
Proxy Ecology - Cooperative Proxies with Artificial Life
James Wang

Department of Computer Science
Clemson University
Clemson, SC 29634

864-656-7678

jzwang@cs.clemson.edu

Ratan Guha
School of EECS

University of Central Florida
Orlando, FL 32816

407-823-2956

guha@cs.ucf.edu

ABSTRACT
Proxy servers have been widely used by institutions to
serve their clients behind firewalls. Recently many
schemes have been proposed to organize the proxy servers
into a cooperative proxy cache system. However most of
existing proxy cache schemes require manual configuration
of the cooperative proxies based on the network
architecture. In this paper, we propose a novel P2P proxy
caching scheme using an individual based model. We
borrow the ideas from the ecological system as well as the
economical system to manage the cooperative proxies
through data and information exchange among individual
proxies. Data flow among the proxy nodes creates artificial
life for the proxies. Proxy servers with artificial life can
automatically configure themselves into a Virtual Proxy
Graph. The aggregate effect of caching actions by
individual peer proxies forms a proxy ecology which
automatically distributes data to nearest clients and
balances workload. Our simulation results show that the
proposed proxy caching scheme tremendously improves
system performance. In addition, the individual based
design model ensures simplicity and scalability of the cache
system.

Keywords
Proxy ecology; P2P proxy cache; individual based model;
artificial life; group behavior.

1. INTRODCUTION
The World Wide Web (WWW) can be viewed as a large
distributed information system that provides access to
shared data objects. The rapid growth of the internet and
the WWW has enabled an increasing number of users to
access vast amount of information stored at geographically
distributed sites. The number of Web sites on the WWW
has grown exponentially since the start of Internet era.
Figure 1 shows the growing numbers of Web sites on the
Internet since 1996, based on the survey conducted by
Netcraft*.

The WWW contains a wide range of information, such as
news, education, sports, entertainment, shopping, etc.,
attracting different interests. Due to bandwidth limitation,
the performance of Web surfing is suffering from network
congestion and server overloading. Especially when some

* http://www.netcraft.com/survey/

special event happens, Web servers who have the related
information always experience unusual number of HTTP
requests on those information. Recent studies [1, 2, 3, 4, 5]
have shown that caching popular objects at locations closer
to clients is an effective solution to improving Web
performance. Caching can reduce both network traffic and
document access latency. By caching replies to HTTP
requests and using the cached replies whenever possible,
client-side Web caches reduce the network traffic between
clients and Web servers, reduce the load on the Web
servers and reduce the average user-perceived latency of
document retrieval. Because HTTP was designed to be
stateless for servers, client-driven caching has been easier
to deploy than server-driven replication.

Caching can be implemented at various points on the
network. Since early 90’s, a special type of HTTP servers
called “proxy” has been used to allow users hiding behind a
firewall to access the internet [6]. For security reasons,
organizations run proxy servers on their firewall machines.
The proxy servers act as agents for the client browsers, to
route the client requests to the remote Web servers and to
send the replies back to the clients. Since the same proxy
server is normally shared by all clients inside the firewall,
those clients likely share common interests. Therefore
caching documents from previous HTTP requests might
result in future cache hits. Figure 2 depicts a typical proxy
server.

Although using caching proxy can reduce both network
traffic and document access latency, researchers have found
that a single proxy cache can be a bottleneck due to its
bandwidth and storage limitations [7, 8, 9, 10]. The proxy
server tends to be overloaded as the client number increases

Number of web sites on the internet

0
5,000,000

10,000,000
15,000,000
20,000,000

25,000,000
30,000,000

35,000,000
40,000,000

1996 1997 1998 1999 2000 2001

Figure 1: The growth of the WWW.

and hence causes a lot of cache missing. On the other
hand, a single naive proxy cache system in a heterogeneous
bandwidth environment might actually degrade the Web
performance and introduce instability to the network [11].
To solve the problem, organizations normally use many
servers to serve as a cooperative proxy cache system.
Using current proxy caching schemes, those caching
proxies can be manually configured as either a cluster or a
hierarchy. Manual configuration of the cooperative proxy
cache system requires knowledge of the network
architecture as well as extensive administrators’
involvement. Especially in a large corporation whose
departments are physically located at different regions of
the world, different departments maintain their own subnets
and proxies. Configuring a distributed cooperative proxy
cache system in such an environment requires significant
collaboration among the administrators in different
departments. The similar situation also exists in some
single location institutions such as universities.

There are many different cache architectures proposed in
cooperative Web caching. Hierarchical cooperative
caching was first introduced in the Harvest project [7]. The
Harvest cache system organizes proxy caches in a hierarchy
and uses a cache resolution protocol called Internet Cache
Protocol (ICP) [12] to search the cached documents.
Adaptive Web Caching [13] extends the Harvest cache
hierarchy by grouping the cache servers into a tight mesh of
overlapping multicast groups. There are many problems
associated with the hierarchical cache systems [14, 15]. To
setup a hierarchy, cache servers often need to be placed at
the key access points in the network. It requires some
manual configuration or significant coordination among the
participating servers. In addition, higher levels of the
hierarchy sometimes become the bottlenecks. To solve the
problems, some distributed caching systems have been
proposed [15, 16, 17, 18, 19, 20, 21, 22, 23]. In distributed
Web caching systems, all cache proxies are viewed as the
same level within the caching system. Several approaches
have been proposed to design cooperative caches in a
distributed environment. Internet Cache Protocol (ICP)
[12] supports discovering and retrieving documents from
sibling caches as well as parent caches despite its
hierarchical origin. Adaptive Web Caching (AWC), an
extension of Harvest cache hierarchy, is a cluster based
distributed cooperative caching architecture. AWC relies
on multicasting to discover and retrieve the cached

documents. Similar to the idea of AWC, LSAM [16] is
also a multicast based distributed Web cache architecture
providing automated multicast push of Web pages to self-
configuring interest groups. LSAM is essentially a
hierarchical structure because the system includes server
side pumps and client side filters managed by active
middleware. Cache Array Routing Protocol (CARP) [17]
divides the URL-space among an array of loosely coupled
caches and lets each store only the documents of which
URLs are hashed into it. Provey and Harrison proposed a
hierarchical metadata-hierarchy [18], in which directory
servers are used to replace the upper level caches in
hierarchical cache structure, to efficiently distribute the
location hints about the cached documents in proxies. Push
Caching [15] proposed a similar distributed Web cache
using a scalable hierarchy of location hints combined with
caching these hints near clients. CRISP [19] cache adopts a
centralized global mapping directory for caches.
CacheMesh [20] builds a routing table for clients to
forward the Web requests to the designated server who was
selected to cache documents for a certain number of Web
sites. Proxy sharing [21] tries to make multiple servers
cooperate in such a way that a client can randomly pick a
proxy server as the master server and the master server will
multicast the requests to the other cooperative caches if it
can not satisfy the client’s request. Summary Cache [22]
and Cache Digest [23] keep local directories to locate
cached documents in the other caches. In those two cache
systems, the cooperative servers have to exchange
summary or digests of the documents in their caches to
keep the local directories up to date.

