
Prudent Engineering Practice

for Cryptographic Protocols

Martin Abadi* Roger Needhamt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstract

We present principles for the design of crypto-

graphic protocols. The principles are neither

necessary nor sufficient for correctness. They are

however helpful, in that adherence to them would

have avoided a considerable number of published

errors.

Our principles are informal guidelines. They

complement formal methods, but do not assume

them. In order to demonstrate the actual ap-

plicability of these guidelines, we discuss some

instructive examples from the literature.

1 Introduction

It has been evident for a number of years that

cryptographic protocols, as used in distributed

systems for authentication and related purposes,

are prone to design errors of every kind. A con-

siderable body of literature has come into be-

ing in which various formalisms are proposed

for investigating and analyzing protocols to see

whether they contain various kinds of blunders.

(Liebl’s bibliography [ll] contains references to

protocols and formalisms.) Although sometimes

useful, these formalisms do not of themselves

suggest design rules; they are not directly bene-

ficial in seeing how to avoid trouble. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~

*maQsrc.dec.com. Digital Equipment Corporation,
Systems Research Center, 130 Lytton Ave., Palo Alto,
California 94301, USA.

trmnQcl.cam.ac.uk. University of Cambridge, Com-
puter Laboratory, New Museums Site, Pembroke St.,
Cambridge CB1 3QG, UK.

We present principles for the design of crypto-

graphic protocols. The principles are not neces-

sary for correctness, nor are they sufficient. They

are however helpful, in that adherence to them

would have contributed to the simplicity of pro-

tocols and avoided a considerable number of pub-

lished confusions and mistakes.

We arrived at our principles by noticing some

common features among protocols that are diffi-

cult to analyze. If these features are avoided, it

becomes less necessary to resort to formal tools-

and also easier to do so if there is good reason

to. The principles themselves are informal guide-

lines, and useful independently of any logic.

We illustrate the principles with examples. We

draw our examples from the published literature,

in order to demonstrate the actual applicability

of our guidelines. Some of the oddities and er-

rors that we analyze here have been documented

previously (in particular, in [4]). Other examples

are new: protocols by Denning and Sacco [6], Lu

and Sundareshan [la], Varadharajan, Allen, and

Black [29], and Woo and Lam [32]. We believe

they are all instructive.

Generally, we choose examples from the au-

thentication literature, but the principles are ap-

plicable elsewhere, for example to electronic-cash

protocols (e.g., [15]). We focus on traditional

cryptography, and on protocols of the sort com-

monly implemented with the DES [18] and the

RSA [26] algorithms. In particular, we do not

consider the subtleties of interactive schemes for

signatures (eg, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7]) . Moreover, we do not discuss

the choice of cryptographic mechanisms with ad-

equate protection properties, the correct imple-

mentation of cryptographic primitives, or their zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
122 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1063-7109194 $03.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1994 IEEE

http://maQsrc.dec.com
http://trmnQcl.cam.ac.uk

appropriate use; these subjects are discussed

elsewhere (e.g., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[30, 171).
Throughout, we concentrate on the simple

facts with the largest potential applicability and

payoff. Admittedly, the literature is full of inge-

nious protocols and attacks. We do not attempt

to organize the principles that underly this inge-

nuity, and perhaps it is not necessary. We hope

that our simple principles and examples will be of

help to the engineering of robust cryptographic

protocols. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 Basics

A protocol, for present purposes, is a set of rules

or conventions defining an exchange of messages

among a set of two or more partners. These part-

ners are users, processes, or machines, which we

will generically refer to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas principals. In a cryp-

tographic protocol the whole or part of some or

all of the messages is encrypted. We interpret

the term encryption fairly broadly, applying it

for example to signature operations. Encryption

and decryption are for present purposes defined

as key-dependent transformations of a message

which may only be inverted by using a definite

key; the keys used for encryption and decryp-

tion are the same or different, depending on the

cryptographic algorithm used.

We find two overarching principles for the de-

sign of secure cryptographic protocols. One prin-

ciple is concerned with the content of a message

and

will

1.

2.

the other with the circumstances in which it

be acted upon:

Every message should say what it means-

its interpretation should depend only on its

content.

The conditions for a message to be acted

upon should be clearly set out so that some-

one reviewing a design may see whether they

are acceptable or not.

Next we explain these general principles. They

lead to other, more specific recommendations,

which we discuss in the subsequent sections.

2.1 Explicit communication

In full, our first basic principle is:

Principle 1

Every message should say what it means:

the interpretation of the message should de-

pend only on its content. It should be possi-

ble to write down a straightforward English

sentence describing the content-though if

there is a suitable formalism available that

is good too.

For example, an authentication server zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS might

send a message whose meaning may be expressed

thus: “After receiving bit-pattern P , S sends to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A a session key K intended to be good for con-

versation with B”. All elements of this meaning

should be explicitly represented in the message,

so that a recipient can recover the meaning with-

out any context. In particular, if any of P , S , A,
B, or K are left to be inferred from context, it

may be possible for one message to be used de-

ceitfully in place of another.

Principle 1 is not completely original. In [4],
we recommend the use of a logical notation in

generating and describing protocols-essentially

proposing a method to follow the principle. Es-

tablishing the correspondence between the logi-

cal protocol and its concrete implementation can

be a simple matter of parsing, as for example

in [31, Section 4.3.21. Although a precise com-

parison of informal ideas is difficult, we also find

an affinity with Boyd and Mao’s proposal that

protocols should be robust in the sense that “au-

thentication of any message in the protocol de-

pends only on information contained in the mes-

sage itself or already in the possession of the

recipient” [3]. An operational variant on this

theme appears in the work of Woo and Lam,

who call a protocol full information if “its initia-

tor and responder always include in their outgo-

ing encrypted messages all the information they

have gathered” [33].

