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Abstract 

We present principles for the design of crypto- 

graphic protocols. The principles are neither 

necessary nor sufficient for correctness. They are 

however helpful, in that adherence to them would 

have avoided a considerable number of published 

errors. 

Our principles are informal guidelines. They 

complement formal methods, but do not assume 

them. In order to demonstrate the actual ap- 

plicability of these guidelines, we discuss some 

instructive examples from the literature. 

1 Introduction 

It has been evident for a number of years that 

cryptographic protocols, as used in distributed 

systems for authentication and related purposes, 

are prone to design errors of every kind. A con- 

siderable body of literature has come into be- 

ing in which various formalisms are proposed 

for investigating and analyzing protocols to see 

whether they contain various kinds of blunders. 

(Liebl’s bibliography [ll] contains references to 

protocols and formalisms.) Although sometimes 

useful, these formalisms do not of themselves 

suggest design rules; they are not directly bene- 

ficial in seeing how to avoid trouble. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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We present principles for the design of crypto- 

graphic protocols. The principles are not neces- 

sary for correctness, nor are they sufficient. They 

are however helpful, in that adherence to them 

would have contributed to the simplicity of pro- 

tocols and avoided a considerable number of pub- 

lished confusions and mistakes. 

We arrived at our principles by noticing some 

common features among protocols that are diffi- 

cult to analyze. If these features are avoided, it 

becomes less necessary to resort to formal tools- 

and also easier to do so if there is good reason 

to. The principles themselves are informal guide- 

lines, and useful independently of any logic. 

We illustrate the principles with examples. We 

draw our examples from the published literature, 

in order to demonstrate the actual applicability 

of our guidelines. Some of the oddities and er- 

rors that we analyze here have been documented 

previously (in particular, in [4]). Other examples 

are new: protocols by Denning and Sacco [6], Lu 

and Sundareshan [la], Varadharajan, Allen, and 

Black [29], and Woo and Lam [32]. We believe 

they are all instructive. 

Generally, we choose examples from the au- 

thentication literature, but the principles are ap- 

plicable elsewhere, for example to electronic-cash 

protocols (e.g., [15]). We focus on traditional 

cryptography, and on protocols of the sort com- 

monly implemented with the DES [18] and the 

RSA [26] algorithms. In particular, we do not 

consider the subtleties of interactive schemes for 

signatures (eg, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7]) .  Moreover, we do not discuss 

the choice of cryptographic mechanisms with ad- 

equate protection properties, the correct imple- 

mentation of cryptographic primitives, or their zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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appropriate use; these subjects are discussed 

elsewhere (e.g., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[30, 171). 
Throughout, we concentrate on the simple 

facts with the largest potential applicability and 

payoff. Admittedly, the literature is full of inge- 

nious protocols and attacks. We do not attempt 

to organize the principles that underly this inge- 

nuity, and perhaps it is not necessary. We hope 

that our simple principles and examples will be of 

help to the engineering of robust cryptographic 

protocols. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 Basics 

A protocol, for present purposes, is a set of rules 

or conventions defining an exchange of messages 

among a set of two or more partners. These part- 

ners are users, processes, or machines, which we 

will generically refer to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas principals. In a cryp- 

tographic protocol the whole or part of some or 

all of the messages is encrypted. We interpret 

the term encryption fairly broadly, applying it 

for example to signature operations. Encryption 

and decryption are for present purposes defined 

as key-dependent transformations of a message 

which may only be inverted by using a definite 

key; the keys used for encryption and decryp- 

tion are the same or different, depending on the 

cryptographic algorithm used. 

We find two overarching principles for the de- 

sign of secure cryptographic protocols. One prin- 

ciple is concerned with the content of a message 

and 

will 

1. 

2. 

the other with the circumstances in which it 

be acted upon: 

Every message should say what it means- 

its interpretation should depend only on its 

content. 

The conditions for a message to be acted 

upon should be clearly set out so that some- 

one reviewing a design may see whether they 

are acceptable or not. 

Next we explain these general principles. They 

lead to other, more specific recommendations, 

which we discuss in the subsequent sections. 

2.1 Explicit communication 

In full, our first basic principle is: 

Principle 1 

Every message should say what it means: 

the interpretation of the message should de- 

pend only on its content. It should be possi- 

ble to write down a straightforward English 

sentence describing the content-though if 

there is a suitable formalism available that 

is good too. 

For example, an authentication server zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS might 

send a message whose meaning may be expressed 

thus: “After receiving bit-pattern P ,  S sends to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A a session key K intended to be good for con- 

versation with B”. All elements of this meaning 

should be explicitly represented in the message, 

so that a recipient can recover the meaning with- 

out any context. In particular, if any of P ,  S ,  A, 
B,  or K are left to be inferred from context, it 

may be possible for one message to be used de- 

ceitfully in place of another. 

Principle 1 is not completely original. In [4], 
we recommend the use of a logical notation in 

generating and describing protocols-essentially 

proposing a method to follow the principle. Es- 

tablishing the correspondence between the logi- 

cal protocol and its concrete implementation can 

be a simple matter of parsing, as for example 

in [31, Section 4.3.21. Although a precise com- 

parison of informal ideas is difficult, we also find 

an affinity with Boyd and Mao’s proposal that 

protocols should be robust in the sense that “au- 

thentication of any message in the protocol de- 

pends only on information contained in the mes- 

sage itself or already in the possession of the 

recipient” [3]. An operational variant on this 

theme appears in the work of Woo and Lam, 

who call a protocol full information if “its initia- 

tor and responder always include in their outgo- 

ing encrypted messages all the information they 

have gathered” [33]. 

