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格子に基づく代理人再暗号方式
Proxy Re-Encryption based on Learning with Errors

草川恵太 田中圭介
Keita Xagawa * Keisuke Tanaka *

Abstract– Proxy re-encryption enables a proxy to convert a ciphertext for some user to a cipher-
text for another user, but a proxy cannot leam information of messages. All of the proxy re-encryption
and identity-based proxy re-encryption schemes are based on the number-theoretic assumptions. This
paper proposed proxy re-encryption schemes based on the leaming with errors problem. They are first
schemes based on combinatorial problems.

Keywords: proxy re-encryption, learning with errors, lattice problems.

1 IntroductIon

Suppose that Alice wants to forward a received en-
crypted e-mail to Bob in the public channel. She
decrypts it by her secret key, encrypts the message
with Bob’s public key, and sends it to him. However,

decryption and encryption are costly for her mobile
phone in general. Therefore, she wants a mail server
to forward her mail to Bob automatically. In this case,

she does not trust the server, hence, she does not want
to give her secret key to the server. The one of solu-
tions is proxy re-encryption [3].

In a proxy re-encryption (PRE) scheme, the server
is given a re-encryption key $rk_{Arightarrow B}$ between Alice and
Bob. The server, given a ciphertext $ct_{A}$ for Alice, can
convert it to a ciphertext $ct_{B}$ for Bob by using the re-
encryption key $rk_{Arightarrow B}$ and without decrypting $ct_{A}$ . In
addition, proxy re-encryption ensures that even if the
server knows $rk_{Arightarrow B}$ , it cannot leam the message of $ct_{A}$ .

The study of proxy re-encryption is initiated by
Blaze, Bleumer, and Strauss [3]. They formalize a
proxy re-encryption and gave an example based on
the ElGamal encryption scheme. There are several
proxy re-encryption schemes [3, 2, 5, 10, 7, 1, 11] and
identity-based proxy re-encryption schemes [12, 9, 6]

in the literature. However, their underlying problems
are the decisional Diffie-Hellman problem or its vari-
ants.

In this paper, we propose proxy re-encryption
schemes based on other problems, the learning with
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errors and lattice problems. Our constructions are ob-
tained by extending Regev’s encryption scheme [14].

Ideas from the ElGamal-based PRE: We note that
some lattice-based cryptosystems have similar struc-
ture on the DDH-based cryptosystems while inherent
noises of lattice-based cryptosystems disturb the struc-
ture.

Consider the ElGamal encryption scheme over $G=$

$\langle g\rangle$ with order a large prime $q$ . The key pair is $(x,y=$

$g^{X})$ for randomly chosen $x$. The ciphertext of $m\in G$

under the encryption key $y$ is $(g_{m\cdot y^{\mu}})$ for randomly
chosen $k$ . Let $(xA,yA=g^{YA})$ and $(xB,y_{B}=g^{r_{B}})$ denote
Alice’s and Bob’s key pair, respectively. Assume that
the proxy has the re-encryption key $rArightarrow B=xA-xB$

and has the ciphertext $(C1, C2)$ to be converted. Then,

the conversion is done by

$(c_{1}’, c_{2}’)=(c_{1}, cz\cdot c_{1}^{-r}Arightarrow B)$

$=(g^{k}, m\cdot g^{kx}A.g^{k(x\epsilon^{-x}A)})=(d, m\cdot y_{B}^{\lambda})$.

It can be shown that this proxy re-encryption scheme
is based on the hardness of the DDH problem.

We here recall Regev’s encryption scheme. The key
pair is computed by $(s, (A, p=s^{T}A+x))$ , where $s\in$

$\mathbb{Z}_{q}^{n},$ $A\in \mathbb{Z}_{q}^{nxm},$ $x\in \mathbb{Z}_{q}^{1\cross m}$ and the magnitudes of the
elements of $x$ are relatively smaller than $q/4m$ , say the
$\ell_{1}$ -norm of $x$ is at most $q/4$ . The encryption of the
message $msg\in\{0,1\}$ under the encryption key $(A, p)$

is $(u, v)=(Ae, \mu+msg\lfloor q/2\rfloor)$ . where $earrow\{0,1\}^{m}$ .
The decryption procedure is as follows: (1) compute

$d=v-s^{T}u$ and (2) output $0$ if the absolute value of $d$

is at most $q/4$ and output 1 otherwise.
Let ( $s_{A},$ ( $A_{A},$ $p_{A}=s_{A}^{T}A_{A}+X_{A))}$ , and $(s_{B},$ $(A_{B},$ $p_{B}=$

$s_{B}^{T}A_{B}+x_{B}))$ denote Alice’s and Bob’s key pair, respec-
tively. Let $r_{Arightarrow B}=s_{A}-s_{B}$ . Then, the conversion from
( $u,$ VA) to $(u, VB)$ is done by $(u, VB)=(u, vA-r_{Arightarrow B}^{T}u)$ ,
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which is similar to that of the ElGamal-based proxy $Enc(param, ek_{I}, msg)$ :The encryption algorithm,
re-encryption scheme. The decryption by Bob works given the parameters param, the encryption key
correctly since $ek_{I}$ of the user $i$, and amessage $msg$, outputs a

ciphertext $ct_{1}$ .
$d_{B}=VB^{-s_{B}^{T}u=V}A^{-}(s_{A}-s_{B})^{\tau}u-s_{B}^{T}u=VA^{-s_{A}^{T}u=d_{A}}$ .

