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Abstract: Storage is a promising application for permission-less blockchains. Before blockchain,
cloud storage was hosted by a trusted service provider. The centralized system controls the permission
of the data access. In web3, users own their data. Data must be encrypted in a permission-less
decentralized storage network, and the permission control should be pure cryptographic. Proxy
re-encryption (PRE) is ideal for cryptographic access control, which allows a proxy to transfer Alice’s
ciphertext to Bob with Alice’s authorization. The encrypted data are stored in several copies for
redundancy in a permission-less decentralized storage network. The redundancy suffers from the
outsourcing attack. The malicious resource provider may fetch the content from others and respond
to the verifiers. This harms data integrity security. Thus, proof-of-replication (PoRep) must be applied
to convince the user that the storage provider is using dedicated storage. PoRep is an expensive
operation that encodes the original content into a replication. Existing PRE schemes cannot satisfy
PoRep, as the cryptographic permission granting generates an extra ciphertext. A new ciphertext
would result in several expensive replication operations. We searched most of the PRE schemes
for the combination of the cryptographic methods to avoid transforming the ciphertext. Therefore,
we propose a new PRE scheme. The proposed scheme does not require the proxy to transfer the
ciphertext into a new one. It reduces the computation and operation time when allowing a new user
to access a file. Furthermore, the PRE scheme is CCA (chosen-ciphertext attack) security and only
needs one key pair.

Keywords: proxy re-encryption; blockchain; storage; proof-of-replication

1. Introduction

Blockchain technology has been actively developing in recent years. A decentralized
storage network [1] based on the blockchain is a promising application direction. The
decentralized storage network would redefine data ownership, privacy, and accessibility.
Taking the example of the traffic surveillance cameras, the data may be stored on a de-
centralized storage network. Therefore, the public can verify that the data exist, but only
authorized parties can access it. Multiple institutions (such as insurance companies) to
access data require an encryption scheme with access control. Traditional symmetric or
asymmetric cryptography cannot meet this requirement, as these schemes require specify-
ing who can decrypt before encrypting. The proxy re-encryption (PRE) is a suitable scheme
for data sharing.

PRE allows a user to grant access permission in a cryptographic method. Alice would
allow Bob to visit her data under Alice’s authorization. However, the ciphertext must be
transferred to the new one (Figure 1). In a decentralized storage network, data integration
suffers from the challenge of the outsourcing attack. Blockchain consists of many semi-
trusted resource providers. When asked for proof, the malicious provider would download
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the data content from other honest providers on the fly. Proof-of-replication (PoRep) brings
the concept against the outsourcing attack. The idea is to encode the user data with a
unique key, e.g., the provider’s public key. Meanwhile, the encoding algorithm should be
expensive, and decoding is cheap, so the resource provider would not drop the replicated
data, as regenerating the replication would cost more. Since everyone tends to reduce the
cost, the data would lose redundancy without PoRep. PoRep is the mandatory algorithm
to convenience the verifiers that the dedicating storage resource is spending.

Existing PRE is not ideal for a decentralized storage network because the extra cipher-
text would trigger an expensive replicating operation (Figure 2). Combined with PoRep,
the cost of PRE sharing is too high.

We propose a CCA (chosen ciphertext attack)-secure and collusion-resilience (collusion
safe) proxy re-encryption scheme for the decentralized storage network (Figure 3).

1. No new ciphertext is generated for the permission grant in a decentralized stor-
age network. It brings down the cost for proof-of-replication in a permission-less
decentralized storage network.

2. The collusion-resilience scheme in group algebra requires only one key pair.

Figure 1. Traditional PRE requires proxy computation to re-encrypt.

Figure 2. Comparison of the replication in decentralized storage network with or without trans-
ferred ciphertext.
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Figure 3. Our PRE scheme use CA and ReEncrypt key to decrypt.

The rest of the paper is organized as follows. In Section 2, we talk about the detail
of decentralized storage networks and proxy re-encryption. In Section 3, we dive into the
knowledge, terms, and formula used in this work. The proposed scheme and security
analysis are presented in Section 4. In Section 5 we give a practical implementation and
show the experiment result. The various extended questions are talked about in the
evaluation, Section 6. Finally, Sections 7 and 8 provide the conclusion and future work.

2. Related Work

This section will dive deep into the background of the decentralized storage network,
blockchain, and its relationship with proxy re-encryption.

2.1. Decentralized Storage Network

The cloud service is provided by a trusted third party. The data permission is controlled
with a centralized mechanism. With the blockchain innovation, the recent study shows that
the decentralized storage network is viable [1–4]. In the decentralized storage network,
the user is not required to trust any providers, just the cryptography. It brings enormous
confidence to the data owner.

The decentralized storage network is ideally built upon a permission-less blockchain.
Blockchain miners provide the storage resource. The content that a user uploads to the
blockchain is kept by miners. The blockchain makes the storage network permission-less.
The miners can freely join or quit.

In the decentralized storage network, permission control must be cryptographic since
the storage providers are semi-trusted. The existing public-key crypto is required to specify
the target user to decrypt before encryption. Beyond this, PRE allows users to add the
target users by re-encrypt the existing ciphertext into a new one. It is identical to permission
granting at the application level. Thus, PRE schemes are helpful for blockchain storage.

However, a decentralized storage network must periodically check content integrity.
The malicious miner may cheat by fetching content from other honest miners and respond-
ing to the checking. The cheater is committing to keep the content but never spending the
storage resource. A decentralized storage network must be resilient to the outsourcing at-
tack. Proof-of-replication requires the miners to encode the user content into the replication
with each miner’s unique identity. It is intended to make the encoding more expensive.
The miner is willing to save the replication on disk, as it is impossible to fetch the content
from other miners and finish the encoding in the limited time.

2.2. Proxy Re-Encryption and Proof-of-Replication

In 1998, Blaze, Bleumer, and Strauss [5] proposed the first proxy re-encryption scheme
based on a cyclic group [6]. In 2010, Weng et al. [7] proposed a CCA and collusion-resilience
PRE scheme. After 2010 [8,9], most PRE schemes were based on bilinear pairing [10–12] or
lattice algebra structure [13]. The data uploaded must be encrypted in the decentralized
storage network. However, most the PRE schemes are generating the new ciphertext during
the re-encryption. A ciphertext would be replicated with each miners’ unique identity. Any
modification of the ciphertext would lead to more expensive PoRep operations. A PRE
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scheme is ideal not to generate new ciphertext during the frequent permission sharing
actions under the decentralize storage network scenario. Thus, we propose the new
PRE scheme.

While the new PRE schemes are diving into more complex algebra structure, the use
scenarios of PRE are still limited. As business companies back the cloud service, the cloud
and mobile do not fully utilize PRE schemes. The encryption will prevent data analysis
and take extra cost of storage and computation. Owing to the blockchain, we foresee that
blockchain-based decentralized applications will heavily rely on cryptographic schemes.
Web3 allows the user to own their data. The decentralized storage network requires a pure
cryptographic access control feature. PRE is ideal, but PoRep is mandatory.