2.2 Appropriate action 

For a message to be acted upon, it not merely has 

to be understood but a whole variety of other 

123 



conditions have to hold too. These often con- 

sist of what may informally be regarded zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas state- 

ments of trust, though this anthropomorphic no- 

tion should be used with care. Statements of 

trust cannot be wrong though they may be con- 

sidered inappropriate. For example, if some- 

one believes that choosing session keys should 

be done by a suitably trusted server rather than 

by one of the participants in a session, then he 

will not wish to use a protocol such as the Wide- 

mouthed-frog protocol [4]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Principle 2 

In general, we have: 

The conditions for a message to be acted 

upon should be clearly set out so that some- 

one reviewing a design may see whether they 

are acceptable or not. 

2.3 Secrecy 

The secrecy of certain pieces of information is es- 

sential to the functioning of cryptographic proto- 

cols. Obviously, a protocol should not publicize 

the cryptographic keys used for communicating 

sensitive data. 

None of the our principles makes this point ex- 

plicitly. Rather, all of our principles warn against 

mistakes that often imply the loss of secrecy, in- 

tegrity, and authenticity. Some of the examples 

clarify how the principles relate to the need for 

secrecy. 

There may be more to say about secrecy guide- 

lines for cryptographic protocols, but these are 

outside the scope of the present paper. 

2.4 Examples and other principles 

Below we discuss many concrete examples where 

errors would have been avoided by use of our 

two basic principles. We also introduce other 

principles. Some of these are clearly corollaries 

of the basic ones, others are not. In particular, 

we recommend: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Be clear on how encryption is used, and on 

the meaning of encryption. 

0 Be clear on how the timeliness of messages 

is proved, and on the meaning of temporal 

information in messages. 

Hopefully, the two basic principles will encourage 

a certain lucidity in the design of cryptographic 

protocols, and thereby make it easier to follow 

our other principles. 

3 Notation 

We adopt notation common in the literature. 

That notation is not quite uniform and, in exam- 

ples, we make compromises between uniformity 

of this paper and faithfulness to original nota- 

tion. 

In this paper, the symbols zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB often rep- 

resent arbitrary principals, S represents a server, 

T a timestamp, N a nonce (a quantity gener- 

ated for the purpose of being recent), K a key, 

and K-' its inverse. In symmetric cryptosys- 

tems such as DES, K and K-' are always equal. 

For asymmetric cryptosystems such as RSA, we 

assume for simplicity that the inversion opera- 

tion is an involution (so ~ - 1 - l  equals K ) ;  we 

tend to use K-' for the secret part and K for 

the public part of a key pair ( K ,  K-'). We write 

{ X } K  to represent X encrypted under K ;  any- 

one who knows { X } K  and the inverse of K can 

obtain X .  If K is secret, we may refer to { X } K  
as a signed message, and to the encryption oper- 

ation as a signature. 

For example, 

Message 4 B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ A : { T a  + l } ~ , ~  

describes the fourth message in a protocol; in 

this message, B sends to A the timestamp T a  
incremented by 1, under the key Kat,. In this ex- 

ample, the subscript zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa in Ta is a hint that A first 

generated T,; the subscript ab in K a b  is a hint 

that Kab is intended for communication between 

A and B. Similarly, we may write K, for A's 
public key. 

4 Naming 

The most immediate instance of Principle 1 pre- 

scribes being explicit about names of principals: 
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Principle 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAopens communication with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB ,  

Message 3 A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ B : CA, CB, 
{ { K a b ,  T a ) K ; l } K b  

B removes the outer encryption, reencrypts with 

K,, sends: 

Message 3’ B -+ C : CA, CC, 
{ { K a b ,  T o ) K , - ~ } K ,  

and C will believe that the message is from A. 
In particular, C might send sensitive information 

under K,b, and B may see it when perhaps only 

A should. 

The intended meaning of Message 3 is roughly 

“At time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,, A says that Kab is a good key for 

communication between A and B”. Any ade- 

quate format for Message 3 should contain all of 

these elements expressly or by implication. The 

obvious one is: 

Message 3 A -+ B : CA, CB, 
{ { A ,  Kab, % } ~ , - l  }Kb 

although the name A might be deducible from 

KL1. It is important that this format must not 

be used for anything else; we return to this point 

in Section 7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Example 3.2 In [32, pp. 42-43], Woo and 

Lam present an authentication protocol based on 

symmetric-key cryptography. When B wants to 

check that it is in A’s presence, it runs: 

Message 1 A -+ B : A 
Message 2 B -+ A : Nb 
Message 3 A + B : { N b } K a s  

Message 5 S + B : { N b } K b S  

Message B : { A ,  {Nb)Ka , }Kba  

Here Nb is a nonce, S is a server, and K,, and 

Kbs are keys that A and B share with S. Basi- 

cally, A claims his identity (Message l); B pro- 

vides a nonce challenge (Message 2); A returns 

this challenge encrypted under K,, (Message 3); 
B passes this message on to S for verification, 

bound with A’s name under Kb, (Message 4); S 
decrypts using A’s key and reencrypts under B’s 
(Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ) .  If S replies { N b } K b s ,  then B should 

be convinced that A has responded to the chal- 

lenge Nb. 

