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ABSTRACT

This paper presents PrPl, a decentralized infrastructure that
lets users participate in online social networking without
loss of data ownership. PrPl, short for private-public, has a
person-centric architecture–each individual uses a Personal-

Cloud Butler service that provides a safe haven for one’s
personal digital assets and supports sharing with fine-grain
access control. A user can choose to run the Butler on a
home server, or use a paid or ad-supported vendor of his
choice. Each Butler provides a federation of data storage;
it keeps a semantic index to data that can reside, possibly
encrypted, in other storage services. It uses the standard,
decentralized OpenID management system, so users can use
their established personas in accessing the data.

One pre-requisite to the success of a platform is the avail-
ability of applications, which means that ease of application
development is essential. We have developed a language
called SociaLite, based on Datalog, that allows developers
to use a simple declarative database query to access the large
collection of private data served up by the Butlers in our so-
cial circle running under different administrative domains.

We have developed a prototype of the PrPl infrastructure
and implemented a number of simple social applications on
the system. We found that the applications can be written
in a small number of lines of code using SociaLite. Prelimi-
nary experimental results suggest that it is viable to enable
sharing of private social data between close friends with a
decentralized architecture.

1. INTRODUCTION

1.1 Decentralized, Open, and Trustworthy
Social Networking
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To be commercially viable, an advertisement-supported
social networking portal must attract as many targeted ad
impressions as possible. This means that this type of ser-
vice typically aims to encourage a network effect, in order to
gather as many people’s data as possible. It is in their best
interest to encourage users to share all their data publicly,
lock this data in to restrict mobility, assume ownership of
it, and monetize it by selling such data to marketers. Social
networking portals often either claim full ownership of all
user data through their seldom-read end user license agree-
ments (EULA), or stipulate that they reserve the right to
change their current EULA. In addition, a number of fac-
tors such as data lock-in and the exorbitant cost of running
large-scale centralized services all point to the likely estab-
lishment of an oligopoly, or even a monopoly. It is unsettling
that we leave the stewardship of all this personal data to a
for-profit company. Public outcry would be to no avail were
such a company to fail and sell its data assets.

Our goal is to develop the technology that makes possi-
ble a decentralized, open and trustworthy social networking
infrastructure. This enables people worried about privacy
issues to participate in social networking without reserva-
tions.

• Decentralized across different administrative do-
mains. This allows users who keep data in different
administrative domains to interact with each other.
Users have a choice in services that offer different lev-
els of privacy, amongst other metrics of quality. They
may choose to store their data in personal servers they
own and keep in their homes, or entrust their data to
paid or free ad-supported services. Furthermore, they
may wish to take advantage of a myriad of storage
services available by keeping their data, possibly en-
crypted, in various locations. The current model in
which only users belonging to a common site may in-
teract is just as unacceptable as disallowing users on
different cellular networks to call each other.

• Open API for distributed applications. We aim to
create an API that allows a social application to run
across different administrative domains. Note that the
OpenSocial API [1] is much less ambitious; its goal is to
allow the same application to be run on different web
sites separately; that is, each application just operates
on data wholly owned by a web portal.

• Trustworthy interactions with real friends. We wish
to create a safe haven for individuals to keep all of their
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Figure 1: The PrPl data subsystem

data without reservation and to share selected items
with different friends. This safe haven will enable new
applications since all the personal data are available
in one place, and is more convenient for users because
they do not have to upload them to different web sites.

1.2 Contributions of this Paper
We have created an architecture called PrPl, short for

Private-Public, as a prototype of a decentralized, open and
trustworthy social networking system. Having such an op-
tion available may also put pressure on ad-supported social
networking sites to provide more guarantees on data privacy
and ownership.

Personal-Cloud Butlers. We propose the notion of a
Personal-Cloud Butler, which is a personal service that we
can trust to keep our personal information; it organizes our
data and shares them with our friends based on our private
preferences on access control. A high-level overview of the
Butler architecture is shown in Figure 1.

• Semantic index of personal data. It provides a
unified index of the data to facilitate browsing and
searching of all personal information. To support in-
teroperability, we represent our data in a standard for-
mat based on RDF and standard ontologies whenever
they are available.

