However implementing consisten
hashing and random tree requires a lot of chandes o
current Internet infrastructure [26]. On the othand, the
distributed caching schemes, which use a centdilize
directory server or use multicast middleware to agenthe
complexity of Web caching, have to deal with high

connection times, higher bandwidth usages and
administrative issues [14]. Because most thoserseb
concentrate on reducing the miss rates, load balamong
proxy servers are not thoroughly discussed. Idityea
balancing the workload is very important in qualégd
fairness of services. Especially in a heterogeseou
environment, load balance is not only affected Isgru
request patterns, but also by characteristics afxypr
servers, such as storage capacity and network bdtidw
[27]. Kaiser et al. proposed a selective cachicigeme
[28] to distribute the web documents to cooperapinaxies

to achieve the load balance. But their approachded on
the clustering environment where all caching prexaee
close in the network. Ideally a proxy cache syssfould
possess the following properties [29]:

* Minimized latenciesReducing user request latencies
is the top priority of any cache system.

¢ Robustness/Availability: Availability is another
important measurement of Web service. Self-regover
from failures is a very important feature for a o
cache system.

e« Transparency A Web caching system should be
transparent to users. It is desirable to havelfa se
configured and self-managed proxy cache system.

« Efficiency A Web caching system should efficiently
utilize all available resources in proxy servers.

¢ Flexibility: It is desirable that a Web caching system is
not tied to any predetermined system configuration.
Instead, it can adapt to the dynamic changing ef us
demand and network environment.

e Stability: A Web caching scheme should not introduce
instabilities into network.

e Load balancing A good caching protocol should
automatically balance the workload among the
cooperative proxies.

e Scalability A good caching scheme should scale well
along the increasing size and density of network an
application.

e Simplicity A Web caching mechanism should be
simple to implement and easy to deploy. Complexity
would hinder the scalability of the cache systerd an
increase the cost of administration.

It is important to design and implement a Web aaghi
scheme to possess all those properties. Howewee of
those aforementioned caching schemes satisfy al th
requirements for such an ideal cache system. HKligla
and simplicity are the biggest problems in curréviéb
caching schemes. To solve the problems, we propose
novel P2P caching scheme using an individual beseiel

in order to implement a self-configured, self-masthg
massively scalable cooperative proxy cache systenthis
proxy cache system, cooperation among proxy sefigers
handled naturally by simulating an ecological syste
flocking. Load balance is achieved by data cactdangd
data replication based on demand. The designioptbxy
cache system is so unique that it satisfies aliralele

properties for a Web caching system mentioned abtve
must note here that the proposed P2P proxy cadtensys
different from some client-level Web document shguri
schemes [30, 31]. Those schemes adopt the conoepts
search algorithms from some popular P2P file skarin
systems [32, 33, 34]. However, they are not traresg to
the clients and inherit the inevitable fairnesscusity,
reliability and efficiency problems from the P2Plefi
sharing systems as pointed out by recent studigs 38,
37].

The rest of the paper is organized as followssdetion 2,
we discuss the fundamental of the proposed P2Pyprox
cache system and describe the design detailsectioa 3,

we design a simulation model to exam our obsematand
prove the effectiveness of our proposed P2P prache
system. The simulation results are presented dgtiose4.
We have our conclusion and discuss future studies i
section 5. Web

web Server Web
Server

Web i =f
Serve ﬁ

Corporatior
Network

Clients

(=Rl IS , 0
' —

O h .

4 =0Q Clienis
Clients

Figure 3: A typical distributed proxy cache system.

2. P2P PROXY CACHING SCHEME

A distributed proxy cache system consists of maroxy
servers inter-connected through network. Each yprox
server or a cluster of proxy servers normally sergroup

of clients within an institution. In a large corption, there
might be many proxy servers or clusters distribigess

a wide area network. Figure 3 depicts a typicsiriiuted
proxy cache system on the internet. In a distetygroxy
cache system, proxies serve requests from theantslias
well as requests from peer proxies. They fetch the
requested documents either from Web servers or frem
cooperative proxies to minimize the latencies fbeirt
clients. Due to historical and financial reasonst all
proxy servers have the same available caching ressu
such as storage capacity and network bandwidthncéie
managing a heterogeneous distributed proxy cacstersy

is complicated. The complexity of management grows
exponentially with the growth of network and cache
system. Further more, using complex caching sclreids
more complexity to the cache system and in turrddnis
manageability and scalability of the cache system.

2.1 An Individual-Based M odél

In real world, there are two proven mechanisms taat
successfully self-manage massive distributed ceiver
systems. One is the economic system in which an#liof
clothes can be distributed among the same magnitude
number of people without the centralized controrhe
distribution of clothes follows a simple supply-tdgmand
policy. The other mechanism is the ecological eyst
where within a specific environment natural setacti
creates cumulative advantages for evolving entiti€or
many years, people have enjoyed the beauty offluictts
and fish schools in natural world. A flock exhghinany
contrasts. Itis made up of discrete birds yeral/enotion
seems fluids; it is simple in concept yet is soually
complex; it seems randomly arrayed and vyet is
magnificently synchronized. Perhaps most puzzinthe
strong impression of intentional, centralized cohtrYet

all evidence indicates that flock motion must beehethe
aggregate result of actions of individual animatdirg
solely based on the basis of their own local pedrcepof
the world.

Researchers have tried to find a simple model raulsite
the nature flock in computer animation until thepga
“Boids” published at SIGRAPH in 1987 [38]. Since then
the Boids model has become an oft-cited example of
principles of Artificial Life. The basic flockingnodel
consists of three simple steering behaviors whiescdbe
how an individual boid maneuvers based on the iposit
and velocities of its nearby flockmates:

; d/ﬁzi ':
A
Alignment: steer

«3_\ h towards the average

Separ ation: steer to
avoid crowding local
flockmates.

heading of local
flockmates.
v Cohesion: steer to
A,-‘ move toward the

= / average position of
/ local flockmates.