If the identity of a principal is essential to 

the meaning of a message, it is prudent to 

mention the principal’s name explicitly in 

the message. 

The names relevant for a message can some- 

times be deduced from other data and from what 

encryption keys have been applied. However, 

when this information cannot be deduced, its 

omission is a blunder with serious consequences. 

The principle is obvious and simple, yet it is 

commonly ignored. We give several examples of 

fairly different natures. 

Example 3.1 In [6, p. 5351, Denning and Sacco 

propose a protocol for key exchange based on 

an asymmetric cryptosystem. In the first two 

messages of this protocol, A obtains certificates 

CA and CB that connect A and B with their 

public keys K, and Kb, respectively. The exact 

form of CA and CB is not important for our 

purposes. The interesting part of the protocol is 

Message 3. There, A sends to B a key Kat, for 

subsequent encrypted communication between A 
and B ,  with a timestamp T,. The protocol is: 

Message 1 A -+ S :  A, B 
Message 2 S -+ A :  CA, CB 
Message 3 A + B : CA, CB, 

{ { K a b ,  T a ) ~ , - l  }Kb 

This third message is encrypted for both secrecy 

and authenticity. When A sends this message to 

B,  it is important that no other principal obtain 

K,b; the use of Kb provides this guarantee. f i r -  

thermore, the intent is that, when B receives the 

message, B should know that A sent it (because 

of the signature with K;’). Finally, B should 

know that the message was intended for B (be- 

cause of the use of K b ) .  

Unfortunately nothing provides this final guar- 

antee, with dramatic consequences. Any princi- 

pal B with which A opens communication can 

pretend to a third party C that it actually is 

A, for the duration of validity of the timestamp. 

For simplicity, we omit the exchanges which yield 

the public certificates CA, CB, and CC. When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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The protocol is flawed. The connection be- 

tween the messages is not sufficient. In partic- 

ular, nothing connects zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB’s query to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS with S’s 
reply. The protocol is therefore vulnerable to an 

attack, as follows. Suppose that B is willing to 

talk to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and to C roughly at the same time; A 
may be off-line. Then C can impersonate A: 

Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--f B : 
Message 1’ C --f B : 
Message 2 B -+ A : 
Message 2’ B -+ C : 
Message 3 C + B : 
Message 3’ C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt E : 
Message 4 B -+ S : 
Message 4’ B -+ S : 
Message 5 S -+ B : 
Message 5’ S + B : 

where NF is the result of decrypting { Nb}Kc ,  us- 

ing Kas. In Messages 1 and l’, C tells B that 
both A and C want to establish a connection. In 

Messages 2 and 2’, B replies with two challenges; 

C receives one normally, and captures the other 

one, which was destined to A’s address. In Mes- 

sages 3 and 3’, C replies to both challenges. On 

A’s behalf, it can send anything. On its own be- 

half, C responds to the challenge intended for A.  
In Messages 4 and 4’, B consults S about the two 

responses. Messages 5 and 5’ are the replies from 

S. One of these replies matches nothing, while 

the other one contains the challenge intended for 

A. On the basis of these replies, then, B must 

believe that A is present. 

The existence of this attack demonstrates that 

the messages in the protocol are not sufficiently 

explicit about the identity of the principals in 

question. (After we contacted them, Woo and 

Lam came to the same conclusion [33].) Reason- 

ing as in Example 3.1, we may remove the flaw, 

by changing the last message of the protocol to 

A further change is discussed in Example 6.2. 0 

Example 3.3 A more dramatic example is pro- 

vided by the basic Internet protocol of Lu and 

Sundareshan [12, pp. 1016-10171. This protocol 

is rather complicated for a detailed description. 

Its intent is to allow two principals A and B to 

obtain a session key, with the mediation of local 

servers and gateways. 

On the other hand, the fundamental flaw of 

the protocol is rather simple. One immediately 

sees that neither A nor B ever receives a message 

that contains the other’s name. Obviously, this 

opens the door for confusions between different 

connections. It also allows some easy attacks to 

defeat the protocol. After we contacted them, 

the authors published a correction [13], where 

names appear in messages explicitly. 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 Encryption 

The next group of principles and examples con- 

cern encryption. They are generally related to 

Principle 1, since they concern what encryption 

means and on what it does not mean. 

5.1 The uses of encryption 

As the examples below illustrate, encryption is 

used for a variety of purposes in the present con- 

text [ 1 91. 

0 Encryption is sometimes used for the preser- 

vation of confidentiality. In such case it is 

assumed that only intended recipients know 

the key needed to recover a message. When 

a principal knows K-’ and sees { X ) K ,  it 
may deduce that X was intended for a prin- 

cipal who knows K-’; and it may even de- 

duce that X was intended for itself, given 

additional information. 

0 Encryption is sometimes used to guarantee 

authenticity. In such case it is assumed 

that only the proper sender knew the key 

used to encrypt a message. The encryption 

clearly contributes to the overall meaning 

of the message. The extreme situation is 

that where a principal shows that a key is 

known by encrypting a null message or a 

timestamp. 