The first blockchain, Bitcoin, proposed the proof-of-work (PoW) as the consensus
algorithm [14] after PoW was used earlier for anti-spam purpose [15]. Computation was
used as the resource for consensus, such as voting. Later, the storage space as a resource
was studied, which can be classified into two categories. The proof-of-space intends to
replace proof-of-work as the consensus algorithm. This replacement can bring down the
cost of electricity by PoW, but junk data needs to be filled in the hard disk so far. Conversely,
the proof-of-storage algorithm focuses on storing useful data. However, this algorithm
cannot agree on a consensus. It only shows the proof of the data stored. Proof-of-replication
is an extension of proof-of-storage, which convinces the owner that the unique storage
resource keeps the data. In the permission-less blockchain, the PoRep is the key algorithm.
It is nice to design schemes working with PoRep for the storage features. Filecoin uses
SDR as the PoRep encoding and proves with the zero-knowledge-based algorithm [2,3].
Filecoin lets users decide how to encrypt their data. Therefore, there is no cryptographic
access control for decentralized storage networks yet. The improved PRE scheme is worth
studying.

In 1998, Blaze, Bleumer, and Strauss [5] proposed the first proxy re-encryption scheme.
The ciphertext can be re-encrypted into another by the proxy authorized by the owner.
Although the first PRE scheme is not collusion-resilient, it shows the possibility to change
the key or password of the ciphertext without decryption. In 2003, Ivan and Dodis [16]
proposed the group-based proxy cryptography scheme. In their unidirectional scheme, the
secret key is first divided into two parts. This is the main technique that is used for collusion
safety by many schemes. This illuminates our idea. In 2009, Shao et al. [17] proposed a
CCA-secure scheme without pairing. Their scheme uses double trapdoors with the big
prime multiplication as the secret key. One year later, Weng et al. [7] proposed a CCA-secure
scheme WDLC10 without pairing. Two key pairs are used to avoid collusion for the secret
key in their scheme, which is similar to Ivan and Dodis [16]. In the following years, most
CCA-secure schemes were based on bilinear pairing or lattice. The PRE schemes such as
AFGH06 [18] and GA07 [19] are based on bilinear pairing. XT10 [20] and ABPW13 [21] are
based on lattice (LWE). NAL15a [22] is based on lattice (NTRU).

Let us take a look at how WDLC10 [7] works. To achieve collusion resilience, WDLC10
uses two key pairs. The core idea of preventing collusion is to use the sum of two secret
keys instead of one. This results from the fact that the delegatee and proxy can only work
together to obtain the sum of the keys, but cannot learn the value of each secret. The two
keys are used for two different layers of ciphertext.

Our scheme achieved collusion resilience with one regular public/secret key pair.
Under the general concept of asymmetry encryption, the cleartext can be encrypted with a
public key, and the ciphertext is decrypted with the corresponding secret key. However,
in the scenario of PRE, we slightly changed the definition. Assuming that anyone can
create PRE ciphertext with the given public key, the malicious user could keep the crucial
internal value which should be discarded during the encryption. The internal value can
be used to generate new re-keys, where the access permission to the ciphertext should be
controlled by the owner. In this case, the ciphertext generated with Alice’s public key may
not actually be controlled by Alice. This may lead to security issues. The proposed scheme



Appl. Sci. 2022, 12, 4260 5 of 20

uses the secret key for encryption and decryption to ensure that only the owner can create
the ciphertext. Alice can generate a re-key with her secret key and Bob’s public key.

To summarize, BBS98 [5], Dodis and Ivan [16], and WDLC10 [7] use groups. WDLC10 [7]
improved many features compared to BBS98 (including the most important feature, col-
lusion resilience). To archive collusion resilience in “hashed” ElGamal, two key pairs
are required for WDLC10 [7]. Shao et al. [17] used double trapdoors. For the other PRE
schemes, most of them are based on bilinear pairing or lattice.

3. Preliminaries

We briefly talk about preliminary knowledge for the decentralized storage network
and proxy re-encryption.

3.1. Outsourcing Attack and Proof-of-Replication

In a permission-less decentralized storage network, whoever joins the network can
provide resources and make incoming attacks. The resource providers may make arbitrary
attacks to reduce their costs and increase the margin. One of the most critical is the
outsourcing attack. The solution to prevent outsourcing attacks is proof-of-replication [1].

The data must have redundancy stored in a permission-less decentralized storage
network. An individual resource provider who deleted the local copy of data to save
the storage cost makes an outsourcing attack. When the request to retrieve data comes,
the resource provider can fetch the content from another provider and send it back to the
requester. The data must be preprocessed into the replication format with the unique key
to prevent the outsourcing attack. The cost of replication should be more expensive and
time-costly than honestly storing the data. The replicated data are hard for another to
utilize, as the replication key is unique. Proof-of-replication ensures the dedicating unique
physical store for the data.

3.2. Public Key Encryption

Public key encryption has advantages in key management compared with symmetry
key encryption. Users only need to keep their secret keys safe instead of memorizing
many passwords. RSA and ElGamal (including ECC) are the most commonly used public
key encryption schemes. In RSA, we can either encrypt with a public key or secret key
and decrypt with the other, respectively. In ElGamal, the public key is for encryption via
Equation (2), and the secret key is for decryption via Equation (3). Public key encryption
allows anyone to create an encrypted message and send it to the secret key owner to
establish secure communication. We mainly focus on ElGamal here:

a, r ∈ Zp, (1)

pkA = ga, (2)

skA = a. (3)

where pkA is the public key, and skA is the secret key. Ciphertext c is encrypted with
the public key pkA and the clear message m via Equation (4):

c = 〈c0, c1〉 = 〈gr, m · pkr
A〉 = 〈gr, m · gar〉. (4)

The secret key is required for decryption via Equation (5):

m =
c1

(c0)skA
=

m · gar

(gr)a . (5)

The ElGamal scheme satisfies the CPA security. Given the same input m, the output c
is different each time according to the random value r. To achieve CCA security, validation
is required before the decryption. It detects if the adversary had modified the ciphertext.



Appl. Sci. 2022, 12, 4260 6 of 20

3.3. Proxy Re-Encryption

We review the model of collusion-resilience PRE. A CCA collusion-resilience proxy
re-encryption scheme is an algorithm:

(KeyGen, RenKeyGen, Enc, ReEnc, Dec). (6)

KeyGen(): The algorithm generates the public/secret key pair (pk, sk).
ReKeyGen(skA, pkB): The re-encryption key generation algorithm accepts the secret

key skA of Alice and the public key pkB of Bob. It outputs a re-encryption key rkA→B.
Enc(sk, m): The encryption algorithm takes the public key sk and the clear message

returns the encrypted message c.
ReEnc(rkA→B, cA): The re-encryption algorithm transfers the encrypted message cA

into the ciphertext cB using the re-encryption key rkA→B. Bob’s secret key can decrypt the
transformed ciphertext cB.