In the hierarchical caching architecture, not only organizing
and maintaining a cache hierarchy require significant
administrative involvement, but also increasing levels of
hierarchy tend to create bottleneck at higher levels. In
distributed caching architectures, most schemes focus on
maximizing the global cache hit ratio by implementing
sophisticated directory lookup or search schemes.
Increasing global hit ratio does not always imply reduction
of request latencies [24] in distributed environment. To
reduce the user request latencies, the Web documents need
to be cached closer to clients. However, some of the
current caching protocols often ignore the retrieving cost of
the cached document. For instance, the popular Cache
Array Routing Protocol (CARP) designates Web servers to
certain proxy servers by hashing. The documents from the
Web servers can only be cached in their hashed proxy
servers. Using this protocol and some other similar
protocols, clients get the cached documents only from the
designated servers which might not be close to them. In
those caching schemes, not all cache hits are good for user
request latencies [24]. In addition, those cache protocols
also create hot spots when some Web documents become
very hot. To solve the hot spot problem, Karger et al
proposed a consistent hashing technique to construct per-
server distribution trees to balance the workload among
proxy servers [25]. However implementing consistent
hashing and random tree requires a lot of changes of
current Internet infrastructure [26]. On the other hand, the
distributed caching schemes, which use a centralized
directory server or use multicast middleware to manage the
complexity of Web caching, have to deal with high

Web
Servers

Internet

Proxy
Server

Firewall

Clients

Figure 2: A proxy serving a group of clients
inside the subnet.

connection times, higher bandwidth usages and
administrative issues [14]. Because most those schemes
concentrate on reducing the miss rates, load balance among
proxy servers are not thoroughly discussed. In reality,
balancing the workload is very important in quality and
fairness of services. Especially in a heterogeneous
environment, load balance is not only affected by user
request patterns, but also by characteristics of proxy
servers, such as storage capacity and network bandwidth
[27]. Kaiser et al. proposed a selective caching scheme
[28] to distribute the web documents to cooperative proxies
to achieve the load balance. But their approach focused on
the clustering environment where all caching proxies are
close in the network. Ideally a proxy cache system should
possess the following properties [29]:

• Minimized latencies: Reducing user request latencies
is the top priority of any cache system.

• Robustness/Availability: Availability is another
important measurement of Web service. Self-recovery
from failures is a very important feature for a proxy
cache system.

• Transparency: A Web caching system should be
transparent to users. It is desirable to have a self-
configured and self-managed proxy cache system.

• Efficiency: A Web caching system should efficiently
utilize all available resources in proxy servers.

• Flexibility: It is desirable that a Web caching system is
not tied to any predetermined system configuration.
Instead, it can adapt to the dynamic changing of user
demand and network environment.

• Stability: A Web caching scheme should not introduce
instabilities into network.

• Load balancing: A good caching protocol should
automatically balance the workload among the
cooperative proxies.

• Scalability: A good caching scheme should scale well
along the increasing size and density of network and
application.

• Simplicity: A Web caching mechanism should be
simple to implement and easy to deploy. Complexity
would hinder the scalability of the cache system and
increase the cost of administration.

It is important to design and implement a Web caching
scheme to possess all those properties. However, none of
those aforementioned caching schemes satisfy all the
requirements for such an ideal cache system. Scalability
and simplicity are the biggest problems in current Web
caching schemes. To solve the problems, we propose a
novel P2P caching scheme using an individual based model
in order to implement a self-configured, self-managed
massively scalable cooperative proxy cache system. In this
proxy cache system, cooperation among proxy servers is
handled naturally by simulating an ecological system -
flocking. Load balance is achieved by data caching and
data replication based on demand. The design of this proxy
cache system is so unique that it satisfies all desirable

properties for a Web caching system mentioned above. We
must note here that the proposed P2P proxy cache system is
different from some client-level Web document sharing
schemes [30, 31]. Those schemes adopt the concepts or
search algorithms from some popular P2P file sharing
systems [32, 33, 34]. However, they are not transparent to
the clients and inherit the inevitable fairness, security,
reliability and efficiency problems from the P2P file
sharing systems as pointed out by recent studies [35, 36,
37].

The rest of the paper is organized as follows. In section 2,
we discuss the fundamental of the proposed P2P proxy
cache system and describe the design details. In section 3,
we design a simulation model to exam our observations and
prove the effectiveness of our proposed P2P proxy cache
system. The simulation results are presented in section 4.
We have our conclusion and discuss future studies in
section 5.

2. P2P PROXY CACHING SCHEME
A distributed proxy cache system consists of many proxy
servers inter-connected through network. Each proxy
server or a cluster of proxy servers normally serve a group
of clients within an institution. In a large corporation, there
might be many proxy servers or clusters distributed across
a wide area network. Figure 3 depicts a typical distributed
proxy cache system on the internet. In a distributed proxy
cache system, proxies serve requests from their clients as
well as requests from peer proxies. They fetch the
requested documents either from Web servers or from the
cooperative proxies to minimize the latencies for their
clients. Due to historical and financial reasons, not all
proxy servers have the same available caching resources,
such as storage capacity and network bandwidth. Hence,
managing a heterogeneous distributed proxy cache system
is complicated. The complexity of management grows
exponentially with the growth of network and cache
system. Further more, using complex caching scheme adds
more complexity to the cache system and in turn hinders
manageability and scalability of the cache system.

Figure 3: A typical distributed proxy cache system.

Clients

Proxy

Clients

Proxy

Clients

Proxy

Clients

Proxy

Internet

Web
Server

Web
Server

Web
Server Web

Server

Web
Server

Corporation
Network

2.1 An Individual-Based Model
In real world, there are two proven mechanisms that can
successfully self-manage massive distributed cooperative
systems. One is the economic system in which millions of
clothes can be distributed among the same magnitude
number of people without the centralized control. The
distribution of clothes follows a simple supply-by-demand
policy. The other mechanism is the ecological system
where within a specific environment natural selection
creates cumulative advantages for evolving entities. For
many years, people have enjoyed the beauty of bird flocks
and fish schools in natural world. A flock exhibits many
contrasts. It is made up of discrete birds yet overall motion
seems fluids; it is simple in concept yet is so visually
complex; it seems randomly arrayed and yet is
magnificently synchronized. Perhaps most puzzling is the
strong impression of intentional, centralized control. Yet
all evidence indicates that flock motion must be merely the
aggregate result of actions of individual animals acting
solely based on the basis of their own local perception of
the world.

Researchers have tried to find a simple model to simulate
the nature flock in computer animation until the paper
“Boids†” published at SIGRAPH in 1987 [38]. Since then
the Boids model has become an oft-cited example of
principles of Artificial Life. The basic flocking model
consists of three simple steering behaviors which describe
how an individual boid maneuvers based on the positions
and velocities of its nearby flockmates:

Separation: steer to
avoid crowding local
flockmates.

