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Pruned DFT-Spread FBMC: Low PAPR, Low

Latency, High Spectral Efficiency

Ronald Nissel and Markus Rupp , Fellow, IEEE

Abstract— We propose a novel modulation scheme which com-
bines the advantages of filter bank multi-carrier (FBMC)-offset
quadrature amplitude modulation and single-carrier frequency-
division multiple access (SC-FDMA). On the top of a conventional
FBMC system, we develop a novel precoding method based
on a pruned discrete Fourier transform (DFT) in combination
with one-tap scaling. The proposed technique has the same
peak-to-average power ratio as SC-FDMA but does not require
a cyclic prefix and has much lower out-of-band emissions.
Furthermore, our method restores complex orthogonality, and
the ramp-up and ramp-down period of FBMC is dramatically
decreased, allowing low latency transmissions. Compared to pure
SC-FDMA, the computational complexity of our scheme is only
two times higher. Simulations over doubly selective channels vali-
date our claims, further supported by a downloadable MATLAB
code. Note that pruned DFT-spread FBMC can equivalently
be interpreted as a modified SC-FDMA transmission scheme.
In particular, the requirements on the prototype filter are less
strict than in conventional FBMC systems.

Index Terms— FBMC, OQAM, DFT-s-OFDM, windowed
OFDM.

I. INTRODUCTION

F
ILTER Bank Multi-Carrier (FBMC) with Offset Quadra-

ture Amplitude Modulation (OQAM), in short just

FBMC, is an interesting modulation scheme for future wireless

systems because it has much lower Out-Of-Band (OOB)

emissions than Orthogonal Frequency Division Multiplexing

(OFDM) [1]. This improves the performance in asynchronous

transmissions and allows an efficient time-frequency allocation

for different use cases [2]. Additionally, FBMC typically

does not require a Cyclic Prefix (CP), further increasing the

throughput. To fulfill the Balian-Low theorem [3], FBMC
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replaces the complex orthogonality condition with the less

strict real orthogonality condition. This causes intrinsic inter-

ference, concentrated on the imaginary part, which makes

channel estimation [4] and Multiple-Input and Multiple-Output

(MIMO) [5], [6] more challenging. Several methods have

been proposed to deal with those challenges [2], [7], [8].

For example, by spreading symbols in time or frequency

complex orthogonality can be restored in FBMC, allowing to

straightforwardly employ almost all detection methods from

OFDM [2]. This works as long as the channel is approximately

flat within the spreading length. The spreading itself can be

based on Discrete Fourier Transform (DFT) spreading in time,

as proposed in [6]. However, if the channel is approximately

flat, our investigations in [9] and [10] indicate that Walsh-

Hadamard spreading [5], [11] is a better option than DFT

spreading because it perfectly restores complex orthogonality

within one block and has a lower computational complexity.

Nonetheless, DFT spreading has advantages when it comes to

shaping the transmit signal in time and reducing the Peak-to-

Average Power Ratio (PAPR).

Besides the intrinsic interference, nonlinearities such as

a limited Digital-to-Analog-Converter (DAC) resolution or a

nonlinear power amplifier impose an even greater challenge

in practical systems because they destroy the superior spectral

confinement of FBMC [2], [12]. Thus, FBMC is only useful

if operated in a sufficiently linear regime. In multi-carrier

systems this is hard to achieve because of the poor PAPR.

To reduce the PAPR in OFDM, several techniques have been

suggested such as selective mapping [13] or partial transmit

sequences [14]. Those methods can be extended to FBMC as

shown in [15]–[17]. However, all those techniques require a

high computational complexity and side information. Those

drawbacks explain why they are not employed in practical

systems. Instead, Long Term Evolution (LTE) uses Single

Carrier - Frequency-Division Multiple Access (SC-FDMA) in

the uplink [18], essentially a DFT precoded OFDM system.

The same technique will also be included as an additional

option in the uplink of the Fifth Generation (5G) of mobile

communication systems (besides CP-OFDM) [19].

Unfortunately, simply combining FBMC and a DFT, sim-

ilar as in SC-FDMA, performs poorly in FBMC [20]–[22].

To improve the performance, Ihalainen et al. [20] propose

precoding by a filter bank instead of a DFT. While such

method reduces the PAPR it still does not perform as well

as SC-FDMA and has the additional disadvantages of an

increased overhead and a higher computational complexity. Na

and Choi [22] showed that, in contrast to conventional FBMC,
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the phase term has an influence on the PAPR performance

of a simple DFT spread FBMC scheme. However, even by

considering an optimal phase term the PAPR is still not as

good as in SC-FDMA. Na and Choi [22] therefore propose

a selection scheme. This, however, requires side information

and increases the overall complexity as well as the latency. To

overcome all those drawbacks we propose a novel modulation

scheme based on a pruned DFT in combination with one-

tap scaling. Our method even restores complex orthogonality

in FBMC. The advantages and possible disadvantages of our

method can be summarized as follows:

Advantages:

• Low PAPR, same as in SC-FDMA.

• Low OOB emissions, comparable to FBMC.

• The ramp-up and ramp-down period of FBMC is dramat-

ically reduced, allowing low latency transmissions.

• Complex orthogonality is restored, enabling efficient

multi-user uplink transmissions.

• Maximum symbol density, same as in FBMC.

• Low-complexity one-tap equalizers can be used.

• Relatively high robustness in doubly-selective channels.

• In contrast to conventional FBMC a better compatibility

to MIMO, but only if the channel is approximately flat

within the spreading interval, see disadvantages.

Possible Disadvantages:

• Slightly higher computational complexity, approximately

two times that of SC-FDMA.

• Only quasi-orthogonal, that is, some small residual inter-

ference remains. This, however, is usually not a problem.

Furthermore, an additional frequency CP can reduce this

interference.

• Low-complexity Maximum Likelihood (ML) MIMO

detection only works if the channel is approximately

flat within the spreading interval (same drawback as in

SC-FDMA).

• Throughput is usually slightly lower than in multi-carrier

systems because of spreading (same drawback as in

SC-FDMA).

• Alamouti’s space time block code only works if the

channel is approximately flat within the spreading

interval.

There exist two equivalent interpretations of our novel trans-

mission scheme (transmitter side):

1) Modified FBMC-OQAM: The complex-to-real trans-

formation of a conventional FBMC-OQAM system is

replaced by a pruned DFT in combination with one-tap

scaling. Furthermore, the prototype filter is reduced to a

time-length of approximately 1.5
F , with F denoting the

subcarrier spacing.

2) Modified SC-FDMA: Half of the input data symbols

of a conventional SC-FDMA system are set to zero

(pruned DFT) and one-tap scaling is applied on the other

half of the input data symbols. Furthermore, the Inverse

Fast Fourier Transform (IFFT) output, including the CP,

is multiplied by an approximately 1.5
F length window

function, and the time spacing between SC-FDMA sym-

bols is reduced from T = 1
F + TCP to T = 1

2F .

We will mainly consider the FBMC interpretation because it

is well-known that one-tap equalizers often perform close to

the optimum in FBMC, while in windowed OFDM without

CP this is not clear.

A. Related Work

Pruned DFT spread FBMC has a lower PAPR than the

method in [20]. Furthermore, compared with [22], our method

does not require any side information. Similar as in [5],

[6], [9], and [10] we perform precoding to restore complex

orthogonality in FBMC. However, in contrast to [5], [6], [9],

and [10], our method also reduces the PAPR and we consider

equalization in the multi-carrier domain so that, in contrast

to those previous papers, the channel must not necessarily

be flat within the spreading length. Moreover, compared

with [6], we spread in frequency instead of time, include pre-

equalization, employ a modified prototype filter, and focus on

the PAPR performance as well as the latency. Compared with

[5], [9], and [10], we spread with a pruned DFT instead of

a pruned Walsh-Hadamard transform, improving the PAPR.

With respect to the pruned DFT, a related concept is also

zero-tail DFT spread OFDM [23]. However, our method has

much lower OOB emissions and typically does not require any

overhead.