• Federated storage system. To take advantage of
freely available data storage on the web, the Butler lets
the user store their data, possibly encrypted, with dif-
ferent storage vendors if they wish. The Butler hands
out certificates that enable our devices and devices of
friends to retrieve the data directly from storage.

• Decentralized ID management. Our system al-
lows users to use their established personas by support-
ing OpenID, a decentralized ID management system.
We propose extending the OpenID system so that the
OpenID provider supports the lookup of a designated
Butler with an OpenID. The OpenID provider thus
becomes the root of trust for the authentication of the
Butlers.

• Common client proxy. To support single sign-on
for applications running on the client device, a Pocket

Butler handles the underlying authentication and com-
munications with the Personal-Cloud Butlers. It also
provides common interfaces to specify authorization
and caching so that resources can be shared between
multiple applications.

• Butler services. Besides providing an open API to
the data, described in more detail below, the Butler
also provides a web-based service that allows friends
to log in with their OpenID to enjoy data and services
they are entitled to.

How would Personal-Cloud Butlers be deployed? One
possibility is to host such services on set-top boxes and
game consoles, which are already in many consumers’ homes.
These devices already provide users a cost-effective and con-
venient way to store their large-scale data such as full reso-
lution photos.

SociaLite Language. We have designed and imple-
mented a database query language called SociaLite to allow
easy access to the large amount of data stored in a dis-
tributed network of Butler services. SociaLite is an exten-
sion of Datalog, a declarative deductive database language.
Supporting composition and recursion, this language is ex-
pressive enough that many social applications can easily be
written by adding a GUI to the result of a SociaLite query.
This language hides the complexities in distributing a query
to the friends’ Butlers.

Experimental Results. We have implemented a fully
working prototype of the SociaLite language and PrPl in-
frastructure as proposed in this paper. A rich set of appli-
cations was developed alongside the infrastructure so as to
drive the design. PrPl applications are relatively easy to
develop because they consist mainly of GUI code wrapped
around SociaLite queries. Measurements of our prototype
running on a testbed consisting of 100 Butlers on Amazon
EC2 suggest that this approach is technically viable. Even
though our prototype is not optimized, the first query results
arrive within a couple of seconds.

2. FEDERATED ID MANAGEMENT
The PrPl system utilizes federated, decentralized iden-

tity management that enables secure logins, single sign-on,
and communication among applications in an environment
where Butlers belong to different administrative domains.
We wish to enable PrPl users to reuse existing credentials
from multiple providers and avoid unnecessary ID prolifer-
ation. Requirements for our identity management include
authenticating users to Butlers, registering Butlers with the
Directory Service, third-party service authentication, and
authentication between Butlers and applications. To this
end, we chose OpenID due to its position as an open stan-
dard (in contrast to Facebook Connect [2]), extensive library
support, availability of accounts, and the ability to extend
the protocol easily for PrPl’s needs.

An OpenID login consists of the following steps:

1. Requester enters his OpenID identifier at a Relying
Party (RP)’s web page.

2. RP performs the YADIS/XRI discovery protocol [3] on
the identifier, fetches an XRDS file [17] that encodes
his OpenID Providers (OP), and redirects the user to
an acceptable OP.



3. User successfully enters credentials at the OP, which
verifies and redirects the user back to the RP along
with a signed success message.

4. RP verifies the result with the OP and welcomes the
requester.

2.1 The Butler Directory Service
We envision that in the future a Butler service will be

associated with each OpenID. The Butler service is to be
registered with the OpenID provider, which also serves as
its Certificate Authority (CA). The OP provides a digital
certificate for the Butler’s public key, which can be used
as proof that it is the registered Butler for the associated
OpenID during inter-butler communications. To register a
Butler with its Directory Service, the owner authenticates
himself to the Directory Service using OpenID as described
above. Post authentication, the owner submits the regis-
tration package he gets from the Butler, which contains the
Butler’s public key, a mapping from the owner ID to unique
Butler ID, a mapping from the Butler ID to the Butler’s
URL, and a HMAC of the mappings for verification.