Alignment: steer
towards the average
heading of local
flockmates.

Cohesion: steer to
move toward the
average position of
local flockmates.

In the Boids model, interaction between simple behaviors
of individuals produces complex yet organized group
behavior. The component behaviors are inherently
nonlinear, so mixing them gives the emergent group
dynamics a chaotic aspect. At the same time, the negative
feedback provided by the behavioral controllers tends to
keep the group dynamics ordered.

A distributed proxy cache system can be viewed as a flock
of individual cache proxies having life-like group behavior.
A significant property of life-like behavior is
unpredictability over moderate time scales while being
predictable within a short time span. Data caching in a
distributed proxy cache system possesses this property due
to the unpredictability of Web requests over a longer period

† http://www.red3d.com/cwr/boids/index.html

of time. In a shorter time frame, Web requests seem to be
very predictable because of the flock like behavior of
human interests. Thus modeling the distributed proxy
cache system using similar approach as Boids’ is feasible.
Actually long before Internet flourished, flocks and schools
were given as examples of robust self-organizing
distributed systems in the literature of parallel and
distributed computer systems [39]. The Boids model is an
example of an individual-based model‡, in which a class of
simulation used to capture the global behavior of a large
number of interacting autonomous agents. Individual-
based models are also used in biology, ecology, economics
and other fields of study.

In this paper, we use individual-based model to design a
self-configured, self-managed proxy ecology in which
individual proxy servers exchange data and information
using some simple rules. The aggregate effect of caching
actions by individual proxy servers automatically
distributes web documents to nearest clients and also
automatically balances the workload.

2.2 Virtual Proxy Graph
As an individual-based cache model, the proxy needs to
find its neighbors with whom it exchanges data and
information. Unlike some other existing schemes, in which
architecture of the proxy cache system is manually
configured, individual proxy servers in our proxy cache
system should automatically discover their neighbors and
virtually link the cooperative proxies together into a Virtual
Proxy Graph (VPG). By forming the VPG, proxies are
restricted to only exchange data and information with their
neighbors. The neighbor proxies help each others in
searching for cached data and balancing workload. This is
similar to Boids model where individual boid maneuvers
based on the positions and velocities of its nearby
flockmates. Figure 4 demonstrates a VPG with 7 nodes.

The construction of the VPG follows some simple rules.
First, neighbors must be close to each others. This rule
makes sure the network distance between two neighbors is
short so that communication latencies among the neighbors
are low. Second, the number of allowable links to a proxy
is determined by its available cache space, its network
bandwidth, and its computing power. Normally a high
power proxy server who has more cache space and large

‡ http://www.red3d.com/cwr/ibm.html

2

1 4

5

7

3

6

a

b
c

Figure 4: Data flow among the proxies in a VPG

c

a

a

b

b

b

c

network bandwidth will link with more neighbors. On the
other hand, a proxy server that has limited network
bandwidth should not link with many neighbors. Assigning
the number of links to a proxy based on its computing
resources is the key for automatic load balance. We briefly
discuss the automatic VPG configuration process in
following paragraphs.

When a proxy server wants to join the proxy cache system,
the following steps are needed:

1. Token request: A proxy server must request for a
permission token before joining the proxy cache
system. It first broadcasts a token-request message to
all the nodes in the network asking for the token. If
within certain period of time the proxy server does not
get any response from any other nodes or no proxy has
been found holding the token, it will create a token
and assume itself to be the first proxy in the proxy
cache system. If there are existing proxies in the
proxy cache system, one of them must hold the token.
This proxy will send the token to the requesting proxy
if it has finished its own configuration, otherwise it
tells the requesting proxy to wait. The other proxies in
the cache system will only notify the requesting proxy
that they are part of the proxy cache system.

2. Information gathering: Once the proxy gets the
token, it starts configuring itself into the proxy cache
system. It first multicasts a request-for-join message
to the existing cache proxies. An existing cache proxy
replies the request-for-join message with an
acknowledge-to-join message that contains its
characteristic information, including storage capacity,
network bandwidth, the maximum allowed distance to
its neighbors, and the number of its linked neighbors
or the IP addresses of its linked neighbors. Based on
information gathered from the other existing proxies,
the requesting proxy decides which existing proxies to
link with to form a new VPG.

3. Configuration: Many factors affect the number of
links that a new proxy can establish. Besides its own
storage capacity, network bandwidth and the user’s
tolerance to response latencies, the characteristics of
all other exiting proxies also contribute to the final
decision. In general, the neighbors should be close to
each other in network in order to get fast responses for
the requests sent to neighbor proxies; the number of
links for each cache proxy should not exceed its
processing capability. Without getting into too much
detail, we give a simple description on how this new
proxy selects its neighbors here. First, the new proxy
determines the maximum allowed distance to its
neighbors. It is decided by its user’s tolerance to
request latencies. Normally the round trip distance to
the neighbors should not be larger than the average
user request latency directly from the Web servers.
Second, the new proxy needs to decide how many of
those close proxies it wants to link to. Using the
information it gathered from the existing proxies, the
new proxy can calculate the average Storage Capacity
Per Link (SCPL) and the average Network Bandwidth
Per Link (NBPL) for the existing proxies. Then it sets

up its allowable links to a number so that it SCPL and
NBPL are comparable to it peers. Third, after the
number of allowable links has been determined, the
new proxy selects the closest proxies to link. For any
selected proxy, the round trip distances from this
proxy to the new proxy must be less than its maximum
allowable neighbor distance. After selecting the links,
the new proxy also recalculates the SCPL and NBPL
for the involving proxies to make sure the new SCPLs
and NBPLs are still comparable. Selection adjustment
can be made at this point if necessary.

4. Updating VPG: After the new proxy selects its
neighbors, it builds a neighbor table for later lookup
and then notifies its neighbors on the selections. An
entry in the neighbor table includes an ID which is
normally a small integer and the IP address to the
neighbor. If the IP addresses of the neighbors for all
the existing cache proxies have been sent to the new
proxy, a VPG can be built and stored locally for later
reference. If each proxy only stores its neighbor table,
the VPG is actually distributed among all the proxies.
Nevertheless, storing the VPG locally at every proxy
might be a good idea because it would definitely help
in quick searching the cached documents. Because
our individual based model does not require the
individual proxy to exchange information with the
non-neighbor proxies, storing the VPG locally at every
proxy is only an enhancement option.

There are several advantages of constructing a VPG. With
the VPG, the proxies only exchange the data and messages
with their neighbors. So the management at each proxy is
simpler than those schemes that use multicast or broadcast
to retrieve documents from all other proxies. A VPG can
be easily reconstructed based on the dynamic changing of
workload and network environment. This reconfigurable
feature makes the cache system not only adaptive to the
changes in network environment but also robust to the
failure of some proxies. With the VPG, the aggregate
effect of data movement among the proxy neighbors creates
a life-like group behavior that automatically distributes the
data close to clients with less complexity. The VPG
configuration process also provides a well balanced
distributed cache structure that does not depend on the
underlying network architecture.

