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Proxy Re-Encryption based on Learning with Errors
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Abstract— Proxy re-encryption enables a proxy to convert a ciphertext for some user to a cipher-
text for another user, but a proxy cannot learn information of messages. All of the proxy re-encryption
and identity-based proxy re-encryption schemes are based on the number-theoretic assumptions. This
paper proposed proxy re-encryption schemes based on the learning with errors problem. They are first

schemes based on combinatorial problems.

Keywords: proxy re-encryption, learning with errors, lattice problems.

1 Introduction

Suppose that Alice wants to forward a received en-
crypted e-mail to Bob in the public channel. She
decrypts it by her secret key, encrypts the message
with Bob's public key, and sends it to him. However,
decryption and encryption are costly for her mobile
phone in general. Therefore, she wants a mail server
to forward her mail to Bob automatically. In this case,
she does not trust the server, hence, she does not want
to give her secret key to the server. The one of solu-
tions is proxy re-encryption [3].

In a proxy re-encryption (PRE) scheme, the server
is given a re-encryption key rk4. p between Alice and
Bob. The server, given a ciphertext ct4 for Alice, can
convert it to a ciphertext ctg for Bob by using the re-
encryption key rks.. g and without decrypting ct4. In
addition, proxy re-encryption ensures that even if the
server knows rk4., g, it cannot learn the message of ct4.

The study of proxy re-encryption is initiated by
Blaze, Bleumer, and Strauss [3]. They formalize a
proxy re-encryption and gave an example based on
the ElGamal encryption scheme. There are several
proxy re-encryption schemes [3, 2, 5, 10, 7, 1, 11] and
identity-based proxy re-encryption schemes [12, 9, 6]
in the literature. However, their underlying problems
are the decisional Diffie-Hellman problem or its vari-
ants.

In this paper, we propose proxy re-encryption
schemes based on other problems, the learning with
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errors and lattice problems. Qur constructions are ob-
tained by extending Regev’s encryption scheme [14].

Ideas from the ElGamal-based PRE: We note that
some lattice-based cryptosystems have similar struc-
ture on the DDH-based cryptosystems while inherent
noises of lattice-based cryptosystems disturb the struc-
ture.

Consider the ElGamal encryption scheme over G =
(g> with order a large prime g. The key pair is (x, y =
g") for randomly chosen x. The ciphertext of m € G
under the encryption key yis (g¥, m - 3*) for randomly
chosen k. Let (x4, y4 = g) and (xp, yz = g*%) denote
Alice’s and Bob’s key pair, respectively. Assume that
the proxy has the re-encryption key rae.2 = x4 — xp
and has the ciphertext {c|, ) to be converted. Then,
the conversion is done by

(d. &) = (a2 - (%)

— (gk,m . g"XA .gk(XB—XA)) = (gk,IH-_ylé)‘

It can be shown that this proxy re-encryption scheme
is based on the hardness of the DDH problem.

We here recall Regev’s encryption scheme. The key
pair is computed by (s, (A, p= s7 A+ x)), where s €
Zg A e ZF™M x € Zéx”’ and the magnitudes of the
elements of x are relatively smaller than g/4m, say the
f1-norm of x is at most g/4. The encryption of the
message msg € {0, 1} under the encryption key (A, p
is (u, v) = (Ae, pe + msg|q/2]), where e « {0, 1}™.

The decryption procedure is as follows: (1) compute
d = v— s uand (2) output 0 if the absolute value of d
is at most g/4 and output 1 otherwise.

Let (s4. (As. pa = s;Ag+ x4)). and (sp, (Ap, ps =
sgA p+ xp)) denote Alice’s and Bob's key pair, respec-
tively. Let ra g = s4 — sg. Then, the conversion from
(u, v4) to (i, vp) is done by (u, vg) = (u, v4 — ’£HB")-



which is similar to that of the ElGamal-based proxy
re-encryption scheme. The decryption by Bob works
correctly since

dp = VE—S£U= VA—(SA-—SB)T A
The proof strategy for security is also similar to that
of the ElGamal-based proxy re-encryption scheme.

2 Preliminaries

A security parameter is denoted by n. We use the
standard O-notation. The function f(n) is said to be
negligible if £(n) = n~“(!). For a distribution y, we of-
ten write x « y which indicates that we take a sample
x from y.