B. Outline

In Section II we provide a short overview of conventional

FBMC and describe our transmission system model. The idea

of pruned DFT spread FBMC is then presented in Section III,

where we also discuss the OOB emissions, latency and the

computational complexity. In Section IV we quantify the

orthogonality approximation error and propose a frequency

CP to reduce it. In Section V we investigate the effect of

one-tap equalization in doubly-selective channels. Moreover,

we discuss how spreading can be utilized to enable MIMO

in FBMC. Finally, in Section VI we present Monte Carlo

simulations and discuss the performance of the PAPR, the Bit

Error Ratio (BER) and the throughput.

Notation: matrices are denoted by bold upper-case letters,

vectors by bold lower-case letters and scalars by non-bold

letters. The i-th row and j-th column element of matrix M

is denoted by [M]i,j . Matrix IN represents an identity matrix

of size N, 0N×M an all zero matrix of size N × M , WL a

DFT matrix of size L and W̃L×L/2 a pruned DFT matrix of

size L × L/2, that is, a conventional DFT matrix where L/2
columns are canceled.

To support reproducibility our MATLAB code can be

downloaded at https://www.nt.tuwien.ac.at/downloads/

II. FBMC-OQAM

We consider the transmission of K FBMC symbols in time,

each consisting of L subcarriers. The transmitted signal in the

time domain, s(t), can then be expressed by [2]

s(t) =

K∑

k=1

L∑

l=1

gl,k(t)xl,k, (1)



NISSEL AND RUPP: PRUNED DFT-SPREAD FBMC 4813

where xl,k represents the transmitted symbol at subcarrier

position l and time position k, and is usually chosen from

a Pulse-Amplitude Modulation (PAM) signal constellation.

Basis pulse gl,k(t) in (1),

gl,k(t) = p(t − kT )ej2πlF (t−kT )ej π
2
(l+k), (2)

is, essentially, a time and frequency shifted version of pro-

totype filter p(t), with T denoting the time spacing and

F the frequency spacing (subcarrier spacing). We assume

that prototype filter p(t) is zero outside the time interval

−OT ≤ t < OT , where O represents the overlapping factor.

Furthermore, in FBMC, the prototype filter must be a real-

valued even function, p(t) = p(−t), and orthogonal for a

time-frequency spacing of T × F = TF = 2. To improve

the spectral efficiency in FBMC, the time-spacing as well as

the frequency spacing are both reduced by a factor of two,

leading to TF = 0.5. This causes intrinsic interference which,

however, is concentrated on the imaginary part because of the

phase term e j π
2
(l+k) in (2). Thus, the interference can easily

be canceled by taking only the real part. Note that only real-

valued data symbols are transmitted in such a system and

that two real-valued data symbols are required to transmit one

complex-valued data symbol. Thus, the time-frequency spac-

ing of TF = 0.5 corresponds to an equivalent time-frequency

spacing of TF = 1 for complex-valued symbols. Very often,

the real part of a complex-valued symbol is mapped to the

first time-slot and the imaginary part to the second time-slot,

thus the name offset-QAM. However, such self-limitation is

not necessary. One can equivalently perform this mapping

over subcarriers or directly consider PAM symbols instead of

“staggered” QAM symbols.

To simplify analytical investigations we consider a matrix-

based system model [2]. The basis pulses in (2) are sampled at

rate fs = 1/∆t = FNFFT and stacked in a basis pulse vector

gl,k ∈ C
N×1 according to

[gl,k]i =
√

∆tgl,k(t)
∣∣∣
t=(i−1)∆t−(O−1)T

, (3)

for i = 1, 2, . . . , N , where the total number of samples is

given by N = ONFFT + NFFT

2 (K − 1). The interpretation of

overlapping factor O and Fast Fourier Transform (FFT) size

NFFT ≥ L becomes more clear later in this section when we

discuss an efficient FFT implementation. Note that practical

systems never operate at a critically sampling rate (NFFT = L)

because this would lead to large OOB emissions. This is even

more true in FBMC, as a critically sampled FBMC system has

the same poor OOB emissions as OFDM.

Utilizing (3) we define the basis pulse matrix at time

position k by Gk =
[
g1,k . . . gL,k

]
∈ CN×L, and the overall

basis pulse matrix by G =
[
G1 . . . GK

]
∈ CN×LK . The

sampled transmit signal in (1), s ∈ C
N×1, can then be

expressed by

s =

K∑

k=1

Gkxk = Gx, (4)

with xk =
[
x1,k . . . xL,k

]T ∈ CL×1 denoting the transmitted

symbols at time position k and x = vec{
[
x1 . . . xK

]
} ∈

C
LK×1 all transmitted symbols in vectorized form. We model

the transmission over a doubly-selective channel by a banded

time-variant convolution matrix H ∈ CN×N , defined as

[H]i,j = hconv.[i, i−j] with time-variant impulse response

hconv.[i, mτ ], together with an additive white Gaussian noise

vector n ∼ CN (0, Pn IN ) where Pn denotes the noise power

in the time domain, so that the received signal r ∈ CN×1 can

be described by,

r = Hs + n. (5)

The whole transmission system, after demodulation by GH,

can then be expressed as,

y = GHHGx + GHn (6)

≈ diag{h}GHGx + GHn, (7)

where y ∈ CLK×1 denotes the received symbols. If the delay

spread and the Doppler spread are sufficiently low, the channel

induced interference can be neglected [2]. This allows us to

factor out the channel in (6) according to (7), where h ∈
CLK×1 describes the one-tap channel, that is, the diagonal

elements of GHHG. To be specific, the one-tap channel at

subcarrier position l and time-position k is given by

hl,k = gH

l,kHgl,k ≈ H(kT, lF ), (8)

and can be interpreted as the sampled time-variant transfer

function H(kT, lF ). Note that FBMC experiences imaginary

interference, described by the off-diagonal elements of GHG

in (7), and only the real orthogonality condition holds true,

that is, ℜ{GHG} = ILK .

FBMC signals can be efficiently generated by an IFFT

together with a polyphase network [24]. However, in contrast

to the conventional multi-rate interpretation of a polyphase

network [25], we consider a vector based description [2],

[26], [27]. Such interpretation is important for understanding

pruned DFT spread FBMC so that we briefly repeat our results

from [2] with some small modifications.

Without loss of generality we consider only time-position

k = 0 (slight abuse of notation) and K = 1 FBMC symbol.

Any other time-position can easily be obtained by time-

shifting this special case in combination with time-domain

overlapping. The main idea for an efficient IFFT implementa-

tion is to factor out prototype filter p(t) so that the sampled

signal in (1) becomes,

s(i∆t) = p(i∆t)

L∑

l=1

e
j2πl i

NFFT xl,0e
j π
2
(l+0), (9)

for i = −ONFFT

2 , . . . , ONFFT

2 − 1. The summation in (9) corre-

sponds to an NFFT point IFFT for which the input arguments

are {0, x1,0 e j π
2
(1+0), · · · , xL,0 e j π

2
(L+0), 0, 0, · · · }. Fur-

thermore, because l is an integer, the summation in (9) is NFFT

periodic with respect to i. Thus, the IFFT has to be calculated

only for NFFT samples. Those samples can then be copied

O-times followed by an element-wise multiplication with the

prototype filter p(i ∆t). Such copy operation also appears in

windowed CP-OFDM [28], as illustrated in Figure 1. Thus,

from a conceptual point of view, there is no difference in the

signal generation between windowed CP-OFDM and FBMC.
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Fig. 1. From a conceptual point of view the signal generation in windowed
OFDM and FBMC requires the same basic operations, namely, an IFFT,
copying the IFFT output O-times, element-wise multiplication with the
prototype filter and, finally, overlapping [26], [27]. The receiver works in
a similar way, but in reversed order. ©2017 IEEE, [2].

One can easily transform OFDM into FBMC simply by,

1) Removing the CP. 2) Changing the window function.

3) Reducing the time-spacing from T = TW + TCP + 1
F

to T = 0.5
F . 4) Transmitting only real-valued data symbols

and fulfilling the phase pattern e j π
2
(l+k). This observation will

later be used in our pruned DFT spread FBMC transmission

scheme. Note that in Figure 1 we consider an overlapping

factor of four (FBMC), a common value in literature. However,

the overlapping factor must not necessarily be an integer,

implying that at the edges only some samples of the IFFT

output are copied. For example windowed CP-OFDM employs

an overlapping factor of O = 2 TWF + TCPF + 1. More

generally, we utilize the overlapping factor to describe how

much longer the basis pulses are relative to the reference

time-period of 1
F . The receiver works in a similar way as

the transmitter, but in reversed order, that is, 1) Element-wise

multiplication of the received signal by the prototype filter.