Dec(sk, c): The user decrypts the ciphertext with his secret key and encrypted c, e.g., cA
or cB. It outputs the cleartext m.

Correctness. Correctness is ensured for any m ∈ M and any key pair of (pkA, skA),
(pkB, skB), following the conditions Equations (7) and (8):

Dec(skA, Enc(skA, m)) = m, (7)

Dec(skB, ReEnc(ReKeyGen(skA, pkB), Enc(skA, m))) = m. (8)

Security definition. Security for a CCA collusion-resilience PRE scheme is defined in
the game between an adversary A and a challenger C. There are two ciphertexts from the
cleartext message for the PRE scheme: encrypted cipher m→ cA and re-encrypted m→ cB
are required for chosen-ciphertext security.

Phase 1. The adversary A issues queries q1, . . . , qm, of which qi is one of the following:

• Uncorrupted key generation query: The challenger C computes (pki, ski)← KeyGen(),
and sends the pki to the adversary A.

• Corrupted key generation query: The challenger C computes (pk j, sk j)← KeyGen(),
and sends the (pk j, sk j) to the adversary A.

• Re-encryption key generation query: The challenger C computes
rk1→2 ← ReKeyGen(sk1, pk2), and sends the rk1→2 to the adversary A. Here, sk1 and
pk2 must be from different key pairs. This query allows any key pair except that A
cannot know the value of sk1.

• Re-encryption query: The challenger C computes c2 ← ReEnc(rk1→2, c1), and sends
the ciphertext c2 to the adversary A.

• Decryption query: The challenger C computes m← Dec(sk, c), and sends the cleartext
m to the adversary A. Here, sk cannot be sk1 or sk2.

Challenge. After the adversary A ends up Phase 1 , A chooses from two equal-length
messages m0, m1 ∈ M, and sends to the challenger C.

The challenger C receives m0, m1. C flips a random coin δ Equation (9), and computes c,

δ← {0, 1}, (9)

c← Enc(skA, mδ), (10)

then sends the c Equation (10) back to the adversary A.

Phase 2. The adversary A continues to issue queries qm+1, . . . , qmax, which qi can be
one of the queries:

• Uncorrupted key generation query: The challenger C responses are the same as in
Phase 1.
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• Corrupted key generation query: The challenger C responses are the same as in Phase
1.

• Re-encryption key generation query: The challenger C responses are the same as in
Phase 1.

• Re-encryption query: The challenger C responses are the same as in Phase 1.
• Decryption query: The challenger C responses are the same as in Phase 1, except that

c 6= cA and sk 6= skA, or c 6= cB and sk 6= skB.

Guess. The adversary A outputs δ̂ ∈ {0, 1}.

Referring to adversary A as an IND-PRE-CCA adversary, we define the advantage of
the adversary A in attacking scheme Π as

AdvIND−PRE−CCA
Π,A = |Pr[δ = δ̂]− 1

2
|. (11)

Definition 1. A PRE scheme Π is said to be (t, qu, qc, qrk, qre, qd, ε)-IND-PRE-CCA secure, if for
any t-time, IND-PRE-CCA adversary A makes at most qu uncorrupted key generation queries, at
most qc corrupted key generation queries, at most qrk re-encryption key generation queries, at most
qre re-encryption queries, and at most qd decryption queries; thus we have

AdvIND−PRE−CCA
Π,A ≤ ε. (12)

3.4. Complexity Assumptions

The computational assumption of Diffie–Hellman (CDH) is defined as

Definition 2. G is a cyclic multiplicative group with prime order p. The CDH problem is said in
group G, given a tuple (g, gx, gy) ∈ G3 with unknown x, y← Zp, to compute gxy.

A variant of the CDH problem named divisible computation Diffie–Hellman (DCDH) [23]
problem is defined as follows.

Definition 3. Let G be a cyclic multiplicative group with prime order p. The DCDH problem in
group G is, given (g, g

1
x , gy) ∈ G3 with unknown x, y← Zp, to compute gxy.

The construction of our chosen ciphertext-secure PRE scheme is based on the as-
sumption of modified computational Diffie–Hellman (mCDH). The mCDH problem is a
combination of the CDH problem and the DCDH problem.

Definition 4. Let G be a cyclic multiplicative group with prime order p. The mCDH problem in
group G is, given a tuple (g, g

1
x , gx, gy) ∈ G4 with unknown x, y← Zp, to compute gxy.

Definition 5. For a polynomial time adversary B, the advantage is defined as solving the mCDH
problem in group G:

AdvmCDH
B = Pr[B(g, g

1
x , gx, gy) = gxy]. (13)

4. Proxy Re-Encryption Scheme

Our PRE scheme is adopted with the PoRep in a permission-less decentralized storage
network. The ciphertext ReEnc is an optional operation in the definition. This CCA and
collusion-resilience PRE scheme is based on “hashed" ElGamal. ElGamal is one of the most
important asymmetry cryptographic schemes based on CDH assumption. Both discrete
logarithm and ECC can be used for the ElGamal implementation.

4.1. Features

Collusion resilience. Collusion resilience (collusion safe) states that the proxy and
the delegate (Bob) can collude to obtain the delegator’s (Alice) secret key. In BBS98 [5],
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rkA→B = skB
skA

, proxy and delegate (Bob) can calculate skA = rkA→B · skB. Collusion
resilience (collusion safe) is an important feature. In any case, skA should be safe because it
is related to more than the current ciphertext. All the ciphertexts generated by Alice are
bound with the security of skA. Our scheme is collusion resilience due to the novel method
of re-key generation, inspired by the bidirectional scheme of Ivan and Dodis [16].

Bidirectional. Delegation from A → B allows re-encryption from B → A. It is
observed that unidirectional and bidirectional delegation can be applied in different use
cases. It is nice to distinguish between unidirectional and bidirectional proxy re-encryption.
The bidirectional PRE refers to the fact that it can generate rkB→A from rkA→B. WDLC10 [7]
used the two layers for unidirectional encryption, where layer 2 cipher can be converted
into layer 1 cipher by rkA→B = ∆

skA1+skA2
.

The bidirectional scheme means the re-encrypted ciphertext can transfer back to
the original cipher. It depends on how the re-encryption key is designed. In BBS98,
rkA→B = skB

skA
and the reversed key rkB→A = skA

skB
can be easily calculated. Obviously, this

reversed encryption key can be applied to all the ciphertext generated by Bob. In the
Ivan and Dodis 2003 bidirectional ElGamal scheme, rk = gr(x2−x1) also can be reversed,
but due to the random r, the reversed key can be only applied to Bob’s current ciphertext.
Comparing the two scenarios, BBS98’s bidirectional feature leads to more privacy issues
than Ivan and Dodis [16].