The leftover hash lemma often appears in the con-
text of lattice-based cryptography. We summarize the
arguments which appeared in many papers on lattice-
based cryptography. See [14] for the proof.

Lemma 2.1 (The uniformity lemma for lattice-based
hash functions). Consider H = {ha : {0,1}" — Zg*f |
Ace nge)xm}, where hale) = Ae. Let H be the uni-
form distribution over H, and X and U random vari-
ables distributed uniformly over |0, 1}” and Zg* ¢ re-
spectively. Applying the variant of the leftover hash
lemma, we have

Pr{A(H(X), U) > o—4 (m=(n+£) logq)} < o= 3{m—(n+0)logq)
H

3 Proxy Re-Encryption

In this paper, we consider bidirectional and multi-
hop proxy re-encryption. A PRE scheme is called bidi-
rectional, if a proxy has a re-encryption key rk;.., ;. it
can convert a ciphertext for the user j to a ciphertext
for the user j, vice versa. A PRE scheme is said to
be multi-hop, a proxy can re-encrypt a ciphertext for
the user Jinto a ciphertext for the user jand it can re-
encrypt that into one for the user & and so on.
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A PRE scheme PRE is a sextuplet of algorithms:

Mode! of Proxy Re-Encryption

Setup(1”): The setup algorithm, given the security
parameter n, outputs parameters param.

Reg(param, /): The registration algorithm, given the
parameters param and a user identity J, outputs
the pair of an encryption key and a decryption
key (ek;, dk;).

ReKeyGen(dk;, dk;): The re-encryption key genera-
tion algorithm, given two decryption keys dk;
and dk;, outputs a re-encryption key rk; ;.

u- shu=va— syu=ds.
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Enc{param, ek;, msg): The encryption algorithm,
given the parameters param, the encryption key
ek; of the user j, and a message msg, outputs a
ciphertext ct;.

ReEnc(rk, ;, ct): The re-encryption algorithm, given
the re-encryption key rk;; between the users i
and j, and a ciphertext ct; for the user j, it outputs
a ciphertext ct; for the user .

Dec(dk, cf): The decryption algorithm, given the de-
cryption key dk and the ciphertext ct, outputs a
plaintext msg.

Our definition of correctness is slightly weaker than
the standard one [5]. We say a PRE scheme PRE is
correct if an underlying public-key encryption scheme
PKE = (Setup, Reg, Enc, Dec) is correct. Formally, it
holds that if for any valid msg, there exists some neg-
ligible function negl(n) such that for any i

param «— Setup(17);
(ek;, dk;) «— Reg(param, i),
ct «— Enc(param, ek;, msg),
msg « Dec(dk;, cb);

Pr|msg + msg :

Additionally, we say a PRE scheme PRE is multi-hop
correct if for any valid msg and for any integer k > 1,
one can correctly decrypt the ciphertext of msg con-
verted k times into msg, that is,

param « Setup(17); 1
(ek;, dk;) «— Reg(param, ));

rkies 11 — ReKeyGen(dk;, dku1);
cty « Enc(param, ek,, msg);
ctis] «— ReENc(rkje 1, ct));

| msg «— Dec(dky, cty):

Pr|msg # msg:

where jruns from 1 to k.

3.2 IND-PRE-CPA Security

We describe the formal definition of CPA security of
proxy re-encryption, denoted by IND-PRE-CPA. Con-
sider the following experiment Expg';g;_q’a(n) be-
tween the challenger C and the adversary A.

Setup: The challenger takes a security parameter n.
It sets HU, CU « @, runs the algorithm Setup with
17, and obtains parameters param, where HU and CU
denote the sets of honest users and corrupted users, re-
spectively. It gives A the parameters param.

Challenge Phase: In this phase, the adversary issues
queries to the following oracles in any order and many
times except to the constraint in the oracle CHALLENGE,

< negl(n}.