2) Summing up samples, corresponding to the copy operation

at the transmitter. 3) An NFFT point FFT.

III. PRUNED DFT SPREAD FBMC

In Section III-A, we present the underlying idea of pruned

DFT spread FBMC and provide an intuitive explanation why

the PAPR is reduced and why complex orthogonality is

(approximately) restored. Section III-B then includes a more

rigorous mathematical description. In Section III-C, we dis-

cuss latency aspects and in Section III-D the computational

complexity.

A. Basic Idea

The basic idea of pruned DFT spread FBMC can be best

explained by the underlying basis pulses. Precoding by C

transforms the basis pulses gl,k(t) into g̃i(t), described by

G̃ = GC =
[
g̃1 g̃2 . . .

]
. Note that the size of C and thus the

number of new basis pulses g̃i(t) depends on the precoding

method. Figure 2 shows the power of the basis pulses and illus-

trates a step by step construction of our method, starting from

a conventional OFDM system. Figure 2 (a) shows OFDM [29]

for NFFT = 512, L = 16 and K = 1. The underlying basis

pulses are frequency shifted rectangular functions. In terms of

Fig. 2. Power of the underlying basis pulses in time, that is, |gl,k(t)|2 and

|g̃i(t)|2 for NFFT = 512, L = 16 and K = 1; (a) conventional OFDM;
(b) conventional SC-FDMA, that is, precoding by DFT matrix WL; (c) only
L/2 = 8 basis pulses, close to the center, are utilized, that is, WL is replaced

by a pruned DFT matrix, �WL×L/2; (d) multiplication by a window/prototype

filter p(t) so that OFDM transforms into FBMC; (e) one-tap scaling of the
basis pulses so that the transmit power is approximately constant over time.

transmit power, however, a frequency shift has no influence so

that only one basis pulse can be observed in Figure 2 (a). All

the basis pulses are added together with some random weights

(the data symbols), so that, according to the central limit

theorem, the signal distribution at one time sample approaches

a Gaussian distribution. This explains the poor PAPR of

OFDM. In SC-FDMA [30], see Figure 2 (b), DFT precoding

by WL transforms the basis pulses of a conventional OFDM

system in such a way that a single carrier transmission is

emulated. In particular, the basis pulses are more localized

in time and even though they still overlap the signal at one

time sample is mainly determined by 1-2 basis pulses. Thus,

as long as the data symbols are not Gaussian distributed but

chosen from a limited symbol alphabet such as a Quadrature

Amplitude Modulation (QAM) signal constellation, the PAPR

will be better than in OFDM. Unfortunately, SC-FDMA has

the same poor OOB emissions as OFDM. This can easily

be deduced by considering the transmitted signal at the edge

positions, that is, tF = 0 and tF = 1. Similar as in OFDM,

the underlying rectangular pulse cuts through the signal so

that, at the edges, the signal abruptly jumps to zero without

a smooth transition. Only basis pulses close to the edge

positions are affected by this cutting effect. Thus, setting
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the edge basis pulses to zero reduces the OOB emissions

and is indeed the basic idea of zero-tail DFT-spread-OFDM

[23], [31]. However, Berardinelli et al. [23], [31] remove only

a few basis pulses to keep the overhead low. We, on the other

hand, remove L/2 basis pulses from the set, that is, DFT

spreading matrix WL is replaced by a pruned DFT matrix

W̃L×L/2. This step can also be interpreted as setting half

the input samples of a conventional DFT to zero. In contrast

to zero-tail DFT-spread-OFDM, our method does not impose

any overhead because we also reduce the time spacing by a

factor of two, as typically done in FBMC-OQAM. This also

explains why we remove exactly L/2 basis pulses. The result

of our approach is shown in Figure 2 (c). To combat multi-

path delays, zero-tail DFT-spread-OFDM utilizes the zero-tail

overhead in a similar way as the CP in OFDM. This reduces

the spectral efficiency. Again, we choose a different approach,

namely, we transform the OFDM system into an FBMC system

so that the channel induced interference becomes very low

and can often be neglected [2]. As discussed in Section II,

an OFDM system can easily be transformed into an FBMC

system simply by multiplying the IFFT output with a prototype

filter p(t), as shown in Figure 2 (d). In the last step, see

Figure 2 (e), the individual basis pulses are scaled up so

that the sum transmit power is approximately constant over

the transmission time. This final step completes our novel

pruned DFT spread FBMC transmission scheme. Figure 2

also explain why complex orthogonality is approximately

restored. To be specific, DFT spreading reduces the time

duration of the underlying basis pulses so that each basis

pulse experiences an approximately flat prototype filter. Such

system reflects a conventional SC-FDMA transmission and is

clearly orthogonal. Orthogonality relies on the approximation

that the prototype filter is flat over the duration of the basis

pulse. This approximation becomes tight for L → ∞ because

the time duration of each individual basis pulse approaches

zero. However, in practical systems, this will not be the case.

In Section IV we calculate the orthogonality approximation

error and propose an additional frequency CP to reduce it.

B. Mathematical Details

In Figure 2 (d) we employ a time domain root-raised cosine

pulse with roll-off factor one, that is,

ptRRC(t)=

{√
F (cos(2πtF )+1) if − 1

2F ≤ t < 1
2F

0 otherwise,
(10)

because it corresponds to an overlapping factor of O = 1,

greatly simplifying the illustration. However, we can also

employ a larger overlapping factor, implying that the IFFT

output has to be copied similar as in Figure 1. From

Figure 2 (c) we deduce that the overlapping factor should not

be larger than O ≈ 1.5 in order to avoid interference between

symbols in time, caused by the IFFT repetition in FBMC.

Thus, the PHYDYAS prototype filter [32] is not suited for

our transmission scheme because of its poor time localization.

Instead, we employ a truncated Hermite prototype filter. The

Hermite prototype filter was suggested in [33] and is based on

Hermite polynomials Hi{·}. It can be expressed by

pHerm.(t) =
√

F e−2π(tF )2
∑

i={0,4,8,
12,16,20}

αiHi{2
√

πtF}, (11)

where the coefficients αi can be found in [2]. The Hermite

pulse is based on a Gaussian function and therefore has a very

good joint time-frequency localization of σtσf = 1.02×1/4π,

almost as good as the bound of σtσf ≥ 1/4π (attained by

the Gaussian pulse) and much better than the PHYDYAS

prototype filter (σtσf = 1.13 × 1/4π). This also explains

why the Hermite pulse is more robust in doubly-selective

channel [2] and, in particular, in time-variant channels [34].

As the overlapping factor should not be larger than O ≈ 1.5,

we set the Hermite pulse in (11) to zero after the first zero-

crossing, that is,

pHerm.Trunc.(t) =

{
pHerm.(t) if − 1.56

2F ≤ t < 1.56
2F

0 otherwise.
(12)

In contrast to (10) and (11), employing a truncated Hermite

prototype filter, see (12), no longer guarantees real orthog-

onality in FBMC, ℜ{GHG} �= ILK . Instead, one observes

an Signal-to-Interference Ratio (SIR) of 28 dB. This, however,

has no direct influence on our transmission scheme. Moreover,

our transmission method can utilize any window function

as long as the overlapping factor is between approximately

0.6 and 1.6. Of course, there exists a trade-off between latency,

OOB emissions, robustness to doubly selective channels, and

the achievable SIR. If not stated otherwise we will always

employ a truncated Hermite prototype filter because our inves-

tigations have shown that it offers a good trade-off between

the relevant factors. However, a more detailed discussion on

the optimal trade-off for specific use-cases and the subsequent

optimal filter design could be investigated in future works. For

conventional FBMC we rely on the Hermite prototype filter,

see (11).

Let us now discuss the optimal size of precoding matrix C.

Figure 2 already provides an intuitive explanation why only

L/2 basis pulses (per time-position) are employed, namely,

the reduction of the time-spacing in FBMC by a factor of two

(compared with OFDM). However, there exists also a more

formal explanation based on an eigenvalue decomposition.