In the Boids model, interaction between simple behaviors
of individuals produces complex yet organized group
behavior. The component behaviors are inherently
nonlinear, so mixing them gives the emergent group
dynamics a chaotic aspect. At the same time, dyative
feedback provided by the behavioral controllersdseto
keep the group dynamics ordered.

A distributed proxy cache system can be viewed fisck

of individual cache proxies having life-like grobphavior.

A significant property of life-like behavior is
unpredictability over moderate time scales while being
predictable within a short time span. Data cachimg
distributed proxy cache system possesses this piyogee

to theunpredictabilityof Web requests over a longer period

T http://www.red3d.com/cwr/boids/index.html

of time. In a shorter time frame, Web requestsnstebe
very predictable because of the flock like behavidr
human interests. Thus modeling the distributedxyro
cache system using similar approachBads’ is feasible.
Actually long before Internet flourished, flocksdaschools
were given as examples of robust self-organizing
distributed systems in the literature of parallehda
distributed computer systems [39]. TReids model is an
example of an individual-based motjéh which a class of
simulation used to capture the global behavior ddrge
number of interacting autonomous agents. Indididua
based models are also used in biology, ecologyn@uoEs
and other fields of study.

In this paper, we use individual-based model tdgies
self-configured, self-managed proxy ecology in vahic
individual proxy servers exchange data and infoionat
using some simple rules. The aggregate effecaofiiag
actions by individual proxy servers automatically
distributes web documents to nearest clients arsd al
automatically balances the workload.

2.2 Virtual Proxy Graph

As an individual-based cache model, the proxy ndeds
find its neighbors with whom it exchanges data and
information. Unlike some other existing schemasyhich
architecture of the proxy cache system is manually
configured, individual proxy servers in our proxgcbe
system should automatically discover their neigbband
virtually link the cooperative proxies togetherara Virtual
Proxy Graph (VPG). By forming the VPG, proxies are
restricted to only exchange data and informatioth their
neighbors. The neighbor proxies help each others i
searching for cached data and balancing workIdgts is
similar to Boids model where individual boid maners/
based on the positions and velocities of its nearby
flockmates. Figure 4 demonstrates a VPG with 7esod

Figure 4: Data flow among the proxiesin a VPG

The construction of the VPG follows some simpleesul
First, neighbors must be close to each others.s Tiie
makes sure the network distance between two neighibo
short so that communication latencies among thghteirs
are low. Second, the number of allowable links foroxy

is determined by its available cache space, itsvorét
bandwidth, and its computing power. Normally ahhig
power proxy server who has more cache space agd lar

¥ http://www.red3d.com/cwr/ibm.html

network bandwidth will link with more neighbors. nGhe
other hand, a proxy server that has limited network
bandwidth should not link with many neighbors. i§aing

the number of links to a proxy based on its cormuuti
resources is the key for automatic load balance. bviefly
discuss the automatic VPG configuration process in
following paragraphs.

When a proxy server wants to join the proxy cacfstesn,
the following steps are needed:

1. Token request: A proxy server must request for a
permission token before joining the proxy cache
system. It first broadcasts a token-request mesgag
all the nodes in the network asking for the tokeh.
within certain period of time the proxy server does
get any response from any other nodes or no pragy h
been found holding the token, it will create a toke
and assume itself to be the first proxy in the prox
cache system. If there are existing proxies in the
proxy cache system, one of them must hold the token
This proxy will send the token to the requestingxyr
if it has finished its own configuration, otherwigte
tells the requesting proxy to wait. The other feedn
the cache system will only notify the requestingxyr
that they are part of the proxy cache system.

2. Information gathering: Once the proxy gets the
token, it starts configuring itself into the proggche
system. It first multicasts a request-for-join sege
to the existing cache proxies. An existing cactoxy
replies the request-for-join message with an
acknowledge-to-join message that contains its
characteristic information, including storage cagyac
network bandwidth, the maximum allowed distance to
its neighbors, and the number of its linked neighbo
or the IP addresses of its linked neighbors. Based
information gathered from the other existing prexie
the requesting proxy decides which existing proxies
link with to form a new VPG.

3. Configuration: Many factors affect the number of
links that a new proxy can establish. Besides\ta
storage capacity, network bandwidth and the user’'s
tolerance to response latencies, the characterisfic
all other exiting proxies also contribute to thadfi
decision. In general, the neighbors should beectos
each other in network in order to get fast respsfise
the requests sent to neighbor proxies; the number o
links for each cache proxy should not exceed its
processing capability. Without getting into too ahu
detail, we give a simple description on how thisvne
proxy selects its neighbors here. First, the neaxyp
determines the maximum allowed distance to its
neighbors. It is decided by its user’'s tolerangce t
request latencies. Normally the round trip distate
the neighbors should not be larger than the average
user request latency directly from the Web servers.
Second, the new proxy needs to decide how many of
those close proxies it wants to link to. Using the
information it gathered from the existing proxiése
new proxy can calculate the aver&ferage Capacity
Per Link (SCPL) and the averagéetwork Bandwidth
Per Link(NBPL) for the existing proxies. Then it sets

up its allowable links to a number so that it SGivid
NBPL are comparable to it peers. Third, after the
number of allowable links has been determined, the
new proxy selects the closest proxies to link. &y
selected proxy, the round trip distances from this
proxy to the new proxy must be less than its maximu
allowable neighbor distance. After selecting fin&d,

the new proxy also recalculates the SCPL and NBPL
for the involving proxies to make sure the new SEPL
and NBPLs are still comparable. Selection adjustme
can be made at this point if necessary.

4. Updating VPG: After the new proxy selects its
neighbors, it builds a neighbor table for laterkop
and then notifies its neighbors on the selectioAs.
entry in the neighbor table includes an ID which is
normally a small integer and the IP address to the
neighbor. If the IP addresses of the neighborsafor
the existing cache proxies have been sent to the ne
proxy, a VPG can be built and stored locally fdeta
reference. If each proxy only stores its neigttaote,
the VPG is actually distributed among all the pesxi
Nevertheless, storing the VPG locally at every grox
might be a good idea because it would definitelyp he
in quick searching the cached documents. Because
our individual based model does not require the
individual proxy to exchange information with the
non-neighbor proxies, storing the VPG locally agrgv
proxy is only an enhancement option.