Noninteractive. The generation of the re-encryption key requires Alice to use Bob’s
public key. Bob is not involved in the interaction of re-key generation.

Proxy invisibility. The user sending messages to Alice does not need to be aware of
the existence of the proxy. The same applies to Bob, the delegate.

Key optimality. Bob should keep a constant number of secrets, regardless of how
many delegations he accepts.

Nontransitive. A proxy re-encryption scheme is transitive if the proxy has right to
re-delegate decryption permission. Moreover, it combines several re-encryption keys to
produce a new re-key (e.g., from rkA→B and rkB→C one can obtain rkA→C). Our scheme is
nontransitive, as generating a re-key requires Alice’s authorization to prevent transitive
action on a proxy.

Transferability. This property, first considered by Ateniese et al. in [18], catches the
inability of collusion of the proxy and the delegates to re-delegate decryption rights (i.e.,
producing new re-encryption keys). The proxy has rk and Bob knows gr and skB, which
can generate a new re-key for another user.

4.2. Proposed Scheme

Setup
In the CCA-secure and collusion-resilience PRE scheme, g is the generator of a cyclic

multiplicative group G of prime order p. skA Equation (16) is the secret key and pkA
Equation (15) is the public key of Alice. skB Equation (18) is the secret key and pkB
Equation (17) is the public key of Bob.

m is the clear message of l0 bits length in the binary message space denoted byM.
w is the random bits of l1 length. H is the hash function, where H1 : Zp · Zp → Zp,
H2 : {0, 1}l0 · {0, 1}l1 → Zp, H3 : G2 → {0, 1}l0+l1 , H4 : G · {0, 1}l0+l1 → Zp.

KeyGen(): The key generation algorithm generates the public/secret key pair (pk, sk)
for the user:

a, b ∈ Zp, (14)

pkA = ga, (15)

skA = a, (16)

pkB = gb, (17)

skB = b. (18)
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ReKeyGen(skA, pkB): The re-encryption-key-generating algorithm accepts the secret
key skA from Alice and the public key pkB from Bob. The algorithm returns the re-
encryption key rkA→B.

Re-key rkA→B = ( pkB
pkA

)d = ( gb

ga )d = gbd−ad, where the pkA can be derived from skA.

When re-encrypting DB = DA · rkA→B = (ga)d · gbd−ad = gbd, the re-key can only be issued
by Alice, who knows d = H1(skA, r).

Enc(skA, m): The encryption algorithm takes the secret key skA, and the clear message
m returns the encrypted message cA via Equation (19):

(m||w)
Enc−−→ cA = 〈DA, r, E, F, V, S〉. (19)

where D, r, E, F, V, andS are defined as Equations (20)–(24):

DA = (pkA)
d, d = H1(skA, r), r ← Zp, (20)

E = ge, e = H2(m, w), w← {0, 1}l1 , (21)

F = H3(gd, E)⊕ (m||w), (22)

V = gv, v← Zp, (23)

S = gs, s = v + skA · r. (24)

ReEnc(rkA→B, cA): The re-encryption algorithm transfers the encrypted message cA
into the ciphertext cB using the generated re-encryption key rkA→B via Equation (25). Bob’s
secret key can decrypt the transformed ciphertext cB. Here, d is used to generate the
permission of delegation. Only the content owner can create new D or rk with skA and r.

Before the transferring, the validation S ?
= V · pkr

A of ciphertext should be checked to
ensure Alice generates the ciphertext. Otherwise, the algorithm outputs ⊥:

cA
ReEnc−−−→ cB = 〈DB, r, E, F, V, S〉

= 〈DA · rkA→B, r, E, F, V, S〉.
(25)

Dec(sk, c): The user decrypts the ciphertext with his secret key and encrypted c, e.g., cA
or cB. It outputs the cleartext m and random bits w via Equation (26). After decryption,

the validation of ciphertext should be checked E ?
= gH2(m,w). If not, the algorithm outputs ⊥:

cB
Dec−−→ (m||w) = F⊕ H3(gd, E), gd = D

1
skB
B

= F⊕ H3(D
1

skB
B , E).

(26)

In WDLC10 [7], CCA-secure “hashed” ElGamal and modified version is used. The
textbook ElGamal is CPA-secure and risky in the rounded attack. To enhance the security,
“hashed” ElGamal is applied with a message authenticated mechanism.

4.3. Security Analysis

Our collusion-resilience PRE scheme is CCA-secure in a random oracle model, un-
der the modified-computation Diffie–Hellman (mCDH) assumption [24].

In this section, we prove the scheme under mCDH assumption [24] that any efficient
algorithm’s mCDH advantage is negligible.

Theorem 1. Our PRE scheme ∏ is IND-PRE-CCA-secure under the assumption of the mCDH [24]
in group G, and the Schnorr signature [25] is EUF-CMA-secure in the random oracle model. An
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adversary A, who asks at most qHi random oracle queries to Hi with i ∈ {1, . . . , 4}, can effectively
break the (t, qu, qc, qre, qd, ε)-IND-PRE-CCA of our scheme ∏, for any 0 < ν < ε. Thus we have:

• The (t′, ε′)-mCDH problem [24] in group G can be solved by an algorithm B with
Equations (27) and (28):

t′ ≤ t + (qH1 + qH2 + qH3 + qH4

+ qu + qc + qrk + qre + qd)O(1)
+ (qu + qc + 4qre + 3qd + (2qd + qre)qH2)te,

(27)

ε′ ≥ 1
qH3

(2(ε− ν)−
qH2 + (qH2 + qH3)qd

2l0+l1
− 2qd + qre

q
). (28)

where te is the exponential running time in the group G.
• The EUF-CMA security of the Schnorr signature [25] can be broken by an attacker with

advantage ν within time t′.

Proof. It is assumed that the Schnorr signature [25] is (t′, ε′)-EUF-CMA-secure for the
probability 0 < ν < ε. While the CDH problem (given g, gx, gy output gxy) is as hard as
the mCDH problem [24] (given g, g

1
x , gx, gy outputs gxy), this theorem is proved under

the mCDH problem [24]. A t-time adversary A can break the IND-PRE-CCA security of
scheme ∏ with advantage ε− ν. We show how an algorithm B solves the (t′, ε′)-mCDH
problem [24] in group G.

Suppose algorithm B accepts the input of mCDH challenge tuple (g, gx, g
1
x , gy) ∈ G4,

and x, y← Zp is unknown. Algorithm B plays the role of challenger playing the IND-PRE-
CCA game with adversary A. Algorithm B’s goal is to output gxy.

Setup. Algorithm B passes parameters (p,G, g, H1, H2, H3, H4, l0, l1) to adversary A.
H1, H2, H3, H4 are random hash oracles controlled by the algorithm B.