Similar as in [5], [6], [9], and [10], our goal is to restore

complex orthogonality in FBMC, that is, CHGHGC = I.

As for the derivation of the MIMO channel capacity [35],

the optimal precoding matrix can be found by an eigenvalue

decomposition of GHG in combination with water-filling.

Ignoring any edge effects, GHG has exactly LK/2 non-zero

eigenvalues, each having the same value [2]. Thus, the optimal

size of precoding matrix C is LK × LK
2 . Because we spread

in frequency only, that is, C = IK ⊗ Cf , the optimal

frequency spreading matrix must have a size of Cf ∈ CL×L
2 .

Figure 3 shows a block diagram of our pruned DFT spread

FBMC transmission scheme. We spread L/2 complex-valued

data symbols, x̃k ∈ C
L
2
×1, assumed to be uncorrelated and

with unit power, over L subcarriers, so that the transmitted

symbols for FBMC at time position k become

xk = Cf x̃k, (13)
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Fig. 3. Block diagram of pruned DFT spread FBMC at time position k. Compared to conventional FBMC-OQAM transmissions the complex-to-real
transformation is replaced by precoding with Cf , the real-to-complex transformation by CH

f , and the protoype filter must be shorter in time than approximately

1.5/F . Note that in conventional FBMC-OQAM the data symbols xk ∈ R
L×1 are real-valued.

Fig. 4. Equalizing L/2 largest elements of a delivers the scaling values

b̃. These scaling values guarantee that the transmit power is approximately
constant over time and that the diagonal elements of C

H

f G
H

kGkCf are

exactly one. Note that element [a]i corresponds to the i-th column of W.

with Cf ∈ C
L×L

2 denoting the frequency spreading matrix.

Note that, in contrast to conventional FBMC, the transmitted

symbols are no longer real-valued but complex-valued. The

received data symbols ỹk ∈ C
L
2
×1 are obtained by one-

tap equalization of the received symbols with ek ∈ CL×1,

followed by despreading according to

ỹk = CH

f diag{ek}yk. (14)

For the derivation of spreading matrix Cf we assume an

Additive White Gaussian Noise (AWGN) channel, H = IN ,

for which no equalization is necessary. The ultimate goal is

to restore complex orthogonality, that is,

CH

f GH

kGkCf ≈ IL/2. (15)

The approximation symbol in (15) indicates that a small

residual interference remains, see Section IV, so that our

system is only quasi orthogonal. However, in many cases this

has no impact on the performance.

As already explained in Section III-A, frequency spreading

matrix Cf ∈ CL×L
2 consists of a pruned DFT in combination

with one-tap scaling, that is,

Cf = W̃L×L/2 diag{b̃}, (16)

with pruned DFT matrix W̃L×L/2 ∈ CL×L
2 and one-tap

scaling vector b̃ ∈ R
L
2
×1. To further describe W̃L×L/2 and b̃,

we utilize an auxiliary vector a ∈ RL×1, defined as,

a = diag{WH

LGH

kGkWL}, (17)

which implicitly assumes spreading and despreading by a

full DFT matrix WL ∈ CL×L. Figure 4 shows how [a]i
depends on position i. The i-th element of a corresponds to

the i-th column of WL. The main idea of our transmission

scheme is to utilize only those column vectors of WL which

correspond to the L/2 largest elements of a. Thus, we only

employ the first L/2 column vectors of WL, see Figure 4.

Furthermore, we perform pre-equalization of [a]i. Pruned DFT

matrix W̃L×L/2 ∈ CL×L
2 and scaling vector b̃ ∈ R

L
2
×1

in (16) can therefore be expressed as

[b̃]i =

√
1

[a]i
, for i = 1 . . .

L

2
, (18)

W̃L×L/2 = WL

[
IL

2

0L
2

]
. (19)

Note that b̃ in (18) guarantees that the diagonal elements

of (15) are exactly one. Furthermore, (18) and (19) depend on

the underlying IFFT (it makes a difference if the overlapping

factor is even or odd, see Figure 1). Thus, (18) and (19) do

not always correspond to the first L/2 positions and one might

have to rely on auxiliary vector a to find the correct positions.

C. Latency

Figure 5 shows the expected transmit power in time for one

FBMC symbol, p
(t)
k ∈ RN×1, calculated by

p
(t)
k = diag{GkCf CH

f GH

k }. (20)

Compared with Figure 2 we now employ L = 128 subcarriers.

In conventional FBMC there exists a large overlapping of

symbols in time and the transmission requires a long ramp-up

and ramp-down period. In pruned DFT spread FBMC, on the

other hand, precoding by Cf shapes the transmitted signal in

such a way that the overlapping in time is very low and the

ramp-up and ramp-down period dramatically reduced. This

allows us to reduce the overlapping factor, for example to

O = 0.8 in combination with a Tukey window (parameter

β = 0.6). In conventional FBMC this is not feasible because

such windowing operation would reduce the SIR to 13 dB.

In pruned DFT spread FBMC, on the other hand, the main

energy is concentrated within O = 0.5. Thus, reducing the

overlapping factor to O = 0.8 has only a minor influence on

the SIR. To be specific, the SIR is only 1 dB lower compared

to O = 1.56. In Section IV we show how to calculate the SIR.

Note that a similar precoding effect as shown in Figure 5 was
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Fig. 5. Precoding matrix Cf shapes the transmitted signal in such a way,
that the average transmit power shows an almost perfect rectangular shape
with many beneficial properties.

Fig. 6. The superior spectral confinement of FBMC is preserved in pruned
DFT Spread FBMC. Reducing the overlapping factor, see Figure 5, reduces
the latency but also increases the OOB emissions. Thus, there is a trade-off.

also observed in FFT-FBMC [36], but in the frequency domain

instead of the time domain.

Reducing the overlapping factor increases the OOB emis-

sions. To describe this effect we calculate the power spectral

density, p
(f)
k ∈ RN×1, by

p
(f)
k = diag{WNGkCfC

H

f GH

kWH

N}, (21)

where we ignore scaling (we later normalize to 0 dB) and

implicitly assume infinitely many repetitions in time. The

frequency resolution in (21) is ∆f = fs

N . As shown in Figure 6

the OOB emissions of pruned DFT spread FBMC are relatively

low, even for an overlapping factor of O = 0.8. For an

overlapping factor of O = 1.56 the OOB emissions of our

method are comparable to conventional FBMC transmissions

(Hermite prototype filter) and much better than in OFDM. As

a reference we also consider the PHYDYAS prototype filter

which has the lowest OOB emissions, but also the worst time-

localization.

Let us now quantify the latency in more detail, where we

focus on the underlying pulse duration but ignore other sources

of delays such as channel delay or processing delay. The trans-

mission time of one FBMC symbol depends on overlapping

factor O and requires a time length of O
F . However, one FBMC

symbol only carries half the information of that of an OFDM

symbol. Thus, we might need to include the second symbol,

leading to an additional delay of 0.5
F , that is, the time spacing.

For example, an overlapping factor of O = 0.8 implies that

the first half of the information is received 20% faster than

in OFDM (no CP) while the second half needs 30% longer.

A conventional FBMC transmission with O = 4, on the

other hand, requires 350% longer than OFDM (no CP). A

similar behavior can be observed by considering an FBMC

transmission block, consisting of K symbols in time, for which

the delay is given by

TBlock =
O

F
+

0.5

F
(K − 1). (22)

In LTE, a block (subframe) has a duration of 1 ms and

consists of K = 14 OFDM symbols (TCP = 1
14F and

F = 15 kHz). Because each FBMC symbol only carries half

the information of that of an OFDM symbol (same number

of subcarriers), we require in total K = 28 FBMC symbols

for a fair comparison to LTE. For an overlapping factor of

O = 0.8, this implies that our method has a transmission time

of TBlock ≈ 0.95 ms, faster than in LTE. For an overlapping

factor of O = 1.5, the transmission time is exactly 1 ms, same

as in LTE. Conventional FBMC (O = 4), on the other hand,

performs relatively poor and requires 1.2 ms, 20% longer than

LTE. Note that the ramp-up and ramp-down period in FBMC

increases the latency but not necessarily the sum throughput

of the whole system because different transmission blocks

can overlap in time. This works as long as the phase pattern

which shifts the intrinsic interference to the imaginary domain

is fulfilled, as typically the case in downlink transmissions.