2.3 Network Cache Model
Cache was originally designed for hierarchical storage
systems in computer architecture for fast access the
frequently accessed data. Traditionally a cache line
consists of cached data, tag and state bits. Tag field is used
to identify the data page or instruction; State bits are used
for cache coherency protocols. The size and content of the
State bits vary depending on the cache coherency protocols.
Figure 5 shows a traditional cache line.

Unlike in traditional hierarchical cache where cached data
is normally a data page or an instruction from lower level

Cached Data Tag State Bits

Figure 5: A traditional cache line

storage devices, the cached data in Web caching is a Web
document which may migrate to current proxy node from
its neighbors instead of directly from the original Web
server. To cope with the new data type and proxy cache
architecture, a Web cache line should include more
information than that in traditional cache line. Figure 6
depicts a Web cache line in our proxy cache system.

A Web cache line is made up of two portions. The body
portion is used to store the Web document itself. The head
portion consists of ID, state bytes and link fields. The ID
field contains an UUID which the URL of the cached Web
document will be hashed to. The Tag is the name of the
document. State bytes are used to store information for
cache coherency control as well as some other statistical
data, such as number of replicas of the Web document
known to this node in the proxy cache system and shortest
distance to the nearby replicas. Because the cached
document might be replicated from other nodes in the
proxy cache system, link fields are needed in a Web cache
line to provide the link information. A link field is
organized as a pair of integer <NID, Dist>. NID is an
integer used to lookup the neighbor table to get the
neighbor’s IP address. Dist is round trip distance in finding
the cached document through the neighbor specified by
NID.

2.4 Data Search and Data Flow
The heart of this proposed proxy cache system is to link the
Web documents across the proxies by flowing Web cache
lines or Web cache line heads among the neighbor proxies.
The data flow should bring the Artificial Life to the proxies
and generate a life-like group behavior so that the aggregate
effect of caching actions by individual cache proxies
automatically distributes data close to clients interested in
the cached data. To achieve this goal, we must find a set of
well designed rules that individual cache proxies would use
to route the search messages and cache the Web
documents.

Efficiently searching the cached Web documents is the
most important function in the proxy cache system. A
good search algorithm should possess the following
properties:

• Quickness: A search algorithm should quickly find
the location of the cached Web document.

• Low cost: The overhead of the search should be low.

• Simplicity: The algorithm should be very simple to
implement in individual proxies.

• Load balance: The search algorithm should not cause
hot spots in the proxy cache system.

Because our P2P proxy cache system is designed on an
individual-based model, the search algorithm runs on all
proxies simultaneously and each proxy only queries its
neighbors for Web documents. When a new request for a
document comes in to certain proxy from its clients, the
proxy server takes actions based on three different
situations as follows:

1. The entire Web cache line is cached: In this case, the
Web document is sent to the client and the request is
satisfied.

2. Only head of the Web cache line is cached:

• If the proxy contains only the Head of the Web
cache line, it checks the shortest distance to a
replica stored in the Head. If the distance to the
nearest replica is larger than its expected
response time by requesting from the Web server
directly, it issues a HTTP request to the Web
server.

• If the shortest distance is less than the expected
response time by requesting directly from the
Web server, the proxy searches the neighbor table
to find the link with the shortest distance to a
replica. Then a query is sent to the neighbor that
link points to. A query message should contain
ID and Tag of the Web document, the time when
the message is sent, and maximum waiting time
the requesting proxy will tolerate.

• If the requesting proxy could not get a response
within the maximum waiting time, a query will
be issued directly to the Web server.

• When a proxy gets a request from its neighbor, it
checks current status of the query message first.
If the waiting time is expired, the query message
is discarded. This will prevent the query message
being sent to unnecessary proxy nodes.

• If the waiting time is not expired, the proxy
checks the proper Web cache line status to see if
the Web document is cached.

• If only the head of the Web cache line is cached,
it checks the link fields of the Web cache line and
finds a link field having shortest distance to the
cached replica. Then the query message is routed
to its neighbor that the link points to.

• Using this method, the nodes linked by Web
cache lines relay the query message to eventually
reach a proxy that has a cached Web document.

3. Nothing is cached at this proxy:

• If the proxy does not contain a Web cache line of
the requested Web document, then this proxy
node has to multicast a query message to all its
neighbors. After that, the requesting proxy waits
for the query results until the waiting time
expires. A query message should include ID and

Web Document

Figure 6: A web cache line.

ID State Bytes Link Fields

Head

Body

Tag

Tag of the Web document. The ID is created by
hashing the Web document URL into an UUID.
The Tag can be the name of the Web document.
The message issuing time and maximum waiting
time of the requesting proxy will also be included
in the query message.

• If a proxy receives a query message from its
neighbor, it first checks whether the message
waiting time is expired. If the time is expired, it
discards the query message. Otherwise, the
proxy searches the Web cache lines in its cache
to find a match.

• Once a proxy finds a Web cache line matching
the ID and Tag given in query message, it sends a
response to its neighbor where the query message
comes from. Then the proxy involved in search
routes the response all the way back to the
requesting proxy.

• A response message must include a field to
indicate the distance to the cached replica from
the responding server and the time of the
response message is sent. The proxies who route
the response message should be able to create a
Head of the Web cache line from the response
message and cache the Head in their own caches
to benefit the later search. The distance to replica
field in the response message should be updated
(increase) along the path on which the response
message is propagated to the requesting proxy.

• During the response message travels back to the
requesting server, a proxy may discard the
response message if it finds the maximum
waiting time in the original query message is
expired.

• The requesting proxy checks all response
messages received before the waiting time is
expired and creates appropriate Web cache lines
to benefit later requests. The requesting proxy
then finds the shortest distance to a replica among
in those new Web cache lines. The rest of the
process would be same as in case 2.

• If the requesting proxy does not get any response
within the maximum waiting time, it queries the
Web document directly from the Web server.

Once a cached Web document is found in the proxy cache
system, it can be routed to the requesting proxy along the
way the query message was propagated. The proxies
involved in search process then have a chance to cache the
Web document at their caches to serve the later requests
when they route the cached Web document to the
requesting proxy. Alternatively, the cached Web document
can be sent to the requesting proxy directly from the proxy
where the cached replica being located. In this later case,
we need include the IP address of the requesting proxy in
the query message. Obviously, including requesting
proxy’s IP will increase the size of the query message. We
must note here that sending the cached Web document
directly to the requesting proxy does not necessarily reduce

the network traffic in the proxy cache system, because the
Web document might travel through the same set of proxies
transparently due to the network routing. But routing the
Web document via searching proxies would add process
overhead to the intermediate proxies.