2.2 Appropriate action

For a message to be acted upon, it not merely has

to be understood but a whole variety of other

123

conditions have to hold too. These often con-

sist of what may informally be regarded zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas state-

ments of trust, though this anthropomorphic no-

tion should be used with care. Statements of

trust cannot be wrong though they may be con-

sidered inappropriate. For example, if some-

one believes that choosing session keys should

be done by a suitably trusted server rather than

by one of the participants in a session, then he

will not wish to use a protocol such as the Wide-

mouthed-frog protocol [4]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Principle 2

In general, we have:

The conditions for a message to be acted

upon should be clearly set out so that some-

one reviewing a design may see whether they

are acceptable or not.

2.3 Secrecy

The secrecy of certain pieces of information is es-

sential to the functioning of cryptographic proto-

cols. Obviously, a protocol should not publicize

the cryptographic keys used for communicating

sensitive data.

None of the our principles makes this point ex-

plicitly. Rather, all of our principles warn against

mistakes that often imply the loss of secrecy, in-

tegrity, and authenticity. Some of the examples

clarify how the principles relate to the need for

secrecy.

There may be more to say about secrecy guide-

lines for cryptographic protocols, but these are

outside the scope of the present paper.

2.4 Examples and other principles

Below we discuss many concrete examples where

errors would have been avoided by use of our

two basic principles. We also introduce other

principles. Some of these are clearly corollaries

of the basic ones, others are not. In particular,

we recommend: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Be clear on how encryption is used, and on

the meaning of encryption.

0 Be clear on how the timeliness of messages

is proved, and on the meaning of temporal

information in messages.

Hopefully, the two basic principles will encourage

a certain lucidity in the design of cryptographic

protocols, and thereby make it easier to follow

our other principles.

3 Notation

We adopt notation common in the literature.

That notation is not quite uniform and, in exam-

ples, we make compromises between uniformity

of this paper and faithfulness to original nota-

tion.

In this paper, the symbols zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB often rep-

resent arbitrary principals, S represents a server,

T a timestamp, N a nonce (a quantity gener-

ated for the purpose of being recent), K a key,

and K-' its inverse. In symmetric cryptosys-

tems such as DES, K and K-' are always equal.

For asymmetric cryptosystems such as RSA, we

assume for simplicity that the inversion opera-

tion is an involution (so ~ - 1 - l equals K) ; we

tend to use K-' for the secret part and K for

the public part of a key pair (K , K-'). We write

{ X } K to represent X encrypted under K ; any-

one who knows { X } K and the inverse of K can

obtain X . If K is secret, we may refer to { X } K
as a signed message, and to the encryption oper-

ation as a signature.

For example,

Message 4 B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ A : { T a + l } ~ , ~

describes the fourth message in a protocol; in

this message, B sends to A the timestamp T a
incremented by 1, under the key Kat,. In this ex-

ample, the subscript zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa in Ta is a hint that A first

generated T,; the subscript ab in K a b is a hint

that Kab is intended for communication between

A and B. Similarly, we may write K, for A's
public key.

4 Naming

The most immediate instance of Principle 1 pre-

scribes being explicit about names of principals:

124

Principle 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAopens communication with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB ,

Message 3 A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ B : CA, CB,
{ { K a b , T a) K ; l } K b

B removes the outer encryption, reencrypts with

K,, sends:

Message 3’ B -+ C : CA, CC,
{ { K a b , T o) K , - ~ } K ,

and C will believe that the message is from A.
In particular, C might send sensitive information

under K,b, and B may see it when perhaps only

A should.

The intended meaning of Message 3 is roughly

“At time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,, A says that Kab is a good key for

communication between A and B”. Any ade-

quate format for Message 3 should contain all of

these elements expressly or by implication. The

obvious one is:

Message 3 A -+ B : CA, CB,
{ { A , Kab, % } ~ , - l }Kb

although the name A might be deducible from

KL1. It is important that this format must not

be used for anything else; we return to this point

in Section 7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0

Example 3.2 In [32, pp. 42-43], Woo and

Lam present an authentication protocol based on

symmetric-key cryptography. When B wants to

check that it is in A’s presence, it runs:

Message 1 A -+ B : A
Message 2 B -+ A : Nb
Message 3 A + B : { N b } K a s

Message 5 S + B : { N b } K b S

Message B : { A , {Nb)Ka , }Kba

Here Nb is a nonce, S is a server, and K,, and

Kbs are keys that A and B share with S. Basi-

cally, A claims his identity (Message l); B pro-

vides a nonce challenge (Message 2); A returns

this challenge encrypted under K,, (Message 3);
B passes this message on to S for verification,

bound with A’s name under Kb, (Message 4); S
decrypts using A’s key and reencrypts under B’s
(Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5) . If S replies { N b } K b s , then B should

be convinced that A has responded to the chal-

lenge Nb.

If the identity of a principal is essential to

the meaning of a message, it is prudent to

mention the principal’s name explicitly in

the message.

The names relevant for a message can some-

times be deduced from other data and from what

encryption keys have been applied. However,

when this information cannot be deduced, its

omission is a blunder with serious consequences.

The principle is obvious and simple, yet it is

commonly ignored. We give several examples of

fairly different natures.

Example 3.1 In [6, p. 5351, Denning and Sacco

propose a protocol for key exchange based on

an asymmetric cryptosystem. In the first two

messages of this protocol, A obtains certificates

CA and CB that connect A and B with their

public keys K, and Kb, respectively. The exact

form of CA and CB is not important for our

purposes. The interesting part of the protocol is

Message 3. There, A sends to B a key Kat, for

subsequent encrypted communication between A
and B , with a timestamp T,. The protocol is:

Message 1 A -+ S : A, B
Message 2 S -+ A : CA, CB
Message 3 A + B : CA, CB,

{ { K a b , T a) ~ , - l }Kb

This third message is encrypted for both secrecy

and authenticity. When A sends this message to

B, it is important that no other principal obtain

K,b; the use of Kb provides this guarantee. f i r -

thermore, the intent is that, when B receives the

message, B should know that A sent it (because

of the signature with K;’). Finally, B should

know that the message was intended for B (be-

cause of the use of K b) .