However, in multi-user uplink transmissions, different users

experience different phase shifts. Thus, the required phase

pattern is violated and a guard time might be necessary. In such

cases, the ramp-up and ramp-down period not only increases

the latency but also reduces the sum throughput. In pruned

DFT spread FBMC, on the other hand, this is not an issue

because we restore complex orthogonality and are therefore

not affected by any phase shifts.

D. Computational Complexity

The computational complexity of our transmission scheme

is approximately two times higher than in conventional

SC-FDMA. To be specific, the computational complexity

relative to SC-FDMA (without CP) at the transmitter can be

approximated by

2
(

L
2 + L log L

2 + NFFT log NFFT + ONFFT

)

L log L + NFFT log NFFT
≈ 2. (23)

If we ignore channel equalization (23) also represents

the computational complexity at the receiver. The term

NFFT log NFFT corresponds to the IFFT, required for both,

FBMC and OFDM. Additionally, FBMC requires an element-

wise multiplication by the prototype filter, see Figure 1, lead-

ing to an additional complexity of ONFFT. DFT spreading in
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SC-FDMA has a complexity of L log L, while one-tap scaling

in combination with a pruned DFT requires approximately
L
2 + L log L

2 multiplications [37]. Finally, the reduced time-

spacing in FBMC implies that all the calculations have to

be applied two times as often as in SC-FDMA (no CP),

explaining the factor of two in the nominator. For example

an LTE like setup with NFFT = 1024 and L = 600 implies

for O = 1.56 that the computational complexity of our scheme

is approximately 34149/15777 ≈ 2.16 times higher than in

SC-FDMA. For O = 0.8, it is 32593/15777 ≈ 2.07.

IV. ORTHOGONALITY APPROXIMATION

In Section III we have argued that complex orthogonality

is approximately restored. In this section we quantify this

approximation by considering the SIR.

In contrast to (15) we are not only interested in orthogonal-

ity within one time position, but in orthogonality within the

whole block, that is,

CHGHGC ≈ ILK/2, (24)

for which overall spreading matrix C ∈ C
LK×LK

2 is given

by

C = IK ⊗ Cf . (25)

The Kronecker product ⊗ maps frequency spreading matrix

Cf ∈ C
L×L

2 , see (16), to the correct time-positions, that is,

vec{Cf

[
x̃1 . . . x̃K

]
} = (IK ⊗Cf )x̃. The diagonal elements

of CHGHGC in (24) are exactly one because of one-tap scal-

ing with b. However, the off-diagonal elements of CHGHGC

are not exactly zero implying that symbols interfere with each

other. We quantify this interference with the SIR, given for

time-position k by

SIR
Orth.Appr.
k =

L
2

||CH

f GH

kGC||2
F
− L

2

, (26)

where || · ||F denotes the Frobenius norm and L/2 reflect

the sum power of the diagonal elements of CH

f GH

kGkCf .

The SIR is the same for all time positions except those

at the beginning and the end of the block. The blue curve

in Figure 7 shows the SIR. Not all symbol experience exactly

the same SIR so that we also include the maximum and the

minimum SIR (within one time position), indicated by the

dotted lines in Figure 7. For a large number of subcarriers the

SIR is sufficiently high, allowing us to neglect the interference

because it is dominated by noise. However, in some rare cases

we might need a higher SIR. One can then, for example,

reduce the subcarrier spacing while keeping the bandwidth

constant, resulting in a higher number of subcarriers and thus

a higher SIR. Another way of increasing the SIR is to employ

a frequency CP,1 that is, a cyclical extension of the signal in

the frequency domain. The drawback is a small reduction in

spectral efficiency. The idea of a frequency CP is based on a

critically sampled system, that is, NFFT = L. In pruned DFT

spread FBMC a critically sampled system perfectly restores

1We call it frequency CP, even though it is a cyclic prefix and cyclic suffix.

Fig. 7. Complex orthogonality is not perfectly restored, causing interference.
We quantify this interference with the SIR. Note that the SIR is high enough so
that interference can usually be neglected. Only if the number of subcarriers is
very small, a frequency CP might be necessary, see Figure 8, slightly reducing
the spectral efficiency.

Fig. 8. A frequency CP emulates a critically sampled system by repeating
a small part of the signal in the frequency domain. This greatly improves the
SIR, see Figure 7. However, in many practically relevant cases a frequency
CP is not necessary.

complex orthogonality in (24), that is, CHGHGC = ILK/2.

This can easily be shown with Figure 1 and Figure 2. The IFFT

in FBMC and DFT precoding perfectly cancel each other, that

is, WH

LWL = IL, so that each data symbol corresponds to

one sample in time. With respect to a pruned DFT, we only

utilize L/2 time samples in the center, see Figure 2 (c). If

O < 1.5, the IFFT repetition in FBMC, see Figure 1, has no

influence on the transmission. Furthermore, the scaling values

b perfectly equalize the prototype filter. Thus, the overall

system is characterized by transmitting one data symbol at

one time sample, that is, s = x̃ = ỹ (back-to-back trans-

mission, no noise and ignoring the “ramp-up” and “ramp-

down” period). Of course such a system makes no sense in

practice. However, one can emulate a critically sampled system

by repeating the signal in the frequency domain. Because the

basis pulses in FBMC are localized in frequency, it is usually

sufficient to repeat only a few subcarriers at the edges. Figure 8

illustrates this process for a frequency CP length of LCP = 4.

If LCP is an even number the frequency CP at the transmitter

can be described by matrix TCP ∈ CL×(L−LCP), defined

as,

TCP =

⎡
⎣
[
0(LCP/2)×(L−3LCP/2) ILCP/2

]

IL−LCP[
ILCP/2 0(LCP/2)×(L−3LCP/2)

]

⎤
⎦ , (27)
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and the CP reduction at the receiver by RCP ∈ CL×(L−LCP),

defined as

RCP =

⎡
⎣
0(LCP/2)×(L−LCP)

IL−LCP

0(LCP/2)×(L−LCP)

⎤
⎦ . (28)

Compared to the previous coding matrix in (16), the new

precoding matrices, Cf,TX ∈ CL×
L−LCP

2 at the transmitter

and Cf,RX ∈ CL×
L−LCP

2 at the receiver, change according to

Cf,TX = TCPW̃CP diag{b̃CP} (29)

Cf,RX = RCPW̃CP diag{b̃CP}. (30)

Furthermore, pruned DFT matrix W̃CP ∈ C(L−LCP)×
L−LCP

2

and scaling vector b̃CP ∈ R
L−LCP

2
×1 now also have different

dimensions. The process of finding W̃CP and b̃CP, however,

is the same as in Section III-B and depends on auxiliary vector

aCP = diag{WH

(L−LCP)R
H

CPGH

kGkTCPW(L−LCP)}. (31)

The new coding matrices in (29) and (30) also change the

SIR calculation in (26) according to

SIR
Orth.Appr.CP
k =

L−LCP

2

||CH

f,RXGH

kG(IK ⊗ Cf,TX)||2
F
− L−LCP

2

(32)

Figure 7 shows that a frequency CP of length LCP = 2 can

significantly improve the SIR by approximately 20 dB, while

the spectral efficiency loss, given by η = LCP

L , is relatively

small. Note that for LCP = 2 we reduce the overlapping

factor to O = 1.46 because it increases the SIR further and

has almost no influence on the spectral confinement (only for

values smaller than -50 dB in Figure 6).

While a frequency CP can improve the SIR, our investiga-

tions have shown that in most cases it is not necessary because

interference is dominated by noise. Even if a frequency CP is

employed, the efficiency loss is often less than 1%. Only in

the rare case when the number of data subcarriers is very

small, say for example 12, a frequency CP causes a relatively

high spectral efficiency loss of η = LCP

L = 2
12+2 = 14 %.