ReEnc $(rk_{i,j}, ct_{i})$ :The re-encryption algorithm, given
The proof strategy for security is also similar to that the re-encryption key $rk_{i,j}$ between the users $i$

of the ElGamal-based proxy re-encryption scheme. and $j$, and aciphertext $ct_{i}$ for the user $i$, it outputs
aciphertext $ct_{j}$ for the user $j$

2Preliminaries
Dec $(dk, ct)$ :The decryption algorithm, given the de-

Asecurity parameter is denoted by $n$ . We use the
cryption key $dk$ and the ciphertext $ct$, outputs a

standard $\alpha_{notation}$ . The function $f(n)$ is said to be

negligible if $f(n)=n^{-\omega(1)}$ . For adistribution $\lambda’$ , we of-
plaintext $msg$.

ten write $xarrow\chi$ which indicates that we take asample Our definition of correctness is sl $\ddagger ghtly$ weaker than
$\chi$ from $\chi$ . the standard one [5]. We say aPRE scheme PRE is

The leftover hash lemma often appears in the con- correct if an underlying public-key encryption scheme
text of lattice-based cryptography. We summarize the PKE $=$ (Setup, Reg, Enc, Dec) is correct. Formally, it
arguments which appeared in many papers on lattice- holds that if for any valid $msg$, there exists some neg-
based cryptography. See $[14|$ for the proof. ligible function negl $(n)$ such that for any 1

Lemma 2.1 (The uniformity lemma for lattice-based

$A\in \mathbb{Z}_{q}^{(n+\ell)xm}|$ , where $h_{A}(e)=Ae$ . Let $H$ be the unI-
$Pr$

hash functions $)$ .
$wConsiderH=\{h_{A}L^{\{0}\prime 1\}^{m_{e}}arrow \mathbb{Z}_{q}^{n+\ell}|$

$[m$昭 $\neq\overline{msg}$ : $\frac{pact(ek}{msg}ramarrow Setup(,1^{n})arrow E\cap c(paramek_{i},msg)i,dk_{i})arrow Reg(p_{\partial}.ram,r)arrow Dec(dk_{i},ct),\cdot,,$ $]\leq$ neg $|(n)$ .

form distribution over $\prime H_{i}$ and $X$ and $U$ random vari-

ables distributed uniformly over $\{0,1\}^{m}$ and $\mathbb{Z}_{q}^{n+t},$ re-
spectlvely. Applying the variant of the leftover hash Additionally, we say a PRE scheme PRE is multi-hop
lemma, we have correct if for any valid $msg$ and for any integer $k>1$ ,

one can correctly decrypt the ciphertext of $msg$ con-1 1
$Pr[\Delta(H(\lambda), U)H\geq 2^{-\tau^{(\pi\succ(n+\ell)\log q)}}]\leq 2^{-z^{(m-(n+\ell)\log q)}}$ verted $k$ times into $msg$, that is,

In this paper, we consider bidirectional and multi-

hop proxy re-encryption. APRE scheme is called bidi-

3 Proxy ${\rm Re}$-Encryption

$Pr[msg\neq\overline{msg}:\frac{park_{irightarrow}ct_{+}ct_{1}(ek}{msg}j1_{arrow Dec(dk_{k}ct_{k})}^{arrow ReEnc(rk_{irightarrow 1+1},ct_{i})}ramarrow Se_{\partial}tup(1^{n})i_{i+1^{arrow ReKeyGen(dk_{i},d.,k_{/+1});}}arrow Enc(pram,ek_{1},msg)dk_{i})arrow Reg(par.,am,l)|’,.]\leq n^{-\omega(1}$

rectional, if aproxy has are-encryption key $rk_{irightarrow j}$ , it
can convert aciphertext for the user $i$ to aciphertext
for the user $j$, vice versa. APRE scheme is said to
be multi-hop, aproxy can re-encrypt aciphertext for where $i$ runs from lto $k$ .
the user $i$ into aciphertext for the user $j$ and it can re-
encrypt that into one for the user $k$ and so on. 3.2 IND-PRE-CPA Security

We describe the formal definition of CPA security of
3.1 Model of Proxy Re-Encryption proxy re-encryption, denoted by IND-PRE-CPA. Con-

APRE scheme PRE is asextuplet of algorithms: sider the following experiment $Exp_{PRE,\mathcal{A}}^{ind-pre-cpa}(n)$ be-
tween the challenger $C$ and the adversary $\mathcal{A}$ .