The effect of the data flow in a proxy cache system is
illustrated by the VPG depicted in Figure 4. Assume
document a, b and c are originally cached in nodes 3, 3 and
2 respectively. After clients at node 1, 5, and 6 request the
document a, b, and c correspondingly, those documents
will be routed to and replicated at the requesting proxy
nodes through the search paths. The accumulative result of
the data caching and data flow distributes the data to where
they are mostly demanded and hence reduces the user
response latencies. If we store the VPG in every proxy
nodes, we should be able to find a better search algorithm.
We will not discuss the search algorithm with the VPG
stored locally because it is out of the scope of this paper.

2.5 Cache Replacement
An efficient cache replacement algorithm can increase the
cache hit ratio. A good cache replacement algorithm
considers many parameters such as storage capacity, access
frequency to the objects, size of the objects, user access
prediction, and some other historical statistic information.
Besides the traditional Least Recent Used (LRU) and Lease
Frequently Used (LFU) schemes, some other replacement
policies have been proposed in recent years. Pitkow and
Pecker [40] proposed a cache replacement algorithm based
on dynamic user access patterns. A size weighted Web
cache replace policy is discussed in [41]. A cost based
replacement algorithm is proposed in [42]. Some LRU
variants, such as LRU-MIN [43], LRU-Threshold [43],
Size-Adjusted LRU [44] have also been discussed in past
years. Rizzo and Vicisano replace the Web document
based on Lowest Relative Value (LRV) [45]. A Least
Normalized Cost Replacement algorithm (LCN-R) [46]
employs a rational function of the access frequency, the
transfer time and the size to select replacement victims. A
sample based randomized algorithm is discussed in [47].
Starobinski and Tse introduced new randomized
replacement policies [48] based on an extended version of
the IR model. Kelly et al present a biased cache
replacement algorithm [49] which is a simple
generalization of LFU algorithm that is sensitive to varying
levels of server valuation for cache hits. Some studies [50,
27] have found that Web access pattern follows a Zipf like
distribution and proposed the cache replacement policies
according to this observation.

Most existing cache replacement policies are proposed for a
single proxy or a proxy cluster. Cache replacement policies
have not been thoroughly studied in a cooperative proxy
environment. Especially, our proposed proxy cache system
is an individual-based cooperative proxy cache system.
Unlike some other proxy cache systems where a directory
server is aware of all cached documents in the cache
system, the individual proxy in our proxy cache system has
only limited global information from its neighbors. On the
other hand, querying the other proxies for global data
distribution information is not desirable. Thus the cache
replacement policy can only base on individual proxy’s

own local perception of the cache system. In addition, our
network cache model divides the Web cache line into two
portions. The head portion contains link information for
cached Web document. So our cache replacement
algorithm must treat the head and body of the Web cache
line differently. Usually we should leave the head of the
Web cache line in the cache system as long as possible to
maintain the links among the cached replicas. In case we
have to remove the entire Web cache line, an invalidating
message should be sent to its neighbors to update the link
information in the related Web cache lines. The state bytes
also play an important role in selecting the victim for
replacement. For instance, it might not be wise to replace a
cached Web document when it is the last replica in the
linked proxy group.

When a proxy runs out of cache space, a replacement
victim must be selected. The criteria for choosing the
replacement victim include access frequency of the
document, size of the document, number of replicas of the
document and time since the last access to the document.
Assume access frequency, size, replica number and time
since last access are f, s, r and t respectively for a cached
Web document, the replacement value of the document V
should be a function of those four parameters:

),,,(trsfFV = . For instance, V could be calculated

using the following simple function:

trs
f

V ⋅+⋅+⋅+= νµβα (1)

where α, β, µ, ν are some predetermined constants. We
calculate replacement value V for all cached Web document
and choose the document whose V value is largest as the
replacement victim. We may determine the four constants
(α, β, µ, ν) using experimental study. Due to space
limitation, we will not discuss how to determine those
constants. Instead we use the simple LRU algorithm in our
simulation in this paper. We may also use another
enhancement option for our cache replacement policy.
When a proxy server runs out of cache space, it may flow
its cached replica to one of its neighbors instead of
removing the Web document from the cache system.

2.6 Cache Coherency
Currently there are two types of Web cache coherency
protocols provide different level of cache consistency.
Strong cache consistency is normally implemented through
client validation or server invalidation. Client validation is
implemented by client polling server for every access [51].
Server invalidation is accomplished by server sending an
invalidating message to the clients whenever there is a
change on the Web document at server side [52, 53]. Since
an ideal proxy cache system should be transparent to
clients, client validation is not a good approach. On the
other hand, since our cache coherency protocol should not
depend on server actions, we will not use the server
invalidation approach as well. Contrary to the strong cache
consistency protocols, the other type of cache coherency
protocols who provide weak cache consistency is very
popular in Web caching. The adaptive TTL [54] and its
variants [55] take advantage of the fact that file lifetime

distribution tends to be bimodal [56]. They handle the
problem by adjusting a document’s Time-To-Live (TTL)
based on observations of its life-time. Most existing proxy
servers [6, 7, 12] use the adaptive TTL approach. Another
weak cache consistency protocol is Piggyback Cache
Validation (PCV) [57] which capitalizes on requests sent
from the proxy cache to the Web server to improve cache
coherency.

Cache coherency protocols influence the performance of a
cooperative proxy cache system [58]. In our proxy cache
system, a cache coherency protocol not only needs to
maintain the consistency between the original Web
document and the cached Web document, but also needs to
maintain the consistency among the cached documents in
cooperative proxies. Furthermore our cache coherency
protocol must be individual-based, i.e., individual cache
proxy validates/invalidates the Web documents based on its
local prospect of the replica. Because of our unique
network cache model, our cache coherency protocol can
take advantage of peer cooperation to design a Peer
Invalidation (PI) method to maintain the consistency of the
cached documents in the proxy cache system. Our cache
coherency protocol is described as follows.

Each individual cache node maintains a Time-To-Live
(TTL) field in cached Web document’s URL. TTL is a
priori estimate of how long the document will remain
unchanged. This field is supported by current HTTP
protocol for cache consistency. Whenever there is a
request for the cached Web document, the proxy checks if
the TTL of the document is expired. If the TTL is expired,
the cache proxy sends an “if-modified-since” HTTP request
to the Web server. This special HTTP request contains the
URL of the document and a timestamp. Upon receiving the
request, the Web server checks whether the document has
been modified since the timestamp. The Web server
returns the status code “200” and the new data to the proxy
cache if the data has been modified. Otherwise, a code
“304” is returned.

Once the new data received at the proxy, it invalidates the
other cached replicas in the proxy cache system. The Peer
Invalidation (PI) process can be implemented in two
different modes:

Aggressive Mode: The invalidating message will be
propagated to all proxy servers in the cache system so
that all staled replicas can be invalidated.

Conservative Mode: The invalidating message will only be
sent to the neighbors that current Web cache line has a
link to so that only the staled replicas in a linked group
will be invalidated.

The Peer Invalidation may be invoked after a proxy has
retrieved a Web document directly from Web server due to
the existing cached replicas are too far from the current
proxy. Final step of the invalidation process is to update
the staled replicas. A staled replica can be removed from
the cache system or be replaced by the new Web document.
In either case, the relative Web cache lines need to be
modified.