< pell



e The oracle IniT receives an index i If i €
HU U CU then it returns 1. Otherwise, it ob-
tains (ek;, dk;) «— Reg(param, 1), adds i to HU,
and provides A with ek;.

e The oracle Corr receives an index 7. If i € HUU
CU then it returns L. Otherwise, it generates
(ek;, dky) «— Reg(param; r;), adds i to CU, and
provides A with (ek;, dk;) and r;.

e The oracle REKEY receives two indices i, j €
HUvu CU. Ifi,je HUor i, j € CU returns
rk;,; < ReKeyGen(dk;, dk;). Otherwise, the
oracle returns L.

e The oracle REEnc receives two indices 4, j €
HUUCUand aciphertext ct. If i, je HUor i, je
CU, then it obtains rk;.; « ReKev(dk, dk),
obtains ct « ReEnc(param, rk;., j»ct), and pro-
vides A with the new ciphertext ct. Otherwise,
the oracle returns 1.

o The oracle CHALLENGE can be queried only once.
This oracle receives two plaintexts msgy, msg;
and a target user /*. If i is not in HU then
it provides L with the challenger and C out-
puts 0 and halts. Otherwise, the oracle flips a
coin b € {0, 1}, sets the target ciphertext to be
ct® « Enclekr, msgy), and sends ct” to the ad-
versary and b to the challenger.

Guessing Phase: Finally, A outputs a guess &' €
{0, 1}. If &’ = b, the challenger outputs 1, otherwise
0.

Definition 3.1 (IND-PRE-CPA security). Let PRE be
a PRE scheme, A an adversary, and n a security pa-
rameter. We define the advantage of A as

R

We say that PRE is IND-PRE-CPA secure if
Advg’gg A T2(-) is negligible for every polynomial-
time adversary A. '

Since we only consider IND-PRE-CPA security, we
prohibit the adversary to re-encrypt ciphertexts from
an honest user to a corrupted user. This is because
that this access can simulates a decryption oracle of
the honest user.

-4 Learning with Errors

The learning with errors {LWE) problem is a gener-
alization of the learning parity noise (LPN) problem,
proposed by Regev [14].
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We recall the definitions of the distributions appear-
ing the definition of the LWE problem and lattice-
based cryptosystems. Later, we define two versions
of the LWE problem.

The Gaussian distribution with mean 0 and vari-
ance o2, de?oted by N(0, o?), is defined by the density

function oy exp(—x*/20%) over R. By the tail in-

equality, we have Pr[|y = to] < i[ - exp(=£2/2), where
x « N0, o?).

For @ € (0,1), ¥, denotes the folded Gaussian dis-
tribution over T = R/Z [14], obtained by (1) take a
sample x from N(0,o?%/2x) and (2) output x mod 1.
We have Pryy [l > o] < -\7"—2—”—[ - exp(-n#/a?) by
simple calculations. Often, we set ¢ a constant and
a = 1/w(+flog ) to ensure that the right hand side
is negligible in n.

For any probability distribution ¢ over T and an in-
teger g € N, ¢ denotes the discretization of ¢ over Zg;
the distribution is defined by the following procedure:
(1) take a sample x < ¢ and (2) output | gx] med g.

For s € Z7 and a distribution x over Zg, let A, be
a distribution over Z{ x Z, defined as follows: (1) take
samples a « Zj and x < y and (2) output (a, sT a+ x).

For simplifying expressions, we define Ag, for a
matrix S € ng’ as follows: (1) take samples a « Zy
and x « y' and (2) output (a, STa + x).

The (search) LWE problem with respect to g and x,
denoted by sSLWE(q, ), is finding s € Z7 given oracle
access to Ag,.

For an integer ¢ = gq(n) and a distribution x
over Z,, the (decision) learning with errors problem
dLWE(4q, x} is distinguishing the oracle Ay, from the
oracle U(Zg % Zg) for a uniformly random s € Zy.

Note that an adversary A distinguishing A, and
U(Z7 x Zg) with advantage e implies an adversary dis-
tinguishing As, and U(Z‘; X Zf]) for § « Zﬂ, with ad-
vantage €/1. The proof is simply obtained by the hy-
brid lemma [13].

5 Proxy Re-Encryption Schemes

We employ the variant by Peikert, Vaikuntanathan,
and Waters [13] of Regev’s public-key encryption
scheme {14]. The main algorithms are the same as
those in the PVW scheme. We add to it a re-encryption
key generation algorithm and a re-encryption algo-
rithm appeared in Section 1.

5.1 OQur First Construction
Our PRE scheme LWEPRE is defined as follows:

Setup{1”}: Given a security parameter n, it outputs L
as param.



Reg(L, ): It generates A; — Z”"m S — an{ and
X; — x™™ and computes P = STA + X €
Z”"" It outputs ek, = (A;, P) and dk = ;.