2.2 User Authentication at the Butler
Given an OpenID, anybody can look up the associated

Butler service and view the information made available to
the public. However, the Butler offers additional services
only upon authenticating the guest’s credentials. A guest
needs to sign on to each Butler service, possibly running in
different administrative domains, before using it. We lever-
age OpenID’s single sign-on properties to obviate this te-
dious step. The Butler acts as an OpenID Relying Party
(RP), and authenticates the guest by contacting his OP.
The guest typically does not even have to explicitly enter
credentials at each Butler due to the common practice of
staying signed in to popular web e-mail services that are
OpenID providers.

While the above mechanism works well for web applica-
tions, we also support native guest applications. The native
application contacts the Butler to obtain a temporary au-
thorization token, which it passes on to the login screen of
the default system browser. After the OpenID handshake,
the Butler creates a session ticket and maps it to the au-
thorization token. The application reverts to native mode
and exchanges the authorization token for a session ticket,
which it uses for subsequent requests.

2.3 Authentication between Butlers
In the decentralized PrPl architecture, a query presented

to a Butler may require the Butler to contact friends’ Butlers
on behalf of the user. In general, a query may be propagated
through a chain of Butlers. To support single sign-on, we
use a PrPl Session Ticket which is a tuple <issuer ID, re-
quester ID, session ID, expiration time, issuer’s signature>.
The issuer is the last Butler issuing the request, whose iden-
tification can be verified by its signature. The requester ID
specifies the originator of the message and all the interme-
diate Butlers involved. A ticket can be renewed before its
expiration time. Upon a request for renewal, the issuing
Butler will issue a new ticket with the same session ID by
updating the expiration time and signature.

3. THE PRPL SEMANTIC INDEX

The Butler keeps an index of personal data and relations
which is built with the cooperation of Data Stewards. It
enforces access control and presents a programmable inter-
face to applications. It also includes a personal homepage
with the personalized services and management console so
the user can administer and access his data over the web.

3.1 Semantic Index API
The PrPl semantic index contains all the personal infor-

mation (e.g. contacts and locations) as well as the meta-
data associated with large data types, such as photos and
documents. The meta-data includes enough information to
answer typical queries about the data, and location of the
body of the larger data types, known as blobs. Blobs may
be distributed across remote data stores and possibly en-
crypted. A unit of data in the system is known as a resource.
A resource conceptually is a collection of RDF (Resource
Description Framework) [4] subject-predicate-object triples
with the same subject. Resources have a globally unique
URI (Universal Resource Identifier). These resources con-
tain much the same information that one would find main-
tained by a traditional filesystem such as name, creation
time and modification time in addition to keyword and type
(e.g. photo, message, etc.). Blob resources contain type and
size information about the blob and a pointer to the Data
Steward that physically hosts the file.

The PrPl semantic index is schema-less and is able to store
generic and possibly unknown information types. Whenever
possible, we use standard ontologies (for types such as Ad-
dress, Contact, Calender, and Music). The ontology, types
of resources and related properties, are described in OWL,
the Web Ontology Language[5]. The common ontology helps
evaluate queries over multiple schema-less indices in the net-
work of independently-administered Butlers. The ontology
also can be used to enforce restrictions on resource proper-
ties (e.g., each Person resource has a single last name) and
to generate inferred information from given facts.

3.2 Data Stewards on Storage Devices
Each federated store that hosts blob data runs a Data

Steward, operating on behalf of the user. It provides a ticket-
based interface to PrPl applications and hides the specifics
about how the blob is actually stored.

At configuration/startup time, the Steward registers it-
self with the owner’s Butler. For existing data resources,
the Steward checks for any changes since the last communi-
cation with the Butler. It periodically sends heartbeats to
the Butler with updated device access information, such as
a change in IP address when it is running on a portable de-
vice. For data sources like file systems that may be updated
externally, the Steward monitors the resource and sends no-
tifications to the index with its heartbeats. For all resources
located in its store, the Steward tracks where the blobs are
located. Specifically, it maps a virtual PrPl resource URI to
a physical URI, such as one beginning with file://.

The Steward services blob access requests from applica-
tions directly, to avoid making the Butler a bottleneck. An
application is required to first obtain a ticket from the Butler
owning the resource. The ticket certifies that the requesting
application has access rights to perform specific operations.
The ticket contains the URI of the requested resource, PrPl
user, ticket expiration time, list of authorized operations,
and one or more locations of the Data Stewards that are



hosting the blob. An application can cache the ticket until
its expiration time. Our current implementation does not
support revocation of tickets; however, the ticket is not re-
newable and a new one must be acquired after it expires.