There are several advantages of constructing a \AR/Gh
the VPG, the proxies only exchange the data andanes
with their neighbors. So the management at eackyps
simpler than those schemes that use multicastaadoast
to retrieve documents from all other proxies. AG/Ban
be easily reconstructed based on the dynamic chgrdi
workload and network environment. This reconfidguea
feature makes the cache system not only adaptiiheo
changes in network environment but also robusth® t
failure of some proxies. With the VPG, the aggtega
effect of data movement among the proxy neighberates
a life-like group behavior that automatically distites the
data close to clients with less complexity. TheG/P
configuration process also provides a well balanced
distributed cache structure that does not dependhen
underlying network architecture.

2.3 Network Cache Modd

Cache was originally designed for hierarchical ager
systems in computer architecture for fast access th
frequently accessed data. Traditionally a cache li
consists of cached data, tag and state bits. i€kbi§ used

to identify the data page or instruction; State laite used
for cache coherency protocols. The size and cowofethe
State bits vary depending on the cache coheremtgqwls.
Figure 5 shows a traditional cache line.

Cached Data Tag State Bits

Figure5: A traditional cacheline

Unlike in traditional hierarchical cache where cedidata
is normally a data page or an instruction from Ipovexel

storage devices, the cached data in Web cachiagiieb
document which may migrate to current proxy noaamfr

its neighbors instead of directly from the originaleb
server. To cope with the new data type and praghe
architecture, a Web cache line should include more
information than that in traditional cache line.iglte 6
depicts a Web cache line in our proxy cache system.

Head
ID | Tag

State Byteg Link Fields

Body

Web Document

Figure 6: A web cacheline.

A Web cache line is made up of two portions. Thoeyb
portion is used to store the Web document itsélfe head
portion consists of ID, state bytes and link fieldshe 1D
field contains an UUID which the URL of the cachafb
document will be hashed to. The Tag is the namthef
document. State bytes are used to store informdtio
cache coherency control as well as some otherstitati
data, such as number of replicas of the Web doctumen
known to this node in the proxy cache system aruitsst
distance to the nearby replicas. Because the dache
document might be replicated from other nodes ia th
proxy cache system, link fields are needed in a \dtathe
line to provide the link information. A link fields
organized as a pair of integer <NID, Dist>. NIDda
integer used to lookup the neighbor table to get th
neighbor’s IP address. Dist is round trip distaimciinding

the cached document through the neighbor spechied
NID.

2.4 Data Search and Data Flow

The heart of this proposed proxy cache system liakahe
Web documents across the proxies by flowing Welheac
lines or Web cache line heads among the neighlmxigs.
The data flow should bring thértificial Life to the proxies
and generate life-like group behavior so that the aggregate
effect of caching actions by individual cache pesxi
automatically distributes data close to clienteliested in
the cached data. To achieve this goal, we mugtdipet of
well designed rules that individual cache proxiesild use

to route the search messages and cache the Web
documents.

Efficiently searching the cached Web documentshis t
most important function in the proxy cache systerA.
good search algorithm should possess the following
properties:

e Quickness: A search algorithm should quickly find
the location of the cached Web document.

. Low cost: The overhead of the search should be low.

e« Simplicity: The algorithm should be very simple to
implement in individual proxies.

e Load balance: The search algorithm should not cause
hot spots in the proxy cache system.

Because our P2P proxy cache system is designechon a
individual-based model, the search algorithm runsat
proxies simultaneously and each proxy only queriss
neighbors for Web documents. When a new reques fo
document comes in to certain proxy from its cliertse
proxy server takes actions based on three different
situations as follows:

1. Theentire Web cachelineiscached: In this case, the
Web document is sent to the client and the regsest
satisfied.

2. Only head of the Web cachelineis cached:

« If the proxy contains only the Head of the Web
cache line, it checks the shortest distance to a
replica stored in the Head. If the distance to the
nearest replica is larger than its expected
response time by requesting from the Web server
directly, it issues a HTTP request to the Web
server.

« If the shortest distance is less than the expected
response time by requesting directly from the
Web server, the proxy searches the neighbor table
to find the link with the shortest distance to a
replica. Then a query is sent to the neighbor that
link points to. A query message should contain
ID and Tag of the Web document, the time when
the message is sent, and maximum waiting time
the requesting proxy will tolerate.

« If the requesting proxy could not get a response
within the maximum waiting time, a query will
be issued directly to the Web server.

< When a proxy gets a request from its neighbor, it
checks current status of the query message first.
If the waiting time is expired, the query message
is discarded. This will prevent the query message
being sent to unnecessary proxy nodes.

« If the waiting time is not expired, the proxy
checks the proper Web cache line status to see if
the Web document is cached.

. If only the head of the Web cache line is cached,
it checks the link fields of the Web cache line and
finds a link field having shortest distance to the
cached replica. Then the query message is routed
to its neighbor that the link points to.

¢« Using this method, the nodes linked by Web
cache lines relay the query message to eventually
reach a proxy that has a cached Web document.

3. Nothing iscached at this proxy:

« If the proxy does not contain a Web cache line of
the requested Web document, then this proxy
node has to multicast a query message to all its
neighbors. After that, the requesting proxy waits
for the query results until the waiting time
expires. A query message should incliideand

Tag of the Web document. THB is created by
hashing the Web document URL into @iJID.
The Tag can be the name of the Web document.
The message issuing time and maximum waiting
time of the requesting proxy will also be included
in the query message.

« If a proxy receives a query message from its
neighbor, it first checks whether the message
waiting time is expired. If the time is expiredl, i
discards the query message. Otherwise, the
proxy searches the Web cache lines in its cache
to find a match.

*« Once a proxy finds a Web cache line matching
thelD andTaggiven in query message, it sends a
response to its neighbor where the query message
comes from. Then the proxy involved in search
routes the response all the way back to the
requesting proxy.