ReKeyGen(dk; = S, dk; = §): It outputs Ri,; =
S - Sj € ngj.

Enc{ek = (A, P, w): The message space is ZL. It,
given w, computes f = t(w) € Z!, where
t{w) = |wg/pl € Z, and chooses a vector

e (0,1)" c Zg’ uniformly at random. It out-
puts a pair (1, v) = (Ae, Pe+ () € ZIx Z as a
ciphertext.

ReEnc(rk;,; = Ri.; (u, v})): It computes v; = v, —
J J P J

RITHJu and outputs (u, v)).

Dec(dk = S, (u,v)): Itcomputes d = v—STu e Z’ and
outputs the plaintext w ¢ Z" such that d — t(v) €
Z" is closest to 0.

The parameters setting for correctness appeared
in [13].

Theorem 5.1 (Correctness [13]). Lety = ¥,. Letg >
4pm, leta < 1/(pVm-g(n)) for any g(n) = w(+flogn).

Then, the above scheme is correct.

The multi-hop correctness is easily derived by the
correctness.

Theorem 5.2 (Multi-hop correctness). Let q, a, and g
be as in the above, Then, the above scheme is multi-
hop correct.

Proof. Consider the users 1,...,k  Suppose that
(4, v1) is the valid ciphertext under the encryption key
(A}, Py) of the user 1 and the re-encryption procedure
is performed from 1 to & through 2, . .., k— 1. By the
re-encryption procedures, we have that

k-1 k-1
T T
Vi = VI“Z R L u= Vl—Z(Sj—SM) u=vi—(S-5)"u,
i=1 =1

where S; denotes the decryption key of the user i. In
the decryption procedure by the user k, di is computed
as follows:

dy = vy - S{uz v — (5 - Sk)Tu—S[u= Vi —SITu

So, we have that dy = d). Therefore, the multi-
hop correctness follows from Theorem 5.1 straightfor-
wardly. 0

The security of the scheme is based on the dLWE
assumption.
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Theorem 5.3 (Security). Let m > 5(n+ Nlogq. The
above scheme is IND-PRE-CPA secure if dLWE(q, x)

is hard on average.

Proof. It follows by combining the claims below. 0

Sequence of games: We define the sequence of the
games and bound the distance between the games.

Gamey: The original IND-PRE-CPA game. First,
the challenger feeds L to the adversary. The
challenger simulates the oracles in the chal-
lenge phase. If the oracle CHALLENGE receives
(1", wo, wy), it flips a coin b € {0, 1} and returns
the target ciphertext (', v*) = (Ape*, Pre* +
t(wp)). where €' « {0,1}™. Finally, the adver-
sary outputs a guess Y. If b = ¥, then the chal-
lenger outputs 1, otherwise 0.

Game;: We modify the above game, by changing
the generation methods of keys. At the be-
ginning of the challenge phase, the challenger
first generates re-encryption keys Ry, ; « Z”"’
for j = 2,..., Q The other re-encryption key
Ri.; is computed by Ri; = Ry~ R,
Next it chooses S « Z™ A Z”"’", and
X1 e x™™ and computes P, = S A, + X].
If IniT is called with an input j, the challenger
chooses A; « Z7™, and X; « ¥>™ and com-
putes P; = SITAj erHiA' + X;. If REKEy is

called with j, j € HU, then it returns R, ;. If

ReENc is called with 4, j, (1, ), then it uses the

re-encryption key R, to re-encrypt the cipher-

text. The other conditions are the same as in the
original game, Gamey.

Game;: We replace the generation method of keys.
The challenger queries to the oracle As, and
obtains QOm samples (4, P) € Z"XQ'" x Z'XQ'"
Then, it chops into (A;, P) € Z”"’” X Z’x”’ for
i=1,...,0. Ttsets (Al,Pl) = (Al,Pl) and
(A, P,) = (A, Pi— R]_ A). The other con-
ditions are the same as in the previous game,
Game;.

Gamej: We replace the oracle Ag, with Ulzg x
) Hence, the challenger obtains Qm samples
(A P from U(Z”XZ{F) at first. Now, Pis chosen
uniformly at random,

Let S; denote the event that the adversary wins,
ie., b’ = b in the game Game; We denote by
Adv :_'\':,E‘:;;‘: (m) the advantage of the adversary A in
the IND-PRE-CPA game with the security parameter
n. By definition, we have that Adv/lo-Pre—Pa(y

LWEPRE, A
|2 Pr[So] - 1| = | Pr[So] — Pr[Sy]].