0 While encryption guarantees confidentiality 

and authenticity, it also serves in binding 

together the parts of a message: receiving 
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{ X ,  Y } K  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis not always the same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas receiv- 

ing { X } K  and { Y } K .  When encryption is 

used only to bind parts of a message, sig- 

nature is sufficient. The meaning attached 

to this binding is rather protocol-dependent, 

and often subtle. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Finally, encryption can serve in producing 

random numbers. There is a vast theory 

that explains the relation between one-way 

functions and random-number generators. 

At the level of abstraction that we consider, 

one typically assumes that random numbers 

are available without examining how they 

are constructed (but see Example 7.1). 

There is considerable confusion about the uses 

and meanings of encryption. If the cryptogra- 

phy is asymmetric it may be obvious what is in- 

tended; if the cryptography is symmetric, it is 

generally not. 

Principle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

Be clear as to why encryption is being done. 

Encryption is not wholly cheap, and not ask- 

ing precisely why it is being done can lead to 

redundancy. Encryption is not synonymous 

with security, and its improper use can lead 

to errors. 

Example 4.1 The Kerberos protocol [16] is 

based on the original Needham-Schroeder pro- 

tocol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[20], but makes use of timestamps as 
nonces in order to remove flaws demonstrated 

by Denning and Sacco [6] and in order to re- 

duce the total number of messages required. 

Like the Needham-Schroeder protocol on which 

it is based, the Kerberos protocol relies on 

symmetric-key cryptography. A slightly simpli- 

fied version of the protocol goes: 

Message 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ S :  A ,  B 
Message 2 S + A : {T,, L,  K a b ,  B,  

Message 3 A + B : {T,, L ,  K a b ,  A } K ~ ~ ,  

Message 4 B + A : { T a  + 1 ) ~ ~ ~  

ITS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL, K a b ,  A } K b , ) K a s  

{ A ,  Ta}K,t, 

Here, T, and T a  are timestamps, and L is a life- 

time. Initially the server S shares the keys K a ,  

and Kbs with the principals A and B; after exe- 

cution, A and B share Kab. This protocol serves 

to illustrate different uses of encryption; we de- 

scribe the protocol step by step: 

0 Encryption is not essential for Message 1. 

Without encryption, though, an attacker 

can flood S with requests for keys, by fal- 

sifying instances of Message l. It is com- 

mon for designers not to focus on this sort 

of vulnerability. 

0 Message 2 requires encryption: Kab should 

remain confidential, and S should sign the 

message as a proof of authenticity. 

0 We may however question why double en- 

cryption is used in Message 2. Most prob- 

ably, this use of double encryption is sim- 

ply inherited from the Needham-Schroeder 

protocol (see Example 9.1). As in that pro- 

tocol, double encryption does not add any- 

thing from the points of view of confiden- 

tiality or authenticity, and it is not entirely 

free of cost. 

It does provide a guarantee: when B re- 

ceives the first part of Message 3, it knows 

that A must have extracted it from Mes- 

sage 2, and hence that A must have looked 

a similar use of encryption in a variant of the 

Otway-Rees protocol [23].) This interpreta- 

tion of encryption is sound, but slightly un- 

usual, and probably not what the protocol 

designers had in mind. 

at Message 2. (Heintze and Tygar [9] d' lSCUSS 

0 In the second part of Message 3, encryp- 

tion is used for an entirely different purpose: 

A encrypts Ta with Kab in order to prove 

knowledge of Kab near time T'. 

In general, Ta may be a few hours newer 

than T,. However, if Ta is not much dif- 

ferent from T,, the encryption is redundant: 

the use of double encryption in Message 2 
gives adequate proof of knowledge of Kab. 
In this case, the second part of Message 3 
could be omitted altogether, and B could 

use T, in Message 4. (Were we to propose a 

change in Kerberos, however, it would not 
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be removing an encryption in Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 
but rather eliminating the double encryp- 

tion in Message 2, which would become zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i T S ,  L,  Kab,  B}Kas,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Z, L,  K a b ,  A}Kbb*) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 The encryption in Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 serves an anal- 

ogous purpose. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

Examples 6.1 and 6.2, below, illustrate the in- 

teraction of encryption and nonces. In short, en- 

cryption is often used for binding when a nonce 

provides an association between a message and 

an implicit name. Following Principle 3, we make 

this missing name explicit. The use of both en- 

cryption and nonces is then much simpler and 

economical. 

5.2 Signing encrypted data 

Signature is used, as the name suggests, to indi- 

cate which principal last encrypted a message. It 

is frequently taken as also guaranteeing that the 

signing principal knew the message content. It is 

hard, but fortunately unnecessary to be precise 

about what knowing is. An informal notion is 

sufficient for stating the next principle: 

Principle 5 

When a principal signs material that has al- 

ready been encrypted, it should not be in- 

ferred that the principal knows the content 

of the message. On the other hand, it is 

proper to infer that the principal that signs 

a message and then encrypts it for privacy 

knows the content of the message. 

Failure to follow this principle can lead to er- 

rors, as in the next example. 

Example 5.1 The CCITT X.509 standard con- 

tains a set of three protocols using between 

one and three messages [5]. The protocols are 

intended for signed, secure communication be- 

tween two principals, assuming that each knows 

the public key of the other. 