Besides maintaining the cache consistency, there are some
other fields need to be updated to reflect current state of the
cached Web replicas, whenever a replication or removal
takes place. For instance, when a Web document is
replicated or a cached Web replica is removed, the number-
of-replica fields and the related link fields in every linked
web cache lines have to be updated. The updates on any
proxy node will be solely based on the information passed
in by its neighbors and the information stored locally. The
proxy nodes will also propagate the updated information to
the linked neighbors for them to update their state bytes and
link bytes accordingly.

2.7 Dynamic Reconfiguration
Availability is an important measurement of the service of
quality for the distributed systems [59, 60]. When some
proxies crash or shut down for maintenance, the other
proxies in the P2P proxy cache system should continue
operating normally without being noticed by their
respective clients, although the efficiency of the Web
caching and the load balance might temporarily suffer from
the failures of those proxies. Because our proxy cache
system is not tied to any predetermined hardware
configuration or network structure, it can automatically
recover from the failure of some proxies and automatically
reconfigure a new VPG to efficiently serve the clients with
the available resources. The automatic system
reconfiguration has not been studied thoroughly in existing
proxy cache systems because some of them require manual
configuration and the others rely on the network routing
protocols for failure recovery. The dynamic
reconfiguration scheme needs deal with two scenarios.

A proxy server shuts down for maintenance: The proxy
being brought down should inform the neighbors of its
departure. The neighbors would update the cached
information at their sites and propagate the information
to the other proxies to reflect the current state of the
system. The proper actions should be taken to
reconfigure the VPG.

A proxy server crashes: If a proxy has not received any
query or response message from one of its neighbor for
certain period of time, it sends a status checking
message to that proxy in order to see if it is still alive.
Once a proxy is determined to be dead, the similar
reconfiguration process should be invoked.

3. SIMULATION MODEL
There are many factors affect the performance of the
system. Those factors include user request pattern, storage
capacity of the proxy servers, and network bandwidth of
the proxy servers. In this paper, we focus on study the
feasibility of our proxy caching scheme. Without loss of
generality, we configure a proxy cache system based on
some simple assumptions. Then we examine the hit ratios
and user response times on this simplified simulation
model. First we assume there are 64 proxy servers existing
in the network. The distribution of those 64 servers is so
uniform that we can automatically configure them into a
mesh-like VPG so that all proxies have 4 neighbors each,
excepting those proxies on the edge and the corner. Those
edge and corner proxies have 3 and 2 neighbors each

respectively. We further assume all the servers are
identical in computation power, storage capacity and
network bandwidth. The distances between the neighbors
are all equal.

We assume the users have equal probability issuing Web
requests at any proxies. We also assume all Web
documents have equal size. The response time for a Web
document is the time when first part of the document
arrives at client’s workstation. We compare the user
response times using our proxy cache system with that
using a single proxy server. We assume the distance from a
client to its proxy server is 100 ms. If the requested
document is cached in the proxy, the user response time is
200ms ignoring the other overheads. We assume the
distance between the neighbor proxies is 200 ms, which is
double the distance from client to its proxy. So if a
requested document is found in a neighbor node, the user
response time is 600 ms. We also assume there are 10,000
distinct Web documents on the Web servers. The average
distance from the clients to the Web servers is 1500 ms.
Thus the user response time for a cache miss is 3000 ms,
ignoring all other overheads. Those assumptions are based
on the data collected by running the benchmark Polygraph§
on a Web caching appliance developed by Swell
Technology** .

Web requests follow a Zipf-like distribution according to
our observation [27] and some other studies [48, 50]. The
access frequency for each Web document i is determined
as follows:

∑ =
⋅

=
m

j

zz
i

ji
f

1
1

1
,

where m is the number of the Web documents in the

system, and 10 ≤≤ z is the Zipf factor [27]. A larger z
value corresponds to a more skew condition, i.e., some
objects are accessed considerably more frequently than
other objects. When z = 0, the distribution is uniform, i.e.,
all the objects have the same access frequency. We
simulate our proxy caching scheme on this automatically
configured VPG. Each node in the VPG performs as a
single proxy as well.

4. SIMULATION RESULTS
We could have used Web traces†† to evaluate our P2P
proxy cache system. However, based on study conducted
by Breslau et al [50], Web requests follow zipf-like
distribution with various zipf factors in different Web
caches. We want to study how the Web request skew
conditions affect the system performance, so using
synthetic Web requests are easier to implement and using
trace based performance study won’t help more in our
evaluation. Our simulator can run in two different modes,
individual mode and cooperative mode. The individual

§ http://www.measurement-factory.com/
** http://www.swelltech.com/products/caching.html
†† http://www.web-caching.com/traces-logs.html

mode is used to simulate the single proxy server. The
cooperative mode is used to simulate our P2P proxy cache
system. We collect the statistic data on simulations running
in those two modes. As in most of the previous studies, we
use hit ratio and average response time as system
performance metrics. Total of 200,000 Web requests
issued to the cooperative proxy cache simulator. We start
to collect statistic data after the first 50,000 Web requests
being processed to avoid the inaccurate statistic data due to
the startup of the simulation. We observe the user response
times and cache hit ratios at all proxies.

4.1 Performance under Different Cache
Rates
In this performance study, we vary the cache rate on
individual cache proxy from 0.2% to 2% while keep the
Zipf factor at 0.7. Increasing the cache rate will increase
the cache hit ratios and in turn improve the system average
response time for requests. This is true in both individual
proxy server and the cooperative proxy cache system.
Simulation study shows our P2P proxy cache system
increases cache hit ratios tremendously over the individual
proxy server as shown in Figure 7.

When each individual proxy caches only 1% of the total
Web documents, the average hit ratio for individual proxies
is only 7%. On the other hand, our automatically
configured P2P proxy cache system yields 57% hit ratio.
In terms of user response times, Figure 8 shows our system
also outperform individual proxy cache by large margin.

4.2 Performance under Various Zipf
factors
Access skew condition determines the locality of the Web
access. The cache hit ratios increase when data access
pattern are increasingly skewed. In this simulation, we
maintain the cache rate on each proxy at 1%. We change
the Zipf factor from 0.4 to 1. As expected, when Zipf
factor increases, the hit ratios of the proxy cache increase in
both individual proxy server and the P2P cooperative proxy
cache system. We do not show data when Zipf factor is
less than 0.4 because the Web access is highly skewed
according to various studies [27, 50]. As shown in and
Figure 10, our P2P proxy cache system outperforms the
individual proxy server by very large margin. For instance,
when Zipf factor is at 0.6, the individual cache proxy’s hit
ratio is less than 5% while our P2P proxy cache system
yields more than 50% hit ratio as shown in Figure 9.