Claim 5.4. Gamey and Game, are identical.

Proof. Recall that Riesj = §;— S, by the definition.
Hence, we have that R, ; = R ;- Ri.;in Gamey.
This calculation corresponds to the computation of
R, ;in Game,.

Additionally, in Game; we have S; = 5
imaginary, since P; = ($, - R1,)7 A
two games are identical.

- Rl-—u’
i+ X;. Therefore,

m]
Claim 5.5. Game; and Game; are identical.

Proof. In Game;, we have that P; =
R]TH,A

In Game;, we have that P, = P,— leA Since the
samples from Agy is (4, P= ST A+ X), we conclude

that two games are identical. a

SiTA;-i- 1", -

Claim 5.6. Game; and Games are computationally
indistinguishable if dLWE(q, x) is hard on average.

Proof. Notice that in both games, the challenger does
not know the secret keys of the honest users. Hence,
if Game; and Games differs computationally, one can
distinguish As,, from U(Z] x Z!). u]

Claim 5.7. In Games, no adversary can obtain the
Information b if m > 5(n + } log q. Formally, we have
that

Pr[S3] - %l < negl(a).

Proof. By the parameter setting, we can apply the left-
over hash lemma to the target ciphertext and this con-
cludes the proof. O

5.2 Extension

We next consider a variant of LWEPRE, denoted by |

LWEPREZ2. In this variant, users share A as the pub-
lic parameter as users share the group (G, ¢, g in the
ElGamal encryption scheme.

Setup(n): Given input the security parameter n, it
outputs a random matrix A € Z7*™ as param.

Reg(A,): It generates S; « ng’, and X; « ¥hm
and computes P; = SITA + X e Zg‘”’. It outputs
Ekj = P,' and dk, = S,

ReKeyGen, Enc, ReEnc, Dec: They are the same as
in LWEPRE.

The correctness and the multi-hop correctness of
LWEPRE2 follow from these of LWEPRE. In order
to show the security, we need a lemma on the Gauss-
ian below.
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Key Lemma: The following lemma states that the
discretized folded Gaussian with variance o/ 27 statis-
tically hides the discretized folded Gaussian with vari-
ance 62a%/2n, when 6 is negligible. The similar lemma
appears in [14, 8]. Additionally, the lemmas are used
to construct a key-leakage resilient secret-key encryp-
tion scheme (8] and a key-dependent-message secure
public-key encryption scheme [4].

Binding two following claims, our lemma is ob-
tained.

Lemma 5.8. Let g = g(n) be super-polynomial integer
function of nand @ = o(n) > 0 and 6 € (0,1) reals.
If 5 is W then the statistical distance between ¥,
and ¥, + ‘Pga is at most V).

A similar claim already appeared in [14, Claim 2.2],
the statistical distance between ¥, and Y(1+o)a = Yo+
W5, is at most 96 for any ¢ € [0, 1), whose distributions
are not discretized.

Proof. Let u = é&gat be a natural number. Then,
from Claim 5.9, we have that Pr{]X] > u] is at most
—Fexp( -mt8). For u < y’', we have that the sta-
tistical distance between ¥, and ¥, + yx’ is at most
(u+2)/ qa. Hence, the stanstlcal distance between ‘I’

and W, + ¥, is at most —=— exp(-n#) + 25¢. By set-

=
ting ¢t = w(+/logn) € poly(n) and 6¢ = <), we have
that the upperbound is =1, a]

For example, we set g(n) = ?1°87 o = 1/, 6 =
187 t = logn. Then, g 6a = n®W8" j5 super-
polynomial in nand 6t = n~®U°8" js negligible in n.
Claim 5.9. Let X be a random variable according to
lP()a, Tben

Pl‘[ljﬂ =< I-‘] 2 1 - B(Q': @, 6:#)-

where
- %q mlu+ 1/2)2)
Blg.@.0.) = e+ 12V ( otqta? |

= 8qa - w(flogn), Pr(|lX] = u] is

In particular, if p
negligible in n.