Unfortunately nothing provides this final guar-

antee, with dramatic consequences. Any princi-

pal B with which A opens communication can

pretend to a third party C that it actually is

A, for the duration of validity of the timestamp.

For simplicity, we omit the exchanges which yield

the public certificates CA, CB, and CC. When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
125

The protocol is flawed. The connection be-

tween the messages is not sufficient. In partic-

ular, nothing connects zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB’s query to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS with S’s
reply. The protocol is therefore vulnerable to an

attack, as follows. Suppose that B is willing to

talk to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and to C roughly at the same time; A
may be off-line. Then C can impersonate A:

Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--f B :
Message 1’ C --f B :
Message 2 B -+ A :
Message 2’ B -+ C :
Message 3 C + B :
Message 3’ C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt E :
Message 4 B -+ S :
Message 4’ B -+ S :
Message 5 S -+ B :
Message 5’ S + B :

where NF is the result of decrypting { Nb}Kc , us-

ing Kas. In Messages 1 and l’, C tells B that
both A and C want to establish a connection. In

Messages 2 and 2’, B replies with two challenges;

C receives one normally, and captures the other

one, which was destined to A’s address. In Mes-

sages 3 and 3’, C replies to both challenges. On

A’s behalf, it can send anything. On its own be-

half, C responds to the challenge intended for A.
In Messages 4 and 4’, B consults S about the two

responses. Messages 5 and 5’ are the replies from

S. One of these replies matches nothing, while

the other one contains the challenge intended for

A. On the basis of these replies, then, B must

believe that A is present.

The existence of this attack demonstrates that

the messages in the protocol are not sufficiently

explicit about the identity of the principals in

question. (After we contacted them, Woo and

Lam came to the same conclusion [33].) Reason-

ing as in Example 3.1, we may remove the flaw,

by changing the last message of the protocol to

A further change is discussed in Example 6.2. 0

Example 3.3 A more dramatic example is pro-

vided by the basic Internet protocol of Lu and

Sundareshan [12, pp. 1016-10171. This protocol

is rather complicated for a detailed description.

Its intent is to allow two principals A and B to

obtain a session key, with the mediation of local

servers and gateways.

On the other hand, the fundamental flaw of

the protocol is rather simple. One immediately

sees that neither A nor B ever receives a message

that contains the other’s name. Obviously, this

opens the door for confusions between different

connections. It also allows some easy attacks to

defeat the protocol. After we contacted them,

the authors published a correction [13], where

names appear in messages explicitly. 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 Encryption

The next group of principles and examples con-

cern encryption. They are generally related to

Principle 1, since they concern what encryption

means and on what it does not mean.

5.1 The uses of encryption

As the examples below illustrate, encryption is

used for a variety of purposes in the present con-

text [1 91.

0 Encryption is sometimes used for the preser-

vation of confidentiality. In such case it is

assumed that only intended recipients know

the key needed to recover a message. When

a principal knows K-’ and sees { X) K , it
may deduce that X was intended for a prin-

cipal who knows K-’; and it may even de-

duce that X was intended for itself, given

additional information.

0 Encryption is sometimes used to guarantee

authenticity. In such case it is assumed

that only the proper sender knew the key

used to encrypt a message. The encryption

clearly contributes to the overall meaning

of the message. The extreme situation is

that where a principal shows that a key is

known by encrypting a null message or a

timestamp.

0 While encryption guarantees confidentiality

and authenticity, it also serves in binding

together the parts of a message: receiving

126

{ X , Y } K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis not always the same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas receiv-

ing { X } K and { Y } K . When encryption is

used only to bind parts of a message, sig-

nature is sufficient. The meaning attached

to this binding is rather protocol-dependent,

and often subtle. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Finally, encryption can serve in producing

random numbers. There is a vast theory

that explains the relation between one-way

functions and random-number generators.

At the level of abstraction that we consider,

one typically assumes that random numbers

are available without examining how they

are constructed (but see Example 7.1).

There is considerable confusion about the uses

and meanings of encryption. If the cryptogra-

phy is asymmetric it may be obvious what is in-

tended; if the cryptography is symmetric, it is

generally not.

Principle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4

Be clear as to why encryption is being done.

Encryption is not wholly cheap, and not ask-

ing precisely why it is being done can lead to

redundancy. Encryption is not synonymous

with security, and its improper use can lead

to errors.

Example 4.1 The Kerberos protocol [16] is

based on the original Needham-Schroeder pro-

tocol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[20], but makes use of timestamps as
nonces in order to remove flaws demonstrated

by Denning and Sacco [6] and in order to re-

duce the total number of messages required.

Like the Needham-Schroeder protocol on which

it is based, the Kerberos protocol relies on

symmetric-key cryptography. A slightly simpli-

fied version of the protocol goes:

Message 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ S : A , B
Message 2 S + A : {T,, L, K a b , B,

Message 3 A + B : {T,, L , K a b , A } K ~ ~ ,

Message 4 B + A : { T a + 1) ~ ~ ~

ITS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL, K a b , A } K b ,) K a s

{ A , Ta}K,t,

Here, T, and T a are timestamps, and L is a life-

time. Initially the server S shares the keys K a ,

and Kbs with the principals A and B; after exe-

cution, A and B share Kab. This protocol serves

to illustrate different uses of encryption; we de-

scribe the protocol step by step:

0 Encryption is not essential for Message 1.

Without encryption, though, an attacker

can flood S with requests for keys, by fal-

sifying instances of Message l. It is com-

mon for designers not to focus on this sort

of vulnerability.

0 Message 2 requires encryption: Kab should

remain confidential, and S should sign the

message as a proof of authenticity.