Conventional LTE only has a loss of 7%, caused by the

CP. However, this statement only holds true for perfectly

synchronized systems. In asynchronous transmissions guard

subcarriers are often required. Suppose for example that the

power spectral density must be below 30 dB of its maximum

value outside the effective transmission bandwidth (including

the guard band). For pruned DFT spread FBMC this implies

that one guard subcarrier is required, see Figure 6, already

fulfilled by the frequency CP so that the efficiency loss remains

at 14 %. Universal-Filtered OFDM (UF-OFDM) [38], on the

other hand, requires LG = 8 guard subcarriers, leading to an

efficiency loss [2] of η = TF +TF LG

L −1 = 1.07+1.07 8
20 −

1 = 50 %. Thus, in asynchronous transmissions pruned DFT

spread FBMC is much more efficient than UF-OFDM, even

if a frequency CP is employed. Only when compared to

conventional FBMC transmissions the frequency CP imposes

a minor issue, as conventional FBMC only requires one guard

subcarrier, causing an efficiency loss of η = LCP

L = 1
13 = 8 %.

Because a frequency CP is often not necessary and to keep

the notation consistent with the block diagram in Figure 3 we

ignore the frequency CP in the next two subsections. However,

by replacing C with (IK ⊗Cf,TX) at the transmitter and CH

by (IK ⊗Cf,RX)H at the receiver, all equations are also valid

for the frequency CP case.

V. ONE-TAP EQUALIZERS

So far we have ignored the channel but will now include

it into our considerations. With respect to channel equal-

ization we restrict ourself to one-tap equalizers because of

the low computational complexity. Note, however, that multi-

tap equalizers [34] or a sliding window frequency domain

equalizer [39] could improve the performance further. In

Section V-A we derive a closed form solution for the Signal-

to-Interference plus Noise Ratio (SINR) in doubly-selective

channels. Section V-B then considers the special case of a

“flat” channel, allowing to straightforwardly employ all MIMO

methods.

A. SINR in Doubly-Selective Channels

One of the main advantages of DFT precoded OFDM and

FBMC systems compared with conventional single carrier

schemes is that the channel equalization can be performed

in the multi-carrier domain. Thus, low-complexity one-tap

equalizers can be used. This is a crucial aspect of pruned DFT

spread FBMC so that we will discussion the effect of one-tap

equalizers on the SINR in more detail.

We employ a scaled one-tap Minimum Mean Squared Error

(MMSE) equalizer, given for subcarrier position l and time

position k by,

el,k =
h∗

l,k

|hl,k|2 + Pn

1

1
L

L∑
l=1

1

1+ Pn

|hl,k|2

, (33)

where hl,k = gH

l,kHgl,k denotes the one-tap channel. The

first term in (33) is a conventional one-tap MMSE equalizer,

while the second term is a scaling factor which guarantees that

the estimated data symbols are approximately unbiased, that

is, E{ỹl̃,k|x̃l̃,k} ≈ x̃l̃,k. This approximation becomes tight for

perfectly orthogonal systems such as SC-FDMA in a time-

invariant channel. Note that for a doubly-flat channel (all

hl,k have the same value) or if the noise is zero (Pn = 0),

(33) becomes a zero-forcing equalizer, that is, el,k = 1/hl,k.

We stack all equalizer elements of (33) in a vector e ∈
CLK×1, defined as [e]l+L(k−1) = el,k. The input-output

relationship of the whole transmission system can then be

modeled by,

ỹ = CHdiag{e}GHHGC︸ ︷︷ ︸
D

x̃ + CHdiag{e}GH

︸ ︷︷ ︸
Γ

n. (34)

where ỹ provides an estimate of the transmitted data symbols

x̃. The interference is described by the off-diagonal elements

of matrix D ∈ C
L
2

K×L
2

K and the noise by matrix Γ ∈
C

L
2

K×N . For uncorrelated data symbols with unit power,

Px̃ = E{|x̃l̃,k|2} = 1, and uncorrelated noise samples with
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power Pn, the SINR, conditioned on channel realization H,

can be calculated by a row-wise summation of the squared

absolute elements of D and Γ, according to,

SINRl̃,k(H) =
1

L
2

K∑
i=1

|[D − I]l̃k,i|2 + Pn

N∑
i=1

|[Γ]l̃k,i|2
. (35)

In (35), we utilize the short notation l̃k = l̃ + L
2 (k − 1)

to describe the l̃k-th row position, corresponding to code-

position l̃ = 1, 2, . . . , L
2 and time-position k of our vectorized

system model. Equation (35) includes the channel induced

interference as well as the orthogonality approximation error.

If both of those interference terms are sufficiently low, that is,

GHHG ≈ diag{h}GHG and CHGHGC ≈ ILK/2, (35) can

be approximated by

SINRAppr.

l̃,k
(H) =

1
L

L∑
l=1

1
1+ Pn

|hl,k|2

1 − 1
L

L∑
l=1

1
1+ Pn

|hl,k|2

. (36)

In Section VI-B we provide a numerical example of the

approximation error. For a doubly-flat channel the approxi-

mation in (36) transforms to SINRAppr.

l̃,k
= |hl̃,k|2/Pn, same

as for conventional multi-carrier systems such as OFDM and

FBMC (again ignoring any channel induced interference).

Thus, if the delay spread and the bandwidth are sufficiently

low, pruned DFT spread FBMC behaves like a conventional

FBMC system. On the other hand, if the delay spread and

the bandwidth are very high, our scheme shows a different

behavior. In particular we observe a channel hardening effect.

Let us consider the limit case of L → ∞. For Rayleigh

fading with unit power the averaging term in (36) can then

be calculated by E|h|{1/(1+Pn/|h|2)} = 1−Pne
Pn E1{Pn},

where E1{·} denotes the exponential integral function. Thus,

the SINR approximation in (36) becomes,

SINRAppr.
L→∞ =

1

Pn

(
e−Pn

E1{Pn}
− Pn

)
, (37)

and no longer depends on a specific channel realization.

B. “Flat” Channel: Enabling All MIMO Methods

The main goal of pruned DFT spread FBMC is to reduce the

PAPR. This is different to the contribution of Lélé et al. [5],

Zakaria and Le Ruyet [6], and our previous papers in [9]

and [10], as the main motivation was to enable MIMO

transmissions in FBMC by restoring complex orthogonality

through spreading. Because pruned DFT spread FBMC also

restores complex orthogonality our scheme can also be used

for that purpose. In particular Alamouti’s space time block

code and ML MIMO detection become feasible. The draw-

back, however, is the same as in [5], [6], [9], and [10], namely,

the channel has to be approximately flat within the spreading

length. The main idea for enabling MIMO in FBMC is to

despread before equalization, that is,

ỹ = CHGHHGCx̃ + ñ ≈ diag{h̃}x̃ + ñ. (38)

If the approximation in (38) holds one obtains the same

system model as in conventional OFDM transmissions. Thus,

most known methods from OFDM can be straightforwardly

employed. As already mentioned in Section III-A, precoding

by C can be interpreted as transforming the underlying basis

pulses according to G̃ = GC =
[
g̃1 · · · g̃LK/2

]
. Thus,

instead of modulating data symbols with gl,k(t), as in (1),

we modulate them with g̃i(t). In contrast to conventional

multicarrier systems, however, the transformed basis pulses

g̃i(t) no longer employ all the same prototype filter p(t).
Instead, basis pulses have their own, unique, prototype filter

pi(t) which makes a straightforward signal generation difficult.

By interpreting G̃ as a precoded FBMC system, however,

the advantage of an efficient signal generation are preserved.

Moreover, such interpretation offers a high flexibility.

In Section III-A we already presented an example of how

spreading in frequency transforms the underlying basis pulses,

see Figure 2 (e). In particular the transformed basis pulses

become shorter in time and are therefore more robust in time-

variant channels. On the other hand, the system becomes more

sensitive to frequency-selective channels. Thus, if we want to

employ low-complexity one-tap equalizers the delay spread

must be very low, while the Doppler spread can be relatively

high. For FFT-FBMC [6] (pruned DFT spreading in time) the

opposite holds true, that is, the Doppler spread must be very

low, while the delay spread can be relatively high.