Proof. Let Bs = G:% exp(~m(u+ 1/2)?/62 a?).
In order to prove the claim, it is sufficient to show that,
for X ~ W5, Pr{lX] 2 (u + 1/2)/q] < Blg,a,é,u).
Hence, we show that, for X ~ N(0, (6a)2/27r), PrliX] =
(u+1/2)/ql < Blg, e, 6,p).

Applying the tail bound for the Gaussian that
Pr(lX] = to] < 1. exp(—£/2) for X ~ N0, 72), we

t

have that
Sqa ( n(u + 1/2)2
P 1/2 < e riel
(U 2 s 1/2)/g) < P (-



This completes the proof. O

Claim 5.10. Foranya > 0,anyq€ N, andanyp € N,
the statistical distance between ¥, and ¥, + u is at
most (u + 2)/qa.

Proof. Let us consider a statistical distance A, be-
tween dN,(a?/2n) and dNy(a?/2r)+p, where dN,4(o%)
is the following distribution; samples X from N(0, o?)
and returns | ¢X]. Since A, > A(Y,, ¥, +u), we bound
this distance by (u + 2)/ga.

It is obvious that A, > A, if u 2 . Hence, we
assume that u is even and show that A, < (u + 1)/ge.
Now, since g is even, the probability that u/2 is the
sample from dNg(a?/27) equals to the probability that
from a’Nq(af2 /27) + u. Therefore, we have that

<2 X=K - Pr X=k
k;Z X-qu{a /27: } X~qu(a2/2ﬂ)+u[ }

k+1/2 1 k+1/2 1
=23 [ pldn [ pealr)dx
oy L VA k-1/2 G

u/2+1/2 1 wi2+1/2 1
f —pPga(x)dx — f —pga(x—p) dX)
_ qa _ ga

.

Pr
X~N(0,g%a?/27)

- Pr
X~N(0,2a?/2n)

Pr X1 <u/2+1/2]
X~N(0.Zu?/27)
w+)72 )
—ex
f(;l-l—l )2 qa ( qz 2
w+1)/2
< f 1 Ay M+ 1'
w+1)/2 Qo qe

Proof of Security: We define the sequence of the
games and bound the distance between the games.

g oo

(X<u/2+1/2]

[X < —pj2 + 1/2]

IA

O

Gameg: The original IND-PRE-CPA game. First, the
challenger feeds A « ZZ*™ to the adversary A.
The challenger simulates the oracles in the chal-
lenge phase. If the oracle CHALLENGE receives
(i, wy, wy), it flips a coin b € {0, 1} and returns
the target ciphertext («*,v') = (Ae*, Pre* +
t(wp)), where e* « {0, 1}™. Finally, the adver-
sary outputs a guess &. If b= ¥, then the chal-
lenger outputs 1, otherwise 0.

Game;: We modify the above game, by changing
the generation methods of keys. At the begin-
ning of the challenge phase, the challenger first
generates re-encryption keys Ri.,; « Zg"’ for
J=2,..., Q. The other re-encryption key R;.,;
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is computed by Ri,; = Rjo ;- RlH,. Next it
chooses §; « Z”’” and X; — x> and com-
putes P = STA + X;. If ImiT is called w1th an
input 4, the challenger chooses and X; « y™
and computes P; = ST A- RT_ A+ X, If REKEY
is called with /, j € HU, then it returns R, ;. If
ReEnc is called with i, j, (u, ¢}, then it uses the
re-encryption key R, ; to re-encrypt the cipher-
text. The other conditions are the same as in the
original game, Gamey.

Game;5: We change the generation method of the
noises. We replace Xi,..., Xp « W27 with
X+ Xy,...,X+ Xp, where X « ‘Pb‘”' Hence,
the key of the user jis P; = STA R70 A+ X+
X

Game;: We replace the key of the user 1. The chal-
lenger queries to the oracle Agy, and obtains m
samples (A, P = STA+ X) € Z™ x Zbm 1t
computes P; = P-— RLIA + X,, where X “—
Whm for i = 1,..., k. The other conditions are
the same as in the previous game, Game; 5.

Gamej: We replace the oracle Agyg, with U(Z)xZ]).
Then, the challenger obtains m samples (A, P)
from U(Zg x Zf]).

The main strategy of the security proof is similar
to that in the previous one. We note that Game; and
Game, 5 is statistically identical if the parameter set-
tings satisfy the conditions in Lemma 5.8. The other
games are statistically or computationally identical as
in the previous proofs. We omit the details due to limit
of the paper.
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