Setup(1):The setup algorithm, given the security Setup: The challenger takes asecurity parameter $n$ .
parameter $n$ , outputs parameters param. It sets $HU,$ $CUarrow\emptyset$ , runs the algorithm Setup with

Reg (param, $i$):The registration algorithm, given the
$1^{n}$ , and obtains parameters $p\partial ram$ , where $HU$ and $CU$

parameters param and auser identity $I$, outputs denote the sets of honest users and corrupted users, re-

the pair of an encryption key and adecryption spectively. It gives $\mathcal{A}$ the parameters param.

key $(ek_{I}, dk_{i})$ . Challenge Phase: In this phase, the adversary issues
queries to the following oracles in any order and many

ReKeyGen $(dk_{i}, dk_{j})$ :The re-encryption key genera- times except to the constraint in the oracle CHALLENGE.
tion algorithm, given two decryption keys $dk_{i}$

and $dk_{j}$ , outputs are-encryption key $rk_{i,j}$ .
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. The oracle INIT receives an index $i$. If 1 $\in$

$HU\cup CU$ then it retums $\perp$ . Otherwise, it ob-

tains $(ek_{I}, dk_{i})arrow$ Reg(param, 1), adds 1 to $HU$,

and provides $\mathcal{A}$ with $ek_{i}$ .

. The oracle CORR receives an index $i$. If $i\in HU\cup$

$CU$ then it retums $\perp$ . Otherwise, it generates
$(ek_{1}, dk_{k})arrow$ Reg(param; $r_{i}$), adds $I$ to $CU$, and

provides $\mathcal{A}$ with $(ek_{I}, dk_{i})$ and $r_{i}$ .

. The oracle $R_{E}K_{EY}$ receives two indices $i,$ $j\in$

$HU\cup CU$. If $i,j\in HU$ or $i,j\in CU$ retums
$rk_{irightarrow j}arrow$ ReKeyGen $(dk_{i}, dk_{j})$ . Otherwise, the
oracle retums $\perp$ .

. The oracle $R_{E}E_{N}c$ receives two indices $i,j\in$

$HU\cup CU$and a clphertext $ct$. If $i,j\in HU$or $i,j\in$

$CU$, then it obtains $rk_{irightarrow j}arrow R_{E}K_{E}v(dk_{j}, dk_{j})$ ,

obtains $\overline{ct}arrow$ ReEnc $(\rho aram, rk_{irightarrow\underline{j}}, ct)$ , and pro-
vides $\mathcal{A}$ with the new ciphertext $ct$. Otherwise,

the oracle retums $\perp$ .

. The oracle CHALLENGE can be queried only once.
This oracle receives two plaintexts $msg_{0},$ $msg_{1}$

and a target user $l^{s}$ . If $1^{\sim}$ Is not in $HU$ then

it provides $\perp$ with the challenger and $C$ out-
puts $0$ and halts. Otherwise, the oracle flips a
coin $b\in\{0,1\}$ , sets the target ciphertext to be
$ct^{*}arrow$ Enc $(ek,, msg_{b})$ , and sends $cr$ to the ad-
versary and $b$ to the challenger.

Guessing Phase: Finally, $\mathcal{A}$ outputs a guess $b’\in$

$\{0,1\}$ . If $b’=b$, the challenger outputs 1, otherwise
0.

Definition 3.1 (IND-PRE-CPA security). Let PRE be
a PRE scheme, $\mathcal{A}$ an adversary, and $n$ a security pa-
rameter. We define the advantage of $\mathcal{A}$ as

$Adv_{PRE,\mathcal{A}}^{ind-pre-cpa}(n)=|2Pr[Exp_{PRE,\mathcal{A}}^{ind-pre-cpa}(n)=1]-1|$ .

We say that PRE is IND-PRE-CPA secure if
$Adv_{PRE,\mathcal{A}}^{ind-pre-cpa}(\cdot)$ is negligible for every polynomial-
time adversary $\mathcal{A}$ .

Since we only consider IND-PRE-CPA security, we
prohibit the adversary to re-encrypt ciphertexts from
an honest user to a corrupted user. This is because
that this access can simulates a decryption oracle of

the honest user.

.4 Learning with Errors

The learning with errors (LWE) problem is a gener-
alization of the learning parity noise (LPN) problem,

proposed by Regev $[14|$ .

We recall the definitions of the distributions appear-
ing the definition of the LWE problem and lattice-
based cryptosystems. Later, we define two versions
of the LWE problem.

The Gaussian distribution with mean $0$ and vari-
ance $\sigma^{2}$

, denoted by $N(O, \sigma^{2})$ , is defined by the density
function $\frac{1}{\sigma\sqrt{2\pi}}\cdot\exp(-x^{2}/2\sigma^{2})$ over R. By the tail in-

equality, we have $Pr[|\lambda|\geq t\sigma]\leq\frac{1}{t}\cdot\exp(-l^{2}/2)$ , where
$xarrow N(0, \sigma^{2})$ .

For $\alpha\in(0,1),$ $\Psi_{\alpha}$ denotes the folded Gaussian dis-
tribution over $T=R/\mathbb{Z}[14]$ , obtained by (1) take a
sample $x$ from $N(O,\alpha^{2}/2\pi)$ and (2) output $xmod 1$ .
We have $Pr_{xarrow\Psi(r}[|\lambda\{\geq t]\leq\frac{\alpha}{\sqrt{2\pi}t}\cdot\exp(-\pi l^{2}/\alpha^{2})$ by

simple calculations. Often, we set $t$ a constant and
$\alpha=1/\omega(\sqrt{\log n})$ to ensure that the right hand side
is negligible in $n$.