Hash Oracle Queries. Adversary A may send the queries to random oracle H1, H2,
H3, and H4 at any time. Algorithm B has four empty lists Hlist

1 , Hlist
2 , Hlist

3 , and Hlist
4

initially, used for storing the query parameters and result value tuples.

• H1 queries. With the parameters (a, r), if this query exists in the Hlist
1 as a tuple (a, r, d),

output the value d as the result to adversary A. Otherwise, choose d← Zp and add
the tuple (a, r, d) to the hash list Hlist

1 , and respond with H1(a, r) = d to adversary A.
• H2 queries. With the parameters (m, w), if this query exists in the Hlist

2 as a tuple
(m, w, v), output the value v as the result to adversary A. Otherwise, choose v← Zp

and add the tuple (m, w, v) to the hash list Hlist
2 , and respond with H2(m, w) = v to

adversary A.
• H3 queries. With the parameters (gd, E), if this query exists in the Hlist

3 as a tuple
(gd, E, α), output the value α as the result to adversary A. Otherwise, choose α ←
{0, 1}l and add the tuple (gd, E, α) to the hash list Hlist

3 , and respond with H3(gd, E) =
α to adversary A.

• H4 queries. With the parameters (E, F), if this query exists in the Hlist
4 as a tuple

(E, F, β), output the value β as the result to adversary A. Otherwise, choose β← Zp

and add the tuple (E, F, β) to the hash list Hlist
4 , and respond with H4(E, F) = β to

adversary A.

Phase 1. The adversary A sends a series of queries as in the definition of the IND-
PRE-CCA game. The algorithm B holds three hash lists Klist

Uncorrupted, Klist
Corrupted, and Rlist,

answering the adversary A as follows:

• Uncorrupted key generation query qu. If the tuple (a, ga) is not in the hash list
Klist

Uncorrupted, the algorithm B chooses a ← Zp; add the tuple (a, ga) to the hash list

Klist
Uncorrupted. Respond with pk = ga to adversary A.
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• Corrupted key generation query qc. If the tuple (a, ga) is not in the hash list Klist
Corrupted,

the algorithm B chooses a ← Zp; add the tuple (a, ga) to the hash list Klist
Corrupted.

Respond with (sk, pk) = (a, ga) to adversary A.
• Re-encryption key generation query qrk. The re-key generation is from Alice’s secret

key and Bob’s public key; both key pairs can be uncorrupted or corrupted. It is because
in the re-encryption from cA to cB, ciphertexts can be decrypted by either skA or skB.
In the case algorithm, B recovers (skA, pkA), (skB, pkB) from Klist

Uncorrupted or Klist
Corrupted.

Then, algorithm B generates re-key rkA→B = ( pkB
pkA

)H1(skA ,r) = ( gb

ga )H1(a,r). The tuple

(skA, pkA, skB, pkB, rkA→B) is added to the Rlist. Then, the rkA→B is returned to adversary
A.
For the challenge purpose, both skA and skB should be uncorrupted.

• Re-Encryption query qre. Given rkA→B and cA = 〈DA, r, E, F, V, S〉: If S 6= V · pkr
A,

it outputs ⊥. Otherwise, the algorithm returns the re-encrypted ciphertext cB =
〈DA · rkA→B, r, E, F, V, S〉 to adversary A.

• Decryption query qd. The algorithm recovers sk from Klist
Uncorrupted or Klist

Corrupted. Run

(m, w) = Dec(sk, c). If E = gH2(m,w), give m back to the adversary, otherwise it outputs
⊥.

Challenge. When adversaryA ends Phase 1, the adversary outputs a target public key
pk∗ and two equal-length messages m0, m1 ∈ {0, 1}l0 , queries to algorithm B. Algorithm B
responds as follows:

1. Recovers (sk∗, pk∗) from Klist
Uncorrupted and let pk∗ = ga := g

1
x .

2. Let D∗ = (pk∗)d = (ga)d := gy, so that (ga)d = (g
1
x )xy. We can obtain d = xy as

ga = g
1
x . Then, gd = gxy.

3. As F = H3(gd, E) ⊕ (m||w) defined, choose δ ← {0, 1}, w∗ ← {0, 1}l1 and F∗ =

H3(gd, E∗)⊕ (mδ||w∗).
4. Return c∗ = 〈D∗, r∗, E∗, F∗, V∗, S∗〉 as the challenged ciphertext to adversary A.

Phase 2. The adversary A issues the queries as in Phase 1. Algorithm B responds to
those queries to A as in Phase 1.

Guess. The adversary A responds a guess δ̂ ∈ {0, 1} to B. Algorithm B calculates
H3(gd, E∗) = H3(gxy, E∗) = F∗ ⊕ mδ̂ = α̂. B looks up the hash list Hlist

3 for the tuple
(gd, E∗, α) where α = α̂, then returns the gd as the solution gxy to the given mCDH instance.

Analysis. First, let us evaluate the simulation of random oracles. H1, H4 are perfect
As long as A does not query (mδ, w) to H2 or (gxy, E) to H3, so H2 and H3 are perfect . We
denote AskH∗2 the event (mδ, w) has been queried to H2, and AskH∗3 the event that (gxy, E)
has been queried to H3.

The challenged ciphertext is identically distributed.
Second, the simulation for the re-encryption oracle. The re-encryption query is perfect

unless the adversary A can transfer the ciphertext into the new one without querying
hash H1 to obtain the rk. We denote this event as ReEncErr. Since H1 plays the role of the
random oracle, which is queried by adversary A at most qre times, we have

Pr[ReEncErr] ≤ qre

q
. (29)

Third, the simulation for the decryption oracle. Suppose that (pk, c), c = (D, r, E, F, V, S)

is a valid ciphertext, as the validation S ?
= V · pkr

A of ciphertext can be checked. There is
still a chance that c can be generated by querying other random values to H3 instead of gd,
where d = H1(skA, r). Denote Valid to be an event that c is valid. Let AskH3 be the event
that (gd, E) has been queried to H3 and AskH2 be the event that (m, w) has been queried to
H2. Then, we have
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Pr[Valid|¬AskH2]

=Pr[Valid ∧ AskH3|¬AskH2]

+ Pr[Valid ∧ ¬AskH3|¬AskH2]

≤Pr[AskH3|¬AskH2] + Pr[Valid|¬AskH3 ∧ ¬AskH2]

≤
qH3

2l0+l1
+

1
q

,

(30)

similarly,

Pr[Valid|¬AskH3]

=Pr[Valid ∧ AskH2|¬AskH3]

+ Pr[Valid ∧ ¬AskH2|¬AskH3]

≤Pr[AskH2|¬AskH3] + Pr[Valid|¬AskH2 ∧ ¬AskH3]

≤
qH2

2l0+l1
+

1
q

.

(31)

Thus, we have

Pr[Valid|¬AskH2 ∨ ¬AskH3]

≤Pr[Valid|¬AskH2] + Pr[Valid|¬AskH3]

≤
qH2 + qH3

2l0+l1
+

2
q

.