3.3 Butler Home and Management Console
A Butler’s owner can add services to his Butler, exam-

ples of which include active feeds of friends, photo browsing,
music streaming service, etc. These services are accessible
via the Butler’s web-based homepage. This homepage also
includes a management console with which the owner can
administer and access his personal cloud information. He
can manage individual accounts as well as group member-
ships. He can control read/write access of individual PrPl
resources and access to the services provided by the Butler.
He can view registered devices and services, view/revoke is-
sued session tickets, and run simple queries directly. It also
provides a generic resource browser, where the owner can
edit and add meta attributes, download blobs, and specify
access control policies.

Figure 2: The PrPl Butler homepage and photo
browser application

4. SOCIALITE: A LANGUAGE FOR A SO-

CIAL MULTI-DATABASE
SociaLite is an expressive query language for social multi-

databases. The abstractions provided by SociaLite hide low-
level details of distributed communications, authentication,
and access control. It is based on Datalog[9] which is a query
and rule language for deductive databases that syntactically
is a subset of Prolog[20]. Deductions are expressed in terms
of rules. For example, the Datalog rule

D(w,z) :- A(w,x), B(x,y), C(y,z).

says that “D(w,z) is true if A(w,x), B(x,y), and C(y,z) are
all true.” Variables in the predicates can be replaced with
constants, which are surrounded by double-quotes, or don’t-
cares, which are signified by underscores. Predicates on the
right side of the rules can be negated.

We chose Datalog as the basis of our language for access-
ing the PrPl social multi-databases for the following reasons.
First, Datalog supports composition and recursion, both of
which are useful for building up more complex queries. Be-
ing a high-level programming language with clean seman-
tics, Datalog programs are easier to write and understand.

Also, it avoids over-specification typical of imperative pro-
gramming languages. As a result, the intent of the query
is more apparent and easily exploited for optimizations and
approximations.

4.1 RDF-Based Database
The database in our Butler is an unstructured semantic in-

dex, meaning that relation schemas need not be predefined.
This allows us to add new relationships easily. SociaLite
provides syntactic sugar for RDF by allowing RDF triples
to be included as predicates in the body of a rule. For ex-
ample, we can say that a contact in the PrPl database is a
friend:

Friend(u) :- (u, a, prpl:Identity).

(u, a, prpl:Identity) is the RDF syntax for saying that u has
type “Identity” in our PrPl database.

4.2 Function Extension
In SociaLite queries, user-defined functions may be used to

do additional computation on retrieved data. Two types of
functions are supported - tuple-wise functions and relation-

wise functions.
Tuple-wise functions can be applied to each tuple of a

relation, one at a time. Formally, we say that a tuple-wise
function $F , which takes n inputs and returns m outputs,
$F (o1, . . . , om, i1, . . . , in) is true if and only if (o1, . . . om) =
F (i1, . . . , in).

Relation-wise functions operate on an entire set of tuples.
A relation-wise function is syntactically located on the left-
hand side of a query statement. Its arguments must include
another predicate, but may also include other variables such
as constants. The function may return either a set of tuples
or a single scalar value. For instance to count the number
of friends, the function Count can be used as following:

FriendsCount(Count(f)) :- Friend(f).

4.3 Remote Queries
SociaLite has an According-To operator “[ ]” to allow suc-

cinct expression of remote queries. The predicate “P [x](y)”,
read P (y) according to x, evaluates predicate P (y) on x’s
database. When used together with recursion, the operator
allows one to traverse the distributed directed graph embed-
ded in the social database.

With SociaLite, we can write a multi-domain distributed
query in a few lines. Suppose we are interested in collect-
ing all the pictures taken at a Halloween party among our
friends. The SociaLite query may look like:

Friends-Halloween(p,f) :- Friend(p), Halloween[p](f).
Halloween(f) :- (f , a, prpl:Photo), (f , prpl:tag, “Halloween”).

This query gathers together pictures with the same “Hal-
loween” tag that are in our friends’ respective Butlers by
sending a sub-query to the Butlers. When a (sub-)query
needs to be evaluated in a remote Butler, the SociaLite en-
gine takes care of authentication and proper access control,
freeing the programmers from low-level burdens.