For any probability distribution $\phi$ over $T$ and an in-

teger $q\in N,\overline{\phi}$ denotes the discretization of $\phi$ over $\mathbb{Z}_{q}$ ;

the distribution is defined by the following procedure:
(1) take a sample $xarrow\phi$ and (2) output $\lfloor qx\rceil mod q$ .

For $s\in \mathbb{Z}_{q}^{n}$ and a distribution $\chi$ over $\mathbb{Z}_{q}$ , let $A_{s,\gamma}$ be
a dlstribution over $\mathbb{Z}_{q}^{n}\cross \mathbb{Z}_{q}$ defined as follows: (1) take
samples $\partialarrow \mathbb{Z}_{q}^{n}$ and $xarrow X$ and (2) output $(a, s^{T}\partial+x)$ .

For simplifying expressions, we define $A_{S\chi}$ for a
matrix $S\in \mathbb{Z}_{q}^{nx1}$ as follows: (1) take samples $aarrow \mathbb{Z}_{q}^{n}$

and $xarrow\chi^{/}$ and (2) output $(a, S^{T}a+x)$ .
The (search) LWE problem with respect to $q$ and $X$ ,

denoted by $sLWE(q,x’)$ , is finding $s\in \mathbb{Z}_{q}^{n}$ given oracle
access to $A_{s\chi}$ .

For an integer $q$ $=$ $q(n)$ and a distribution $\chi$

over $\mathbb{Z}_{q}$ , the (decision) leaming with errors problem
$dLWE(q,\chi)$ is distinguishing the oracle $A_{s\chi}$ from the
oracle $U(\mathbb{Z}_{q}’’\cross \mathbb{Z}_{q})$ for a uniformly random $s\in \mathbb{Z}_{q}^{n}$ .

Note that an adversary $\mathcal{A}$ distinguishing $A_{s\chi}$ and
$U(\mathbb{Z}_{q}^{n}\cross \mathbb{Z}_{q})$ with advantage $\epsilon$ implies an adversary dis-

tinguishing $A_{S\chi}$ and $U(\mathbb{Z}_{q}^{n}\cross \mathbb{Z}_{q}^{l})$ for $Sarrow \mathbb{Z}_{q}^{1}$ with ad-
vantage $\epsilon/1$. The proof is simply obtained by the hy-
brid lemma [13].

5 Proxy Re-Encryption Schemes

We employ the variant by Peikert, Vaikuntanathan,

and Waters [13] of Regev’s public-key encryption
scheme [14]. The main algorithms are the same as
those in the PVW scheme. We add to it a re-encryption
key generation algorithm and a re-encryption algo-
rithm appeared in Section 1.

5.1 Our First Construction

Our PRE scheme LWEPRE is defined as follows:

Setup (1): Given a security parameter $n$, it outputs $\perp$

as param.
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Reg $(\perp, i)$ ; It generates $Aiarrow \mathbb{Z}_{q}^{nxm},$ $S_{i}arrow \mathbb{Z}_{q}^{n\cross/}$ , and Theorem 5.3 (Security). Let $m\geq 5(n+l)\log q$ . The
$X_{j}arrow\prime Y^{/xm}$ , and ComputeS $P_{j}=S_{i}^{T}A_{i}+X_{i}\in$ abOve SCheme iS IND-PRE一 Cl勢 SeCure if $dLWE(q,\chi)$

$\mathbb{Z}_{q}^{1xm}$ . It outputs $ek_{I}=(A_{I}, P_{I})$ and $dk_{I}=S_{i}$ . is hard on average.

$ReKeyGen(dk_{i}=S_{i}, dk_{j}=S_{j});S_{I}-S_{j}\in \mathbb{Z}_{q}^{nxt}.$

It outputs $R_{Irightarrow j}$ $=$
Proof It follows by combining the claims below. $\square$

Sequence of games: We define the sequence of the

Enc $(ek=(A, l\partial, w)$ :The message space is $\mathbb{Z}_{\rho}^{/}$ . It, games and bound the distance between the games.

given $w$, computes $t=$ $t(w)$ $\in \mathbb{Z}_{q}^{1}$ , where Gameo: The original IND-PRE-CPA game. FIrst,
$t(w)=\lfloor wq/p\rceil\in \mathbb{Z}_{q}$ and chooses avector the challenger feeds $\perp$ to the adversary. The
$earrow\{0,1\}^{m}\subset Z_{q}^{m}$ uniformly at random. It out- challenger simulates the oracles in the chal-
puts apair $(u, v)=(Ae, Pe+t)\in \mathbb{Z}_{q}^{n}\cross \mathbb{Z}_{q}^{/}$ as alenge phase. If the oracle CHALLENGE receives
cIphertext. $(l, W_{0}, W_{1})$ , it flips acoin $b\in\{0,1\}$ and retums

the target ciphertext $(u^{*}, f)=(A_{l}\cdot e^{*},$ $P_{l^{\backslash }}e^{*}+$