The CCITT proposal has problems. We dis- 

cuss one problem described in [4]; it appears al- 

ready in the one-message protocol: 

Message 1 A -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB : A,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Ta, Nay B ,  X,, 
{ya)Kb)K;'  

Here, T, is a timestamps, N ,  is a nonce (not 

used), and X ,  and Y, are user data. The 

X.509 protocol actually uses hashing to reduce 

the amount of encryption. We do not show this 

because it does not affect our argument about 

X.509. 

The protocol is intended to ensure the in- 

tegrity of X ,  and Ya, assuring the recipient of 

their origin, and to guarantee the privacy of Y,. 
However, although Ya is transferred in a signed 

message, there is no evidence to suggest that the 

sender is actually aware of the data sent in the 

private part of the message. This corresponds to 

a scenario where some third party intercepts a 

message and removes the existing signature while 

adding his own, blindly copying the encrypted 

section within the signed message. This problem 

can be avoided by several means, the simplest 

of which is to sign the secret data before it is 

encrypted for privacy. 0 

A particular case of the principle concerns 

hash functions: 

Example 5.2 It is common to use hash functions 

in order to save on encryption with asymmetric- 

key systems (see for example [25, 103). In partic- 

ular, A can send a signed, confidential message 

to B as follows: 

Message 1 A + B : { X } K & ,  { H ( x ) } K ; l  

where H is a one-way hash function. When A 
sends this message, only B discovers X ,  and B 
knows that A signed the hash of X .  For example, 

if X is a request for an operation, B may then 

infer that A supports X .  We should think of one- 

way hashing as encryption, and then Principle 5 

applies. In this instance, it means that B cannot 

be certain that A knew X .  For example, if X is 

a secret such as a password, B cannot be certain 

that A knew the secret; A may have received 

H ( X )  from a friend. 0 

In general, we recommend careful examination 

of those protocols that require a principal to sign 

material that is already encrypted, and such that 

the principal cannot decrypt it. On the other 

hand, signing before encrypting is not a bill of 

health; see Example 3.1. 



6 Timeliness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Nb: 

Message 1 A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB : M ,  A, B ,  

Message 2 B +. S : M ,  A, B,  
{Na 7 M ,  A, B }  Kas 

{Na, M ,  A, B } K , ~ ,  
{Nb, M ,  A, B}Kb. 

{Nb, Kab}Kbs 

Message 3 s + B : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhf, {Na, Kab}KaS, 

Message 4 B + A : M ,  {Na, Kab}Ka, 

This is the first protocol analyzed in [4]. 
Perhaps because of our relative inexperience, 

we were rather bold in the idealization of this 

protocol-in assigning meanings to these mes- 

sages. As a consequence, we suggested in passing 

that the encryption of Nb in Message 2 is unnec- 

essary. As Mao and Boyd have since explained 

in detail [14], the encryption of Na and Nb is 

essential: because Na and Nb are bound with 

the names A and B by encryption in Messages 1 

and 2, they can serve zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas secure references to A 
and B in Messages 3 and 4. Encryption is being 

used not for secrecy, but for binding; nonces are 

exploited not only as proofs of timeliness but as 
substitutes for names. 

Much encryption can be avoided when names 

are included in S’s reply: 

An important part of the meaning of a message is 

made up of temporal information. Further, one 

common precondition for acting upon a message 

is that there is reason to believe that the message 

is fresh, and hence not a replay of an old one. 

This has to be inferred from something in the 

message, and evidently whatever this is should 

be bound together with the rest of the message 

so that the magic talisman cannot be attached to 

a message being replayed. It is important to un- 

derstand properly how the freshness component 

works, and what is being assumed about it. 

The next group of principles and examples 

concern time. They all address what must be 

assumed about proofs of timeliness, and what 

they actually prove. 

6.1 Timestamps, sequence numbers, 
and other nonces 

When guarding against replay of messages from 

an earlier run of the same protocol it is common 

to use nonces as part of a challenge-response ex- 

change. A message is sent which leads to a reply 

which could only have been produced in knowl- 

edge of the first message. The objective is to 

guarantee that the second message is made after 

the first was sent, and sometimes to bind the two 

together. There is sometimes confusion about 

nonces-are they guaranteed new, random, un- 

predictable? Whence we propose: 

Principle 6 

Be clear what properties you are assuming 

about nonces. What may do for ensuring 

temporal succession may not do for ensuring 

association-and perhaps association is best 

established by other means. 

Example 6.1 In [23], Otway and Rees describe 

the following protocol. It allows two parties A 
and B to establish a shared key Kab, with the 

help of a server S with whom they share keys 

K,, and KbS, respectively, using the nonces M ,  

Message 1 A + B : A, B ,  Na 
Message 2 B + S : A, B,  N,, Nb 
Message 3 S + B : {Nay A, B ,  Kab}Kas, 

{ Nb 7 A, B Kab } Kbs 

Message 4 B + A : {Na, A, B ,  Kab}Ka, 

The protocol is not only more efficient but also 

conceptually simpler after this modification. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Example 6.2 Example 3.2 describes a protocol 

due to Woo and Lam. Looking back at the use of 

encryption in that protocol, we notice that the 

purpose of encryption in Message 4 is to bind two 

parts of a message. Looking back at the use of 

nonces, we notice that Nb provides only a proof 

of freshness, but not an association to the name 

A as was intended. 