5. PROTOTYPE IMPLEMENTATION
We have developed a fully functional prototype of the PrPl

architecture as described in this paper. The prototype, writ-
ten in Java, has approximately 34,000 source lines of code



(SLOC) including 8,800 SLOC for SociaLite. The major
infrastructure components include Personal Cloud Butler,
Data Steward, and Pocket Butler with Client API for build-
ing applications. Because we cannot change the OpenID
Providers to provide the Butler directory service, we have
created a Global Butler Directory service in the meantime
to support experimentation.

To integrate with OpenID and implement PKI for authen-
tication, SSL, and tickets, we use the OpenID4Java library
and built-in security and cryptography libraries from Sun.
We use Java’s keytool and OpenSSL for generating, sign-
ing, and managing certificates and keys. We use Jetty as a
web server and Apache XML-RPC for RPC. Services com-
municate with each other over HTTPS and make requests
via RPC or REST APIs. Custom protocols are used for effi-
ciently fetching blobs or streaming query results. The Butler
Management Console is written using JSP and Struts. The
PrPl index is implemented using HP’s Jena semantic web
framework and a JDBM B+Tree persistence engine.

The SociaLite implementation also makes use of the
Jena/ARQ libraries for iterating over triples and XStream is
used for serializing and streaming query results. Our imple-
mentation of the SociaLite language includes optimizations
such as semi-naive evaluation, caching, and query pipelining
so that partial results can be returned to minimize the query
response time. Details of these optimizations are beyond the
scope of this paper.

We have implemented client API libraries for Java, An-
droid, and the iPhone to hide low level details like RPC.
As an optimization, the meta-data of resources is cached
at the first read attempt and refreshed upon the request of
the application, eliminating expensive remote/system calls.
Write requests first get committed at the owner Butler be-
fore updating the client cache. The client API also supports
basic atomic updates and batch operations at a resource le-
vel. Currently, Pocket Butler is implemented for Android
using the Intent framework, supporting single sign-on.

The Data Stewards we have developed include services for
generic file systems on a PC, file systems and location data
on Android and iPhone, IMAP contacts and attachments,
contacts and photos on Facebook, and Google contacts avail-
able with the GData interface. Most of these Data Stewards
are only a few hundred lines of code.

Finally, to provide developers a run-time platform for test-
ing their applications without worrying about setting up
their own PrPl Butlers, we provide a PrPl hosting service.
Test developers can register on the web to get an instance
of their own PrPl service in minutes.

6. PRELIMINARY EVALUATION
The current PrPl prototype is designed as an experimental

vehicle and has not been optimized for speed. Nonetheless,
it is useful to measure the performance of queries running
on this prototype to ensure that the decentralized approach
is viable.

6.1 Queries to one Butler
Our first experiment is to measure the performance on a

single Butler to establish the baseline of the system. We
estimate that users will have a collection of a few ten to
hundred thousands of music, photos, videos, and documents,
each with approximately 5-10 properties. Thus, our first
experiment is to evaluate the performance of SociaLite on

four PrPl indices, ranging from 50,000 to 500,000 triples.
The experiment is run with both the client application and
Butler running on an Intel Core 2 Duo 2.4 GHz CPU with
4 GB of memory.

The queries for this experiment return the URI of the pho-
tos that match one and two given tags, respectively. Because
users like to see partial results as soon as possible, the But-
ler pipelines the query execution and starts returning initial
results without waiting for all results to be computed. Fig-
ure 3 shows the number of results returned for each of the
queries, and the time the Butler takes to report the first and
last result to the client application.

One Tag Two Tags

# of DB 1st/Lst # of 1st/Lst # of
Triples (MB) (sec) Ans (sec) Ans

50,000 8 0.9 / 1.2 1,024 0.6 / 0.6 53

100,000 22 0.9 / 2.0 2,095 0.8 / 0.9 91

250,000 118 1.0 / 3.3 5,045 1.0 / 1.3 264

500,000 628 1.4 / 6.9 10,019 1.5 / 2.4 516

Figure 3: Photos matching one and two tags on a
single Butler

While the first query is simpler, it returns many more
results. Thus, even though the second query requires two
lookups and one join operation, it is uniformly faster than
the first. The overhead in communicating the results to the
client dominates execution time. By pipelining the query,
the Butler returns the first results within 1.5 seconds regard-
less of the size of the database and the number of results of
the query. This suggests pipelining is very important, espe-
cially since the end user cannot view the results all at once
anyway. Note that the performance of the system is com-
mensurate with the results reported for the underlying Jena
library used in the PrPl prototype.