0 We may however question why double en-

cryption is used in Message 2. Most prob-

ably, this use of double encryption is sim-

ply inherited from the Needham-Schroeder

protocol (see Example 9.1). As in that pro-

tocol, double encryption does not add any-

thing from the points of view of confiden-

tiality or authenticity, and it is not entirely

free of cost.

It does provide a guarantee: when B re-

ceives the first part of Message 3, it knows

that A must have extracted it from Mes-

sage 2, and hence that A must have looked

a similar use of encryption in a variant of the

Otway-Rees protocol [23].) This interpreta-

tion of encryption is sound, but slightly un-

usual, and probably not what the protocol

designers had in mind.

at Message 2. (Heintze and Tygar [9] d' lSCUSS

0 In the second part of Message 3, encryp-

tion is used for an entirely different purpose:

A encrypts Ta with Kab in order to prove

knowledge of Kab near time T'.

In general, Ta may be a few hours newer

than T,. However, if Ta is not much dif-

ferent from T,, the encryption is redundant:

the use of double encryption in Message 2
gives adequate proof of knowledge of Kab.
In this case, the second part of Message 3
could be omitted altogether, and B could

use T, in Message 4. (Were we to propose a

change in Kerberos, however, it would not

127

be removing an encryption in Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3
but rather eliminating the double encryp-

tion in Message 2, which would become zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i T S , L, Kab, B}Kas, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Z, L, K a b , A}Kbb*) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 The encryption in Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 serves an anal-

ogous purpose. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0

Examples 6.1 and 6.2, below, illustrate the in-

teraction of encryption and nonces. In short, en-

cryption is often used for binding when a nonce

provides an association between a message and

an implicit name. Following Principle 3, we make

this missing name explicit. The use of both en-

cryption and nonces is then much simpler and

economical.

5.2 Signing encrypted data

Signature is used, as the name suggests, to indi-

cate which principal last encrypted a message. It

is frequently taken as also guaranteeing that the

signing principal knew the message content. It is

hard, but fortunately unnecessary to be precise

about what knowing is. An informal notion is

sufficient for stating the next principle:

Principle 5

When a principal signs material that has al-

ready been encrypted, it should not be in-

ferred that the principal knows the content

of the message. On the other hand, it is

proper to infer that the principal that signs

a message and then encrypts it for privacy

knows the content of the message.

Failure to follow this principle can lead to er-

rors, as in the next example.

Example 5.1 The CCITT X.509 standard con-

tains a set of three protocols using between

one and three messages [5]. The protocols are

intended for signed, secure communication be-

tween two principals, assuming that each knows

the public key of the other.

The CCITT proposal has problems. We dis-

cuss one problem described in [4]; it appears al-

ready in the one-message protocol:

Message 1 A -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB : A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Ta, Nay B , X,,
{ya)Kb)K;'

Here, T, is a timestamps, N , is a nonce (not

used), and X , and Y, are user data. The

X.509 protocol actually uses hashing to reduce

the amount of encryption. We do not show this

because it does not affect our argument about

X.509.

The protocol is intended to ensure the in-

tegrity of X , and Ya, assuring the recipient of

their origin, and to guarantee the privacy of Y,.
However, although Ya is transferred in a signed

message, there is no evidence to suggest that the

sender is actually aware of the data sent in the

private part of the message. This corresponds to

a scenario where some third party intercepts a

message and removes the existing signature while

adding his own, blindly copying the encrypted

section within the signed message. This problem

can be avoided by several means, the simplest

of which is to sign the secret data before it is

encrypted for privacy. 0

A particular case of the principle concerns

hash functions:

Example 5.2 It is common to use hash functions

in order to save on encryption with asymmetric-

key systems (see for example [25, 103). In partic-

ular, A can send a signed, confidential message

to B as follows:

Message 1 A + B : { X } K & , { H (x) } K ; l

where H is a one-way hash function. When A
sends this message, only B discovers X , and B
knows that A signed the hash of X . For example,

if X is a request for an operation, B may then

infer that A supports X . We should think of one-

way hashing as encryption, and then Principle 5

applies. In this instance, it means that B cannot

be certain that A knew X . For example, if X is

a secret such as a password, B cannot be certain

that A knew the secret; A may have received

H (X) from a friend. 0

In general, we recommend careful examination

of those protocols that require a principal to sign

material that is already encrypted, and such that

the principal cannot decrypt it. On the other

hand, signing before encrypting is not a bill of

health; see Example 3.1.

6 Timeliness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Nb:

Message 1 A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB : M , A, B ,

Message 2 B +. S : M , A, B,
{Na 7 M , A, B } Kas

{Na, M , A, B } K , ~ ,
{Nb, M , A, B}Kb.

{Nb, Kab}Kbs

Message 3 s + B : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhf, {Na, Kab}KaS,

Message 4 B + A : M , {Na, Kab}Ka,

This is the first protocol analyzed in [4].
Perhaps because of our relative inexperience,

we were rather bold in the idealization of this

protocol-in assigning meanings to these mes-

sages. As a consequence, we suggested in passing

that the encryption of Nb in Message 2 is unnec-

essary. As Mao and Boyd have since explained

in detail [14], the encryption of Na and Nb is

essential: because Na and Nb are bound with

the names A and B by encryption in Messages 1

and 2, they can serve zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas secure references to A
and B in Messages 3 and 4. Encryption is being

used not for secrecy, but for binding; nonces are

exploited not only as proofs of timeliness but as
substitutes for names.

Much encryption can be avoided when names

are included in S’s reply:

An important part of the meaning of a message is

made up of temporal information. Further, one

common precondition for acting upon a message

is that there is reason to believe that the message

is fresh, and hence not a replay of an old one.

This has to be inferred from something in the

message, and evidently whatever this is should

be bound together with the rest of the message

so that the magic talisman cannot be attached to

a message being replayed. It is important to un-

derstand properly how the freshness component

works, and what is being assumed about it.