$ReEnc(rk_{irightarrow j}=R_{irightarrow j}, (u, v_{i}));$ It computes $v_{j}=v_{i}-$ $t(w_{b})),$ where $e^{*}arrow\{0,1|^{m}.$ Finally. the adver-
$R_{irightarrow j}^{T}u$ and outputs $(u, v_{j})$ . sary outputs aguess $b’$ . If $b=b’$ , then the chal-

lenger outputs 1, otherwise $0$ .
Dec $(dk=S,$ $(u, \emptyset)$ :It computes $d=\gamma-S^{T}u\in Z_{q}^{/}$ and

outputs the plaintext $w\in \mathbb{Z}_{\rho}^{/}$ such that $d-t(v)\in$ Gamel: We modify the above game, by changing
$Z_{q}^{t}$ is closest to $0$ . the generation methods of keys. At the be-

ginning of the challenge phase, the challenger
The parameters setting for correctness appeared first generates $re$-encryption keys $R_{1rightarrow J}arrow \mathbb{Z}_{q}^{nx1}$

in $[13|$ . for $j=2,$ $\ldots$ , Q. The other re-encryption key

Theorem 5.1 (Correctness [13]). $Let\chi=\overline{\Psi}_{tY}$ . Let $q\geq$

$R_{irightarrow j}$ is computed by $R_{irightarrow j}=R_{1rightarrow t}-R_{1rightarrow I}$ .

4 $pm,$ $let\alpha\leq 1/(p\sqrt{m}\cdot g(n))$ for anyg$(n)=\omega(\sqrt{\log n})$ .
Next it chooses $S|arrow \mathbb{Z}_{q}^{nx1},$ $A_{1}arrow \mathbb{Z}_{q}^{nxm}$ , and

Then, the $\partial bove$ scheme is correct.
$X_{1}arrow\chi^{\ltimes m},$ and computes $P_{1}=s_{1}^{\tau_{A_{1}}}+X_{1}$ .
If INIT $1^{l}S$ called with an input I. the challenger

The multi-hop correctness is easily derived by the chooses $A_{1}arrow Z_{q}^{nxm}$ . and $X_{1}arrow\chi^{\ltimes m}$ , and com-
correctness. putes $P_{i}=S^{T}A_{i}-R^{T}A_{i}+X_{i}$. If $R_{E}K_{EY}$ is

called with $i,j\in HU$, then it returns $R_{irightarrow j}$ . If
Theorem 5.2 (Multi-hop correctness). Let $q,$ $\alpha$ , and $g$ $R_{E}E_{N}c$ is called with $i,j(u, c)$ , then it uses the
be $\epsilon s$ in the above. $Then_{l}$ the above scheme is multi- re-encryption key $R_{irightarrow j}$ to re-encrypt the cipher-
hop correct. text. The other conditions are the same as in the

Proof. Consider the users 1, . .., $k$. Suppose that
original game, $Game_{0}$ .

$(u, v_{1})$ is the valid ciphertext under the encryption key $Game_{2}$ :We replace the generation method of keys.
$(A_{1}, P_{1})$ of the user land the re-encryption procedure The challenger queries to the oracle $A_{S_{\mathcal{X}}}$ and
is performed from 1 to $k$ through 2,

$\ldots,$ $k-1.$ By the obtains $Qm$ samples $(\overline{A},\overline{l}\partial\in \mathbb{Z}_{q}^{nxQm}\cross \mathbb{Z}_{q}^{\ltimes Qm}$ .
re-encryption procedures, we have that Then, it chops into $(\overline{A}_{I},\overline{P}_{i})\in \mathbb{Z}_{q}^{n\cross m}\cross Z_{q}^{1\cross m}-$ for

$v_{k}=v_{1}- \sum_{i=1}^{k-1}R_{irightarrow i+1}^{T}u=v_{1}-\sum_{i=1}^{k-1}(S_{i}-S_{i+1})^{T}u=v_{1}-(S_{1}-S_{k})^{T}u$,
$(A_{I}, P_{i})=(\overline{A}_{I},\overline{P}_{i}-R_{1rightarrow I}^{T}\overline{A}_{i}).$ The other con-
$i=1,$ $\ldots$ , Q. It sets $(A_{1}, P_{1})=(\overline{A}_{1}, P_{1})$ and

ditions are the same as In the previous game,
$Game_{1}$ ,

where $S_{i}$ denotes the decryption key of the user $i$. In
the decryption procedure by the user $k,$ $d_{k}$ is computed $Game_{3}$ :We replace the oracle $As_{X}$ with $U(Z_{q}^{n}\cross$

as follows: $\mathbb{Z}_{q}^{/}$). Hence, the challenger obtains $Qm$ samples
$(A, P)$ from $U(\mathbb{Z}_{q}^{n}\cross \mathbb{Z}_{q}^{l})$ at first. Now, $P$ is chosen

$d_{k}=v_{k}-S_{k}^{T}u=v_{1}-(S_{1}-S_{k})^{T}u-S_{k}^{T}u=v_{1}-S_{1}^{T_{U}}$. uniformly at random.

So, we have that $d_{k}=$ $d_{1}$ . Therefore, the multi-
hop correctness follows from Theorem 5.1 straightfor-
wardly. $\square$

The security of the scheme is based on the $dLWE$

assumption.