6.2 Performance on a Network of Butlers
To simulate a social network, we deployed 100 Personal-

Cloud Butlers, each of which simulates a user with his or her
own database, on the Amazon EC2 platform. Each Butler
was randomly given 10 to 100 friends, 50 to 350 photos, up
to 1,500 songs, and 1,000 location data points. In assigning
music, we used a Gaussian distribution over the synthet-
ically generated library of 100,000 songs to simulate real-
world song popularity. We associate a tie strength [11] with
each friend, which may be estimated for example by the
number of email messages sent to the friend. For this exper-
iment, we simply use a weight randomly generated between
0 and 1; friends with weights greater than 0.7 are considered
close friends. We refer to the Butler initiating the query as
the issuer and the Butler of a friend as simply a “friend”.
The issuer in this experiment is set up to have 30 friends.
We tested the system with a set of queries typical of social
applications. Characteristics of the queries are summarized
in Figure 4, and their performance is shown in Figure 5.

• Common friends. This query finds common friends
an issuer has with each of his friends. In this case,
the query contacts 30 friends and the sum of all the
friends’ list returned is 1,570. A join is performed for
each list with the list of friends the issuer has, resulting
in 494 tuples in all.

• Friends star. This query computes the closure on



Query Description # Rules in # Butlers Answers 1st/Last
Query Reached (sec)

Common Common friends between 2 30 494 1.0/1.9

friends me and my friends

Friends All the people connected 3 100 100 0.7/5.2

star through my friends

Close friends’ URIs of photos 3 10 1,642 1.3/3.6

pictures from my close friend

Top 10 Top 10 popular songs 6 30 10 4.2/4.2

songs among my friends

Figure 4: 4 Distributed SociaLite queries

the people that one can reach by following friendship
connections in the network. The issuer contacts his
immediate friends, each of whom recursively computes
it’s own friends network. The issuer in this case is
connected to all the 100 people in the simulation; all
the friends can be reached within two hops, and a third
hop is required to detect convergence.

• Close friends’ pictures. This query returns the
URIs of the photos of our close friends. The filter by
tie strength in this query illustrates the use of user-
defined functions in SociaLite. This query returns ap-
proximately 1,642 results.

• Top 10 songs. In the Top10Songs query, the issuer
contacts his friends to return their most popular 50
songs and the respective play counts. With 30 friends,
the issuer receives 1,500 song counts from his friends.
It combines the friends’ counts with his own counts
and reports the 10 most popular songs to the user.
This query also shows off the relation-wise function
extension in SociaLite.

We first observe from Figure 4 that these queries can be
expressed succinctly in 2 to 6 SociaLite rules. For all these
queries, the client application contacts the issuer’s Butler,
which is responsible for contacting all the other Butlers.
Note that the performance reported here includes the over-
head of contacting the various butlers on the EC2 platform
as well as authentication of the Butlers against the Butler
Directory service. The queries all complete within 5 sec-
onds. The performance of the query depends on the number
of butlers contacted and the number of intermediate and
final results computed. “Friends star” takes the longest be-
cause it has to reach convergence across 100 butlers. With
the exception of “top 10 songs”, all the queries benefit from
query pipelining, with the first results returning within 1.5
seconds. Query pipelining is especially important in a dis-
tributed environment where the response time of different
Butlers can vary greatly. These results suggest that the de-
centralized approach is viable.

7. APPLICATION EXPERIENCE
The PrPl system enables us to make our personal informa-

tion, such as contacts, GPS locations and photos, available
over the web and on our smart phones. There is a unified
contact list, which can be used for sharing all kinds of data.
This is much more convenient than the current practice of
inviting friends for every different website we use to share
data. Because of the high-level abstractions the infrastruc-
ture provides, we were able to quickly develop a number of
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Figure 5: Rate of results returned for queries in
Figure 4

applications on various platforms. These applications are
mostly SociaLite queries dressed up in a graphical user in-
terface. The data is protected with authenticated user IDs
and Butlers, in addition to allowing users to specify their
own access control.