5. Concluding Remarks and Future
Studies
In this paper, we proposed a novel P2P cooperative proxy
cache system using the individual-based cache model. The
accumulative results of the individual caching actions by all
proxies automatically distribute the data close to the clients.
Those caching actions create artificial life for the
cooperative proxies. The system can be self-configured
into a Virtual Proxy Graph using simple rules. Based on
demand, data cache and data movement in our cache

0%
10%

20%
30%

40%

50%

60%

70%

80%

0.2% 0.6% 1.0% 1.4% 1.8%

Cache Rate

H
it

R
at

io

Individual Cooperative

Figure 7: Hit ratios under different
cache rates

0

500

1000

1500

2000

2500

3000

3500

0.2% 0.6% 1.0% 1.4% 1.8%
Cache Rate

R
es

po
ns

e
tim

e

Individual Cooperative

Figure 8: Response times under different
cache rates

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Zipf Factor

H
it

R
at

io

Individual Cooperative

Figure 9: Hit ratios under various Zipf
factors.

0

500

1000

1500

2000

2500

3000

3500

0.4 0.6 0.8 1.0

Zipf Factor

R
es

po
ns

e
tim

e

Individual Cooperative

Figure 10: Response times under various
Zipf Factors.

system create proxy ecology. This unique system design
simplifies the management of the proxy cache system. Our
simulation results indicate the effectiveness and feasibility
of our cache system. We are currently conducting further
investigation on the cache coherency and cache
replacement options. Dynamic reconfiguration of the cache
system is another topic to be studied. We are also
implementing a prototype using our proposed proxy
caching scheme.

REFERENCES

[1] Peter B. Danzig, Richard S. Hall, and Kurt J. Worrell. A
Case for Caching File Objects Inside Internetworks. In
proceedings of ACM SIGCOMM, pages 239-248,
September 1993.

[2] R. Caceres, F. Douglis, A. Feldmann, G. Glass, and M.
Rabinovich. Web Proxy Caching: The Devil Is in the
Details. ACM Performance Evaluation Review, 26(3),
pages 11-15, December 1998.

[3] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams,
and E. A. Fox. Caching Proxies: Limitations and
Potentials. In Proceedings of 4th International World
Wide Web Conference, Boston, Massachusetts, USA,
December 1995.

[4] A. Bestavros, R. L. Carter, and M. E. Crovella.
Application-level Document Caching in the Internet. In
Proceedings of the Second International Workshop on
Services in Distributed and Networked Environments,
Whistler, British Columbia, 1995.

[5] T. M. Kroeger, D. D. E. Long, and J. C. Modul. Exploring
the Bounds of Web Latency Reduction From Caching
and Prefetching. In Proceedings of the 1997 USENIX
Symposium on Internet Technologies and Systems,
Monterey, CA, December 1997.

[6] A. Luotonen and K. Altis, World Wide Web proxies,
Computer Networks and ISDN systems, First
International Conference on WWW, 27(2):147-154, April
1994.

[7] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F.
Schwartz, and K. J. Worrel, A Hierarchical Internet
object cache, proceedings of USENIX Annual Technical
Conference, pp. 153-164, San Diego, CA, January, 1996.

[8] R. Malpani, J. Lorch and David Berger. Making World
Wide Web Caching Servers Cooperate. the Fouth
International World Wide Web Conference, Boston,
Massachusetts, December 1995.

[9] Ratan K. Guha and James Z. Wang. Improving Web
Accessing Efficiency using P2P Proxies. in Proceedings
of 4th International Workshop on Distributed Computing,
Kolkata, India, December 2002.

[10] James Z. Wang and Ratan K. Guha. Proxy Ecology -
Cooperative Proxies with Artificial Life. In Proceedings
of IEEE/WIC IAT-2003, Halifax, Canada, October 2003.

[11] A. Feldmann, R. Caceres, F. Douglis, G. Glass and M.
Rabinovich, Performance of Web Proxy Caching in

Heterogeneous Bandwidth Environments, Proceedings of
InfoCom (1), pages 107-116, 1999.

[12] Duane Wessels, K Claffy, ICP and the Squid Web Cache,
IEEE Journal on Selected Areas in Communication,
16(3):345-357, 1998.

[13] Scott Michel, et al., Adaptive Web Caching: Towards a
New Caching Architecture, the 3rd International WWW
Caching Workshop, Manchester, England, June 1998.

[14] P. Rodriguez, C. Spanner and E. W. Biersack, Web
Caching Architecture: Hierarchical and Distributed
Caching, the 4th International WWW Caching Workshop,
San Diego, CA, March 1998.

[15] R. Tewari, M. Dahlin, H. Vin and J. Kay, Beyond
Hierarchies: Design Consideration for Distributed
Caching on the Internet, Technical Report: TR98-04,
Department of Computer Science, University of Texas at
Austin, February 1998.

[16] Joe Touch, The LSAM Proxy Cache – a Multicast
Distributed Virtual Cache, the 3rd International WWW
Caching Workshop, Manchester, England, June 1998.

[17] V. Valloppillil and K. W. Ross, Cache array routing
protocol v1.0, Internet Draft, <draft-vinod-carp-v1-
03.txt>, February 1998.

[18] D. Dovey and J. Harrison, A Distributed Internet Cache.
In 20th Australian Computer Science Conference,
February 1997.

[19] S. Gadde, M. Rabinovich and J. Chase, Reduce, Reuse,
Recycle: A Approach to Building Large Internet Caches,
in Workshop on Hot Topics in Operating Systems, pp. 93-
98, May 1997.

[20] Zheng Wang, Cachemesh: A Distributed Cache System
for World Wide Web, the 2rd NLANT Web Caching
Workshop, June 1997.

[21] R. Malpani, J. Lorch and David Berger, Making World
Wide Web Caching Servers Cooperate, the Fouth
International World Wide Web Conference, Boston, MS,
December 1995.

[22] L. Fan, P. Cao, J. Almeida and A. Broder, Summary
Cache: A Scalable Wide-Area Web Cache Sharing
Protocol, IEEE/ACM Transactions on Networking,
8(3):281-293, 2000.

[23] Alex Rousskov and Duane Wessels, Cache Digests,
Computer Networks and ISDN Systems, 30(22-23):2155-
2168, June 1998.

[24] M. Rabinovich, J. Chase and S. Gadde, Not All Hits Are
Created Equal: Cooperative Proxy Cache Over a Wide-
Area Network, Computer Networks and ISDN Systems,
30(22-23):2253-2259, November 1998.

[25] David Karger et al., Consistent hashing and random trees:
Distributed cachine protocols for relieving hot spots on
the World Wide Web. In Proceedings of the Twenty-
Ninth Annual ACM Symposium on Theory of Computing,
pages 654-663 , 1997

[26] David Karger et al., Web Caching with Consistent
Hashing, the 8th international WWW conference, Toronto,
Canada, May 11-14, 1999.

[27] James Z. Wang and Ratan K. Guha, Data Allocation
Algorithms for Distributed Video Servers. In
Proceedings of ACM Multimedia, pages 456-459, Marina
del Rey, California, November 2000.