As we argue in Example 3.2, Message 5 should 

mention the name A explicitly for the sake of se- 

curity. With that change, the binding of Mes- 

sage 4 becomes unnecessary. Further, Nb needs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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to be viewed only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a proof of freshness. The 

protocol is now simply: 

Message 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB : A 
Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 B -+ A : Nb 
Message 3 A -+ B : {Nb}K,, 
Message 4 B --t s : A,  {Nb}K,, 
Message 5 s + B : { A ,  Nb}Kbs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

It is not essential for nonces to be unpre- 

dictable. In fact, the value of a counter makes 

a proper nonce. However, predictable nonces 

should be used with caution: 

Principle 7 

The use of a predictable quantity (such 

as the value of a counter) can serve in 

guaranteeing newness, through a challenge- 

response exchange. But if a predictable 

quantity is to be effective, it should be pro- 

tected so that an intruder cannot simulate a 

challenge and later replay a response. 

Example 7.1 Protocols that rely on synchro- 

nized clocks must be accompanied by protocols 

to access time servers. These protocols cannot 

themselves rely on synchronized clocks, but they 

can rely either on random nonces or on pre- 

dictable nonces. 

Using random nonces, we may have: 

Message 1 A + S :  A, N, 
Message 2 S --f A : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{T,, N a } ~ , ,  

where T, is the current time and N, is a ran- 

dom nonce, used as a challenge. After this ex- 

change, A accepts T, as the current time if the 

response arrived reasonably soon after the chal- 

lenge. Reiter exploits random nonces roughly in 

this manner [24]. 
This protocol would not work if N, were pre- 

dictable. An attacker C could make A set its 

clock back: early on, C makes a request for the 

current time using a future value of the nonce, 

saves S’s response, and then forwards the re- 

sponse to A when A uses this value in a chal- 

lenge. 

When N, is predictable, it should be pro- 

tected: 

Message 1 A -+ S : A, { N a } ~ , .  
Message 2 S -+ A : {T,, { N ~ ) K , , ) K , .  

The attack is no longer possible. Note that it 

is not important for N, to remain secret (and 

after all we have assumed it is predictable). The 

encryption in Message 1 serves to construct a 

quantity {N,}K,, that only A and S can predict 

from one that anyone can predict. 

A similar exchange arises in the context of 

Kerberos. Neuman and Stubblebine suggest us- 

ing Kerberos itself to obtain the time from a 

time server [22]. The quantity used as a nonce 

is roughly predictable: it is an incorrect times- 

tamp; since it is encrypted, we expect no diffi- 

culties. 0 

Freshness can also be proved by the use of 

timestamps. Timestamps are appealing because 

they seem easier to use than random numbers. 

However, their use is not always correct. There 

are number of aspects of prudent practice in the 

use of timestamps, and they are often misun- 

derstood. One use of timestamps is as a kind 

of nonce. In this case the ultimate user of the 

timestamp, as part of a response, is the same 

as the originator of the challenge of which the 

timestamp was part. This style of use does not 

depend on clock synchronization at all, but does 

need care because the timestamp may be to a 

large extent predictable. Another style of use 

does depend on clock synchronization. The re- 

cipient of a message looks at a timestamp in it, 

and only accepts the message if the timestamp 

is within a reasonable interval of the recipient’s 

local time. In this case we have: 

Principle 8 

If timestamps are used as freshness guar- 

antees by reference to absolute time, then 

the difference between local clocks at vari- 

ous machines must be much less than the 

allowable age of a message deemed to be 

valid. Furthermore, the time maintenance 

mechanism everywhere becomes part of the 

trusted computing base. 
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Example 8.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATimestamps have received abun- 

dant attention in the authentication literature. 

Gong, in particular, has described problems aris- 

ing from the use of incorrect timestamps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[8]. 
Therefore, we keep this example brief, summa- 

rizing Gong’s example for the Kerberos system. 

In Kerberos, as elsewhere, a principal with a 

slow clock is exposed to all sorts of difficulties, 

since the principal may mistake expired certifi- 

cates for current ones. It is more interesting that 

a fast clock can also be an opportunity for attack- 

ers. If a principal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA signs a request at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATO 
using a timestamp T, with To < T ,  an attacker zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C can replay this request near time T. The ef- 

fect of the request at time T may benefit C,  for 

example if C is using A’s workstation at time T.  
Bellovin and Merritt have discussed further 

problems in Kerberos, some of them in the use 

of timestamps. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

6.2 What is fresh: use vs. generation 

Roughly, a bit-pattern is fresh if any message 

that contains it must be recent. Clearly, it does 

not suffice that the bit-pattern participate in one 

recent message, if it may also participate in old 

ones. This observation is most important for 

keys: 

Principle 9 

A key may have been used recently, for ex- 

ample to encrypt a nonce, yet be quite old, 

and possibly compromised. Recent use does 

not make the key look any better than it 

would otherwise. 