« A response message must include a field to
indicate the distance to the cached replica from
the responding server and the time of the

response message is sent. The proxies who route
the response message should be able to create a

Head of the Web cache line from the response

message and cache the Head in their own caches

to benefit the later search. The distance tocapli
field in the response message should be updated
(increase) along the path on which the response
message is propagated to the requesting proxy.

« During the response message travels back to the
requesting server, a proxy may discard the
response message if it finds the maximum

waiting time in the original query message is
expired.
e The requesting proxy checks all response

messages received before the waiting time is
expired and creates appropriate Web cache lines
to benefit later requests. The requesting proxy
then finds the shortest distance to a replica among
in those new Web cache lines. The rest of the
process would be same as in case 2.

« If the requesting proxy does not get any response
within the maximum waiting time, it queries the
Web document directly from the Web server.

Once a cached Web document is found in the progkiea
system, it can be routed to the requesting prognathe
way the query message was propagated.
involved in search process then have a chancecttedhe
Web document at their caches to serve the latarestsg
when they route the cached Web document to the
requesting proxy. Alternatively, the cached Webudoent

can be sent to the requesting proxy directly frbm proxy
where the cached replica being located. In thisr lease,

we need include the IP address of the requestiogypgn

the query message. Obviously, including requesting
proxy’s IP will increase the size of the query neggs We

must note here that sending the cached Web document

directly to the requesting proxy does not necelysaduce

The proxies

the network traffic in the proxy cache system, lseathe
Web document might travel through the same set@fips
transparently due to the network routing. But igithe
Web document via searching proxies would add psoces
overhead to the intermediate proxies.

The effect of the data flow in a proxy cache systiem
illustrated by the VPG depicted in Figure 4. Assum
document, bandc are originally cached in nodes 3, 3 and
2 respectively. After clients at node 1, 5, ang@uest the
documenta, b, andc correspondingly, those documents
will be routed to and replicated at the requestimgxy
nodes through the search paths. The accumulabst rof
the data caching and data flow distributes the ttatahere
they are mostly demanded and hence reduces the user
response latencies. If we store the VPG in eveoxyp
nodes, we should be able to find a better seagbritim.
We will not discuss the search algorithm with the&/
stored locally because it is out of the scope isf paper.

2.5 Cache Replacement

An efficient cache replacement algorithm can inseethe
cache hit ratio. A good cache replacement algorith
considers many parameters such as storage capmmigss
frequency to the objects, size of the objects, @meess
prediction, and some other historical statistioinfation.
Besides the traditional Least Recent Used (LRU)lzrake
Frequently Used (LFU) schemes, some other replateme
policies have been proposed in recent years. Ritkod
Pecker [40] proposed a cache replacement algotitsad

on dynamic user access patterns. A size weightetd W
cache replace policy is discussed in [41]. A dossed
replacement algorithm is proposed in [42]. SomeULR
variants, such as LRU-MIN [43], LRU-Threshold [43],
Size-Adjusted LRU [44] have also been discussefaist
years. Rizzo and Vicisano replace the Web document
based on Lowest Relative Value (LRV) [45]. A Least
Normalized Cost Replacement algorithm (LCN-R) [46]
employs a rational function of the access frequeticy
transfer time and the size to select replacementitg. A
sample based randomized algorithm is discussedfh [
Starobinski and Tse introduced new randomized
replacement policies [48] based on an extendedorecf

the IR model. Kelly et al present a biased cache
replacement algorithm [49] which is a simple
generalization of LFU algorithm that is sensitieevarying
levels of server valuation for cache hits. Somuelists [50,
27] have found that Web access pattern followspd e
distribution and proposed the cache replacemeritigsl
according to this observation.

Most existing cache replacement policies are pregdsr a
single proxy or a proxy cluster. Cache replacerpefities
have not been thoroughly studied in a cooperatigeyp
environment. Especially, our proposed proxy caystem
is an individual-based cooperative proxy cache esgst
Unlike some other proxy cache systems where atdinec
server is aware of all cached documents in the ecach
system, the individual proxy in our proxy cachetsyshas
only limited global information from its neighbor©n the
other hand, querying the other proxies for globatad
distribution information is not desirable. Thus thache
replacement policy can only base on individual gi®x

own local perception of the cache system. In @mitour
network cache model divides the Web cache line fwmw
portions. The head portion contains link inforroatifor
cached Web document. So our cache replacement
algorithm must treat the head and body of the Wathe
line differently. Usually we should leave the hezfdthe
Web cache line in the cache system as long aslpedsi
maintain the links among the cached replicas. alseove
have to remove the entire Web cache line, an idatifig
message should be sent to its neighbors to upkaténk
information in the related Web cache lines. Tlaesbytes
also play an important role in selecting the victfor
replacement. For instance, it might not be wiseefdace a
cached Web document when it is the last replicahin
linked proxy group.

When a proxy runs out of cache space, a replacement
victim must be selected. The criteria for choosthg
replacement victim include access frequency of the
document, size of the document, number of replafahe
document and time since the last access to thentdu
Assume access frequency, size, replica number iamel t
since last access afes, randt respectively for a cached
Web document, the replacement value of the docuient
should be a function of those four parameters:
V =F(f,sr,t). For instanceV could be calculated

using the following simple function:
a
V:T+,BE45+uDr+v[ﬂ 1)

wherea, B, 4, v are some predetermined constants. We
calculate replacement val¥for all cached Web document
and choose the document whosevalue is largest as the
replacement victim. We may determine the four tamts

(a, B, 4, V) using experimental study. Due to space
limitation, we will not discuss how to determineosie
constants. Instead we use the simple LRU algorithour
simulation in this paper. We may also use another
enhancement option for our cache replacement policy
When a proxy server runs out of cache space, it fioay

its cached replica to one of its neighbors instedd
removing the Web document from the cache system.