Let $S_{1}$ denote the event that the adversary wins,
i.e., $ind-b’=b$ in the game $Game_{I}$ . We denote by
$Adv_{LWEPRE,fl}^{pre-cpa}(n)$ the advantage of the adversary $\mathcal{A}$ in
the IND-PRE-CPA game with the security parameter
$n$ . By definition, we have that $Adv_{LWEPRE,\mathcal{A}}^{ind-pre-cpa}(n)=$

$|2Pr[S_{0}]-1|=|Pr[S_{0}]-Pr[S_{1}]|$ .
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Claim 5.4. $Game_{0}$ and $Game_{1}$ are identical.

Proof Recall that $R_{irightarrow j}=S_{1}-S_{j}$ by the definition.
Hence, we have that $R_{irightarrow j}=R_{1rightarrow j}-R_{1rightarrow 1}$ in $Game_{0}$ .
This calculation corresponds to the computation of
$R_{irightarrow j}$ in $Game_{1}$ .

Additionally, in Gamel we have $S_{j}=S_{1}-R_{1rightarrow i}$

imaginary, s\’ince $P_{i}=(S_{1}-R_{1rightarrow i})^{T}A_{I}+X_{i}$ . Therefore,
two games are identical.

口

Key Lemma: The following lemma states that the
discretized folded Gaussian with variance $\alpha^{2}/2\pi$ statis-
tically hides the discretized folded Gaussian with vari-
ance $\delta^{2}\alpha^{2}/2\pi$ , when $\delta$ is negligible. The similar lemma
appears in [14, 8]. Additionally, the lemmas are used
to construct a key-leakage resilient secret-key encryp-
tion scheme [8] and a key-dependent-message secure
public-key encryption scheme [4].

Binding two $fo$ ]$lowing$ claims, our lemma is ob-
tained.

Claim 5.5. Gamel and $Game_{2}$ are identical.

Proof. In $Game_{1}$ , we have that $P_{j}=S_{i}^{T}A_{I}+X_{i}-$

$R_{1rightarrow I}^{T}A_{j}$ .
In Game2, we have that $P_{i}=\overline{P}_{i}-R_{1rightarrow 1}^{T}A_{1}$ . Since the

samples from $A_{S,\overline{\Psi}_{\alpha}}$ is $(\overline{A},\overline{P}=S^{T}\overline{A}+\lambda)$ . we conclude
that two games are identical. $\square$

Claim 5.6. Game2 and Game3 are computationally
indistinguisha$ble$ if$dLWE(q,\chi)$ is hard on average.

Proof. Notice that in both games, the challenger does
not know the secret keys of the honest users. Hence,
if $Game_{2}$ and Game3 differs computationally, one can
distinguish $A_{S}$. from $U(\mathbb{Z}_{q}^{n}\cross \mathbb{Z}_{q}^{1})$ . $\square$

Claim 5.7. $In$ Game3, no adversary can obtain the
information $bifm\geq 5(n+l)\log q$. Formally, we have
that

$| Pr[S_{3}]-\frac{1}{2}|\leq neg1(n)$ .

Proof. By the parameter setting, we can apply the left-
over hash lemma to the target ciphertext and this con-
cludes the proof. $\square$

5.2 Extension

We next consider a variant of LWEPRE, denoted by
LWEPRE2. In this variant, users share $A$ as the pub-
lic parameter as users share the group $(G, q,g)$ in the
ElGamal encryption scheme.

Setup $(n)$ ; Given input the security parameter $n$ , it
outputs a random matrix $A\in \mathbb{Z}_{q}^{nxm}$ as param.

Reg $(A_{1})$ ; It generates $S_{i}arrow \mathbb{Z}_{q}^{nxl}$, and $X_{1}arrow\overline{\Psi}_{\alpha}^{\ltimes m}$ ,

and computes $P_{i}=S_{i}^{T}A+X_{i}\in \mathbb{Z}_{q}^{\ltimes m}$ . It outputs
$ek_{I}=P_{i}$ and $dk_{i}=S_{i}$ .

ReKeyGen, Enc, ReEnc, Dec: They are the same as
in LWEPRE.

The correctness and the multi-hop correctness of
LWEPRE2 follow from these of LWEPRE. In order
to show the security, we need a lemma on the Causs-
ian below.

Lemma 5.8. Let $q=q(n)$ be super-polynomial integer
function of $n$ and $\alpha=\alpha(n)>0$ and $\delta\in(0,1)$ reals.
If $\delta$ is $n^{-\omega(1)}$

, then the statistical distance between $\overline{\Psi}_{\alpha}$

and $\overline{\Psi}_{\alpha}+\overline{\Psi}_{\delta\alpha}$ is at most $n^{-\omega(1)}$ .

A similar claim already appeared in [14, Claim 2.2],
the statistical distance between $\Psi_{\alpha}$ and $\Psi_{(1+\delta)\alpha}=\Psi_{\alpha}+$

$\Psi_{\delta\alpha}$ is at most $9\delta$ for any $\delta\in[0,1)$ , whose distributions
are not discretized.