Example 9.1 The Needham-Schroeder protocol 

and the Kerberos protocol are similar in struc- 

ture and in goal; the Needham-Schroeder proto- 

col reads: 

Message 1 A + S : A, B ,  N, 
Message 2 S --f A : {N,, B ,  Kab, 

Message 3 A + B : {Kab, A } K ~ ,  
Message 4 B --+ A : {Nb}Kab 
Message 5 A + B : {Nb + l } ~ , ~  

{Kab, 

As in Kerberos, only A makes contact with S, 

who provides A with the session key, Kab, and a 

certificate encrypted with B’s key Kbs conveying 

the session key to B. Then B decrypts this cer- 

tificate and carries out a nonce handshake with 

A to be assured that A is present currently, since 

the certificate might have been a replay. As ex- 

plained in Section 7, Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 contains Nb + 1 

rather than Nb in order to distinguish this mes- 

sage from Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. 
Messages 4 and 5 of the Needham-Schroeder 

protocol were intended to convince B that A is 

present and active. They do not (and in fact were 

not intended to) convince B that Kab is fresh, 

and it was pointed out by Denning and Sacco 

that compromise of a session key could allow an 

intruder to deceive B [6]. Once the importance of 

freshness of Kab is recognized, a solution may be 

found by using timestamps, as suggested by Den- 

ning and Sacco. In another solution, described 

in [21], B send a nonce to S, and then S includes 

it in its certificate. 0 

Example 9.2 In [29], Varadharajan, Allen, and 

Black present several protocols for delegation in 

distributed systems. We take as an example the 

one for delegation in a Kerberos environment [29, 
p. 2731. In this protocol, client B shares the key 

Kbt with the authentication server; B has gen- 

erated a timestamp Tb and wants a key Kbs to 

communicate with another server S. The au- 

thentication server gives Kbs and {Kbs)Kbt to s. 
Then S constructs {Tb + l } ~ ~ ~ ,  and sends: 

Message 5 S + B : s, B ,  {Tb + 1 ) ~ ~ ~ ~  

{ K b s ) K b t  

The authors reason: 

Having obtained Kbs, B is able to verify us- 

ing Tb that S has replied to a fresh message, 

so that the session key is indeed fresh. 

However, B obtains no proof that Kbs is fresh. 

All that B can deduce is that Kbs has been used 

recently-but it may be an old, compromised 

key. 0 

7 Recognizing messages 
and encodings 

It seems important that principals recognize 

messages for what they are, and can associate 
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them correctly with the current step of what- 

ever protocol they are executing. There are 

two possible forms of confusion (which could in 

principle happen together): between the cur- 

rent message and a message of similar purpose 

form a previous run of the protocol, and be- 

tween the current message and a message be- 

longing elsewhere in the protocol, or to another 

protocol. Snekkenes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[27] and Syverson [28] have 

constructed examples of protocols where these 

confusions can arise. 

We believe that these confusions are less im- 

portant when all our principles are correctly fol- 

lowed. If a message says what it means then we 

have no reason to be concerned with its context. 

The message is meaningful (or meaningless) on 

its own, whether we know that it belongs in a 

particular protocol instance or not. 

Still, mapping a message to the appropri- 

ate protocol instance is convenient when it con- 

tributes to the compact encoding of the message. 

For example, Message 1 of the Wide-mouthed- 

frog protocol always means something of the 

form: “the signer (with key zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKa3) says at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T, that &b is a good key to talk to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB” (see 

Example 11.2). If the principal who receives a 

message can be certain that the message is Mes- 

sage 1 of an instance of the Wide-mouthed-frog 

protocol, then the message can be encoded com- 

We arrive at the following recommendation: 
pactly: {Ta, B,  Kab}K,,- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Principle 10 

If an encoding is used to present the mean- 

ing of a message, then it should be possible 

to tell which encoding is being used. In the 

common case where the encoding is protocol 

dependent, it should be possible to deduce 

that the message belongs to this protocol, 

and in fact to a particular run of the proto- 

col, and to know its number in the protocol. 

Mapping a message to the appropriate pro- 

tocol instance is often trivial if the message 

obeys our other principles. If the message con- 

tains sufficient timeliness guarantees and suffi- 

cient names, then the current instance cannot 

be confused with an old instance, or an instance 

for other principals. It could be confused with a 

concurrent instance for the same principals. 

Next we give an example where this princi- 

ple is relevant, but where other more important 

principles apply as well. 

Example 10.1 If signature or confidentiality are 

mediated by symmetric-key encryption then a 

particular form of confusion is associated with 

the direction in which a message is intended to 

pass. 

In the Needham-Schroeder protocol, a partici- 

pant sends a challenge Nb and receives Nb + 1 as 

a response (see Example 9.1): 

Message 4 B ---f A : { N b } K a b  
Message 5 A ---t B : {Nb + 1 ) ~ ~ ~  

The purpose of incrementing Nb is to distinguish 

the challenge from the response. Without this 

increment, an attacker could send B’s message 

back to B,  who could mistake it for A’s reply. 

The purpose of incrementing a nonce has often 

been misunderstood. For example, a “+1” oper- 

ation appears in Kerberos, where it is unneces- 

sary. 