2.6 Cache Coherency

Currently there are two types of Web cache cohgrenc
protocols provide different level of cache consisie
Strong cache consistency is normally implementealuigh
client validationor server invalidation Client validation is
implemented by client polling server for every ax1].
Server invalidation is accomplished by server saemdin
invalidating message to the clients whenever thsra
change on the Web document at server side [52, SiBlce

an ideal proxy cache system should be transpant t
clients, client validation is not a good approac®n the
other hand, since our cache coherency protocolldhuat
depend on server actions, we will not use the serve
invalidation approach as well. Contrary to thest cache
consistency protocols, the other type of cache revtoy
protocols who provide weak cache consistency isy ver
popular in Web caching. The adaptive TTL [54] atsd
variants [55] take advantage of the fact that filetime

distribution tends to be bimodal [56]. They hantie
problem by adjusting a document’s Time-To-Live ()JTL
based on observations of its life-time. Most exgsiproxy
servers [6, 7, 12] use the adaptive TTL approakhother
weak cache consistency protocol is Piggyback Cache
Validation (PCV) [57] which capitalizes on requesent
from the proxy cache to the Web server to improaehe
coherency.

Cache coherency protocols influence the performarfice
cooperative proxy cache system [58]. In our proaghe
system, a cache coherency protocol not only needs t
maintain the consistency between the original Web
document and the cached Web document, but alssneed
maintain the consistency among the cached docunients
cooperative proxies. Furthermore our cache cologren
protocol must be individual-based, i.e., individuache
proxy validates/invalidates the Web documents baseits
local prospect of the replica. Because of our ueiq
network cache model, our cache coherency protoanl c
take advantage of peer cooperation to design a Peer
Invalidation (P1) method to maintain the consisten€tthe
cached documents in the proxy cache system. Qulreca
coherency protocol is described as follows.

Each individual cache node maintains a Time-To-Live
(TTL) field in cached Web document’'s URL. TTL is a
priori estimate of how long the document will remai
unchanged. This field is supported by current HTTP
protocol for cache consistency. Whenever thereais
request for the cached Web document, the proxykshiéc
the TTL of the document is expired. If the TTLeigpired,
the cache proxy sends an “if-modified-since” HT Bguest

to the Web server. This special HTTP request conthe
URL of the document and a timestamp. Upon recgitfie
request, the Web server checks whether the docuhnant
been modified since the timestamp. The Web server
returns the status code “200” and the new dathe@toxy
cache if the data has been modified. Otherwisepde
“304” is returned.

Once the new data received at the proxy, it ineddid the
other cached replicas in the proxy cache systetre Feer
Invalidation (PI) process can be implemented in two
different modes:

Aggressive Mode:The invalidating message will be
propagated to all proxy servers in the cache sysiem
that all staled replicas can be invalidated.

Conservative ModeThe invalidating message will only be
sent to the neighbors that current Web cache laseah
link to so that only the staled replicas in a lidigroup
will be invalidated.

The Peer Invalidation may be invoked after a prbag
retrieved a Web document directly from Web server tb
the existing cached replicas are too far from theent
proxy. Final step of the invalidation processdsupdate
the staled replicas. A staled replica can be remdwom
the cache system or be replaced by the new Welnhrdu
In either case, the relative Web cache lines neethet
modified.

Besides maintaining the cache consistency, theres@me
other fields need to be updated to reflect curstate of the
cached Web replicas, whenever a replication or vamo
takes place. For instance, when a Web document is
replicated or a cached Web replica is removedntimeber-
of-replica fields and the related link fields inegy linked
web cache lines have to be updated. The updatesipn
proxy node will be solely based on the informatmassed
in by its neighbors and the information stored ligcaThe
proxy nodes will also propagate the updated infoionato
the linked neighbors for them to update their stgtes and
link bytes accordingly.

2.7 Dynamic Reconfiguration

Availability is an important measurement of thevemr of
quality for the distributed systems [59, 60]. Whsome
proxies crash or shut down for maintenance, theeroth
proxies in the P2P proxy cache system should coatin
operating normally without being noticed by their
respective clients, although the efficiency of tidéeb
caching and the load balance might temporarilyesufbm

the failures of those proxies. Because our proaghe
system is not tied to any predetermined hardware
configuration or network structure, it can automeity
recover from the failure of some proxies and autoaby
reconfigure a new VPG to efficiently serve the migewith

the available resources. The automatic system
reconfiguration has not been studied thoroughlgxisting
proxy cache systems because some of them requireaina
configuration and the others rely on the networkting
protocols for failure recovery. The dynamic
reconfiguration scheme needs deal with two scesario

A proxy server shuts down for maintenance: The proxy
being brought down should inform the neighborstef i
departure. The neighbors would update the cached
information at their sites and propagate the inftiom
to the other proxies to reflect the current stdtehe
system. The proper actions should be taken to
reconfigure the VPG.

A proxy server crashes. If a proxy has not received any
query or response message from one of its neiglobor
certain period of time, it sends a status checking
message to that proxy in order to see if it id ative.
Once a proxy is determined to be dead, the similar
reconfiguration process should be invoked.

3. SSIMULATION MODEL

There are many factors affect the performance @f th
system. Those factors include user request patitsrage
capacity of the proxy servers, and network bandwioft
the proxy servers. In this paper, we focus on st
feasibility of our proxy caching scheme. Withoas$ of
generality, we configure a proxy cache system based
some simple assumptions. Then we examine thetiitsr
and user response times on this simplified simtati
model. First we assume there are 64 proxy seesdsting

in the network. The distribution of those 64 sesvis so
uniform that we can automatically configure thenpim
mesh-like VPG so that all proxies have 4 neighlteash,
excepting those proxies on the edge and the corfieose
edge and corner proxies have 3 and 2 neighbors each

respectively. We further assume all the servers ar
identical in computation power, storage capacityd an
network bandwidth. The distances between the beigh
are all equal.

We assume the users have equal probability issvwieg
requests at any proxies. We also assume all Web
documents have equal size. The response time Vdela
document is the time when first part of the docuimen
arrives at client's workstation. We compare theerus
response times using our proxy cache system wigh th
using a single proxy server. We assume the disthom a
client to its proxy server is 100 ms. |If the resped
document is cached in the proxy, the user resptimseis
200ms ignoring the other overheads. We assume the
distance between the neighbor proxies is 200 m#hak
double the distance from client to its proxy. Soai
requested document is found in a neighbor nodeptee
response time is 600 ms. We also assume therE0a060
distinct Web documents on the Web servers. Theagee
distance from the clients to the Web servers isO1513.
Thus the user response time for a cache miss i 8630
ignoring all other overheads. Those assumptioa$ased

on the data collected by running the benchmark d?aftt

on a Web caching appliance developed by Swell
Technology .