(32)

Denote DecErr as the event that Valid|(¬AskH2 ∨ ¬AskH3) happens during the entire
simulation. The qd times of decryption queries have been issued to a decryption oracle, and we
have

Pr[DecErr] ≤
(qH2 + qH3)qd

2l0+l1
+

2qd
q

. (33)

Denote Good as the event AskH∗3 ∨ (AskH∗2 |¬AskH∗3 ) ∨ ReEncErr ∨ DecErr. If Good
has not happened, the adversary A cannot gain any advantage in guessing δ from m0, m1,
due to the random E as one of the input of H3(gd, E) and E = ge = gH2(m,w) is generated
with the random bits w← {0, 1}l1 . We have Pr[δ = δ′|¬Good] = 1

2

Pr[δ = δ′]

= Pr[δ = δ′|¬Good]Pr[¬Good] + Pr[δ = δ′|Good]Pr[Good]

≤ 1
2

Pr[¬Good] + Pr[Good]

=
1
2
(1− Pr[Good]) + Pr[Good]

=
1
2
+

1
2

Pr[Good],

(34)

and

Pr[δ = δ′]

≥ Pr[δ = δ′|¬Good]Pr[¬Good]

=
1
2
(1− Pr[Good])

=
1
2
− 1

2
Pr[Good],

(35)
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we have

|Pr[δ = δ′]− 1
2
| ≤ 1

2
Pr[Good]. (36)

By the definition, the advantage (ε− ν) for IND-PRE-CCA adversary:

ε−ν

=|Pr[δ = δ′]− 1
2
|

≤1
2

Pr[Good]

=
1
2
(Pr[AskH∗3 ∨ (AskH∗2 |¬AskH∗3 ) ∨ ReEncErr ∨ DecErr])

=
1
2
(Pr[AskH∗3 ] + Pr[AskH∗2 |¬AskH∗3 ]

+ Pr[ReEncErr] + Pr[DecErr]).

(37)

Since Pr[ReEncErr] ≤ qre
q , Pr[DecErr] ≤ (qH2+qH3 )qd

2l0+l1
+ 2qd

q and Pr[AskH∗2 |¬AskH∗3 ] ≤
qH2

2l0+l1
, we obtain

Pr[AskH∗3 ]

≥2(ε− ν)− [AskH∗2 |¬AskH∗3 ]

− Pr[DecErr]− Pr[ReEncErr]

≥2(ε− ν)−
qH2

2l0+l1

−
(qH2 + qH3)qd

2l0+l1
− 2qd

q
− qre

q

=2(ε− ν)−
qH2 + (qH2 + qH3)qd

2l0+l1
− 2qd + qre

q
.

(38)

In event AskH∗3 , algorithm B will be able to solve the mCDH instance, and, conse-
quentially, the following is obtained:

ε′ ≥ 1
qH3

(2(ε− ν)−
qH2 + (qH2 + qH3)qd

2l0+l1
− 2qd + qre

q
). (39)

From the description of the simulation, the running time of algorithm B can be
bounded by

t′ ≤ t + (qH1 + qH2 + qH3 + qH4

+ qu + qc + qrk + qre + qd)O(1)
+ (qu + qc + 4qre + 3qd + (2qd + qre)qH2)te.

(40)

This completes the proof of Theorem 1.

5. Experiment

In this section, we analyze the computation cost. With the development of the
blockchain in the past decade, elliptic curves cryptography (ECC), including ECDSA
and 25519, has become the standard user access credential. The group with big integers
is less used nowadays. As ECC computation is still heavy even for a modern CPU, we
propose the practical implementation which cached the ECC operation to speed up for
practice. Otherwise, the encryption and decryption over ECC would take too long a time
and become meaningless.
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5.1. Schemes Comparison

The two group-based schemes without pairings are using double trapdoors [26] and
“hashed: ElGamal [7]. In Table 1, the comparison results indicate that the proposed scheme
is slower than WDLC10 for encryption, since “hashed” ElGamal is used. Our scheme does
not differentiate the first and the second level of ciphertext. teN is the time in exponential
operation over the N2 group, where N is the safe prime. Let N = pq be a safe prime
modulus, such that p = 2p′ + 1, q = 2q′ + 1, and p, p′, q, q′ are primes. te is the time
in exponential operation over the group. k is the length of generated key in KeyGen(1k).
k1 is the hash algorithm H : {0, 1}∗ → {0, 1}k1 . Nx and Ny are the safe-prime modulus
corresponding to the delegator and the delegatee, respectively. The ReEnc is not available
in our scheme as we do not transfer the ciphertext, but it only generates a re-key.

Table 1. Comparison with Shao09 and WDLC10.

Schemes Shao09 WDLC10 Ours

Compute Cost

ReKenGen 2teN te te

Enc 5teN 3te 5te

Dec 4teN 3te 2te

ReEnc 5teN 3te N/A

Ciphertext Size
1st level 2k + 3|N2

x |+ |m| 3|G|
4|G|+ |m|+ |w|

2nd level k1 + 3|N2
x |+ 2|N2

y |+ |m| 3|G|+ |Zq|

Security

Security Level collusion resistant, CCA collusion resistant, CCA collusion resistant, CCA

Standard model Yes Yes Yes

Underlying Assumptions DDH CDH CDH

5.2. Practical Implementation

Due to the computation inefficiency of ECC, in the practical implementation, we can
use elliptic curves and cyclic multiplicative group together to boost the encryption.

For the practical encryption and decryption, the message is divided into small chunks
m, as each time that group operation is involved in the computation, using ECC will
cost much longer time. For the calculation F = H3(gd, E)⊕ (m||w), where E = ge, e =
H2(m, w), w ← {0, 1}l1 , the operation E = ge will be too expensive if using ECC. On the
other hand, ECC provides better security with less secret key length in bits for the user’s
public key and secret key. Roughly speaking, 160 bits of the ECC secret key are as strong as
1024 bits of the secret key required in RSA or ElGamal over the multiplicative integer group.

It is better to divide and conquer the problem by using both the elliptic curves group
and the cyclic multiplicative integer group g ∈ Gp. In the calculation DA = (pkA)

d, d =
H1(skA, r), r ← Zp, for the user key pair (pk, sk), we use generator gECC ∈ GECC, then
pk = gsk

ECC. Meanwhile F = H3(gd, E)⊕ (m||w) the exponential operation gd in H3 can be
calculated only once in ECC and cached. Another exponential calculation E = ge must be
evaluated for every m and w. Thus, for ge, the ECC operation will be too heavy. Here, we
have the modification below:

(m||w)
Enc−−→ cA = 〈DA, r, E, F, V, S〉. (41)

where D, r, E, F, V, S is defined as:

DA = (pkA)
d, d = H1(skA, r), r ← Zp, (42)

E = ge, e = H2(m, w), w← {0, 1}l1 , (43)

F = H3(gd
ECC, E)⊕ (m||w), (44)
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V = gv
ECC, v← Zp, (45)

S = gs
ECC, s = v + skA · r. (46)

For the re-encryption cA
ReEnc−−−→ cB, re-encrypting DB = DA · rkA→B = (ga

ECC)
d ·

gbd−ad
ECC = gbd

ECC, where re-key rkA→B = ( pkB
pkA

)d = (
gb

ECC
ga

ECC
)d = gbd−ad

ECC . For the validation E ?
=

gH2(m,w) after decryption, as pk is not involved, no ECC operation needs to be performed.