The next group of principles and examples

concern time. They all address what must be

assumed about proofs of timeliness, and what

they actually prove.

6.1 Timestamps, sequence numbers,
and other nonces

When guarding against replay of messages from

an earlier run of the same protocol it is common

to use nonces as part of a challenge-response ex-

change. A message is sent which leads to a reply

which could only have been produced in knowl-

edge of the first message. The objective is to

guarantee that the second message is made after

the first was sent, and sometimes to bind the two

together. There is sometimes confusion about

nonces-are they guaranteed new, random, un-

predictable? Whence we propose:

Principle 6

Be clear what properties you are assuming

about nonces. What may do for ensuring

temporal succession may not do for ensuring

association-and perhaps association is best

established by other means.

Example 6.1 In [23], Otway and Rees describe

the following protocol. It allows two parties A
and B to establish a shared key Kab, with the

help of a server S with whom they share keys

K,, and KbS, respectively, using the nonces M ,

Message 1 A + B : A, B , Na
Message 2 B + S : A, B, N,, Nb
Message 3 S + B : {Nay A, B , Kab}Kas,

{ Nb 7 A, B Kab } Kbs

Message 4 B + A : {Na, A, B , Kab}Ka,

The protocol is not only more efficient but also

conceptually simpler after this modification. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0

Example 6.2 Example 3.2 describes a protocol

due to Woo and Lam. Looking back at the use of

encryption in that protocol, we notice that the

purpose of encryption in Message 4 is to bind two

parts of a message. Looking back at the use of

nonces, we notice that Nb provides only a proof

of freshness, but not an association to the name

A as was intended.

As we argue in Example 3.2, Message 5 should

mention the name A explicitly for the sake of se-

curity. With that change, the binding of Mes-

sage 4 becomes unnecessary. Further, Nb needs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
129

to be viewed only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a proof of freshness. The

protocol is now simply:

Message 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB : A
Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 B -+ A : Nb
Message 3 A -+ B : {Nb}K,,
Message 4 B --t s : A, {Nb}K,,
Message 5 s + B : { A , Nb}Kbs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0

It is not essential for nonces to be unpre-

dictable. In fact, the value of a counter makes

a proper nonce. However, predictable nonces

should be used with caution:

Principle 7

The use of a predictable quantity (such

as the value of a counter) can serve in

guaranteeing newness, through a challenge-

response exchange. But if a predictable

quantity is to be effective, it should be pro-

tected so that an intruder cannot simulate a

challenge and later replay a response.

Example 7.1 Protocols that rely on synchro-

nized clocks must be accompanied by protocols

to access time servers. These protocols cannot

themselves rely on synchronized clocks, but they

can rely either on random nonces or on pre-

dictable nonces.

Using random nonces, we may have:

Message 1 A + S : A, N,
Message 2 S --f A : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{T,, N a } ~ , ,

where T, is the current time and N, is a ran-

dom nonce, used as a challenge. After this ex-

change, A accepts T, as the current time if the

response arrived reasonably soon after the chal-

lenge. Reiter exploits random nonces roughly in

this manner [24].
This protocol would not work if N, were pre-

dictable. An attacker C could make A set its

clock back: early on, C makes a request for the

current time using a future value of the nonce,

saves S’s response, and then forwards the re-

sponse to A when A uses this value in a chal-

lenge.

When N, is predictable, it should be pro-

tected:

Message 1 A -+ S : A, { N a } ~ , .
Message 2 S -+ A : {T,, { N ~) K , ,) K , .

The attack is no longer possible. Note that it

is not important for N, to remain secret (and

after all we have assumed it is predictable). The

encryption in Message 1 serves to construct a

quantity {N,}K,, that only A and S can predict

from one that anyone can predict.

A similar exchange arises in the context of

Kerberos. Neuman and Stubblebine suggest us-

ing Kerberos itself to obtain the time from a

time server [22]. The quantity used as a nonce

is roughly predictable: it is an incorrect times-

tamp; since it is encrypted, we expect no diffi-

culties. 0

Freshness can also be proved by the use of

timestamps. Timestamps are appealing because

they seem easier to use than random numbers.

However, their use is not always correct. There

are number of aspects of prudent practice in the

use of timestamps, and they are often misun-

derstood. One use of timestamps is as a kind

of nonce. In this case the ultimate user of the

timestamp, as part of a response, is the same

as the originator of the challenge of which the

timestamp was part. This style of use does not

depend on clock synchronization at all, but does

need care because the timestamp may be to a

large extent predictable. Another style of use

does depend on clock synchronization. The re-

cipient of a message looks at a timestamp in it,

and only accepts the message if the timestamp

is within a reasonable interval of the recipient’s

local time. In this case we have:

Principle 8

If timestamps are used as freshness guar-

antees by reference to absolute time, then

the difference between local clocks at vari-

ous machines must be much less than the

allowable age of a message deemed to be

valid. Furthermore, the time maintenance

mechanism everywhere becomes part of the

trusted computing base.

130

Example 8.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATimestamps have received abun-

dant attention in the authentication literature.

Gong, in particular, has described problems aris-

ing from the use of incorrect timestamps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[8].
Therefore, we keep this example brief, summa-

rizing Gong’s example for the Kerberos system.

In Kerberos, as elsewhere, a principal with a

slow clock is exposed to all sorts of difficulties,

since the principal may mistake expired certifi-

cates for current ones. It is more interesting that

a fast clock can also be an opportunity for attack-

ers. If a principal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA signs a request at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATO
using a timestamp T, with To < T , an attacker zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C can replay this request near time T. The ef-

fect of the request at time T may benefit C, for

example if C is using A’s workstation at time T.
Bellovin and Merritt have discussed further

problems in Kerberos, some of them in the use

of timestamps. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0

6.2 What is fresh: use vs. generation

Roughly, a bit-pattern is fresh if any message

that contains it must be recent. Clearly, it does

not suffice that the bit-pattern participate in one

recent message, if it may also participate in old

ones. This observation is most important for

keys:

Principle 9

A key may have been used recently, for ex-

ample to encrypt a nonce, yet be quite old,

and possibly compromised. Recent use does

not make the key look any better than it

would otherwise.