Web requests follow a Zipf-like distribution accongl to
our observationd7] and some other studies [48, 50]. The

access frequency for each Web documienis determined
as follows:

fi

-
i? @rjn:l]/jz

where M is the number of the Web documents in the

system, and) < Z <1 is the Zipf factor [27]. A largez
value corresponds to a more skew condition, iemes
objects are accessed considerably more frequehty t
other objects. When = 0, the distribution is uniform, i.e.,
all the objects have the same access frequency.
simulate our proxy caching scheme on this automific
configured VPG. Each node in the VPG performs as a
single proxy as well.

4. SIMULATION RESULTS

We could have used Web trateso evaluate our P2P
proxy cache system. However, based on study coeduc
by Breslau et al [50], Web requests follow zipfelik
distribution with various zipf factors in differeritVeb
caches. We want to study how the Web request skew
conditions affect the system performance, so using
synthetic Web requests are easier to implementusird
trace based performance study won’t help more in ou
evaluation. Our simulator can run in two differembdes,
individual mode and cooperative mode. The indigidu

We

§ http://www.measurement-factory.com/
™ http://www.swelltech.com/products/caching.html
™ http:/Aww.web-caching.com/traces-logs.html

mode is used to simulate the single proxy serv&he
cooperative mode is used to simulate our P2P pcaxihe
system. We collect the statistic data on simutegiunning

in those two modes. As in most of the previouslists we
use hit ratio and average response time as system
performance metrics. Total of 200,000 Web request
issued to the cooperative proxy cache simulatore Sfért

to collect statistic data after the first 50,000 BAfequests
being processed to avoid the inaccurate statistia due to
the startup of the simulation. We observe the tesgronse
times and cache hit ratios at all proxies.

4.1 Performance under Different Cache

Rates

In this performance study, we vary the cache rate o
individual cache proxy from 0.2% to 2% while kedye t
Zipf factor at 0.7. Increasing the cache rate witlrease
the cache hit ratios and in turn improve the systéesrage
response time for requests. This is true in botlividual
proxy server and the cooperative proxy cache system
Simulation study shows our P2P proxy cache system
increases cache hit ratios tremendously over thiwidual
proxy server as shown in Figure 7.

—&—Individual —®— Cooperative

80%
70%
60%

2 50%

@ 40%

Z 30%
20%
10%

0% M

02% 0.6% 10% 14% 1.8%
Cache Rate

Figure 7: Hit ratios under different
cacherates

When each individual proxy caches only 1% of thilto
Web documents, the average hit ratio for individualxies
is only 7%. On the other hand, our automatically
configured P2P proxy cache system yields 57% Hib.ra
In terms of user response times, Figure 8 showsyatem
also outperform individual proxy cache by large giar

—— Individual —®— Cooperative

3500
3000
2500
2000
1500
1000
500
0

M S DY

\l\.\.\l
To—aa g

Response time

02% 06% 10% 14% 1.8%
Cache Rate

Figure 8: Response times under different
cacherates

4.2 Performance under Various Zipf

factors

Access skew condition determines the locality & WWeb
access. The cache hit ratios increase when dassic
pattern are increasingly skewed. In this simufatiove
maintain the cache rate on each proxy at 1%. Véagd
the Zipf factor from 0.4 to 1. As expected, wheipfZ
factor increases, the hit ratios of the proxy caokesase in
both individual proxy server and the P2P coopeeagpiroxy
cache system. We do not show data when Zipf fastor
less than 0.4 because the Web access is highlyeskew
according to various studies [27, 50]. As shownaid
Figure 1Q our P2P proxy cache system outperforms the
individual proxy server by very large margin. Hastance,
when Zipf factor is at 0.6, the individual cachexypr's hit
ratio is less than 5% while our P2P proxy cachdesys
yields more than 50% hit ratio as shown in Figure 9

—&— Individual —®— Cooperative

90%

80%
70% l/._

S 60% e

5 Soo ./."./r

= 40%

T 30% . J
20% /4/

1% A_"}
0% +—8= -
04 05 06 07 08 09 10
Zipf Factor

Figure9: Hit ratios under various Zipf
factors.

—&— Individual
3500

23000 1
£ — q\o\.
b <
v 2500
g2000 1
& 1500
& 1000
12
500
0

—&— Cooperative

0.4 0.6 0.8 10
Zipf Factor

Figure 10: Response times under various
Zipf Factors.

5. Concluding Remarksand Future
Studies

In this paper, we proposed a novel P2P cooperatiory
cache system using the individual-based cache mottet
accumulative results of the individual caching @asi by all
proxies automatically distribute the data closthclients.
Those caching actions creatartificial life for the
cooperative proxies. The system can be self-cardig
into a Virtual Proxy Graph using simple rules. &hn
demand, data cache and data movement in our cache

system create proxy ecology. This unique systesigde

simplifigs the manggement of the proxy cache sy§tgmr Heterogeneous Bandwidth EnvironmerRsoceedings of
simulation results indicate the effectiveness amis_rbmty InfoCom (1) pages 107-116, 1999.

of our cache system. We are currently conductinthér)
investigation on the cache coherency and cache [12] Duane Wessels, K Claffy, ICP and the Squid Weiche,
replacement options. Dynamic reconfiguration ef tache IEEE Journal on Selected Areas in Communication
system is another topic to be studied. We are also 16(3):345-357, 1998.

implementing a prototype using our proposed proxy [13] Scott Michel, et al., Adaptive Web Caching:vilards a

caching scheme. New Caching Architecturethe 39 International WWW
Caching WorkshgpManchester, England, June 1998.
REFERENCES [14] P. Rodriguez, C. Spanner and E. W. BiersaclgbW

Caching Architecture: Hierarchical and Distributed

)) Caching,the 4th International WWW Caching Workshop
[1] Peter B. Danzig, Richard S. Hall, and Kurt Jovell. A San Diego, CA, March 1998.