5.3. Performance Comparison

Python 3.8 is used to implement our PRE scheme and WDLC10. Since Shao09 uses a
different theory over the large prime numbers, it was hard to make a fair comparison by
choosing the parameters. The code is modified from an open-source pure Python library
named python-ecdsa, which is licensed in the public domain.

We implemented the ECC version of our PRE scheme and the practical modification in
Python 3.8 and tested it on a MacBook Air of Intel Core i5 at a processor speed of 1.3 GHz.
For every 64 bytes of data (including 48 bytes clear message m and 16 bytes of random
initialization vector w), we repeat encryption 100 thousand times and note the time cost.

Our scheme is slightly slower than WDLC10 for encrypting in theory, as we described
in Table 1. However, for the modification for practical cached exponential operation
for gECC, from Figure 4, we can observe that practical modification can speed up the
encryption by avoiding ECC computation. In most cases, elliptic curve-based asymmetry
cryptography is commonly used in the signature or key exchange due to its slowness.
However, the decentralized storage network shows the scenarios where an asymmetry
encryption is required. Meanwhile, it is nice to have the key strength and reasonable
encryption/decryption speed. The result of Figure 4 shows that even for a modern CPU,
the computation is insufficient for fast encryption. The practical implementation is helpful
to speed up the operation while maintaining the security from ECC with less key length.

Figure 4. Time cost for PRE ECC and practical encryption for every 1000 times of encryption of 64
bytes data on MacBook 1.3 GHz Intel Core i5.

In the experiment, we use the cyclic multiplicative group over an integer of 196 bits
for both ours and WDLC10. The ECC curve is NIST192p. The message m size is 48 bytes
and w is 16 bytes since the blake2b outputs up to 64 bytes (512 bits) each time.

In Figure 5, we compare our practical modification PRE scheme with pure-Python-
implemented WDLC10. PRE brings useful access control, privacy features, and better key
management than symmetry encryption. Unlike WDLC10, there is no requirement for
layer 1 and layer 2 ciphertext. Our scheme needs only one public/secret key pair. For the
hash function, we use blake2b, which can output a flexible length of the hash digest. For
the curve, we use NIST192p. Our proxy re-encryption is ready for practice. Figure 5 shows
that with the modification on our scheme, the ECC computing is cached, so our scheme can
be slightly faster than WDLC10 even if the theory shows our scheme was slower, shown in
Table 1.
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Figure 5. Time cost for our PRE scheme and WDLC10 encryption for every 100 k times of encryption
of 64 bytes data on MacBook 1.3 GHz Intel Core i5.

5.4. Performance on the Embedded Device

The PRE encryption and decryption are highly likely to be performed on an embedded
device, such as an IP camera or mobile phone. Figure 6 shows the performance of our PRE
scheme and WDLC10 on an early model of Raspberry Pi microcomputer. The early version
of Raspberry Pi has quite low computation capacity; however, it achieves a reasonable
performance. In addition, the permission grant in our scheme does not require transfer
of the ciphertext, which would be friendly to the embedded devices. Recently, the embed
device has attained a faster CPU with multi-cores. The feature of skipping the re-encryption
makes it fit better for the embedded device.

Figure 6. Time cost for our PRE scheme and WDLC10 encryption for every 1000 times of encryption
of 64 bytes data on a 1st generation of Raspberry Pi model B 700 Hz.

6. Evaluation
6.1. Remove Access or Corrupted Ciphertext

Thus far, our scheme covers the encryption and decryption of data and shares the data
with the public key of another user. We can either choose to generate a rkA→B or DB, and it
is possible to generate a new ciphertext by replacing DB with DA or reuse cA by placing
DB in a separate file.

cA
ReEnc−−−→ cB

How about removing the access permission of a user? The concept of forwarding
secrecy [27] was introduced in cryptography. Strictly, since a message is sent to another one,
it is not a secret anymore, as the content could be copied and shared again. It is impossible
to revoke a message or erase information with cryptography. However, in practice, people
come and leave the organization, and granting or revoking data access permission is the
daily operation. If a user intends to expose the critical information gd

ECC to the public,
the cipher c is no longer a secret. In those cases, the cryptography method can not ensure
security in practice. The only choice is to remove the existing ciphertext to prevent further
information leaking.
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We provide another ciphertext transfer operation. It is not a part of our scheme but it
is useful when transferring the ciphertext into a new one when the message is leaking, and
this operation could be applied after any data access permission is revoked.

Transfer operation cA
Trans f er−−−−→ c′A, where c′A = 〈D′A, r′, E, F′, V′, S′〉:

D′A = (pkA)
d′ , d′ = H1(skA, r′), r′ ← Zp, (47)

F′ = F⊕ re

= F⊕ H3(gd, E)⊕ H3(gd′ , E)

= H3(gd, E)⊕ (m||w)⊕ H3(gd, E)⊕ H3(gd′ , E)

= H3(gd′ , E)⊕ (m||w),

(48)

V′ = gv′ , v′ ← Zp, (49)

S′ = gs′ , s′ = v′ + skA · r′. (50)

The ciphertext transfering key re is defined:

re = H3(gd, E)⊕ H3(gd′ , E). (51)

It is safe to send the transfer key to the proxy and transfer the existing ciphertext into
a new one. By this operation, the previous ciphertext is discarded, and the new permission
of access should be regenerated.

The concept above is also helpful in blockchain storage content for key renewal.
Periodically changing the secret key is recommended to avoid potential confidential key
leakage. A finance blockchain such as Bitcoin can create another secret/public key pair and
transfer existing coin assets to the new wallet address. The signature is the evidence of a
coin transaction. As opposed to this, the storage blockchain uses a secret key to decrypt.
Losing a key is losing the data unless an algorithm can transfer the old ciphertext to the
new one under the new key. Our PRE scheme is suitable for this scenario.

6.2. Search with PRE

The commercial applications are interested in searching [28,29]. Nowadays, searching
in data is more than just full-text matching. Complexity algorithms are applied to texts,
images, videos, and even speech. A CPA-secure encryption works against searching over
the ciphertext in concept. Even if, in the future, the full homomorphic encryption [30] is
ready, it might be hard to perform a search over CPA ciphertexts.

With proxy re-encryption, it is possible to design the application that outsources the
information processing to the trusted party. Data could be stored safely on the cloud with
versions, and the index for the recent version will be processed in-house.