Proof. Let $\mu=\delta q\alpha t$ be a natural number. Then,
from Claim 5.9, we have that $Pr[|,\overline{\eta}\geq\mu]$ is at most
$\frac{1}{\sqrt{2\pi}t}\exp(-\pi l^{2})$ . For $\mu\leq\mu’$ , we have that the sta-

tistical distance between $\overline{\Psi}_{a}$ and $\overline{\Psi}_{a}+\mu’$ is at most
$(\mu+2)/q\alpha$ . Hence, the statistical distance between $\overline{\Psi}_{\alpha}$

and $\overline{\Psi}_{\alpha}+\overline{\Psi}_{\delta\alpha}$ is at most $\frac{1}{\sqrt{2\pi}\iota}\exp(-\pi l^{2})+2\delta t$. By set-

ting $t=\omega(\sqrt{\log n})\in$ poly $(n)$ and $\delta t=n^{-\omega(1)}$ , we have
that the upperbound is $n^{-\omega(1)}$ . ロ

For example, we set $q(n)=n^{2\log n},$ $\alpha=1/n^{2},$ $\delta=$

$n^{-}$ iog $n,$ $t=\log n$. Then, $q\cdot\delta\alpha=n^{\Theta(\log n)}$ is super-
polynomial in $n$ and $\delta t=n^{-\Theta(\log n)}$ is negligible in $n$.

Claim 5.9. Let $\overline{X}$ be a random variable according to
$\overline{\Psi}_{\delta\dot{\alpha}}$ . Then,

$Pr[|,\overline{\eta}\leq\mu]\geq 1-B(q, \alpha, \delta,\mu)$ ,

where

$B(q, \alpha, \delta,\mu)=\frac{\delta q\alpha}{(\mu+1/2)\sqrt{2\pi}}\cdot\exp(-\frac{\pi(\mu+1/2)^{2}}{\delta^{2}q^{2}\alpha^{2}})$ .

In particular if $\mu=\delta q\alpha\cdot\omega(\sqrt{\log n}),$ $Pr[|l\overline{\eta}\geq\mu]$ is
negligible in $n$ .

Proof. Let $B_{\delta}= \frac{\delta q\alpha}{(u+1/2)\sqrt{2\pi}}\exp(-\pi(\mu+1/2)^{2}/\delta^{2}q^{2}\alpha^{2})$ .
In order to prove the claim, it is sufficient to show that,
for $X\sim\Psi_{\overline{\delta}\alpha},$ $Pr[|\lambda|\geq(\mu+1/2)/q]\leq B(q, \alpha, \delta,\mu)$ .
Hence, we show that, for $X\sim N(O, (\delta\alpha)^{2}/2\pi),$ $Pr[|\lambda|\geq$

$(\mu+1/2)/q]\leq B(q, \alpha, \delta,\mu)$ .
Applying the tail bound for the Gaussian that

$Pr[|\lambda|\geq t\sigma]\leq\frac{1}{t}\cdot\exp(-t^{2}/2)$ for $X\sim N(O, \sigma^{2})$ , we
have that

$Pr[|\lambda|\geq(\mu+1/2)/q]\leq\frac{\delta q\alpha}{(\mu+1/2)\sqrt{2\pi}}\exp(-\frac{\pi(\mu+1/2)^{2}}{\delta^{2}q^{2}\alpha^{2}})$ .
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This completes the proof 口

Claim 5.10. For any $\alpha>0_{l}$ any $q\in N_{i}$ and $any\mu\in N$ ,

the statistical distance between $\overline{\Psi}_{\alpha}$ and $\overline{\Psi}_{\alpha}+\mu$ is at

most $(\mu+2)/q\alpha$ .

Proof Let us consider a statistical distance $\Delta_{\mu}$ be-

tween $dN_{q}(\alpha^{2}/2\pi)$ and $dN_{q}(\alpha^{2}/2\pi)+\mu$ , where $dN_{q}(\sigma^{2})$

is the following distribution; samples $X$ from $N(O, \sigma^{2})$

and returns $\lfloor q\lambda]$ . Since $\Delta_{\mu}\geq\Delta(\overline{\Psi}_{tt},\overline{\Psi}_{\gamma}+\mu)$ , we bound
this distance by $(\mu+2)/q\alpha$ .

It is obvious that $\Delta_{\mu}\geq\Delta_{\mu’}$ if $\mu\geq\mu’$ . Hence, we
assume that $\mu$ is even and show that $\Delta_{\mu}\leq(\mu+1)/q\alpha$ .
Now, since $\mu$ is even, the probability that $\mu/2$ is the

sample from $dN_{q}(\alpha^{2}/2\pi)$ equals to the probability that
from $dN_{q}(\alpha^{2}/2\pi)+\mu$ . Therefore, we have that

is computed by $R_{irightarrow j}=R_{1rightarrow j}-R_{1rightarrow I}$ . Next it

chooses $S_{1}arrow \mathbb{Z}_{q}^{n\cross 1}$ and $X_{1}arrow\lambda’\ltimes m$ , and com-
putes $P_{1}=S_{1}^{T}A+X_{1}$ . If INIT is called with an
input $i$, the challenger chooses and $X_{i}arrow\chi^{\ltimes m}$ ,

and computes $P_{i}=S_{1}^{T}A-R_{1rightarrow I}^{T}A+X_{i}$ . If $R_{E}K_{E}v$

is called with $i,j\in HU$, then it retums $R_{irightarrow j}$ . If
$R_{E}E_{N}c$ is called with $i,j(u, c)$ , then it uses the
re-encryption key $R_{irightarrow j}$ to re-encrypt the cipher-
text. The other conditions are the same as in the
original game, $Game_{0}$ .