Case for Caching File Objects Inside Internetworks. . . .
proceedings of ACM SIGCOMMpages 239-248, [15] R. Tewari, M. Dahlin, H. Vin and J. Kay, Bey®bn

September 1993. Hierarchies: Design Considgration for Distributed
] Caching on the Interneffechnical Report: TR98-04,
[2] R. Caceres, F. Douglis, A. Feldmann, G. Glaszl M. Department of Computer Science, University of Texas
Rabinovich. Web Proxy Caching: The Devil Is in the Austin February 1998.
Details. ACM Performance Evaluation Revie®6(3), .
pages 11-15, December 1998. [16] J_oe_Touch, _The LSAM Proxz/ Cache - a Multicast
] o Distributed Virtual Cachethe 3° International WWW
[3] M. Abrams, C. R. Standridge, G. Abdulla, S. Nihs, Caching WorkshopManchester, England, June 1998.

and E. A. Fox. Caching Proxies: Limitations and

Potentials. InProceedings of @ International World [17] V. Valloppillil and K. W. Ross, Cache arrayuting
Wide Web ConferenceBoston, Massachusetts, USA, protocol v1.0, Internet Draft, <draft-vinod-carp-v1-
December 1995. 03.txt>, February 1998.

[4] A. Bestavros, R. L. Carter, and M. E. Crovella. [18] D. D%\t{‘ey and J._Harrison, A DiStribl.Jted IntetrCache.
Application-level Document Caching in the Internéh In 20" Australian Computer Science Conference
Proceedings of the Second International Workshop on February 1997.

Services in Distributed and Networked Environments [19] S. Gadde, M. Rabinovich and J. Chase, RedBeese,
Whistler, British Columbia, 1995. Recycle: A Approach to Building Large Internet Cesh

[5] T. M. Kroeger, D. D. E. Long, and J. C. ModExploring in Workshop on Hot Topics in Operating Systepps 93-
the Bounds of Web Latency Reduction From Caching 98, May 1997.
and Prefetching. In Proceedings of the 1997 USENIX [20] Zheng Wang, Cachemesh: A Distributed Cacheefys
Symposium on Internet Technologies and Systems, for World Wide Web,the 2rd NLANT Web Caching

Monterey, CA, December 1997. Workshop June 1997.

[6] A. Luotonen and K. Altis,World Wide Web proxies [21] R. Malpani, J. Lorch and David Berger, Makiw¢prid
Computer Networks and ISDN systems, First Wide Web Caching Servers Cooperatine Fouth
International Conference on WWW, 27(2):147-154,iApr International World Wide Web Conferen@&oston, MS,
1994. December 1995.

[7] A. Chankhunthod, P. B. Danzig, C. Neerdaels, ™. [22] L. Fan, P. Cao, J. Almeida and A. Broder, Swanm
Schwartz, and K. J. Worrel, A Hierarchical Internet Cache: A Scalable Wide-Area Web Cache Sharing
object cacheproceedings of USENIX Annual Technical Protocol, IEEE/ACM Transactions on Networking
Conferencepp. 153-164, San Diego, CA, January, 1996. 8(3):281-293, 2000.

[8] R. Malpani, J. Lorch and David Berger. Makikigorld [23] Alex Rousskov and Duane Wessels, Cache Digests
Wide Web Caching Servers Cooperatethe Fouth Computer Networks and ISDN SysteB22-23):2155-
International World Wide Web Conferenc@&oston, 2168, June 1998.

Massachusetts, December 1995. [24] M. Rabinovich, J. Chase and S. Gadde, NotHit Are

[9] Ratan K. Guha and James Z. Wang. Improving Web Created Equal: Cooperative Proxy Cache Over a Wide-
Accessing Efficiency using P2P Proxieis. Proceedings Area Network,Computer Networks and ISDN Systems
of 4th International Workshop on Distributed Comipgt 30(22-23):2253-2259, November 1998.

Kolkata, India, December 2002. [25] David Karger et al., Consistent hashing andican trees:

[10] James Z. Wang and Ratan K. Guha. Proxy Egolog Distributed cachine protocols for relieving hot &pon
Cooperative Proxies with Atrtificial Lifeln Proceedings the World Wide Web. InProceedings of the Twenty-
of IEEE/WIC IAT-2003Halifax, Canada, October 2003. Ninth Annual ACM Symposium on Theory of Computing,

[11] A. Feldmann, R. Caceres, F. Douglis, G. Glasd M. pages 654-6631997

Rabinovich, Performance of Web Proxy Caching in

[26] David Karger et al., Web Caching with Consiste
Hashingthe 8" international WWW conferenc&oronto,
Canada, May 11-14, 1999.

[27] James Z. Wang and Ratan K. Guha, Data Allooati
Algorithms for Distributed Video Servers.In
Proceedings of ACM Multimedipages 456-459, Marina
del Rey, California, November 2000.

[28] M. Kaiser, K. C. Tsui and J. Liu, Self-organized
Autonomous Web Proxiedn proceedings of AAMAS
2002 pages 1397-1404, July 2002.

[29] Jia Wang, A Survey of Web Caching Schemesttffier
Internet, ACM Computer Communication Review
25(9):36-46, 1999.

[30] S. lyer, A. Rowstron and P. Druschel, SQUIRREL
decentralized peer-to-peer web cadheProceedings of
Principles of Distributed Computing (PODC 2002)
Monterey, California, July 2002.

[31] L. Xiao, X. Zhang, and Z. Xu, On Reliable aBdalable
Peer-to-Peer Web Document Shariijyoceedings of
2002 International Parallel and Distributed Process
Symposium, (IPDPS'02kort Lauderdale, Florida, April
2002.

[32] I. Clarke, O. Sandberg, B. Wiley and T. W. Hon
Freenet: A Distributed Anonymous Information Starag
and Retrieval Systemlecture Notes in Computer
ScienceVolume 2009, Pages 46+, 2001.