The messages would be clearer if they were 

rewritten: 

Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 B + A : {N-S Message 4: Nb}Kab 

Message 5 A + B : {N-S Message 5: Nb}Kab 

though in fact any way of making the two mes- 

sages different will do. (This is an instance of 

our suggestion to Syverson mentioned in [28].) 
Guided by the principle that messages should 

say what they mean, however, we ought to 

rewrite the messages: 

Message 4 B + A : Nb, { B  says that Kab is 
a good key to talk to A, sometime 

after receiving Kab}Kab  

Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 A + B : 
a good key to talk to B ,  sometime 

after receiving Nb}Kab 

Of course, shorter encodings of these meanings 

can be constructed. Not only there is no risk of 

confusion between these two messages: each of 

them is self-contained, and it is not important to 

know that they are part of a particular instance 

of the Needham-Schroeder exchange. U 

{ A  says that K,b is 
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8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATrust zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvia S in only two messages: 

Message 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS : A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{“a, B,  Kab}K, .  

Message 2 S -+ €? : {T,, A, Kab}Kbs 

First, A sends a session key Kab to S, includ- 

ing a timestamp T,. Then S checks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, and for- 

wards the message to B,  together with its own 

timestamp T,. Finally, B checks T, and accepts 

the session key Kab for communication with A. 
Thus, A is trusted to choose a session key. This 

kind of trust is often thought unacceptable be- 

cause of the quality requirements placed on key 

generation such as secrecy, non-repetition, un- 

predictability, and doubtless more. 0 

Example 11.3 Principals associate public keys 

with other principals by consulting public-key 

certificates. These certificates can be issued by 

certification authorities (CAS). CAS are trusted 

to certify a key only after proper steps have been 

taken to identify the principal that owns it. Since 

there is no global source of authority, it is not 

surprising that this is an area where questions of 

transitivity of trust come up. It may happen that 

the only way A can find out B’s public key is by 

accepting a certificate from CA1 for CAP’S public 

key which is used to sign a certificate for CAS’S 
public key . . . which is used to sign a certificate 

for B’s public key, for example. In this case A 
knows and trusts CA1 but has never heard of the 

other certification authorities-and maybe even 

distrusts them. 0 

Example 11.4 It is usually taken for granted 

that the two principals in an authentication dia- 

logue are honestly working to the common end of 

establishing a secure communication channel for 

subsequent use. This is not always the case, as 

may be seen in communication between potential 

enemies or between security forces and terrorists. 

Possible sorts of bad behavior are disclosure of 

keys and forgery of messages. Therefore, if this 

assumption is made in a particular case then it 

should be explicit. 0 

Example 11.5 An access control list (ACL) is 

a statement of trust [l]: if principal A appears 

on the ACL for an operation then A is trusted 

when it says that the operation should be per- 

formed (that is, when it makes a request). It 

The use of timestamps makes explicit for the first 

time a question of trust. When can a principal 

A rely on another principal B putting a correct 

timestamp in a message? The answer usually 

given is that this is acceptable if A trusts B in 

relation to timestamps. 

The idea of trust is pervasive and a little elu- 

sive. A careful classification of types of trust 

is given in [34] and is taken further by Klein 

in her doctoral thesis. There are questions 

both of practice and philosophy to do with trust 

relations-for example whether they are transi- 

tive or not-which it would not be appropriate 

to pursue here. We may simply say that A trusts 

B in regard to some function if a loss of security 

to A could follow from B not behaving in the 

specified way; it is usually difficult or impossible 

for A to verify B’s good behavior. 

There is some measure of trust involved when- 

ever one principal acts on the content of a mes- 

sage from another. It is essential that this trust 

be properly understood. 

Principle 11 

The protocol designer should know which 

trust relations his protocol depends on, and 

why the dependence is necessary. The rea- 

sons for particular trust relations being ac- 

ceptable should be explicit though they will 

be founded on judgement and policy rather 

than on logic. 

Example 11.1 Complete loss of security could 

follow from a Kerberos server issuing wrong 

timestamps. The server, and its source of time, 

must be trusted by all concerned. This, it may 

be pointed out, is a case in which clients can to 

some extent monitor the good behavior of the 

trusted server because the correct time is public 

and global. If a client reads GPS time it will have 

reason for suspicion if Kerberos’ time is much at 

variance. 0 

Example 11.2 The Wide-mouthed-frog proto- 

col uses symmetric-key cryptography and an au- 

thentication server. It transfers a key from A to 
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can be a complex matter to determine whether 

the statement of trust that the ACL represents is 

appropriate. Often, the question of whether it is 

appropriate makes little sense, particularly in the 

context of completely discretionary access con- 

trol policies. Nonetheless, understanding ACL's 

and their consequences is crucial for security. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

In practice it is not very common for com- 

plicated inferences about trust to be necessary. 

With the exception of the chains of trust of Ex- 

ample zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11.3, which are likely to be simpler in prac- 

tice than they might be in theory, it is usually 

not difficult to isolate the trust relations being 

relied on in a particular circumstance. It is valu- 

able to do so explicitly, because this may lead to 

useful debate about the appropriateness of these 

trust relations. 

9 Conclusion 

We have found the principles and examples de- 

scribed in this paper useful in our own work. Per- 

haps it is because of this that they bear a certain 

subjective character. We do however believe that 

they respond to an immediate general need, in a 

discipline where some basic mistakes appear in 

print several times. 

Many of our suggestions can be embodied in 

development methods and in formalisms. While 

these are helpful, we tried to emphasize an in- 

formal understanding of some issues essential for 

security. We hope that our guidelines will con- 

tribute to the improvement of the practice of de- 

signing cryptographic protocols. 
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