[28] M. Kaiser, K. C. Tsui and J. Liu, Self-organized
Autonomous Web Proxies, in proceedings of AAMAS
2002, pages 1397-1404, July 2002.

[29] Jia Wang, A Survey of Web Caching Schemes for the
Internet, ACM Computer Communication Review,
25(9):36-46, 1999.

[30] S. Iyer, A. Rowstron and P. Druschel, SQUIRREL: A
decentralized peer-to-peer web cache, in Proceedings of
Principles of Distributed Computing (PODC 2002),
Monterey, California, July 2002.

[31] L. Xiao, X. Zhang, and Z. Xu, On Reliable and Scalable
Peer-to-Peer Web Document Sharing, Proceedings of
2002 International Parallel and Distributed Processing
Symposium, (IPDPS'02), Fort Lauderdale, Florida, April
2002.

[32] I. Clarke, O. Sandberg, B. Wiley and T. W. Hong,
Freenet: A Distributed Anonymous Information Storage
and Retrieval System, Lecture Notes in Computer
Science, Volume 2009, Pages 46+, 2001.

[33] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H.
Balakrishnan, Chord: A Scalable Peer-To-Peer Lookup
Service for Internet Applications, Proceedings of the
2001 ACM SIGCOMM Conference, Pages 149-160, San
Diego, CA, August 2001.

[34] A. Rowstron and P. Druschel, "Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems", IFIP/ACM International
Conference on Distributed Systems Platforms
(Middleware), Heidelberg, Germany, pages 329-350,
November, 2001.

[35] Beverly Yang and Hector Garcia-Molina, Comparing
Hybrid Peer-to-Peer Systems, The VLDB Journal, pages
561-570, September 2001.

[36] E. Adar and B. Huberman, Free riding on gnutella,
Technical Report, Xerox PARC, August 2000.

[37] S. Saroiu, P. K. Gummadi and S. D. Gribble, A
Measurement Study of Peer-to-Peer File Sharing
Systems, Proceedings of Multimedia Computing and
Networking 2002 (MMCN '02), San Jose, CA, USA,
January 2002.

[38] Craig W. Reynolds, Flocks, Herds, and Schools: A
Distributed Behavioral Model, in Computer Graphics,
21(4) (SIGGRAPH '87 Conference Proceedings) pages
25-34, 1987.

[39] L. Kleinrock, Distributed System, invited paper for
ACM/IEEE-CS Joint Special Issue: Communications of

the ACM, Vol. 28, No. 11, pp. 1200-1213, November
1985.

[40] Jim Pitkow and Mimi Recker. A Simple Yet Robust
Caching Algorithm Based on Dynamic Access Patterns.
the 2nd International World Wide Web Conference,
Chicago, Illinois, USA, October 1994

[41] S. Williams, M. Abrams, C.R. Standridge, G. Abdulla,
and E.A. Fox. Removal Policies in Network Caches for
World-Wide Web Documents. In Proceedings of the
ACM SIGCOMM '96 Conference, August 1996.

[42] Pei Cao and Sandy Irani. Cost-Aware WWW Proxy
Caching Algorithms. Proceedings of the 1997 Usenix
Symposium on Internet Technologies and Systems
(USITS-97), Monterey, CA, 1997.

[43] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams,
and E. A. Fox. Caching Proxies: Limitations and
Potentials. In Proceedings of 4th International World
Wide Web Conference, Boston, Massachusetts, USA,
December 1995.

[44] C. C. Aggarwal, J. L. Wolf and P. S. Yu. Caching on the
World Wide Web. Knowledge and Data Engineering,
Volume 11, Number 1, Pages 95-107, 1999.

[45] Luigi Rizzo and Lorenzo Vicisano. Replacement policies
for a proxy cache. IEEE/ACM Transactions on
Networking, Volume 8, Number 2, Pages 158-170, 2000.

[46] P. Scheuermann, J. Shim, and R. Vingralek. A case for
delay-conscious caching of Web documents. Computer
Networks and ISDN Systems, volume 29, number 8-13,
pages 997-1005, 1997.

[47] Konstantinos Psounis and Balaji Prabhakar. A
Randomized Web-Cache Replacement Scheme. in
Proceedings of IEEE INFOCOM 2001, pages 1407-1415,
April 2001.

[48] David Starobinski and David N. C. Tse. Probabilistic
methods for web caching. Performance Evaluation,
Volume 46, Number 2-3, Pages 125-137, 2001.

[49]T. P. Kelly, Y. M. Chan, S. Jamin and J. K. MacKie-
Mason. Biased Replacement Policies for Web Caches:
Differential Quality-of-Service and Aggregate User
Value. Proceedings of the 4th International Web
Caching Workshop, 1999.

[50] L. Breslau, P. Cao, L. Fan, G. Phillips and S. Shenker.
Web Caching and Zipf-like Distributions: Evidence and
Implications. in proceedings of IEEE INFOCOM’99, pp.
126-134, March 1999.

[51] Beomseok Nam and Kern Koh. Periodic Polling for Web
Cache Consistency. WebNet (1), Pages 800-804, 1999.

[52] Chengjie Liu and Pei Cao. Maintaining Strong Cache
Consistency in the World-Wide Web. In Proceedings of
the 17th International Conference on Distributed
Systems, May 1997.

[53] J. Yin, L. Alvisi, M. Dahlin and A. Iyengar. Engineering
server-driven consistency for large scale dynamic Web
services. In Proceedings of the 10th International World

Wide Web Conference, pages 45-57, Hong Kong, May
2001.

[54] Vincent Cate. Alex -- A Global File System.
Proceedings of the USENIX File System Workshop, pages
1-11, Ann Arbor, Michigan, 1992.

[55] James Gwertzman and Margo Seltzer. World Wide Web
Cache Consistency. In Proceedings of the 1996 USENIX
Annual Technical Conference, San Diego, California,
January 1996.

[56] M. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff,
and J. Ousterhout. Measurement of a distributed file
system. In proceedings of 13th ACM Symposium on
Operating System Principles, pages 198-211, October
1991.

[57] B. Krishnamurthy and C. E. Wills. Study of Piggyback
Cache Validation for Proxy Caches in the World Wide
Web. USENIX Symposium on Internet Technologies and
Systems, 1997.

[58] Victor Sosa and Leandro Navarro. Influence of the
Document Validation/Replication Methods on
Cooperative Web Caching Architectures.
Communication Networks and Distributed Systems
Modeling and Simulation Conference (CNDS’02),
Western Multiconference (WMC’02), Pages. 238-245,
San Antonio, Texas, January 2002.

[59] F. Cristian. Automatic Reconfiguration in the Presence
of Failures. Proceedings of the International Workshop
on Configurable Distributed Systems, IEE, London, pp.
4-17, March 1992.

[60] Y. Saito, B. N. Bershad and H. M. Levy. Manageability,
Availability and Performance in Porcupine: A Highly
Scalable, Cluster-based Mail Service. 17th ACM
Symposium on Operating Systems Principles, Pages 1-15,
December 1999