Example 9.1 The Needham-Schroeder protocol

and the Kerberos protocol are similar in struc-

ture and in goal; the Needham-Schroeder proto-

col reads:

Message 1 A + S : A, B , N,
Message 2 S --f A : {N,, B , Kab,

Message 3 A + B : {Kab, A } K ~ ,
Message 4 B --+ A : {Nb}Kab
Message 5 A + B : {Nb + l } ~ , ~

{Kab,

As in Kerberos, only A makes contact with S,

who provides A with the session key, Kab, and a

certificate encrypted with B’s key Kbs conveying

the session key to B. Then B decrypts this cer-

tificate and carries out a nonce handshake with

A to be assured that A is present currently, since

the certificate might have been a replay. As ex-

plained in Section 7, Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 contains Nb + 1

rather than Nb in order to distinguish this mes-

sage from Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.
Messages 4 and 5 of the Needham-Schroeder

protocol were intended to convince B that A is

present and active. They do not (and in fact were

not intended to) convince B that Kab is fresh,

and it was pointed out by Denning and Sacco

that compromise of a session key could allow an

intruder to deceive B [6]. Once the importance of

freshness of Kab is recognized, a solution may be

found by using timestamps, as suggested by Den-

ning and Sacco. In another solution, described

in [21], B send a nonce to S, and then S includes

it in its certificate. 0

Example 9.2 In [29], Varadharajan, Allen, and

Black present several protocols for delegation in

distributed systems. We take as an example the

one for delegation in a Kerberos environment [29,
p. 2731. In this protocol, client B shares the key

Kbt with the authentication server; B has gen-

erated a timestamp Tb and wants a key Kbs to

communicate with another server S. The au-

thentication server gives Kbs and {Kbs)Kbt to s.
Then S constructs {Tb + l } ~ ~ ~ , and sends:

Message 5 S + B : s, B , {Tb + 1) ~ ~ ~ ~

{ K b s) K b t

The authors reason:

Having obtained Kbs, B is able to verify us-

ing Tb that S has replied to a fresh message,

so that the session key is indeed fresh.

However, B obtains no proof that Kbs is fresh.

All that B can deduce is that Kbs has been used

recently-but it may be an old, compromised

key. 0

7 Recognizing messages
and encodings

It seems important that principals recognize

messages for what they are, and can associate

131

them correctly with the current step of what-

ever protocol they are executing. There are

two possible forms of confusion (which could in

principle happen together): between the cur-

rent message and a message of similar purpose

form a previous run of the protocol, and be-

tween the current message and a message be-

longing elsewhere in the protocol, or to another

protocol. Snekkenes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[27] and Syverson [28] have

constructed examples of protocols where these

confusions can arise.

We believe that these confusions are less im-

portant when all our principles are correctly fol-

lowed. If a message says what it means then we

have no reason to be concerned with its context.

The message is meaningful (or meaningless) on

its own, whether we know that it belongs in a

particular protocol instance or not.

Still, mapping a message to the appropri-

ate protocol instance is convenient when it con-

tributes to the compact encoding of the message.

For example, Message 1 of the Wide-mouthed-

frog protocol always means something of the

form: “the signer (with key zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKa3) says at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T, that &b is a good key to talk to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB” (see

Example 11.2). If the principal who receives a

message can be certain that the message is Mes-

sage 1 of an instance of the Wide-mouthed-frog

protocol, then the message can be encoded com-

We arrive at the following recommendation:
pactly: {Ta, B, Kab}K,,- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Principle 10

If an encoding is used to present the mean-

ing of a message, then it should be possible

to tell which encoding is being used. In the

common case where the encoding is protocol

dependent, it should be possible to deduce

that the message belongs to this protocol,

and in fact to a particular run of the proto-

col, and to know its number in the protocol.

Mapping a message to the appropriate pro-

tocol instance is often trivial if the message

obeys our other principles. If the message con-

tains sufficient timeliness guarantees and suffi-

cient names, then the current instance cannot

be confused with an old instance, or an instance

for other principals. It could be confused with a

concurrent instance for the same principals.

Next we give an example where this princi-

ple is relevant, but where other more important

principles apply as well.

Example 10.1 If signature or confidentiality are

mediated by symmetric-key encryption then a

particular form of confusion is associated with

the direction in which a message is intended to

pass.

In the Needham-Schroeder protocol, a partici-

pant sends a challenge Nb and receives Nb + 1 as

a response (see Example 9.1):

Message 4 B ---f A : { N b } K a b
Message 5 A ---t B : {Nb + 1) ~ ~ ~

The purpose of incrementing Nb is to distinguish

the challenge from the response. Without this

increment, an attacker could send B’s message

back to B, who could mistake it for A’s reply.

The purpose of incrementing a nonce has often

been misunderstood. For example, a “+1” oper-

ation appears in Kerberos, where it is unneces-

sary.

The messages would be clearer if they were

rewritten:

Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 B + A : {N-S Message 4: Nb}Kab

Message 5 A + B : {N-S Message 5: Nb}Kab

though in fact any way of making the two mes-

sages different will do. (This is an instance of

our suggestion to Syverson mentioned in [28].)
Guided by the principle that messages should

say what they mean, however, we ought to

rewrite the messages:

Message 4 B + A : Nb, { B says that Kab is
a good key to talk to A, sometime

after receiving Kab}Kab

Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 A + B :
a good key to talk to B , sometime

after receiving Nb}Kab

Of course, shorter encodings of these meanings

can be constructed. Not only there is no risk of

confusion between these two messages: each of

them is self-contained, and it is not important to

know that they are part of a particular instance

of the Needham-Schroeder exchange. U

{ A says that K,b is

132

8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATrust zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvia S in only two messages:

Message 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS : A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{“a, B, Kab}K, .