7.1 Sharing Personal Information
We now describe our experience in building Peops, an An-

droid interface to the Butler service. Essentially, Peops en-
ables users to submit SociaLite queries to their Butler service
via a graphical user interface. Peops queries a user’s Butler
for his list of friends, ranks them by order of tie strength and
shows them to the user. The user can select a subset of these
friends, and ask to see their shared photos or GPS locations.
Peops sends to the Butler a distributed SociaLite query that
uses the According-To operator to retrieve the data of in-
terest. The Butler handles all the communication with the
respective Butlers and returns the answers to Peops. Note
that only URIs of the photos are passed around, as the An-
droid application fetches the photos directly from the blob
servers. The low-level data retrieval operations are all han-
dled by the PrPl client running on the phone, requiring no
effort on the part of the application developer. Note that
all queries are subjected to access controls by the respective
Butlers according to their owners’ specifications.

Our Peops application presents a user interface organized
into UI tabs, each of which represents a different section of
the application that is catered to a specific task. The Friends
tab displays a user’s unified list of social contacts with which
to make selections for further shared data queries. The re-
sults of the distributed query are displayed as a unified view
of photo collections or GPS locations under the Photos and
Map tabs respectively. Finally, the Settings tab lets a user



gain access to his Butler by specifying his PrPl login cre-
dentials, or an existing social networking persona that PrPl
supports, such as OpenID or Facebook.

In developing Peops, most of our focus was on writing
application UI code. It took us about 5 days to build a
functional version of the application. Significant develop-
ment time was saved as PrPl and SociaLite dealt with the
intricacies of the networking and distributed programming
that made distributed queries possible. Out of Peops’s ap-
proximately 3,028 lines of source code, about 332 lines or
11% of the code dealt with executing SociaLite queries and
transforming their results for application usage. Ease of dis-
tributed application development is thus another key advan-
tage of our system.

Figure 6: The Peops application, running on the An-
droid.

7.2 Jinzora: Free Your Media
With the goal of trying to attract real users, we have also

experimented in creating a mobile social music experience
by leveraging a popular open-source music-streaming web
application called Jinzora. By integrating Jinzora with the
PrPl infrastructure, users can stream music to themselves
and their select friends, and also share playlists. This de-
sign gives users the freedom to host their purchased music
anywhere while enjoying the accessibility typical of hosted
online music services. Note that Jinzora is not designed to be
used for mass distribution of music content, but rather per-
sonal streaming and streaming to a select group of friends.

We have built a client called Jinzora Mobile (JM) for both
the Android and iPhone platforms that connects to a Jinzora
music service. Users can browse and search their music and
stream the content directly to their mobile phone. JM allows
a user to switch between Jinzora servers, hosted personally
by the user or by a friend. JM looks up the location of
the Jinzora server directly from the PrPl Butler Directory
service. Users can login to the service using their OpenID
credentials. Friends can share their playlists with each other
and discover music together. Users’ playlists are saved on
their respective Butlers. To access the shared playlists, the
JM client needs only to issue a distributed SociaLite query
to the user’s Butler; it automatically contacts all the friends’
Butlers, collates the information and sends it back to JM.
We found that the PrPl platform made it relatively easy to
enable service and playlist sharing in JM. The coding effort
is reasonable as it involves mainly just creating a GUI over
6 SociaLite queries. This application is reasonably polished
such that a number of the authors use it on a daily basis.

8. RELATED WORK

Figure 7: Sharing playlists in Jinzora on the iPhone.

OpenSocial [1] provides API’s that makes user informa-
tion available from a single social network. One can embed
widgets on their web page, and access people and activity
information. OpenSocial’s is not an inter social networking
API; it does not help users to interact across multiple so-
cial networks. In contrast, we allow users to perform deeper
integration of their data by running distributed queries in
the SociaLite language. Users are able to traverse admin-
istrative domains while accessing data and services across
multiple social networks.