[33] I. Stoica, R. Morris, D. Karger, F. KaashoeK.
Balakrishnan, Chord: A Scalable Peer-To-Peer Lookup
Service for Internet Applications, Proceedings bé t
2001 ACM SIGCOMM Conference, Pages 149-160, San
Diego, CA, August 2001.

[34] A. Rowstron and P. Druschel, "Pastry: Scalable
distributed object location and routing for largaie
peer-to-peer systems", IFIP/ACM International
Conference on Distributed Systems Platforms
(Middleware) Heidelberg, Germany, pages 329-350,
November, 2001.

[35] Beverly Yang and Hector Garcia-Molina, Compari
Hybrid Peer-to-Peer Systems, The VLDB Journal, page
561-570, September 2001.

[36] E. Adar and B. Huberman, Free riding on gratel
Technical ReportXerox PARC, August 2000.

[37] S. Saroiu, P. K. Gummadi and S. D. Gribble, A
Measurement Study of Peer-to-Peer File Sharing
Systems, Proceedings of Multimedia Computing and
Networking 2002 (MMCN '02), San Jose, CA, USA,
January 2002.

[38] Craig W. Reynolds, Flocks, Herds, and Schodis:
Distributed Behavioral Model, irComputer Graphics
21(4) SIGGRAPH '87 Conference Proceedingmges
25-34, 1987.

[39] L. Kleinrock, Distributed System, invited papéor
ACM/IEEE-CS Joint Special Issue: Communications of

the ACM Vol. 28, No. 11, pp. 1200-1213, November
1985.

[40] Jim Pitkow and Mimi Recker. A Simple Yet Raibu
Caching Algorithm Based on Dynamic Access Patterns.
the 29 International World Wide Web Conference,
Chicago, lllinois, USA, October 1994

[41] S. Williams, M. Abrams, C.R. Standridge, G. dAllia,
and E.A. Fox. Removal Policies in Network Cachms f
World-Wide Web Documents.In Proceedings of the
ACM SIGCOMM '96 ConferencAugust 1996.

[42] Pei Cao and Sandy Irani. Cost-Aware WWW Proxy
Caching Algorithms. Proceedings of the 1997 Usenix
Symposium on Internet Technologies and Systems
(USITS-97) Monterey, CA, 1997.

[43] M. Abrams, C. R. Standridge, G. Abdulla, S.I\&ins,
and E. A. Fox. Caching Proxies: Limitations and
Potentials. InProceedings of @ International World
Wide Web ConferenceBoston, Massachusetts, USA,
December 1995.

[44] C. C. Aggarwal, J. L. Wolf and P. S. Yu. Caxhon the
World Wide Web. Knowledge and Data Engineering
Volume 11, Number 1, Pages 95-107, 1999.

[45] Luigi Rizzo and Lorenzo Vicisano. Replacempalicies
for a proxy cache. IEEE/ACM Transactions on
Networking Volume 8, Number 2, Pages 158-170, 2000.

[46] P. Scheuermann, J. Shim, and R. Vingralekca8e for
delay-conscious caching of Web documer@smputer
Networks and ISDN Systemslume 29, number 8-13,
pages 997-1005, 1997.

Konstantinos Psounis and Balaji Prabhakar. A
Randomized Web-Cache Replacement Scheme. in
Proceedings of IEEE INFOCOM 2001, pages 1407-1415,
April 2001.

[48] David Starobinski and David N. C. Tse. Prabstic
methods for web caching. Performance Evaluatign
Volume 46, Number 2-3, Pages 125-137, 2001.

[49]T. P. Kelly, Y. M. Chan, S. Jamin and J. K. Mae-
Mason. Biased Replacement Policies for Web Caches:
Differential Quality-of-Service and Aggregate User
Value. Proceedings of the 4th International Web
Caching Workshopl 999.

[50] L. Breslau, P. Cao, L. Fan, G. Phillips andShenker.
Web Caching and Zipf-like Distributions: Evidenceda
Implications. in proceedings of IEEE INFOCOM'99p.
126-134, March 1999.

[51] Beomseok Nam and Kern Koh. Periodic Polling\Web
Cache ConsistencyWebNet (1)Pages 800-804, 1999.

[52] Chengjie Liu and Pei Cao. Maintaining Stro@gche
Consistency in the World-Wide Welin Proceedings of
the 17th International Conference on Distributed
SystemsMay 1997.

[53] J. Yin, L. Alvisi, M. Dahlin and A. lyengarEngineering
server-driven consistency for large scale dynamiebW
services. In Proceedings of the Yointernational World

[47]

Wide Web Conferenc@ages 45-57, Hong Kong, May
2001.

[54] Vincent Cate. Alex -- A Global File System.
Proceedings of the USENIX File System Workshages
1-11, Ann Arbor, Michigan, 1992.

[55] James Gwertzman and Margo Seltzer. World \Widkb
Cache Consistencyin Proceedings of the 1996 USENIX
Annual Technical ConferenceSan Diego, California,
January 1996.

[56] M. Baker, J. H. Hartman, M. D. Kupfer, K. Whigiff,
and J. Ousterhout. Measurement of a distributkd fi
system. In proceedings of 18 ACM Symposium on
Operating System Principlegages 198-211, October
1991.

[57] B. Krishnamurthy and C. E. Wills. Study ofgByback
Cache Validation for Proxy Caches in the World Wide
Web. USENIX Symposium on Internet Technologies and
Systems1997.

[58] Victor Sosa and Leandro Navarro. Influence tbé
Document Validation/Replication Methods on
Cooperative Web Caching Architectures.
Communication Networks and Distributed Systems
Modeling and Simulation Conference (CNDS'02),
Western Multiconference (WMC'02Rages. 238-245,
San Antonio, Texas, January 2002.

[59] F. Cristian. Automatic Reconfiguration in tReesence
of Failures. Proceedings of the International Workshop
on Configurable Distributed System&E, London, pp.
4-17, March 1992.

[60] Y. Saito, B. N. Bershad and H. M. Levy. Maeagility,
Availability and Performance in Porcupine: A Highly
Scalable, Cluster-based Mail Service. "1ACM
Symposium on Operating Systems Princigheges 1-15,
December 1999