Message 2 S -+ €? : {T,, A, Kab}Kbs

First, A sends a session key Kab to S, includ-

ing a timestamp T,. Then S checks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, and for-

wards the message to B, together with its own

timestamp T,. Finally, B checks T, and accepts

the session key Kab for communication with A.
Thus, A is trusted to choose a session key. This

kind of trust is often thought unacceptable be-

cause of the quality requirements placed on key

generation such as secrecy, non-repetition, un-

predictability, and doubtless more. 0

Example 11.3 Principals associate public keys

with other principals by consulting public-key

certificates. These certificates can be issued by

certification authorities (CAS). CAS are trusted

to certify a key only after proper steps have been

taken to identify the principal that owns it. Since

there is no global source of authority, it is not

surprising that this is an area where questions of

transitivity of trust come up. It may happen that

the only way A can find out B’s public key is by

accepting a certificate from CA1 for CAP’S public

key which is used to sign a certificate for CAS’S
public key . . . which is used to sign a certificate

for B’s public key, for example. In this case A
knows and trusts CA1 but has never heard of the

other certification authorities-and maybe even

distrusts them. 0

Example 11.4 It is usually taken for granted

that the two principals in an authentication dia-

logue are honestly working to the common end of

establishing a secure communication channel for

subsequent use. This is not always the case, as

may be seen in communication between potential

enemies or between security forces and terrorists.

Possible sorts of bad behavior are disclosure of

keys and forgery of messages. Therefore, if this

assumption is made in a particular case then it

should be explicit. 0

Example 11.5 An access control list (ACL) is

a statement of trust [l]: if principal A appears

on the ACL for an operation then A is trusted

when it says that the operation should be per-

formed (that is, when it makes a request). It

The use of timestamps makes explicit for the first

time a question of trust. When can a principal

A rely on another principal B putting a correct

timestamp in a message? The answer usually

given is that this is acceptable if A trusts B in

relation to timestamps.

The idea of trust is pervasive and a little elu-

sive. A careful classification of types of trust

is given in [34] and is taken further by Klein

in her doctoral thesis. There are questions

both of practice and philosophy to do with trust

relations-for example whether they are transi-

tive or not-which it would not be appropriate

to pursue here. We may simply say that A trusts

B in regard to some function if a loss of security

to A could follow from B not behaving in the

specified way; it is usually difficult or impossible

for A to verify B’s good behavior.

There is some measure of trust involved when-

ever one principal acts on the content of a mes-

sage from another. It is essential that this trust

be properly understood.

Principle 11

The protocol designer should know which

trust relations his protocol depends on, and

why the dependence is necessary. The rea-

sons for particular trust relations being ac-

ceptable should be explicit though they will

be founded on judgement and policy rather

than on logic.

Example 11.1 Complete loss of security could

follow from a Kerberos server issuing wrong

timestamps. The server, and its source of time,

must be trusted by all concerned. This, it may

be pointed out, is a case in which clients can to

some extent monitor the good behavior of the

trusted server because the correct time is public

and global. If a client reads GPS time it will have

reason for suspicion if Kerberos’ time is much at

variance. 0

Example 11.2 The Wide-mouthed-frog proto-

col uses symmetric-key cryptography and an au-

thentication server. It transfers a key from A to

133

can be a complex matter to determine whether

the statement of trust that the ACL represents is

appropriate. Often, the question of whether it is

appropriate makes little sense, particularly in the

context of completely discretionary access con-

trol policies. Nonetheless, understanding ACL's

and their consequences is crucial for security. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0

In practice it is not very common for com-

plicated inferences about trust to be necessary.

With the exception of the chains of trust of Ex-

ample zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11.3, which are likely to be simpler in prac-

tice than they might be in theory, it is usually

not difficult to isolate the trust relations being

relied on in a particular circumstance. It is valu-

able to do so explicitly, because this may lead to

useful debate about the appropriateness of these

trust relations.

9 Conclusion

We have found the principles and examples de-

scribed in this paper useful in our own work. Per-

haps it is because of this that they bear a certain

subjective character. We do however believe that

they respond to an immediate general need, in a

discipline where some basic mistakes appear in

print several times.

Many of our suggestions can be embodied in

development methods and in formalisms. While

these are helpful, we tried to emphasize an in-

formal understanding of some issues essential for

security. We hope that our guidelines will con-

tribute to the improvement of the practice of de-

signing cryptographic protocols.

Acknowledgments

We have benefited from discussions with Mike

Burrows and Butler Lampson. In particular, we

discovered many of the examples in this paper in

collaboration with Mike Burrows. The authors

of the papers from which we drew our examples

have also been helpful.

Raphael Yahalom, Michael Reiter, and anony-

mous referees all made useful comments on ear-

lier versions of this paper.

References

[l] M. Abadi, M. Burrows, B. Lampson, and

G. Plotkin. A Calculus for Access Con-

trol in Distributed Systems. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAACM Transac-
tions on Programming Languages and Sys-
tems Vol. 15, No. 4, September 1993, 706-
734.

[2] S.M. Bellovin and M. Merritt. Limitations

of the Kerberos Authentication System.

Computer Communication Review Vol. 20,
No. 5, October 1990, pp. 119-132.

[3] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC . Boyd and W. Mao. Limitations of Logical

Analysis of Cryptographic Protocols. Euro-
crypt '93, to appear.

[4] M. Burrows, M. Abadi, and R.M. Needham.

A Logic of Authentication. Proceedings of
the Royal Society of London A Vol. 426,
1989, pp. 233-271. A preliminary version

appeared as Digital Equipment Corpora-

tion Systems Research Center report No. 39,
February 1989.