Facebook Connect and the Facebook Platform [2] provide
a popular API into a closed social network. It remains the
exemplar of a walled garden; inter-operability across admin-
istrative domains is not possible. Users are limited to Face-
book’s changing terms of services and suffer weak access con-
trol. By adding an application, users unintentionally share
wide-ranging access to their profile information. In contrast,
we embrace open platforms/API’s such as OpenID, which
enable us to extend APIs, perform deeper integration, and
most importantly, offer flexible access control.

Homeviews [10] describes a P2P middleware solution that
enables users to share personal data based on pre-created
views based on a SQL-like query language. Access is man-
aged using capabilities, which are cumbersome for a client
to carry, can be accidentally shared and broadcasted, and
are harder to revoke. In contrast, PrPl uses the federated
OpenID management system that eases account manage-
ment overhead and supports automatic account creation and
usage.

Lockr [19] is an access control system for online content
sharing services. It decouples data management from shar-
ing system by letting users exchange attestations which cer-
tify a social relationship between the issuer and a recipient.
However, real-life social relationships are often not equally
bi-directional. It also relies on the issuer and recipient to mu-
tually protect the attestation. However, the recipient could
collude with malicious attackers or share the attestation for
monetary reasons.

Persona [6] is a distributed OSN (Online Social Network)
that shares the goal of promoting user privacy. It uses a
cryptographic mechanism to share personal data. However,
Persona requires its users to generate a key-pair and dis-
tribute the public key out of band to other users. In addi-
tion, it does not provide a mechanism for handling expir-
ing relationship keys. NOYB [13] instead obfuscates sensi-
tive information by randomly permuting the data. Again,
the user must share the secrets with friends so that friends
can view the user’s private information. The PrPl system
takes advantage of well-established identities such as email



addresses, phone numbers, and OpenIDs, and it does not
require any out-of-band secret exchange.

Looet al. give an example distributed Datalog system that
is used to simulate routing algorithms [14]. They use a
pipelined evaluation methodology that is similar to the one
implemented in SociaLite. Unlike SociaLite, many domain-
specific optimizations and restrictions are incorporated in
their language and implementation.

Ensemblue is a distributed file system for consumer de-
vices [15]. While Ensemblue is targeted at consumer appli-
ances and managing media files, it lacks collaboration sup-
port, semantic relationships between data items, and a se-
mantic index.

Mash-ups are web applications that combine data from
multiple service providers to produce new data tailored to
users’ interest. Although mashups can provide unified view
of data from multiple data sources, they tend to be shallow
compared to our work. First, data sources are limited to
service providers: users have to upload their data to each
individual service provider. Second, their API’s generally
create restrictions on usage: PrPl provides a very flexible
API that enables users to implement deep data and service
integration, or create deep mash-ups.

The Haystack project developed a semantically indexed
personal information manager [16]. IRIS [7] and Gnowsis
are single-user semantic desktops while social semantic desk-
top [8] and its implementations [12, 18] envision connecting
semantic desktops for collaboration. PrPl differs from such
work by permitting social networking applications involving
data from multiple users across different social networking
services. We have built a distributed social networking in-
frastructure that include ordinary users whereas the social
semantic desktops only focus on collaboration among knowl-
edge workers.

9. CONCLUSIONS
This paper presents the architecture of PrPl, a decentral-

ized, open, and trustworthy social networking platform. We
propose Personal-Cloud Butlers as a safe haven for the in-
dex of all personal data, which may be hosted in separate
data stores. A federated identity management system, based
on OpenID, is used to authenticate users and Butlers. We
hide the complexity of decentralization from the application
writers by creating the SociaLite language.

We have implemented a fully working prototype of the
PrPl system and have developed a couple of mobile social
applications on it for the Android and iPhone. We found
that the applications are easier to write. Preliminary per-
formance measurements of representative queries on a simu-
lated network of 100 Butlers in the EC2 system suggest that
it is viable to use a decentralized architecture to support
sharing of private social data between one’s close friends.

We believe that lowering the barrier to entry for dis-
tributed social application developers is key to making de-
centralized social networking a reality. SociaLite, with its
high-level programming support of distributed applications,
has the potential to encourage the development of many de-
centralized social applications, just as Google’s map-reduce
abstraction has promoted the creation of parallel applica-
tions.
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