6.3. Applications with PRE

We introduced PRE for decentralized storage network scenarios, which are the fun-
damental components for lots of blockchain applications. It is possible to build a media
store for movies and music based on blockchain. Once a user purchases the movie, he
has the right to download the movie file content freely. A purchase record is marked on
the blockchain, as evidence of the right to use from the intellectual property owner. It is
publicly verifiable. The PRE re-key can be used as evidence. The evidence can be listed
publicly and it is meaningful only to the purchaser who owns the secret key.

7. Conclusions

In this paper, we proposed a PRE scheme satisfying the PoRep scenario. Since the
PoRep is the key algorithm for a decentralized storage network, the proposed PRE would
be an important candidate for a future blockchain storage network. In a decentralized
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storage network, access control must be cryptography-based. Meanwhile, the decentralized
storage network suffers from outsourcing attacks. Proof-of-replication helps to convince
users that their content is kept by the dedicated storage resource. The proposed PRE scheme
is suited for proof-of-replication, which does not generate the extra ciphertext. The scheme
reduces the cost of cryptographic access control. Moreover, our PRE scheme is CCA-secure
and only requires one key pair. With the practical implementation, it is reasonably fast to
use in applications.

Nowadays, users become used to placing their data on the public cloud. Although the
data access is permission-controlled, it might be transparent to cloud storage providers.
Employing the PRE scheme will bring true privacy to user data, even if the service provider
is semi-trusted.

Due to the computation efficiency, symmetry encryption is widely used for encryption.
However, the key management for symmetry encryption is complex, leading to more
privacy issues. With the maturity of the PRE scheme, it can bring more flexibility to data
storage and access control. Asymmetry encryption will play a more important role in
blockchain-based systems.

8. Future Work

In this paper, we proposed the proxy re-encryption for the decentralized storage
networks. It is a CCA-secure, collusion-resilience PRE scheme that requires only one key
pair. The PRE scheme works under the concept of proof-of-replication, which is the core
algorithm of the decentralized storage network, and the proposed scheme is reasonable,
fast, and practical. It can be used for mobile and IoT devices. In the future, we will keep
working on speeding up the scheme. Furthermore, it is possible to add more features based
on the current scheme, e.g., the multiply public keys re-encryption, or the time-limited
re-key issuing. To enable searching within PRE is also an interesting topic.
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Glossaries

pk The public key is a part of the key pair. The pk is a big integer internally.

sk
The secret key is a part of the key pair. The sk is a generator of a multiplicative
group or the generator point in ECC.

rk
The re-key rk is from the concept of proxy re-encryption, which converts the
ciphertext cA encrypted by Alice’s pkA to a new ciphertext cB which can be
decrypted with Bob’s skB.
The rkA→B is generated under Alice’s permission. It requires Alice’s skA and
Bob’s pkB to generate rkA→B.

M is the message space that contains all the combinations of message m.

m
is the clear message which will be encrypted. It is represented in binary in
length l. In our scheme, we have m ∈ {0, 1}l0 .

w
is the random bits of length l1 generated when encrypting message m. This
provides CPA-level security that the same message will output different
ciphertext under multiple times of encryption.
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l
is the message length in bits. We have l = l0 + l1, where l0 is the length of m and
l1 is the length of w.

c
is the ciphertext. In proxy re-encryption, beside encryption and decryption,
the ciphertext cA can be transfered to another ciphertext cB with the rkA→B
under Alice(A)’s permission grant.

d

is the hash value generated by user Alice’s secret key skA and the random
integer r. d is an important value during the calculation which needs to be
discarded to keep the ciphertext safe. Otherwise, gd can be used for decryption
without a secret key.

D
is the first element of the ciphertext. When decrypting, gd will be calculated
from D with sk, and when re-encrypting, rkA→B is applied to DA to obtain DB
as DB = DA · rkA→B.

r
is the second element of the ciphertext. The random r makes sure the value d
is random.

E
is a part of the ciphertext. E is calculated from m and w. It is a signature used for

satisfying the CCA security. This signature E ?
= gH2(m,w) will be checked after

decryption by the user to verify m.

F
is a part of the ciphertext. The concatenation of message m and w is hidden in F.
Value gd is required for encryption or decryption.

v
is a random value used in the Schnorr signature. It is an internal value, which
needs to be discarded to keep the secret key safe in s.

V
is a part of the ciphertext. Together with s and pk, it performs the Schnorr
signature check before re-encryption.

s
is used for Schnorr’s signature to verify the identity of who encrypts the
ciphertext. s is hiding in S = gs to stay safe. Even if m is too long and split into
m = m1||m2||...||mi, the v and s only need to generate once.

S
is the last element of the ciphertext. It is a value for Schnorr’s signature. This

signature S ?
= V · pkr

A will be checked before re-encrypting c by the proxy.

H
is the hash function. The hash function is a one-way function, which is easy to
calculate the function’s output from the input value, but it is hard to obtain the
input from the given output.
In our scheme, we have H1, H2, H3, and H4, which take different types of input
and return different outputs. H1 : G ·Zp → Zp, H2 : {0, 1}l0 · {0, 1}l1 → Zp,
H3 : G2 → {0, 1}l0+l1 , H4 : G · {0, 1}l0+l1 → Zp.
In practice, those H functions can use any standard hash function such as sha2
or blake2b with data type converting between bytes and integer.

CDH
is computational Diffie–Hellman (CDH) assumption. The CDH problem in
group G is, given a tuple (g, gx, gy) ∈ G3 with unknown x, y← Zp, to compute
gxy.

mCDH
is the modified computational Diffie–Hellman (mCDH) assumption. Given a
tuple (g, g

1
x , gx, gy) ∈ G4 with unknown x, y← Zp, it is hard to compute gxy.

g In our PRE scheme, g stands for the generator of the multiplicative group.

gECC
In our PRE scheme, gECC stands for the generator point of the group of the
elliptic curve (ECC).

Zp
is the non-negative integer set less than a prime integer p, and p is the prime
order of a cyclic multiplicative group.

Adversary A is an efficient adversary who attempts to solve the problem in the security game.
Adversary A issues the queries to the challenger C, and the challenger responds.

Algorithm B
is an algorithm which can break the mCDH problem. In a security reduction,
adversary A transforms the existing problem to the mCDH problem, which
algorithm B can solve, to show the hardness of security.

Challenger C is the role in the security game that responds to adversary A’s queries following
CCA-secure rules.

Klist
is a hash list used to simulate the random oracle behavior. The algorithm B
maintains two hash list Klist

Uncorrupted, Klist
Corrupted and Rlist, answering the

adversary A’s queries.

Hlist is a hash list used to simulate the random oracle behavior. Algorithm B has four
lists Hlist

1 , Hlist
2 , Hlist

3 , and Hlist
4 , answering the adversary A’s queries.
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