[5] CCITT. CCITT Blue Book, Recommenda-

tion X.509 and IS0 9594-8: The Directory-

Authentication Framework. Geneva, March

1988.

[6] D.E. Denning and G.M. Sacco. Timestamps

in Key Distribution Protocols. CACM
Vol. 24, NO. 8, August 1981, pp. 533-536.

[7] U. Feige, A. Fiat, A. Shamir. Zero Knowl-

edge Proofs of Identity. Proceedings of the
Nineteenth Annual ACM Symposium on
Theory of Computing, 1987, pp. 210-217. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[8] L. Gong. A Security Risk of Depending

on Synchronized Clocks. Operating Systems
Review Vol. 26, No. 1, January 1992, pp. 49-
54.

[9] N. Heintze and J.D. Tygar. Timed Models

for Protocol Security. CMU Technical Re-

port CMU-CS-92-100, January 1992.

[lo] B. Lampson, M. Abadi, M. Burrows, and

E. Wobber. Authentication in Distributed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
134

Systems: Theory and practice. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAACM Trans- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[20] R.M. Needham and M.D. Schroeder. Using

actions on Computer Systems Vol. 10, Encryption for Authentication in Large Net-

No. 4, November 1992, 265-310. works of Computers. CACM Vol. 21, No. 12,
December 1978, pp. 993-999.

[ll] A. Liebl. Authentication in Distributed Sys-

tems: A BibliOgraPhY- Operating Systems [21] R.M. Needham and M.D. Schroeder. Au-

Review Vol. 27, No. 4, October 1993, thentication Revisited. Operating Systems
pp. 31-41. Review Vol. 21, No. 1, January 1987, p. 7.

[12] w.p' Lu and M*K' Sundareshan* Secure

Communication in Internet Environments:

A Hierarchical Key Management Scheme
for End-To-End Encryption. IEEE Trans-
actions on Communications Vol. 37, No. 10,
October 1989, pp. 1014-1023.

[22] B.C. Neuman and S.G. Stubblebine. A Note

on the Use of Timestamps as Nonces. Oper-
ating Systems Review Vol. 27, No. 2, April

1993, pp. 10-14.

[23] D. Otway and 0. Rees. Efficient and Timely

Mutual Authentication. Operating Systems
Review Vol. 21, No. 1, January 1987, pp. 8-
10.

1131 W.P. Lu and M.K. Sundareshan. Enhanced

Protocols for Hierarchical Encryption Key

Management for Secure Communication in

[24] M.K. Reiter. A Security Architecture for

Fault-Tolerant Systems. Ph.D. Thesis, Cor-

ne11 University. Available as Technical Re-

Internet Environments. IEEE Transactions
on Communications Vol. 40, No. 4, April

1992, p ~ . 658-660.

[14] W. Mao and C. Boyd. Towards Formal port 93-1367, Department of Computer Sci-

Analysis of Security Protocols. Proceed- ence, Cornel1 University, July 1993.
ings zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the Computer Security Foundations
Workshop VU, 1993, pp. 147-158.

[15] G. Medvinsky and B.C. Neuman. NetCash:

A Design for Practical Electronic Currency

on the Internet. Proceedings of the 1993
ACM Conference on Computer and Com-
munications Security, pp. 102-106.

[16] S.P. Miller, B.C. Neuman, J.I. Schiller,

and J.H. Saltzer. Kerberos Authentication

and Authorization System. Project Athe-
na Technical Plan Section E.2.1, MIT,

July 1987.

[25] R. Rivest. The MD4 Message Digest Algo-

rithm. Advances in Cryptology: Crypto '90,
Springer-Verlag, 1991, pp. 303-311.

[26] R.L. Rivest, A. Shamir, and L. Adleman.

A Method for Obtaining Digital Signatures

and Public-key Cryptosystems. Communi-
cations of the ACM Vol. 21, No. 2, February

1978, pp. 120-126.

[27] E. Snekkenes. Roles in Cryptographic Pro-

tocols. Proceedings of the 1992 IEEE Sym-
posium on Security and Privacy, pp. 105-
119. [17] J.H. Moore. Protocol Failures in Cryptosys-

terns* Of the IEEE 76, [28] p. Syverson. On Key Distribution Proto-
No. 5, May 1988, pp. 594-602. cols for Repeated Authentication. Operat-

ing Systems Review Vol. 27, No. 4, October [18] National Bureau of Standards. Data En-

cryption Standard. FIPS Pub. 46, January

1977.

1993, pp. 24-30.

[29] V. Varadharajan, P. Allen, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Black. An

[19] R.M. Needham. Cryptography and Secure Analysis of the Proxy Problem in Dis-

tributed Systems. Proceedings of the 1991
IEEE Symposium on Security and Privacy,

Channels. Distributed Systems, 2nd Ed., S.
Mullender (editor), ACM Press, 1993, 231-
241. pp. 255-275. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

135

[30] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV.L. Voydock and S.T. Kent. Security

Mechanisms in High-Level Network Proto-

cols, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComputing Surveys Vol. 15, No. 2,
1983, pp. 135-171.

[31] E. Wobber, M. Abadi, M. Burrows, and

B. Lampson. Authentication in the Taos

Operating System. Proceedings of the Four-
teenth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAACM Symposium on Operating Sys-
tem Principles, 1993, pp. 256-269.

[32] T.Y.C. Woo and S.S. Lam. Authentication

for Distributed Systems. Computer Vol. 25,

No. 1, January 1992, pp. 39-52.

[33] T.Y.C. Woo and S.S. Lam. A Lesson on Au-

thentication Protocol Design. Manuscript,

1993.

[34] R. Yahalom, B. Klein, T. Beth. Trust Rela-

tions in Secure Systems-A Distributed Au-

t hent icat ion Perspective. Proceedings of the
1993 IEEE Symposium on Security and Pri-
WUCY, pp. 150-164. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

136