To determine if the approximation in (38) holds Zakaria

and Le Ruyet [6] assume that the transmission time is much

shorter than the coherence time. Unfortunately such approach

is not very accurate. Additionally, the approximation error also

depends on the noise level. We therefore suggest a better

measure by calculating the SIR in (38). As long as the

Signal-to-Noise Ratio (SNR) is approximately 10 dB lower

than the SIR, interference is dominated by noise and the

approximation in (38) holds. Once the SNR approaches the

SIR, the performance degeneration becomes equivalent to an

SNR shift of approximately 3 dB. If the SNR is higher than

the SIR, on the other hand, the approximation in (38) no

longer holds and more sophisticated detection methods might

be necessary, or the equalization must be performed in the

multi-carrier domain, see Section V-A. The SIR in (38) is

calculated in a similar way as in [2] and [10], leading to

SIRAppr.Flat

l̃,k
=

E{|h̃l̃,kx̃l̃,k|2}
E{|cH

l̃,k
GHHGCx̃− h̃l̃,kx̃l̃,k|2}

(39)

=
[Φ]l̃k,l̃k

tr{Φ} − [Φ]l̃k,l̃k

, (40)

where l̃k is the short notation for l̃k = l̃ + L
2 (k − 1), vector

cl̃,k ∈ CLK×1 denotes the l̃k-th column of C and matrix

Φ ∈ C
L
2

K×L
2

K is defined as

Φ=
(
CTGT⊗cH

l̃,k
GH

)
Rvec{H}

(
CTGT ⊗ cH

l̃,k
GH

)H

. (41)

Note that correlation matrix Rvec{H} = E{vec{H}vec{H}H}
depends only on the power delay profile and the Doppler

spectral density. Thus, in contrast to Section V-A, the SIR
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Fig. 9. Pruned DFT spread FBMC has the same PAPR as SC-FDMA, but
the additional advantage of much lower OOB emissions. A frequency CP can
further improve the PAPR at the expense of a reduced spectral efficiency.

in (39) no longer depends on a specific channel realization

but only on the second order channel statistics.

VI. SIMULATION RESULTS

To better show the potential of pruned DFT spread FBMC

we perform Monte Carlo simulations. We first evaluate the

PAPR in Section VI-A. Afterwards in Section VI-B we discuss

the SINR, the BER and the throughput performance in doubly-

selective channels. Finally, in Section VI-C, we consider the

scenario of a very short delay spread and a small bandwidth

(flat channel).

A. PAPR

Figure 9 shows the Complementary Cumulative Distribution

Function (CCDF) of the PAPR for a 4-QAM signal constel-

lation and L = 256 subcarriers. Conventional FBMC has

the same poor PAPR as OFDM. Pruned DFT spread FBMC,

on the other hand, performs as well as SC-FDMA and is

approximately 3 dB better than OFDM and FBMC. Moreover,

one can further reduce the PAPR by utilizing a frequency

CP, although this comes at the expense of a lower spectral

efficiency. Figure 2 (c) helps to explain why a frequency

CP reduces the PAPR further. To be specific, the number of

transformed basis pulses is reduced from L
2 to L−LCP

2 and the

basis pulses are further apart from each other. This decreases

the overlapping between pulses in time and consequently

reduces the PAPR further.

Compared with FFT-FBMC [6], that is, pruned DFT spread-

ing in time, described by C = W̃
(1)
K×K/2

⊗ IL/2 ⊗ [ 1 0
0 0 ] +

W̃
(2)
K×K/2

⊗ IL/2 ⊗ [ 0 0
0 1 ], spreading in frequency offers a

much lower PAPR. In fact the PAPR of FFT-FBMC is even

worse than in conventional FBMC systems. This effect can

again be explained by the underlying basis pulses. Similar

to spreading in frequency, Figure 2 (d) can also be used to

describe spreading in time, where we only have to replace

“time” with “frequency” on the x-axis. In particular FFT-

FBMC is nothing else than a subband filtered OFDM scheme,

similar as UF-OFDM [38], but with the additional advantage

that the signal can be generated more efficiently. From Figure 2

(d) we conclude that spreading in time can be interpreted as

increasing the number of “subcarriers” by a factor of K, that is,

L → LK . As such, the PAPR becomes worse than in FBMC

and OFDM which only employ L subcarriers.

Pruned DFT spread FBMC also outperforms other fre-

quency spreading methods for FBMC. For example the simple

DFT spreading scheme, proposed in [20], has a relatively

poor PAPR. To improve the PAPR Na and Choi [22] recently

proposed an optimal phase pattern for the simple DFT spread-

ing scheme, that is, the phase e j π
2
(l+k) in (2) is replaced by

e j π
2
(l+k)e−jπlk. However, as shown in Figure 9 an optimal

phase pattern only slightly improves the PAPR. Thus, Na

and Choi [22] further suggested a candidate selection scheme

where they generate four different DFT spread FBMC signals

and select the one with the lowest PAPR, resulting in a similar

PAPR as in SC-FDMA (not shown in the figure). However,

the main drawback of [22] is the necessity of side information.

While Na and Choi [22] argue that the side information only

consists of two bits and can thus be neglected, we would like

to point out that side information causes additional challenges.

For example the side information is very crucial for the detec-

tion process and must therefore be channel coded at low rate in

order to guarantee robustness. The overhead is therefore much

larger than just two bits. Furthermore, the side information

cannot be directly transmitted within the same FBMC symbol

because it must already be known before demodulation is

possible. Thus, the side information must be transmitted on

a separate transmission channel or computational demanding

blind detection must be employed. All those drawbacks are

avoided in pruned DFT spread FBMC because we do not

require any side information. Furthermore, compared with [22]

the computational complexity of our scheme is approximately

10%-80% lower, the latency is reduced, see Section III-C, and

we restore complex orthogonality, allowing efficient uplink

transmissions. On the other hand, the spectral confinement

of [22] might be better than for our method because the

overlapping factor is not restricted to be approximately O ≤
1.5. However, we can circumvent this drawback in pruned

DFT spread FBMC by reducing the subcarrier spacing, for

example by a factor of two, so that the power spectral density

becomes very similar to conventional FBMC based on the

PHYDYAS prototype filter, see Figure 6.

B. Performance in Doubly-Selective Channels

To describe wireless channels we consider the new 3GPP

38.900 channel model [40, Sec. 7.7.3]. To be specific we

assume a Tapped Delay Line (TDL)-A power delay profile

and a long delay spread of 300 ns. In future wireless systems

we expect that beamforming and a small cell size will typically

lead to a much shorter delay spread [2]. However, by consid-

ering such a long delay spread we are able to evaluate the

robustness of our transmission scheme. As proposed by 3GPP

time variations are modeled by a Jakes Doppler spectrum.

Let us first compare the true SINR in (35) to the approxi-

mated SINR in (36). As the SINR depends on a given channel
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Fig. 10. The approximated SINR in (36) accurately describes the true SINR
in (35) as long as the channel induced interference is dominated by noise.

realization we define the total SINR as the average signal

power (which is one) divided by the average interference plus

noise power,

SINR =
1

1
K

∑K
k=1

1
L/2

∑L/2

l̃=1
EH

{
1

SINR
l̃,k

(H)

} . (42)

The expectation EH{·} in (42) is calculated by Monte Carlo

evaluation. Figure 10 shows the error between the approx-

imated SINR in (36) and the true SINR in (35). In low

SNR regimes the channel induced interference is dominated

by noise so that the approximation in (36) is tight. The

approximation error can also be utilized to describe how

much interference is caused by the channel. The reference

curve is then 0 dB (no interference), achieved by SC-FDMA

with CP for 0 km/h. However, this optimal performance of

SC-FDMA comes at the expense of a reduced data rate,

TCPF = τmaxF = 4%. If the CP is removed2 in SC-FDMA,

the performance severely starts to degenerate for SNR values

larger than 15 dB, as shown Figure 10. Pruned DFT spread

FBMC, on the other hand, is almost not affected by the

large delay spread and performs close to SC-FDMA with CP.

Moreover, pruned DFT spread FBMC performs well in high

velocity scenarios, such as 200 km/h, and outperforms SC-

FDMA with CP which is severely affected by inter-carrier-

interference.

The SINR can also be utilized to calculate the Bit Error

Probability (BEP), a more meaningful measure than the SINR.

By assuming that the interference is Gaussian distributed we

calculate the BEP by,

BEP = EH

⎧
⎨
⎩

1

K

K∑

k=1

1

L/2

L/2∑

l̃=1

BEPAWGN{SINRl̃,k(H)}

⎫
⎬
⎭.