Gamel. $5^{;}$ We change the generation method of the
noises. We replace $X_{1},$

$\ldots,$
$Xqarrow\overline{\Psi}_{a}^{\ltimes m}$ with

$X+X_{1},$
$\ldots,$ $X+X_{Q}$ , where $Xarrow\overline{\Psi}^{\ltimes m}$ . Hence,

the key of the user $i$ is $P_{i}=s_{11rightarrow I}^{\tau_{A-R^{\delta}}P_{A}}+X+$

$X_{i}$ .

$\Delta_{\mu}\leq 2\sum P_{\Gamma}[X=k]k<\mu/2^{X\sim dN_{q}(\alpha^{2}/2\pi)}$

一

$X\sim dN_{q}(\alpha^{2}/2\pi)+\mu Pr[X=k]$
$Game_{2}:$ We replace the key of the user 1. The chal-

lenger queries to the oracle $A_{S.\overline{\Psi}_{\delta\alpha}}$ and obtains $m$

$=2 \sum_{k<\mu/2}\int_{k-1/2}^{k+1/2}\frac{1}{q\alpha}\rho_{q\alpha}(x)dx-\int_{k-1/2}^{k+1/2}\frac{1}{q\alpha}\rho_{q\alpha}(x$
一 $\mu)$ dx

samples $(\overline{A},\overline{P}=S^{T}\overline{A}+4\overline{\eta}\in \mathbb{Z}_{q}^{n\cross m}\cross Z_{q}^{\ltimes m}.$ It
computes $P_{i}=\overline{P}-R_{1rightarrow I}^{T}\overline{A}+X_{t}$. where $X_{i}arrow$

$\overline{\Psi}_{\alpha}^{\ltimes m}$ for $i=1,$ $\ldots,$
$k$. The other conditions are

$=2( \int_{-\infty}^{\mu/2+1/2}\frac{1}{q\alpha}\rho_{q\alpha}(x)dx-\int_{-\infty}^{\mu/2+1/2}\frac{1}{q\alpha}\rho_{q\alpha}(x$ 一 $\mu)d\sqrt{}$
the same as in the previous game, $Game_{1.5}$

$Pr$ $[X\leq\mu/2+1/2]$ Game3: We replace the oracle $A_{S,\overline{\Psi}_{\delta\sigma}}$. with $U(\mathbb{Z}_{q}^{n}\cross \mathbb{Z}_{q}^{1})$ .
$X\sim N(0.q^{2}\alpha^{2}/2\pi)$ Then, the challenger obtains $m$ samples $(A$ , lう

$Pr$ $[X\leq-\mu/2+1/2]$ from $U(\mathbb{Z}_{q}^{n}\cross \mathbb{Z}_{q}^{/})$ .
$X\sim N(0,q^{2}\alpha^{2}/2\pi)$

The main strategy of the security proof is similar
$\leq$ $Pr$ $[|4X\uparrow\leq\mu/2+1/2]$

$X\sim N(0,q^{2_{t}2}/2\pi)$ to that in the previous one. We note that Gamel and

$= \int_{-0+1)/2}^{(\nu+1)/2}l\frac{1}{q\alpha}\exp(-\pi\frac{\lambda^{2}}{q^{2}\alpha^{2}})dx$

$Game_{1.5}$ is statistically identical if the parameter set-
tings satisfy the conditions in Lemma 5.8. The other

$\leq\int_{-(\mu+1)/2}^{(\mu+1)/2}\frac{1}{q\alpha}dx=\frac{\mu+1}{q\alpha}$ . in the previous proofs. We omit the details due to limit

games are statistically or computationally identical as

of the paper.

口

Proof of Security: We define the sequence of the

games and bound the distance between the games.

$Game_{0}$ : The original IND-PRE-CPA game. First, the
challenger feeds $Aarrow \mathbb{Z}_{q}^{nxm}$ to the adversary $\mathcal{A}$ .

The challenger simulates the oracles in the chal-

lenge phase. If the oracle CHALLENGE receives
$(\Gamma, w0, w_{1})$ , it flips a coin $b\in\{0,1\}$ and retums

the target ciphertext $(u^{*}, V)=$ $(Ae^{*},$ $P_{l}\cdot e^{*}+$

$t(w_{b}))$ , where $e^{*}arrow\{0,1\}^{m}$ . Finally, the adver-
sary outputs a guess $b’$ . If $b=b’$ , then the chal-
lenger outputs 1, otherwise $0$ .

Game $\iota$ : We modify the above game, by changing
the generation methods of keys. At the begin-
ning of the challenge phase, the challenger first
generates re-encryption keys $R_{1rightarrow j}arrow \mathbb{Z}_{q}^{nx/}$ for

$j=2,$ $\ldots,$
$Q$. The other re-encryption key $R_{irightarrow j}$
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