(43)

The function BEPAWGN{·} represent the BEP for an AWGN

channel and can easily be calculated. For example, in case

2We consider SC-FDMA “without CP” because it has the same data rate as
pruned DFT spread FBMC, allowing for a fair comparison.

Fig. 11. Our method is relatively robust to large delay spreads and performs
close to SC-FDMA (with CP), but has the additional advantage that no CP is
necessary. Removing the CP in SC-FDMA causes severe interference, leading
to a saturation effect of the BER. The closed-form BEP expression in (43)
accurately describes the simulated BER.

Fig. 12. Similar as Figure 11 but for a velocity of 200 km/h. Pruned DFT
spread FBMC now even outperforms SC-FDMA with CP, which is severely
affected by inter-carrier-interference.

of a 4-QAM signal constellation BEP4QAM
AWGN{SINR} =

Q{
√

SINR}, with Q{·} denoting the Q-function. For higher

modulation orders, however, the function BEPAWGN{·}
becomes more evolved and includes many summations,

see [41]. Figure 11 and Figure 12 show that the closed-

form solution in (43) accurately describes the simulated BER,

indicated by the markers. Only for high SNR values small

deviations can be observed because the channel induced inter-

ference is not Gaussian distributed, violating the underlying

assumption of (43). Figure 11 shows the BEP for a velocity

of 0 km/h. Overall, the behavior is similar as already observed

in Figure 10. SC-FDMA without CP is severely affected by the

long delay spread, while pruned DFT spread FBMC performs

close to the optimum, that is, SC-FDMA with CP. Figure 12

shows the BEP for a velocity of 200 km/h. Similar as for

the SINR, SC-FDMA is severely affected by inter-carrier-

interference. Pruned DFT spread FBMC, on the other hand,

is more robust in doubly-selective channels and outperforms

SC-FDMA.
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In practical systems channel coding and link adaption are

of utmost importance. For a fair comparison of different

modulation schemes we therefore consider the throughput,

a more meaningful measure than the BEP because it includes

channel coding and link adaption. To derive an informa-

tion theoretic upper bound of the throughput, the achiev-

able rate R, we assume that the transmission of each data

symbol can be considered as a separate AWGN channel,

characterized by SINRl̃,k(H). The capacities of those separate

transmission channels are then modeled by the Bit-Interleaved

Coded Modulation (BICM) capacity, BICMAWGN{SINR},

see [2], [42]. Compared with the well-known channel capacity

CAWGN{SINR} = log2(1 + SINR), the BICM capacity does

not assume Gaussian distributed data symbols and instead

allows for a QAM signal constellation in combination with

bitwise interleaving. The upper bound of the throughput,

achievable rate R, can then be calculated by

R = EH

⎧
⎨
⎩

1

KT

K∑

k=1

L/2∑

l̃=1

BICMAWGN{SINRl̃,k(H)}

⎫
⎬
⎭, (44)

where we implicitly assume infinitely many transmission

blocks in time so that KT represents the average transmission

time for one block. To simulate the throughput we employ

turbo coding in combination with 15 different modulation and

coding schemes ({4, 16, 64}-QAM and code rates between

0.08 and 0.93, as proposed by the LTE standard). We transmit

the signal for all possible modulation and coding schemes and

choose at the receiver the highest throughput, that is, the high-

est data rate for which all data bits were correctly detected,

implicitly assuming perfect feedback. The Log-Likelihood

Ratio (LLR), required for turbo decoding, is calculated by

considering a per symbol AWGN channel, characterized by

the approximated SINR in (36). Thus, we ignore any noise

and interference correlation to keep the computational com-

plexity low. Moreover, we utilize the approximated SINR

instead of the true SINR in (35) because it only requires

knowledge of the one-tap channels and the noise power,

making it a more practical approach. Figure 13 shows the

simulated throughput as well as the achievable rate, see (44).

The simulated throughput is approximately 2dB SNR shifted

when compared to the achievable rate. Such difference can be

explained by an imperfect coder, a limited code length, and

a limited number of code rates. Nonetheless, the achievable

rate in (44) accurately captures the main properties. In par-

ticular FBMC is at most 13% better than pruned DFT spread

FBMC and the SNR shift between both curves is at most

2.3 dB. Those performance differences are mainly caused by

frequency spreading in combination with a long delay spread

and a relatively large bandwidth. If, for example, the delay

spread would be smaller, pruned DFT spread FBMC would

perform closer to FBMC (not shown in the Figure). In the

extreme case of a doubly-flat channel both schemes would

show the same performance. On the other hand, if we consider

the limit case of L → ∞, the performance difference between

FBMC and pruned DFT spread FBMC would be at most

27 % and the SNR shift at most 3.6 dB. Those values are

calculated by comparing E|h|{BICMAWGN{|h|2/Pn}} with

Fig. 13. Pruned DFT spread FBMC outperforms SC-FDMA because it
is more robust in doubly-selective channels and does not require a CP.
Spreading causes an averaging effect of the channel, reducing the throughput
when compared to conventional multi-carrier schemes. The achievable rate
in (44), an upper bound for the throughput, captures the main properties of
our transmission system.

BICMAWGN{SINRAppr.
L→∞}, see (37). Thus, in Figure 13 we

observe an intermediate performance degradation of pruned

DFT spread FBMC when compared to conventional FBMC.

For other settings, the difference could be higher (L → ∞)

or lower (doubly-flat channel). Similar as already observed

for the SINR and the BEP, SC-FDMA is severely affected

by inter-carrier interference. This causes a saturation effect of

the throughput once the channel induced interference starts

to dominate the noise. Pruned DFT spread FBMC, on the

other hand, is more robust in time-variant channels so that

the throughput is higher than in SC-FDMA. Moreover, our

method does not need a CP, further increasing the throughput

when compared to SC-FDMA with CP. Note that for SNR

values smaller than 16.5 dB, SC-FDMA without CP outper-

forms SC-FDMA with CP. Furthermore, the throughput for

SC-FDMA without CP decreases for high SNR values because

our LLR calculation does not account for the channel induced

interference, see (36), causing a mismatch.

C. MIMO in a “Flat” Channel

We now consider the special case of a very short delay

spread in combination with a small bandwidth, as we expect

for example in indoor Machine to Machine (M2M) com-

munications. As discussed in Section V-B it is possible to

despread before equalization. If the channel is sufficiently

flat, the transmission can still be modeled by one-tap chan-

nels so that all MIMO methods known in OFDM can be

straightforwardly employed in FBMC. To decide whether the

channel can be considered as flat or not, we proposed the

SIR in Section V-B. For a delay spread of 10 ns, a velocity

of 3 km/h, and L = 64 subcarriers, the SIR is 25 dB, calculated

by (39). Thus, for SNR values smaller than 15 dB we expect

that the channel can be considered as flat. Figure 14 shows the

throughput for 2×2 spatial multiplexing where we assume that

both MIMO streams employ the same modulation and coding

scheme. For SNR values smaller than 15 dB, the throughput
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Fig. 14. If the channel is approximately frequency-flat, low-complexity
ML-MIMO detection becomes feasible in pruned DFT spread FBMC because
complex orthogonality is restored. Our scheme performs close to OFDM but
has the additional advantage of much lower OOB emissions, see Figure 6.

difference between pruned DFT spread FBMC and OFDM

is less that 3 %. Thus, our scheme shows approximately the

same performance as OFDM and is up to 10% better than

conventional FBMC, for which low-complexity ML detection

is not feasible (we consider MMSE detection as a reference).

For SNR values larger than 16 dB it becomes advantageous

to include a frequency CP in pruned DFT spread FBMC

because of the reduced self-interference. However, in contrast

to Figure 7 the SIR is not 45 dB (as for a flat channel), but

34 dB because of the delay spread. To improve the SIR further

the bandwidth has to be reduced.

VII. CONCLUSION

Our novel pruned DFT spread FBMC transmission scheme

outperforms SC-FDMA in many aspects. It is more robust in

doubly-selective channels, requires no CP and has much lower

OOB emissions. Furthermore, if the channel is approximately

frequency-flat, our method even outperforms conventional

FBMC because MIMO can be straightforwardly employed.

Potential applications of pruned DFT spread FBMC include

uplink transmissions in wireless communications as well

as M2M communications, where the good time-frequency

localization guarantees that no sophisticated synchronization

between users is necessary.
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